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Abstract

This paper investigates two forms of the Routley star operation, one
in Routley & Routley 1972 and the other in Leitgeb 2019. We use object
theory (OT) to define both forms and show that in OT’s hyperintensional
logic, (a) the two forms aren’t equivalent, but (b) become equivalent under
certain conditions. We verify our definitions by showing that the principles
governing both forms become derivable and need not be stipulated. Since
no mathematics is assumed in OT, the existence of the Routley star image
s∗ of a situation s is therefore guaranteed not by set theory but by a theory
of abstract objects. The work in the paper integrates Routley star into a
more general theory of (partial) situations that has previously been used to
develop the theory of possible worlds and impossible worlds.

1 Introduction

The Routley ‘star’ operation was introduced in Routley & Routley 1972. Their
study of the semantics of entailment assumed the existence of situations (‘set-
ups’) that are neither consistent nor maximal (ibid., 335–339).1 When the Rout-
leys set up the star operator on situations, they used ‘H ’ to range over set-ups
(i.e, “a class of propositions or wff”) and used ‘A’ to range over propositions or
wffs (ibid., 337). Then they considered the following condition (ibid., 338) on
the star (∗) operation, which they labeled as (iv):

(iv) ∼A is in H iff A is not in H ∗

∗The research in this paper was initially undertaken for a presentation in Hannes Leitgeb’s
seminar Logic and Metaphysics, which was held at the Munich Center for Mathematical Philosophy
in May 2022. I subsequently developed the results into a section of Principia Logico-Metaphysica
(Zalta, m.s.). I’m indebted to Hannes Leitgeb, Uri Nodelman, Daniel Kirchner, Daniel West, Gra-
ham Priest, and an anonymous referee for their comments about this material, all of which helped
me to refine and improve some of the results.

1Some logicians use the term ‘non-normal worlds’ to describe situations that are neither max-
imal (complete) nor consistent. The Routleys, however, used the term ‘world’ for consistent and
maximal situations (1972, 339). In what follows, we reserve the term ‘world’ for maximal situa-
tions, some of which are possible worlds and some of which are impossible worlds.

Australasian Journal of Logic (21:4) 2024, Article no. 1



142

They subsequently stipulated that a set-up is ∼-normal if it satisfies (iv) for
every A and H =H ∗∗ (ibid., 338).

That was then. Although the Routley star has been studied and applied in
a number of subsequent works, it was recently used in Leitgeb 2019 (321ff)
to build a semantics for a system of hyperintensional logic (‘HYPE’). Leitgeb
first builds a propositional language L that includes propositional letters, with
some standard logical connectives, but with a non-standard conditional. Leit-
geb then constructs HYPE-models for L in terms of structures whose elements
include a non-empty set of states S and a valuation function V from S to the
power set of the set of literals of the language L, so that each state s in S is
associated with a set of literals V (s). I’ll describe HYPE models in fuller de-
tail below, but for the purposes of this introduction, it is important to note
that the various elements of HYPE models are simultaneously constrained by
the requirements of a Routley star operation having the following properties,
among others (Leitgeb 2019, 322):

• V (s∗) = {v |v < V (s) }

• s∗∗ = s

Leitgeb then discusses the properties of the star operation and uses HYPE mod-
els to define various truth conditions for hyperintensional operators.

These two bookend cases, Routley & Routley 1972 and Leitgeb 2019, demon-
strate how the Routley star operation has been deployed to help us understand
various non-classical, and more fine-grained, semantic phenomena. But de-
spite their similarities, a study of the two definitions in a hyperintensional
background logic (a) shows that they aren’t equivalent and (b) reveals the as-
sumption under which they become so.

Moreover, a metaphysician looking at the body of literature inclusive be-
tween these papers would find that relatively little attention has been paid to
the question: What kind of metaphysics is represented by a semantics making
use of Routley star, and how are we to understand the Routley star operation
given that metaphysics? Questions about the meaning of the Routley star op-
eration were raised early on, in Copeland 1979 and van Benthem 1979. Restall
1999 (54) raised this question when he wrote:

The operator ∗ was introduced to relevant logic by Routley and Routley
[23]. If x , x∗, then certainly we can get both A∧∼A→ B and A→ B∨∼B to
fail, but there is a price. The price is the obligation to explain the meaning
of the operator ∗.

