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Abstract

This paper presents a distinctively multiplicative quantificational prin-
ciple that arguably captures the problematic aspects of Zardini’s infini-
tary rules for a multiplicative quantifier within the context of the seman-
tic paradoxes and the theoretical goal to obtain a (ω)-consistent theory
of transparent truth. After showing that the principle is derivable with
Zardini’s rules and that one obtains through vacuous quantification an in-
consistent theory of truth if truth is transparent, the paper presents two
results regarding the principle and ω-inconsistency. First, the principle is
used to obtain a non-classical variant of McGee’s ω-inconsistency result
for certain classical theories of truth. Second, it is demonstrated that
the conditions for a truth-theoretic variant of Bacon’s ω-inconsistency re-
sult for certain non-classical theories of transparent truth implies that the
principle holds for the paradoxical formula. Finally, the paper argues that
the paradoxical reasoning that the principle enables is structurally similar
to the kind of infinitary reasoning popularised by Hilbert’s Grand Hotel.

Keywords: Non-contractive logic, multiplicative quantifier, theories of truth,
semantic paradoxes, omega-inconsistency, McGee’s theorem

1 Introduction

Within substructural logics as an area of research, one of the central distinctions
is that between additive and multiplicative connectives. For example, additive
and multiplicative conjunction, here represented respectively by ∧ and &, can
be defined as follows in a single-succedent sequent calculus where the antecedent
is a possibly empty finite multiset of formulas:12

1The labels “additive” and “multiplicative” come from the literature on linear logic, see
e.g. Girard (1987). Other research traditions or perspectives use different labels. For example,
the same distinction is expressed in terms of weak vs strong connectives by Gottwald (2022),
as extensional vs intensional connectives by Humberstone (2020) and as lattice-theoretic vs
group-theoretic connectives by Paoli (2002). In the literature on relevant logics, “conjunction”
and “disjunction” are used for additive conjunction and disjunction, and “fusion” and “fission”
for their multiplicative counterparts, see e.g. Dunn and Restall (2002).

2Sequents will throughout the paper be single-succedent with a multiset antecedent. The
paper also assumes some familiarity with sequent calculi as proof-theoretic framework. See
for example Negri and von Plato (2001) or Troelstra and Schwichtenberg (2000) for an intro-
duction.
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A,Γ ⇒ C
(∧L1)

A ∧B,Γ ⇒ C

B,Γ ⇒ C
(∧L2)

A ∧B,Γ ⇒ C
Γ ⇒ A Γ ⇒ B (∧R)

Γ ⇒ A ∧B

A,B,Γ ⇒ C
(&L)

A&B,Γ ⇒ C
Γ ⇒ A Γ′ ⇒ B (&R)

Γ,Γ′ ⇒ A&B

The differences between the rules for multiplicative and additive conjunction
can be characterised as follows. In the additive case, the right introduction rule
(∧R) has shared context and there are two left introduction rules (∧L1) and
(∧L2), one for each immediate subformula where that formula occurs as active
formula in the antecedent. In the multiplicative case, the right introduction rule
(&R) has independent contexts and there is only one left introduction rule (&L)
where every immediate subformula occurs as active formula in the antecedent.

Importantly, a distinction between additive and multiplicative conjunction
requires that one of the following structural rules is not admissible:3

A,A,Γ ⇒ C
Contraction:

A,Γ ⇒ C
Γ ⇒ CWeakening:

A,Γ ⇒ C

The admissibility of weakening implies that A&B ⇒ A∧B is derivable, and the
admissibility of contraction implies that A ∧B ⇒ A&B is derivable.

One can generalise the description of the distinction between additive and
multiplicative conjunction to obtain additive and multiplicative universal quan-
tifiers. The additive universal quantifier is defined as follows where y is an
eigenvariable; it does not occur free in the conclusion-sequent of the right rule:

A(t/x),Γ ⇒ C
(∀LA)∀xA,Γ ⇒ C

Γ ⇒ A(y/x)
(∀R)

Γ ⇒ ∀xA

As with the left introduction rules (∧L1) and (∧L2) for additive conjunction,
the rule (∀LA) is weakening the antecedent by replacing a single instance with a
formula implying every instance (the universally quantified formula itself). The
right rule (∀R) corresponds to the right rule (∧R) for additive conjunction since
the premise-sequent is normally derivable for any term through substitution
because y is an eigenvariable. It should thus hold for every instance of the
universally quantified formula.

Whereas there is a clear consensus about the adequacy of the rules for the
additive quantifiers, this is not the case with multiplicative quantification. That
there should be such a notion of quantification has been argued by Paoli (2005)
and an infinitary proposal has been developed by Zardini (2011) along the follow-
ing lines. As in the case of multiplicative conjunction, it is natural to conclude
that the left introduction rule for a multiplicative universal quantifier should in-
clude every instance as active formula in the premise-sequent and that the right
introduction rule should have one premise-sequent with independent contexts

3A rule is admissible just in case there is a derivation ending with the conclusion-sequent
whenever there is a derivation ending with the premise-sequent(s).
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for every instance. This proposal amounts to the following rules in the case of
single-succedent sequents:4

A(t0/x), A(t1/x), A(t2/x), . . . ,Γ ⇒ C
∀ZL∀xA,Γ ⇒ C

Γi ⇒ A(ti/x) for each i
∀ZRΓ0,Γ1,Γ2, . . . ⇒ ∀xA

The rules assume an enumeration of the terms t0, t1, t2, . . .. If the corresponding
set is denumerable, then the antecedent of the premise-sequent of (∀ZL) will
be, and the antecedent of the conclusion-sequent of (∀ZR) may be, an infinite
multiset. In addition, (∀ZR) will have infinitely many premise-sequents, one for
each term.