But even though we may now be more comfortable with Routley star and rec-
ognize how interesting and efficacious it is (given the work that has been done),
there is still an open question about what, exactly, is the proper metaphysical
framework for defining and studying the Routley star operation?

In our two case studies, and for most studies in between, one typically finds
the Routley star introduced into semantic models constructed with the help of
set theory, domains of primitive entities (set-ups, situations, states, possible or
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impossible worlds), and functions defined on those domains, etc. Most authors
don’t spend time considering the metaphysics of the entities used in their se-
mantic models, and quite rightly, given their goals. For their purposes, it is
sufficient to adopt another attitude expressed in Restall 1999 (57):

It would be interesting to chart the connections between states as we have
sketched them and other entities like . . . objects, states of affairs, propo-
sitions, and many other things besides. However, this is neither the time
nor the place for that kind of metaphysics. Suffice it to say that a coherent
comprehensive view of states ought to tell us how these things fit together.
For now, we will use states as the points in our frames for relevant logics.

For example, Leitgeb writes (2019, 323, footnote 9):

I want to leave open in this paper whether states are interpreted (i) in a
metaphysically robust manner, or (ii) in a looser informational manner.
In the first case, states would be “chunks of reality” that are “located in
the world”, while in the second case they might be some kind of abstract
entities corresponding to “pieces of thought”.

Mares (2004, 4.4–4.11) does attempt to develop an intuitive understanding of
the assumptions concerning properties, states of affairs, situations, proposi-
tions, etc., that are used in the semantic models. But (a) the focus of Mares
2004 is to interpret the ternary relation R used in Routley-Meyer semantics for
relevant logic (Routley & Meyer 1972, 1973), and (b) Mares assumes that some
background theory of situations such as Barwise and Perry 1983 is available,
for he takes a number of principles about situations as given.

By contrast, in what follows, we plan to develop the metaphysics of Rout-
ley star without any mathematics, set theory, primitive domains of situations,
states, or worlds (possible or impossible), or functions on domains. We won’t
identify propositions as sets of possible worlds, as functions from possible
worlds to truth values, as sets of situations, or as classes of wffs. Nor will we
assume any axioms governing primitive set-ups, situations, possible worlds,
or impossible worlds. Instead, we shall define the Routley star operator meta-
physically in object theory (= OT), where situations are defined and their first
principles derived. And we employ a theory of propositions (= 0-ary relations)
that is part of a larger, hyperintensional theory of n-ary relations – one on
which necessarily equivalent relations and propositions aren’t identified. Ba-
sic OT allows us to define a unique Routley star image s∗ for each situation s, as
in Routley & Routley 1972. Moreover, with a minimal, additional assumption
(or axiom, if you prefer), s∗ can be defined as in Leitgeb 2019. Our goals, then
are to show that, in such a setting, (a) the metaphysical entities needed to for-
mulate and understand the Routley star image can be defined and proved to
exist, (b) the principles governing Routley star, as formulated in both Routley
& Routley 1972 and Leitgeb 2019, can be derived rather than stipulated, and
(c) a reconciliation between the two definitions of Routley star can be simply
and precisely articulated.
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The present effort may be distinguished from other recent discussions of
Routley star by its methodology and the focus of the investigation. Relatively
recent papers such as Restall 2000, Berto 2015, and Berto & Restall 2019 (and
going back to Došen 1986 and Dunn 1993) are about the semantic analysis of
various forms of negation and, as such, the action takes place in the semantics.
In each of these papers, a frame semantics involving a primitive relation of
compatibility (or incompatibility) on points or primitive worlds is introduced and
used to interpret an uninterpreted language with a negation symbol.2 By con-
trast, it is not a goal of the present paper to study or define non-classical nega-
tion semantically. The reader will find no semantics in what follows. Rather,
situations, possible worlds, impossible worlds, and the Routley star are all de-
fined. The definitions are cast in a logic and metaphysics that is systematized
proof-theoretically. Moreover, notions very much like the notions of incompat-
ibility and compatibility utilized in the papers by Restall and Berto will also
be defined, and the key principles that govern them will be derived rather than
stipulated.3