The adequacy of these rules and the corresponding notion of a multiplica-
tive universal quantifier depends on context of use for the quantifier. I will in
this paper restrict my attention to the application proposed by Zardini (2011),
namely as a notion of quantification compatible with naive semantic concepts
and in particular transparent truth.5

Zardini (2011, p.503-504) observes that contraction is a crucial ingredient
in the semantic paradoxes and suggests that we can tame them by restricting
that rule. To show how this can be done, Zardini (2011) proceeds to present
a theory of transparent truth based on a logic with multiplicative connectives
and quantifiers, where the universal multiplicative quantifier is defined with the
multiple-succedent variants of the rules (∀ZL) and (∀ZR) above. To show that
the proposal is consistent, Zardini (2011) presents a cut-elimination proof for
the sequent calculus defining the theory.

However, the results by Da Ré and Rosenblatt (2018), Fjellstad (2018),
Fjellstad (2020), Fjellstad and Olsen (2021), Petersen (2023) and Nicolai et al.
(2023) suggest that the above rules are inadequate for that purpose.

A formal theory of truth where truth is represented with a unary predicate
requires a method that associates each formula with a unique closed term and
allows for the generation of paradoxical formulas such as the liar sentence, a sen-
tence which “says of itself” that it is not true. This can be achieved for example
through meta-linguistic stipulation, where one simply assumes an appropriate
mapping in the meta-theory which also ensures the existence of paradoxical for-
mulas because one stipulates for example that the closed term λ is the name

4Corresponding rules for an infinitary multiplicative disjunction are presented and ex-
plored by Pereira and Haeusler (1999). The original rules by Zardini (2011) involve multiple-
succedent sequents. That is not of importance for this paper, and I will thus stick to single-
succedent sequents.

5A unary predicate Tr intended to represent “is a true sentence” is transparent if and only
if a formula A is intersubstitutable within a valid inference with the formula Tr(t) where t is
a closed term that functions as a name for A. See e.g. Beall et al. (2023) for an introduction
to the liar paradox and the complications arising from a transparent truth-predicate within
for example classical logic.

For other applications of multiplicative quantification, see e.g. Paoli (2005) and Lanzinger
et al. (2022).
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for the formula Tr(λ) → ⊥ where then Tr is the designated truth-predicate.6

Alternatively, one can use so-called Gödel-coding by adding a sufficiently strong
theory of arithmetic, associate each formula with a unique numeral and use
either the strong or the weak diagonal lemma to ensure the existence of para-
doxical formulas, depending on whether the theory defines function-symbols for
every primitive recursive function.7 In the sprit of primitive recursive arith-
metic, one can also skip the detour through the strong diagonal lemma by
simply letting for example a nullary function-symbol λ̇ represent the (primitive
recursive) nullary function that returns the Gödel-code of Tr(λ̇) → ⊥. While
I will do something along the latter lines in this paper, Zardini (2011) uses
meta-linguistic stipulation.

Now, Da Ré and Rosenblatt (2018) show that Zardini’s theory of truth is
trivial if defined for a language of arithmetic and expanded with equations for
certain primitive recursive functions. They achieve this by proving that the ω-
inconsistency result by Bacon (2013) holds for such a theory. Triviality follows
because an ω-inconsistent theory closed under the ω-rule is inconsistent, and
the rule (∀ZR) is in effect an ω-rule if formulated for a language of arithmetic.
However, Da Ré and Rosenblatt (2018) did not take their result to imply that
something is wrong with the consistency proof presented by Zardini (2011) since
their result requires a theory of arithmetic together with Gödel-coding and Zar-
dini (2011) used meta-linguistic stipulation to generate paradoxical formulas. In
response to that, Fjellstad (2018) simplifies the argument presented by Da Ré
and Rosenblatt (2018) with a sequent calculus for labelled formulas that defines
a necessity-like predicate using rules that are structurally identical to Zardini’s
rules for multiplicative quantifiers and which uses meta-linguistic stipulation
to generate the paradoxical formula. The simplified argument is employed to
show that there must be an error in the consistency proof presented by Zardini
(2011). That there is an error is demonstrated by Fjellstad (2020). Nicolai et al.
(2023) explains how to amend the proof presented by Zardini (2011) to avoid
that error, but they also proceed to present a more fundamental error with the
consistency proof.

Finally, Fjellstad and Olsen (2021) and Petersen (2023) point out that the
standard understanding of vacuous quantification suffices for triviality with Zar-
dini’s multiplicative quantifiers. Nicolai et al. (2023) builds on this observation
to show that classical propositional logic can be faithfully interpreted through
vacuous quantification with Zardini’s rules for multiplicative quantifiers.

The purpose of this paper is to present a principle (MI) which is derivable
with Zardini’s rules and which seems to capture the problematic aspects of Zar-
dini’s rules: it allows for triviality through vacuous quantification with trans-
parent truth and suffices for ω-inconsistency under the same truth-theoretic
assumptions as the result by McGee (1985). I also show that (MI) holds for the
paradoxical formula employed in a variant of the ω-inconsistency result by Ba-

6For a presentation of this method, sometimes referred to as meta-linguistic coding, see
Ripley (2012).

7For the distinction between the weak and the strong diagonal lemma, see for example
Heck (2007).
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con (2013). Finally, the paper argues that the paradoxical reasoning that (MI)
enables is structurally similar to the kind of infinitary reasoning popularised by
Hilbert’s Grand Hotel.