Another distinguishing feature of the present work is its stated goal of rec-
onciling Routley star as developed Routley & Routley 1972 and Leitgeb 2019.
OT’s hyperintensional logic makes it clear that the two definitions of Routley
star are not equivalent. We’ll examine a principle under which the two def-
initions become equivalent.4 So by investigating the metaphysics of Routley
star in the manner below, the present effort may help us better understand the
domain of application for Routley star and thereby better prepare us for un-
derstanding the uses to which it has been put in the semantics of non-classical
negation, both in the two papers that serve as the focus of our study and in
other papers on the semantics of negation. In particular, relevant logicians
may find it of interest that if one adopts a hyperintensional logic and meta-
physics, in which propositions are not identified with their double negations,

2In Restall 2000, semantic frames and a primitive relation of compatibility on points are intro-
duced on the first page. In Berto 2015, frames are introduced (766ff), and negation is analyzed as
a modality (767) that is interpreted by a distinguished accessibility relation on worlds, RN , under-
stood as a compatibility relation (768ff). In Berto & Restall 2019, the semantic analysis occurs in
Section 3, where frames and the primitive compatibility relation on worlds are introduced (1127).

3See Section 4.3 for the definition of incompatibility and see footnote 19 for (a) a way to de-
fine the compatibility relation that Restall and Berto take as primitive, and (b) a derivation of the
principle they stipulate to characterize that relation (Restall 2000, 853, Definition 1.1; Berto 2015,
768, ‘Backward’; and Berto & Restall 2019, 1129, ‘Backwards’).

A second principle, the Heredity Principle (Restall 2000, Definition 1.2; Berto 2015, 767; and
Berto & Restall 2019, 1128), was previously derived in OT as the Persistence principle (Zalta 1993,
413, Theorem 8); this settled a choice point in Barwise 1989 (265) in favor of Alternative 6.1.

Finally, see footnote 16 below for a discussion of how the reflexivity, anti-symmetry, and tran-
sitivity principles governing the relation ⊑ on the points of compatibility frames, stipulated in
Restall 2000 (853, Definition 1.1), was previously derived in OT (Zalta 1993, 413, Theorem 7) in
terms of the condition s⊴ s′ on object-theoretic situations.

4Papers published subsequent to Leitgeb 2019 have had other goals. See Odintsov & Wansing
2020 for a comparison of the hyperintensional propositional logic in HYPE with a number of other
logics, and Punc̆ochár̆ & Sedlár 2022 for a discussion of the Routley star operation in information-
based semantics rather than truth-conditional semantics.
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then it matters how one defines the Routley star situation.5

1.1 The Background Theory

The background theory needed to achieve these goals has been motivated and
published elsewhere (see below) and we shall draw on those published re-
sults. In what follows, the reader should be familiar with the fact that OT
is expressed in a syntactically second-order, quantified modal language (with-
out identity) that includes two kinds of atomic formulas: standard exempli-
fication formulas of the form Fnx1 . . .xn and encoding formulas of the form
xF. This language is extended with complex individual terms, namely (rigid)
definite descriptions of the form ıxϕ, and with complex n-ary relation terms
of the form [λx1 . . .xn ϕ] (n ≥ 0). A primitive unary predicate E! (being con-
crete) is used to distinguish ordinary objects (O!x ≡df ^E!x) and abstract objects
(A!x ≡df ¬^E!x). Identity for objects is defined: x = y holds if and only if either
x and y are both ordinary objects that necessarily exemplify the same proper-
ties or both abstract objects that necessarily encode the same properties.

The underlying logic of OT includes: (a) classical propositional logic, (b)
classical predicate logic for the constants and variables but negative free logic
for the complex terms (i.e., descriptions and λ-expressions may fail to denote),
and (c) full S5 modal logic, including the Barcan (1946) and converse Barcan
formulas for both the first and second-order variables (i.e., there are fixed do-
mains of objects and relations).

OT’s underlying logic also includes a hyperintensional theory of n-ary rela-
tions that encompasses properties (i.e., unary relations) and propositions (i.e.,
0-ary relations). A λ-expression of the form [λx1 . . .xn ϕ] is guaranteed to de-
note a relation if none of the variables bound by the λ occur in ‘encoding posi-
tion’, i.e., as an argument term in an encoding formula in ϕ. The well-known
principle of λ-Conversion (aka β-Conversion) holds for such λ-expressions, as
does α-Conversion.6 λ-Converion implies a comprehension principle for n-ary
relations (n ≥ 0), namely:

∃Fn□∀x1 . . .∀xn(Fnx1 . . .xn ≡ ϕ), provided Fn isn’t free in ϕ and none of
the xi occur in encoding position in ϕ.

These existence conditions for relations are supplemented with a definition of
hyperintensional identity conditions for n-ary relations that do not imply that
necessarily equivalent properties, relations, or propositions are identical.7

5I’m indebted to an anonymous referee of this journal for suggesting that I make this point
explicit.

6The principle of α-Conversion simply states that an identity holds between two alphabeti-
cally variant λ-expressions (assuming at least one of them denotes). Note also that for elementary λ-
expressions of the form [λx1 . . .xnFx1 . . .xn], η-Conversion holds. It asserts [λx1 . . .xnFx1 . . .xn] = F,
where F is an n-ary relation variable.

7The key definition is for the identity of properties (Zalta 1993, 407):

F=G ≡df □∀x(xF ≡ xG)

In OT, □∀x(Fx ≡ Gx) doesn’t imply F=G. If we substitute ‘p’ and ‘q’ for the propositional variables
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Finally, there are three axioms in OT that govern the logic of encoding.
One asserts that ordinary objects necessarily fail to encode properties (O!x→
□¬∃FxF). A second asserts that the modal logic of encoding is rigid (xF →
□xF). And the main axiom is a comprehension schema for abstract objects,
which asserts that for any condition ϕ with no free xs, there is an abstract
object that encodes all and only the properties such that ϕ:

∃x(A!x&∀F(xF ≡ ϕ)), provided x isn’t free in ϕ (1)

Further details of the system will be brought to bear as the occasion arises.
In Zalta 1993 and 1997, OT was deployed to develop the theory of situ-

ations, possible worlds, and impossible worlds. The theory begins with the
definitions:

• a situation is any abstract object that encodes only properties of the form
being such that p (i.e., properties of the form [λx p], where x is vacuously
bound by the λ, and p is a variable ranging over propositions):

Situation(x) ≡df A!x&∀F(xF→∃p(F=[λx p])) (2)

• p is true in situation s (‘s |= p’), or s makes p true, is defined as s encodes
the propositional property being such that p:

s |= p ≡df s[λx p] (3)

In OT, ‘|=’ always takes the smallest scope; so s |= p→ p is to be parsed (s |= p)→
p; otherwise, we write s |= (p→ p). Also, we sometimes read s |= p as s encodes
p, thereby extending the notion of encoding.

In Zalta 1993 (410–414), it was shown that the basic principles of situation
theory are derivable from the definition of situation given above. Indeed, 15 of
the 19 principles outlined in Barwise 1989 were derived. Possible world theory
was then shown to be an extension of situation theory and was developed via
the following definitions:

• a possible world is any situation s that might be such that all and only true
propositions are true in s:

PossibleWorld(s) ≡df ^∀p(s |= p ≡ p) (4)

Given our convention, the subformula s |= p ≡ p is to be parsed as
(s |= p) ≡ p.