Section 2 presents the logical and arithmetical background assumptions to-
gether with the principle (MI). Section 3 presents some observations about (MI),
among others a comparison with classical quantification and that it leads to triv-
iality through vacuous quantification with transparent truth. Section 4 presents
the observations regarding McGee’s and Bacon’s ω-inconsistency results. Sec-
tion 5 presents the comparison with Hilbert’s Grand Hotel.

2 Logical and arithmetical preliminaries

I will work with a first-order language for arithmetic based on →, &, ∀ and ⊥
as logical vocabulary, 0 and ṡ as arithmetic vocabulary in addition to the one-
place function-symbols Ṫ , µ̇ and γ̇, and one two-place function-symbol &̇. The
language will also contain a unary predicate Tr and a nullary function-symbol
λ̇. I will use ⌜A⌝ to represent the numeral of the Gödel-code of the formula
A. Polish notation will be used for complex terms to avoid that parentheses
clutter the formulas. All substitutions of equals will be performed lazily in the
meta-theory.

Importantly, by explicitly defining the required primitive recursive functions
through equations, I am in effect working with a fragment of Primitive Recur-
sive Arithmetic (PRA) as opposed to say Robinson Arithmetic with quantifiers
relativised to the natural numbers (Q) or Peano Arithmetic (PA). I thus do not
assume that something like the weak diagonal lemma involving a complex for-
mula holds for the theory of arithmetic obtained by expanding Cbck⊥as defined
below with additive quantifiers and the axioms of Q or PA. This stands in con-
trast to for example McGee (1985) and research on axiomatic theories of truth
in general as presented by Halbach (2010). The reader worrying about self-
reference may observe that one still obtains the strong diagonal lemma along
the lines of Burgess (1986) and Heck (2007) using a function-symbol for the
substitution-function. I could then have used that lemma to define for example
a complex term instead of using a nullary function-symbol λ̇ to generate a liar-
like sentence. However, I have chosen to bracket such technicalities. Instead, it
suffices to underline that I work with function-symbols defined along the lines
of PRA.

For the propositional vocabulary I will use the following rules:

⊥⊥,Γ ⇒ C
id

A,Γ ⇒ A

Γ ⇒ A B,Γ′ ⇒ C
→L

A → B,Γ,Γ′ ⇒ C

Γ, A ⇒ B
→R

Γ ⇒ A → B

A,B,Γ ⇒ C
&L

A&B,Γ ⇒ C
Γ ⇒ A Γ′ ⇒ B

&R
Γ,Γ′ ⇒ A&B
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Γ ⇒ A A,Γ′ ⇒ C
cut

Γ,Γ′ ⇒ C

Weakening is admissible through the arbitrary context in the antecedent of every
rule and the initial sequents. Contraction is not admissible. Being a sequent
calculus for the logic BCK with additive falsum, I will call this calculus Cbck⊥.

The following single-premise rule is admissible through the rules (⊥) and
(→L):

Γ ⇒ A →L/⊥
A → ⊥,Γ ⇒ C

This is thus not a primitive rule in the system, but I will use it on occasion to
reduce the number of leafs and thereby save some horizontal space.

The infinitary rules for a multiplicative universal quantifier become the fol-
lowing multiplicative ω-rules when formulated for a language of arithmetic:

A(0/x), A(ṡ0/x), A(ṡṡ0/x), . . . ,Γ ⇒ C
∀ωL∀xA,Γ ⇒ C

Γ0 ⇒ A(0/x) Γ1 ⇒ A(ṡ0/x) Γ2 ⇒ A(ṡṡ0/x) . . .
∀ωR

Γ0,Γ1,Γ2, . . . ⇒ ∀xA
Let’s call the sequent calculus obtained by expanding Cbck⊥with these rules
Cbck∀ω

⊥ . Observe that whereas the antecedent in sequents of Cbck⊥are possibly
empty finite multisets of formulas, the antecedent in sequents of Cbck∀ω

⊥ are
possibly empty countable multisets of formulas.

The principle that will take the centre stage of this paper is the following
labelled (MI) for The Multiplicative Ingredient :8

∀xA ⇒ ∀yA(ṡy/x)&A(0/x)(MI)

As announced in the introduction, the principle (MI) is derivable in Cbck∀ω
⊥ :

A(ṡ0/x) ⇒ A(ṡ0/x) A(ṡṡ0/x) ⇒ A(ṡṡ0/x) . . .
(∀ωR)

A(ṡ0/x), A(ṡṡ0/x), . . . ⇒ ∀xA(ṡx/x) A(0/x) ⇒ A(0/x)
(&R)

A(ṡ0/x), A(ṡṡ0/x), . . . , A(0/x) ⇒ ∀xA(ṡx/x)&A(0/x)
(∀ωL)

∀xA ⇒ ∀xA(ṡx/x)&A(0/x)

Being an infinitary derivation, what is presented here is of course merely the
shape of the derivation. I will use CbckMI

⊥ as label for the calculus obtained by
expanding Cbck⊥with (MI).

In addition to Cbck⊥, Cbck∀ω
⊥ and CbckMI

⊥ , I will also define in the next
section the calculus Cbck∀

⊥ by replacing the infinitary quantifier rules with rules
corresponding to (MI) and its converse supplemented with a distributive rule

8This and other principles in this paper are presented in a sequent format with ⇒ rather
than with a conditional →. This makes the use of the principle more intuitive in our proof-
theoretic framework since Cbck⊥has Cut rather than Conditional Detachment as a primitive
rule. The sequent ⇒ A → B is anyway equiderivable with the sequent A ⇒ B.
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for ∀. It is intended as a preliminary proposal for a finitary variant of Cbck∀ω
⊥ ,

hence the omission of ω in the label. The following table summarises this for
the reader:

Cbck⊥ Propositional rules
Cbck∀ω

⊥ Cbck⊥+ (∀ωR) and (∀ωR)
CbckMI

⊥ Cbck⊥+ (MI)
Cbck∀

⊥ Cbck⊥+ finitary rules based on (MI) + distribution

Principles for the function-symbols and Tr will be introduced when needed.