The basic principles of possible world theory are derivable from the defini-
tion of possible world given above (Zalta 1993, 414–419). These include formal
versions of the following principles:

‘F0’ and ‘G0’, then propositions p and q are defined to be identical just in case the propositional
properties [λx p] and [λx q] are identical (Zalta 1993, 409). And n-ary relations F and G (n ≥ 2)
are identical just in case each way of ‘plugging’ n − 1 objects into both F and G yields identical
properties. Note that in the context of the present paper, in which a negative free logic applies
to complex relation terms that may fail to denote, we can only instantiate the above definition of
property identity to denoting property terms.
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• every possible world is maximal, consistent, and modally closed;

• there is a unique actual world;

• possibly p iff there is a possible world in which p is true; and

• necessarily p iff p is true in every possible world.

This was extended further in Zalta 1997 to include impossible world theory:

• an impossible world is any maximal situation (i.e., for every proposition p,
either s makes p true or s makes ¬p true) for which it is not possible that
every proposition true in s is true:

Maximal(s) ≡df ∀p(s |= p∨ s |= ¬p) (5)

ImpossibleWorld(s) ≡df Maximal(s) &¬^∀p(s |= p→ p) (6)

The basic principles of impossible world theory can be derived from the def-
inition of impossible world given above (Zalta 1997, 646–649). These include
formal versions of:

• there are impossible worlds;

• if it is not possible that p, then there exists a non-trivial impossible world
in which p is true;8

• there exist impossible worlds where the principle ex contradictione quod-
libet (ECQ) fails; and

• there exist impossible worlds where disjunctive syllogism fails.

The above principles were all shown to be theorems. Familiarity with the fore-
going results will be presupposed in what follows, since we now plan to extend
and build upon them.

1.2 The Recent Developments We’ll Need

Among the recent developments of OT we’ll need for the analysis of Routley
star are the following definition and theorem schema:

p =df ¬p (7)

⊢ ∃s∀p(s |= p ≡ ϕ), provided s isn’t free in ϕ (8)

Definition (7) lets us denote the negation of a proposition more simply as p.
As a theorem schema, (8) is in fact a comprehension schema for situations and
is derivable from axiom (1). A derivation of (8) is given in the Appendix. It is
also provable that situations s and s′ are identical just in case they make the
same propositions true (Zalta 1993, 412):

8Cf. Nolan (1997, 542), who similarly suggests that impossible worlds are governed by the
comprehension principle: for every proposition that cannot be true, there is an impossible world
where that proposition is true.
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⊢ s=s′ ≡ ∀p(s |= p ≡ s′ |= p) (9)

Consequently, it follows immediately from (8) that there is a unique situation
that makes true all and only the propositions satisfying ϕ:

⊢ ∃!s∀p(s |= p ≡ ϕ), provided s isn’t free in ϕ (10)

It is a consequence of (10) that every definite description having the form
ıs∀p(s |= p ≡ ϕ) is always well-defined (i.e., provably has a denotation), pro-
vided s isn’t free in ϕ. These are, therefore, canonical descriptions for situa-
tions.

1.3 Some Other Non-classical Situations

Earlier we described how OT implies the existence of impossible worlds in
which certain classical laws of logic fails to hold. But it is important to re-
member, as we work through the results below, that we don’t have to consider
impossible worlds to find situations in which the laws of classical logic fail.
Classical laws may fail in situations that aren’t impossible worlds. Consider
the law ex contradictione quodlibet (ECQ) and let q1 be any proposition. Then
the following is an instance of (10), which asserts the existence of a unique situ-
ation that makes exactly one proposition true, namely, the conjunction q1&¬q1:

∃!s∀p(s |= p ≡ p=(q1 &¬q1))

Call this situation s1, so that we know ∀p(s1 |= p ≡ p = (q1 & ¬q1)). Clearly,
the conjunction q1 &¬q1 is true in s1, i.e., s1 |= (q1 &¬q1). Now consider any
proposition that is distinct from the conjunction q1&¬q1, say, r1. It then follows
that ¬s |= r1. So we’ve established that for any propositions q and r such that
(q&¬q),r, there is a situation in which ECQ fails:

⊢ ∀q∀r((q&¬q),r→∃s(s |= (q&¬q) &¬s |= r))

Indeed, we can use the above to define a condition that isolates precisely those
situations that fail ECQ:

s is an ECQ-falsifier ≡df ∃q∃r(s |= (q&¬q) &¬s |= r)