3 Classical, multiplicative and vacuous quantifi-
cation

The purpose of this section is to provide the reader with a better understand-
ing of the principle (MI). This is achieved as follows. Subsection 3.1 compares
(MI) with the standard left introduction rule for the universal quantifier in first-
order classical logic. Subsection 3.2 shows how one can obtain with rules corre-
sponding to (MI) and its converse a preliminary proposal for a finitary variant
Cbck∀

⊥ of Cbck∀ω
⊥ . Finally, subsection 3.3 demonstrates that Cbck∀

⊥ expanded
with transparent truth is trivial.

Before I embark on those subsections, however, the following general remark
about (MI) is appropriate. As the reader may have noticed, I refer to (MI) as a
multiplicative quantificational principle, but the principle involves the constant
0 and a function-symbol ṡ. The use of arithmetical vocabulary makes it very
tempting to consider this as an arithmetical rather than a logical principle.
Considering the topic of the paper being ω-inconsistency, I see no harm in
working with a quantificational principle that explicitly includes arithmetical
vocabulary. However, one can also understand the use of 0 and ṡ as merely a
convenient way to generate a denumerable list of terms for each element in the
universe.

3.1 A quick comparison with classical quantification

The principle (MI) looks very similar to the standard rule for the universal
quantifier in the sequent calculi g3c and g3i for classical and intuitionistic logic:9

∀xA,A(t/x),Γ ⇒ C
(∀L)∀xA,Γ ⇒ C

The repetition of ∀xA in the premise-sequent ensures that contraction is admis-
sible as long as the sequent calculus satisfy certain other conditions.10

9See e.g. Negri and von Plato (2001) for a presentation of the calculi.
10Spelling out these conditions is beyond the scope of this paper. The curious reader is

referred to Negri and von Plato (2001).
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However, (MI) makes a different claim. (∀L) corresponds to the sequent
∀xA ⇒ ∀xA&A(t/x) which involves an explicit repetition in the succedent:
A(t/x) is one of the instances of ∀xA, so the succedent is claiming both that
A holds for t, and that A holds for everything, including t. (MI) has instead
a strong multiplicative flavour analogous to the infinitary rules presented in
section 2: if everything is A, then 0 is A and every successor is A. There is no
repetition here since 0 is not one of the successors. The rule corresponding to
(MI) looks like this:

∀yA(ṡy/x), A(0/x),Γ ⇒ C
(∀LM )∀xA,Γ ⇒ C

The formula ∀xA is not repeated in the premise-sequent. Instead, there are two
formulas that jointly imply that A holds for every instance, assuming that every
term equals a numeral for a natural number. The two active formulas in the
premise-sequent represent respectively the first and the rest of the instances.
Although the premise-sequent does not explicitly contain every instance as ac-
tive formula as in (∀ωL), the rest of the instances are implicitly present and
may be obtained one by one through repeated inverted applications of the rule.
The rule arguably captures within a finitary context to some extent the idea
of a multiplicative rule as presented in section 1 for the case where there are
infinitely many subformulas.

3.2 Finitary rules for a multiplicative quantifier

Now, the rule (∀LM ) is naturally paired with the following right introduction
rule:

Γ ⇒ ∀yA(ṡy/x) Γ′ ⇒ A(0/x)
(∀RM )

Γ,Γ′ ⇒ ∀xA
The corresponding sequent ∀yA(ṡy/x), A(0/x) ⇒ ∀xA is also derivable with
(∀ωL) and (∀ωR), which makes (∀RM ) admissible in Cbck∀ω

⊥ .
However, interestingly enough, the pair (∀LM ) and (∀RM ) are insufficient

to derive ∀xA ⇒ ∀xA which means that they are insufficient to derive (MI):

∀xA(ṡx/x) ⇒ ∀xA(ṡx/x) A(0/x) ⇒ A(0/x)
(&R)

∀xA(ṡx/x), A(0/x) ⇒ ∀xA(ṡx/x)&A(0/x)
(∀LM )

∀xA ⇒ ∀xA(ṡx/x)&A(0/x)

Attempting to derive the left leaf by applying (∀LM ) will result in a regress.
One solution is to include ∀xA ⇒ ∀xA as an axiom, i.e. include initial

sequents for complex formulas. Another solution is to add the following rule
familiar from proof theory for generalised quantifiers where y is an eigenvari-
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able:11
B0(y/z0), . . . Bn(y/z0) ⇒ A(y/x)

(∀D)
Γ′,∀z0B0, . . . ,∀znBn ⇒ ∀xA

The premise-antecedent may be empty and the arbitrary context Γ′ in the
conclusion-antecedent ensures admissibility of weakening.

In both cases, the above leaf is derivable. The sequent calculus obtained by
expanding Cbck⊥with (∀LM ), (∀RM ) and (∀D) is referred to as Cbck∀

⊥ .
The solution to include (∀D) results in a stronger quantifier. For example,

one can in Cbck∀
⊥ derive ∀x(A&B) ⇒ ∀xA&B if B is free from y in the formula

(A&B)(y/x):

A(0/x) ⇒ A(0/x)

(A&B)(ṡ(y/x)) ⇒ A(ṡ(y/x))
(∀D)

∀x(A&B)(ṡx/x) ⇒ ∀xA(ṡx/x)
(∀RM )

∀x(A&B)(ṡx/x), A(0/x) ⇒ ∀xA B ⇒ B
(&R)

∀x(A&B)(ṡx/x), A(0/x), B ⇒ ∀xA&B
(&L)

∀x(A&B)(ṡx/x), (A&B)(0/x) ⇒ ∀xA&B
(∀LM )

∀x(A&B) ⇒ ∀xA&B

Compare this with the following derivation in Cbck∀ω
⊥ , that is, with the infini-

tary rules:

A(0/x) ⇒ A(0/x) (A&B)(ṡ0/x) ⇒ A(ṡ0/x) . . .
(∀ωR)

A(0/x), (A&B)(ṡ0/x), . . . ⇒ ∀xA B ⇒ B
(&R)

A(0/x), B, (A&B)(ṡ0/x), . . . ⇒ ∀xA&B
(&L)

(A&B)(0/x), (A&B)(ṡ0/x), . . . ⇒ ∀xA&B
(∀ωL)

∀x(A&B) ⇒ ∀xA&B

They look pretty much the same. Now, an example like this is not sufficient
to suggest or conjecture that Cbck∀

⊥ is equivalent to Cbck∀ω
⊥ with regard to

sequents with a finite antecedent. After all, there could be sequents with finite
antecedent that are derivable by “braiding” numerals for even and odd numbers
as illustrated by Petersen (2023) in the context of naive set theory, and as
indicated with the phase semantics for a multiplicative infinitary conjunction
presented by Pereira and Haeusler (1999). However, it does illustrate the extent
to which one is capturing something fundamental with Zardini’s rules through
(∀LM ) and thus (MI). It also justifies the description of Cbck∀

⊥ as a preliminary
proposal for a finitary variant of Cbck∀ω

⊥ , especially since Cbck∀
⊥ has the same

issues as Cbck∀ω
⊥ with regard to both ω-inconsistency and inconsistency through

vacuous quantification. I end this section by illustrating the latter. The former
is the topic for the next section. Further explorations of the relationship between
Cbck∀ω

⊥ and Cbck∀
⊥ will be the topic of another paper.

11See for example (Ebbinghaus et al., 2021, p.144) for the use of a single-antecedent variant
of this rule to define the quantifier “there are uncountably many”. Readers familiar with
sequent calculus for modal logics will also recognise it as corresponding to the rule defining
the modal logic K.
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3.3 Inconsistency through vacuous quantification

Before I show that vacuous quantification is an issue for a theory of transparent
truth based on Cbck∀

⊥ , I first present the corresponding result regarding a
theory of transparent truth based on Cbck∀ω

⊥ from Fjellstad and Olsen (2021).
See also Petersen (2023).

Let Tr represent a transparent truth-predicate, i.e. defined with the following
rules where ⌜A⌝ = t:

A,Γ ⇒ ∆
(TrL)

Tr(t),Γ ⇒ ∆

Γ ⇒ ∆, A
(TrR)

Γ ⇒ ∆,Tr(t)

Let the nullary function-symbol λ̇ be defined with λ̇ = ⌜∀xTr(λ̇) → ⊥⌝. The
following derivation is now available with Cbck∀ω

⊥ expanded with (TrL), (TrR)
and that equation:

Tr(λ̇) ⇒ Tr(λ̇) Tr(λ̇) ⇒ Tr(λ̇) . . .
(∀ωR)

Tr(λ̇),Tr(λ̇), . . . ⇒ ∀xTr(λ̇)
(→L/⊥)

∀xTr(λ̇) → ⊥,Tr(λ̇),Tr(λ̇), . . . ⇒ ⊥
(TrL)

Tr(λ̇),Tr(λ̇),Tr(λ̇), . . . ⇒ ⊥
(∀ωL)

∀xTr(λ̇) ⇒ ⊥
(→R)

⇒ ∀xTr(λ̇) → ⊥
(TrR)

⇒ Tr(λ̇) . . .
(∀ωR)

⇒ ∀xTr(λ̇)

Vacuous quantification implies inconsistency if Zardini’s rules are paired with
transparent truth.

One achieves the same result by replacing the infinitary rules with (∀LM )
and (∀D):

∀xTr(λ̇)(ṡx/x) ⇒ ∀xTr(λ̇)(0/x)
(→L/⊥)

∀xTr(λ̇)(ṡx/x),∀xTr(λ̇)(0/x) → ⊥ ⇒ ⊥
(TrL)

∀xTr(λ̇)(ṡx/x),Tr(λ̇)(0/x) ⇒ ⊥
(∀LM )

∀xTr(λ̇) ⇒ ⊥
(→R)

⇒ ∀xTr(λ̇) → ⊥
(TrR)

⇒ Tr(λ̇)
(∀D)

⇒ ∀xTr(λ̇)

The leaf in this proof figure is slightly odd, but the result of replacing a variable
that is not present with another expression is the same formula, regardless of
what the other expression is. Thus, replacing x in Tr(λ̇) with either ṡx or 0
results in the very same formula, Tr(λ̇). The reader may thus take note of how
the rule (∀LM ) actually reduces to the classical rule (∀L) in the case of vacuous
quantification.
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4 ω-inconsistency with McGee and Bacon

4.1 A non-classical variant of McGee’s result

The purpose of this subsection is to show that a non-classical variant of the ω-
inconsistency result by McGee (1985) is obtainable if CbckMI

⊥ , that is, Cbck⊥+
(MI), is expanded with some truth-theoretical principles corresponding to those
assumed by McGee (1985) and some primitive recursive functions.