Similarly, we can define a group of situations in which disjunctive syllogism
(DS) fails. Let q1 and r1 be any propositions such that the propositions q1 ∨
r1, ¬q1, and r1 are all pairwise distinct. Then consider following instance of
(10), which asserts the existence of a unique situation that encodes exactly two
propositions, namely, q1 ∨ r1 and ¬q1:

∃!s∀p(s |= p ≡ p=(q1 ∨ r1)∨ p=¬q1)

Call this s2, so that we know ∀p(s2 |= p ≡ p=(q1 ∨ r1)∨ p=¬q1). Then it is easy
to establish all of the following: s2 |= (q1∨r1), s2 |= ¬q1, and ¬s2 |= r1. So DS fails
with respect to s2. And, in general, we have established that for any pairwise
distinct propositions q∨ r, ¬q, and r, there is a situation in which DS fails:
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⊢ ∀q∀r((q∨ r), ¬q&¬q,r& (q∨ r),r)→∃s(s |= (q∨ r) & s |= ¬q&¬s |= r))

Again, we can use the above to define a group of situations in which DS fails:

s is a DS-falsifier ≡df ∃q∃r(s |= (q∨ r) & s |= ¬q&¬s |= r)

These examples are of interest because they show that OT already has the ca-
pacity to develop counterexamples to classical logical laws without Routley
star, once those classical laws are interpreted within the domain of situations.
We don’t need to formulate a separate language and define truth for the for-
mulas of that language with respect to the domain of situations. The condition
s |= ϕ (i.e., ϕ is true in s) is defined for all situations s and formulas ϕ. That’s
because every formula ϕ denotes a proposition,9 and so each ϕ (with no free
xs) can be instantiated for p in definition (3) to obtain an instance of the form
s |= ϕ ≡df s[λx ϕ].10 So our notion of true in situation s applies to arbitrary
formulas and we can directly evaluate the truth of formulas relative to any
distinguished (i.e., definable) group of situations.

Moreover, one can define, for example, the conjunction-normal situations as
those situations that make p&q true whenever they both make p true and make
q true. Formally:

s is conjunction-normal ≡df ∀p∀q(s |= (p& q) ≡ (s |= p& s |= q))

And s is double-negation normal just in case smakes p true if and only if it makes
p true. And so on. One may therefore precisely define, for some particular
application, the group of situations to be studied.

1.4 Canonical Descriptions and Modality

At the end of Section 1.2, we identified canonical descriptions of the form
ıs∀p(s |= p ≡ ϕ). Though canonical descriptions are always logically proper,
one must take care when deploying them in a modal context, given that, in OT,
the formal definite description ıxϕ rigidly denotes the unique object, if there
is one, that satifies ϕ at the distinguished actual world. It is worth digressing a
moment to understand the issues that arise and why the present paper will be
able ignore them. We conclude the digression and this section by formulating
a theorem schema involving descriptions that will play an important role in
the paper.

9To see this, recall that in OT, propositions are 0-ary relations. So let Π be an arbitrary 0-ary
relation term. In the latest developments of object theory (Zalta m.s.), we define: Π↓ (read: Π

exists) just in case [λνΠ]↓, where ν is some variable not free in Π. But the definiens, which asserts
that the propositional property [λν Π] exists, is axiomatic, since it meets the condition that the
bound variable ν doesn’t occur as an argument in an encoding formula anywhere in Π. So, it is
provable that Π↓. But, in OT, formulas are 0-ary relation terms and since Π was arbitrary, it is a
theorem of OT that ϕ↓, for any formula ϕ. So every formula denotes a proposition.