To avoid introducing additional principles and formal machinery beyond
what is required for the result in this subsection, I do not present the original
result by McGee (1985). Instead, a brief informal comparison should suffice. The
original ω-inconsistency result by McGee (1985) concerns certain classical the-
ories of truth, and contemporary presentations such as that by Halbach (2010)
follow suit by presenting the result with classical logic. The current presenta-
tion thus breaks with that tradition by keeping the truth-theoretic principles
but restricting the logic to that defined with CbckMI

⊥ . Now, there is a sense in
which my PRAish arithmetical assumptions are stronger even if I do not assume
the induction principle of PRA since I simply provide primitive definitions of
the required primitive recursive functions as opposed to doing a detour through
Q, the arithmetical theory employed by McGee (1985). That being said, I do
not actually use more “arithmetic” than what would be definable within Q had
the base logic been classical.

For the ω-inconsistency result presented in this subsection, I will use a sim-
plified variant of the primitive recursive function used by McGee (1985). Let
Ṫ represent the function that returns the Gödel-code of the formula Tr(t) upon
the input t, Ṫ t = ⌜Tr(t)⌝. Let furthermore the function-symbol µ̇ be defined re-
cursively with the following equations: µ̇0 = ⌜∀xTr(µ̇x) → ⊥⌝ and µ̇ṡn = Ṫ µ̇n.

Regarding the principles of truth, I will more or less follow McGee (1985)
and assume the principles of truth corresponding to the modal principles D for
Deontic, B for Barcan and N for Necessitation:12

Tr(⌜A → ⊥⌝),Tr(⌜A⌝) ⇒ C(D)

∀xTr(Ṫ µ̇x) ⇒ Tr(⌜∀xTr(µ̇x)⌝)(Bµ)

⇒ A
where t = ⌜A⌝⇒ Tr(t)

(N)

The Barcan formula for truth becomes slightly complicated when presented in
its generality. I thus only present the instance that is required for the proof.
The complication with the Barcan-formula is that the universal quantifier in the
antecedent quantifies into the truth-predication which in turn requires function-
symbols to make the variable available for binding.13

12Normally, presentations of the result also include a principle for distributing truth over
either conjunction or the conditional along the lines of the principle K from modal logic. This
is not necessary when the result is presented using sequent calculus as opposed to an axiomatic
system.

13See Halbach (2010) for a precise and general presentation of the Barcan-formula for a
truth-predicate.
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Together the principles of truth tell us that truth is not absurd, the ω-rule is
truth-preserving and theorems are true. I will call this theory of truth Deontic
Truth with Barcan, DTB.

With all this in place, I can now present the proof of ω-inconsistency. A
theory (as a set of sentences) T is ω-inconsistent if there is a formula φ such
that it contains (∀xφ) → ⊥ but also φ(n/x) for each numeral n. This can for
the purposes of this paper be translated into sequentese as that the sequents
∀xφ ⇒ ⊥ and ⇒ φ(n/x) for each numeral n for some formula φ are derivable.
I will show this for the formula Tr(µ̇x).

I show first that ∀xTr(µ̇x) ⇒ ⊥ is derivable. This sequent is derived as
follows since µ̇0 = ⌜∀xTr(µ̇x) → ⊥⌝ and µ̇ṡn = Ṫ µ̇n:

(D)
Tr(⌜∀xTr(µ̇x)⌝),Tr(µ̇0) ⇒ ⊥

(Bµ)
∀xTr(µ̇ṡx),Tr(µ̇0) ⇒ ⊥

(MI)
∀xTr(µ̇x) ⇒ ⊥

It is now left to prove that ⇒ Tr(µ̇n) for each numeral n is derivable. To show
this, one proceeds as follows since µ̇ṡn = Ṫ µ̇n and ⌜Tr(s)⌝ = Ṫ s:

⇒ ∀xTr(µ̇x) → ⊥
(N)

⇒ Tr(µ̇0)
(N)

⇒ Tr(µ̇ṡ0)

...

With this, it is established that both ∀xTr(µ̇x) ⇒ ⊥ and ⇒ Tr(µ̇n) for each
numeral n are derivable. It follows that the theory defined with CbckMI

⊥ and
DTB together with the definitions of the relevant primitive recursive functions
is ω-inconsistent.

4.2 A truth-theoretic variant of Bacon’s result

The original ω-inconsistency result by Bacon (2013) concerns a theory of trans-
parent truth satisfying certain logical principles involving the conditional that
are derivable in Cbck⊥together with certain principles for the existential quan-
tifier and the principle that the truth of a conditional distributes over the con-
ditional. This subsection presents a truth-theoretic variation of that result for
Cbck⊥expanded with DTB from the previous subsection and two quantifica-
tional principles that serve the same purpose for the universal quantifier as
Bacon’s principles for the existential quantifier. Again, I choose not to present
the original proof by Bacon (2013) in detail, as that would require the intro-
duction of principles and formal machinery beyond what is otherwise required
here.

In addition to a truth-theoretic variant of the ω-inconsistency result by Ba-
con (2013), this subsection also presents two further observations:

(a) The ω-inconsistency result applies to a fragment of the paraconsistent
logic presented by Badia et al. (2022).
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(b) The assumptions required to obtain the ω-inconsistency result imply that
the principle (MI) holds for the paradoxical formula employed in the proof.

Whereas (a) is merely a corollary of the ω-inconsistency result, (b) can be con-
sidered as the main contribution of this subsection since it shows that (MI) is in
a particular sense implicit in the assumptions required for the ω-inconsistency
result. Before presenting these observations I first introduce the required as-
sumptions.

For the results in this subsection, I will assume the following principles for
the universal quantifier:

∀xA ⇒ ∀yA(ṡy/x)(∀ṡ)
∀x(A&B) ⇒ ∀xA&B(∀&)

where in (∀&) B is free from y in the formula (A&B)(y/x).
The principle (∀ṡ) tells us that whatever follows from that A holds for any

successor follows also from that A holds for anything. Assuming that every term
equals a numeral, one is basically strengthening the premises to include that A
holds for 0. This principle follows from (MI) by “conjunction elimination”. The
principle (∀&) allows us to widen the scope of a quantifier in the antecedent. As
demonstrated in subsection 3.2, (∀&) is derivable in Cbck∀

⊥ , that is, our base
logic expanded with the rules corresponding to (MI) and its converse together
with the rule (∀D).

As in the previous subsection, I present only the instance of the Barcan-
formula for the truth-predicate which is relevant for the result. To that purpose,
I first define the function-symbol γ̇ with the equations γ̇0 = ⌜∀xTr(γ̇x) → ⊥⌝
and γ̇ṡn = &̇Ṫ γ̇nγ̇0. The relevant instance of the Barcan-formula is thus the
following:

∀xTr(&̇Ṫ γ̇xγ̇0) ⇒ Tr(⌜∀x(Tr(γ̇x)&(∀xTr(γ̇x) → ⊥))⌝)(Bγ)

The principle D, necessitation and cut imply together that the following rule is
derivable where t = ⌜A⌝:

A ⇒ ⊥
Tr(t) ⇒ ⊥

This concludes the presentation of the assumptions. I now establish that they
suffice for ω-inconsistency.

I establish first that ∀xTr(γ̇x) ⇒ ⊥ is derivable:

∀xTr(γ̇x),∀xTr(γ̇x) → ⊥ ⇒ ⊥
(∀&)

∀x(Tr(γ̇x)&(∀xTr(γ̇x) → ⊥)) ⇒ ⊥
Tr(⌜∀x(Tr(γ̇x)&(∀xTr(γ̇x) → ⊥))⌝) ⇒ ⊥

(Bγ)
∀xTr(γ̇ṡx) ⇒ ⊥

(∀ṡ)
∀xTr(γ̇x) ⇒ ⊥

It is left to obtain ⇒ Tr(γ̇n) for each n. That ⇒ Tr(γ̇0) is derivable follows
immediately from ∀xTr(γ̇x) ⇒ ⊥ by (→R) and necessitation. To secure the
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rest, it suffices to observe that the following meta-theoretic inductive step is
admissible which together with the instance for 0 imply that each instance is
derivable:

⇒ Tr(γ̇n) ⇒ ∀xTr(γ̇x) → ⊥
⇒ Tr(γ̇n)&∀xTr(γ̇x) → ⊥
⇒ Tr(γ̇ṡn)

This concludes the proof that Cbck⊥expanded with DTB, equations defining the
relevant primitive recursive functions, (∀ṡ) and (∀&) defines an ω-inconsistent
theory. I now turn to the observations (a) and (b).

Observation (a) is that the ω-inconsistency result presented in this subsection
implies that the theory of truth obtained by expanding the paraconsistent logic
presented by Badia et al. (2022) with DTB and the equations defining the
function-symbols employed in this subsection is ω-inconsistent.

The paraconsistent logic presented by Badia et al. (2022) is defined with
a sequent calculus that includes the rules of Cbck⊥and an additive quantifier
defined with, among other rules and principles, (∀LA), (∀R) and the following:

∀x(A&B) ⇒ ∀xA&∀xB(∀&∀)

Badia et al. (2022) describe (∀&∀) it in a footnote as multiplicative, but do not
elaborate on that claim. As it turns out, this combination implies ∀&:14

∀xA ⇒ ∀xA ∀xB ⇒ B
∀xA&∀xB ⇒ ∀xA&B (∀&∀)
∀x(A&B) ⇒ ∀xA&B

The ω-inconsistency result now follows. Importantly, this result does not con-
cern the paraconsistent part of their logic, as the proof relies on A → ⊥ as
negation and not their paraconsistent negation. It follows that the theory is
trivial if (∀R) is replaced with an ω-rule.

Observation (b) concerns the relationship between (MI) and (∀&) beyond
the fact that the latter is derivable in Cbck∀

⊥ . Perhaps surprisingly, one can
actually derive (MI) for the paradoxical formula employed in our variation of
the ω-inconsistency result by Bacon (2013) presented in this subsection from
the assumptions for that result:

∀xTr(γ̇ṡx),Tr(γ̇0) ⇒
(∀ṡ)

∀xTr(γ̇x),Tr(γ̇0) ⇒
(&L)

∀xTr(γ̇x)&Tr(γ̇0) ⇒
(∀&)

∀x(Tr(γ̇x)&Tr(γ̇0)) ⇒
(D/N)

Tr(⌜∀x(&̇Ṫ γ̇xγ̇0)⌝) ⇒
(B)

∀xTr(&̇Ṫ γ̇nγ̇0) ⇒
Def γ̇

∀xTr(γ̇ṡx) ⇒
(∀ṡ)

∀xTr(γ̇x) ⇒
14This situation is interestingly analogous to that of light linear logic for naive set theory.

The exponential satisfies !(A&B) ⇒!A&!B which in turn becomes problematic if one also
assumes that !A ⇒ A. See e.g. Girard (1998) and Terui (2004) for more details.
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In the case of the variation on McGee’s result, one simply added the prin-
ciple and proceeded to derive the ω-inconsistency. In the case of the variation
on Bacon’s result, one added instead sufficient logical and truth-theoretic re-
sources to derive the principle for the paradoxical formula. That the principle
is derivable for the paradoxical formula through which ω-inconsistency is gen-
erated suggests that (MI) captures an underlying mechanism that is central to
the ω-inconsistency results.

5 ω-inconsistency and Hilbert’s Hotel

The aim of this section is to take a closer look at this underlying mechanism
captured by (MI). In particular, I highlight that the reasoning leading to ω-
inconsistency is analogous to the reasoning familiar from Hilbert’s Grand Hotel.

Consider again the derivations of (MI) within Cbck∀ω
⊥ and Cbck∀

⊥ above in
section 3. The desired sequent is obtained by pooling together the first and the
rest of the infinite sequence from two different branches of the derivation with
the help of the multiplicative conjunction which in turn provides the grounds
for introducing the universal quantifier. This deductive move encapsulates the
inferential role of (MI). Indeed, whereas an additive conjunction in antecedent
position weakens in assumptions, a multiplicative conjunction in antecedent
position “fuse” together multiple formulas that may have different origins, for
example formulas that some multiplicative rule with independent contexts has
pooled together so that they can be used for a common purpose. (MI) thus
ensures that the logical strength of the “fusion” of that A holds for the first
and that A holds for the rest is matched by the logical strength of that A
holds for every element of the sequence obtained by appending the first to the
beginning of the rest. However, appending an element to the beginning of an
infinite sequence results in a new infinite sequence of equal length. That is, the
sequence 0, 1, 2, 3, . . . has the same length as the sequence obtained by appending
0 to the beginning of the sequence 1, 2, 3, . . . even if there is already a one-to-one
correspondence between the sequences 0, 1, 2, 3, . . . and 1, 2, 3, . . ..

As an illustration of how the ω-inconsistency result takes advantage of this
feature, it is useful to consider a new variant of the paradoxical reasoning in-
volving the following natural generalisation of (D) to infinitary sequents:

A0, A1, . . . ⇒⊥
Dω

Tr(⌜A0⌝),Tr(⌜A1⌝), . . . ⇒⊥

With this rule, one may proceed as follows with the infinitary quantifier rules:

Tr(µ̇n) ⇒ Tr(µ̇n) for every n
(∀ωR)

Tr(µ̇0),Tr(µ̇ṡ0), . . . ⇒ ∀xTr(µ̇x)
(→L/⊥)

Tr(µ̇0),Tr(µ̇ṡ0), . . . ,∀xTr(µ̇x) → ⊥ ⇒ ⊥
(Dω)

Tr(µ̇ṡ0),Tr(µ̇ṡṡ0), . . . ,Tr(µ̇0) ⇒ ⊥
(∀ωL)

∀xTr(µ̇x) ⇒ ⊥
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With this rule one simultaneously replaces every instance in the sequence with
its successor. This amounts to explicitly pushing each instance up to the next
successor to thereby making room for 0. This is just like in Hilbert’s Grand
Hotel with infinitely many occupied rooms where each guest is asked to move
up to the next room when a new guest arrives, thereby making the first room
available.15 The use of (Dω) corresponds directly to pushing each guest into the
next room.

Rather than explicitly contracting two instances as in the liar paradox, the
instances are being pushed into something like a black hole. The question “but
where did the last instance go?” is not supposed to make sense here since there
are infinitely many of them, and there is thus no last instance which is explicitly
contracted with its predecessor. In other words, this is not a form or kind of
contraction, but it serves the same purpose as far as the paradoxical reasoning
is concerned.

Now, what happens if one just keeps applying (Dω)? In the finitary case,
nothing special. However, assume that derivations may be infinitely long in
such a way that a sequent in a derivation may have no direct predecessor from
which it is obtained, not only as a leaf, but also because it may occur as the
limit of an infinitely long branch. With such a notion of a derivation, iterated
applications of the rule (Dω) deliver the empty sequent:

∀xTr(µ̇x) → ⊥,Tr(µ̇0),Tr(µ̇ṡ0), . . . ⇒
(Dω)

Tr(µ̇0),Tr(µ̇ṡ0),Tr(µ̇ṡṡ0), . . . ⇒
(Dω)

Tr(µ̇ṡ0),Tr(µ̇ṡṡ0),Tr(µ̇ṡṡṡ0), . . . ⇒
...

After ω + 1 applications, the sequent is empty, just like the hotel would be.
(Dω) becomes something like an elimination rule at the limit even if no single
step modifies the number of formulas in the sequent because one can just keep
pushing the instances into this black hole of Cantorian infinity.

One can construct derivations with (MI) where the relevant behaviour can
be observed: With (B), Tr(⌜∀xTr(µ̇x)⌝) is transformed into ∀xTr(µ̇sx), thereby
making space for Tr(µ̇0) which together with the latter suffice for ∀xTr(µ̇x). The
analogy is not as clear as in the case of the infinitary quantifier rules and (Dω),
but it is the same thing going on. In that sense, (MI) suffices for a glimpse into
Cantor’s paradise.

15It seems common to refer to Hilbert’s 1925 lecture “Über das Unendliche” as the place
where this hotel is mentioned. For example, the Wikipedia article on “Hilbert’s paradox of
the Grand Hotel” claimed so last time I checked (on 24.09.2024). However, I could not find
any mention of the hotel in the printed version of that lecture published in Mathematische
Annalen, volume 95, pages 161-190, 1926. Instead, it is indicated by Moore (2002) that the
hotel is used to explain the difference between finite and denumerable sets in his lectures on
set theory in 1917.
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