10The restriction that x not be free in ϕ is no real restriction. If ϕ has a free variable x, then
choose a variable that is not free in ϕ. Without loss of generality, suppose it is y. Then as an
instance of an alphabetic variant of definition (3), we have s |= ϕ ≡df s[λy ϕ]. So the definition
holds for any formula ϕ.
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Note that in a modal logic with rigid definite descriptions, one can pro-
duce logical theorems that are not necessary. For example, the conditional
y = ıxGx → Gy will be false at a world, say w1, when y (is assigned an object
that) fails to be G at w1 but is the unique G at the actual world w0 (in such
a case, the the antecedent is true at w1 but the consequent false at w1). More
generally, where ϕyx is the result of substituting y for all the free occurrences
of x in ϕ, the claim y = ıxϕ → ϕ

y
x is not a necessary truth, though it is logi-

cally true (i.e., true at the distinguished actual world of every model, for every
assignment to y) given the semantics of rigid definite descriptions.

In a fuller presentation of OT, we could axiomatize rigid definite descrip-
tions by introducing an actuality operator 𝒜 and asserting, as an axiom:

y= ıxϕ ≡ ∀x(𝒜ϕ ≡ x=y) (11)

This is a form of the Hintikka principle (1959); it is a necessary truth and it
immediately implies the following as a necessary truth, in which 𝒜ϕ

y
x = (𝒜ϕ)yx

= 𝒜(ϕyx ):

⊢ y= ıxϕ→ 𝒜ϕ
y
x , provided y is substitutable for x in ϕ (12)

If we then adjust the original example, it should be easy to see that y= ıxGx→
𝒜Gy is a necessary truth. But though (11), (12), and their instances are nec-
essary truths, the axiomatization of the actuality operator includes an axiom,
namely 𝒜ϕ → ϕ, that is a logical truth which isn’t necessary (Zalta 1988).11

So the Rule of Necessitation has to be slightly adjusted; one may not apply the
rule to necessitate a theorem whose proof depends on the axiom 𝒜ϕ→ ϕ.

In what follows, though, we won’t need to worry about illicit applications
of the Rule of Necessitation since all of the definite descriptions we’ll deploy
involve a special class of formulas for which we can derive the conditional
y = ıxϕ → ϕ

y
x without appealing to the contingent axiom for actuality. The

formulas in question are modally collapsed, i.e., any formula ϕ for which it is
provable that □(ϕ → □ϕ). When a formula having this form is provable, one
can prove 𝒜ϕ ≡ ϕ without appealing to the contingent axiom 𝒜ϕ→ ϕ.12 If ϕ
is modally collapsed, then y= ıxϕ→ ϕ

y
x is a necessary truth:

⊢ y= ıxϕ→ ϕ
y
x , (13)

provided ϕ is modally collapsed and y is substitutable for x in ϕ

11To see why the formula schema 𝒜ϕ → ϕ can’t be necessitated, note that the conditional is
true at the actual world: if ϕ is true at the actual world, then the conditional is true at the actual
world (by truth of the consequent), and if ϕ is false at the actual world, then the conditional is true
at the actual world (by failure of the antecedent). However, the conditional is false at any world
w1 whenever ϕ is true at the actual world but false at w1.

12Assume □(ϕ→ □ϕ). Then by the K^ principle, i.e., □(ψ→ χ)→ (^ψ→ ^χ), it follows that
^ϕ→^□ϕ. But in S5, ^□ϕ→ □ϕ. So by hypothetical syllogism, we’ve established:

(θ) ^ϕ→ □ϕ
Now to see that 𝒜ϕ ≡ ϕ, we prove both directions. (→) Assume 𝒜ϕ. Then ^ϕ. So by (θ), □ϕ.
Hence ϕ, by the T schema. (←) Assume ϕ. Then ^ϕ. But again by (θ), it follows that □ϕ. Hence
𝒜ϕ.
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(See the Appendix for the proof.) In this paper, we shall appeal only to defi-
nite descriptions ıxϕ in which ϕ is modally collapsed, and so we won’t need
to worry about mistakenly applying the Rule of Necessitation to theorems de-
rived from a logical truth that is not necessary.

In particular, as a special case of (13) for modally collapsed ϕ, it is a theo-
rem that if a situation s is identical to the situation that makes true all and only
the propositions satisfying ϕ, then s makes true all and only the propositions
satisfying ϕ, i.e.,

⊢ s = ıs′∀p(s′ |= p ≡ ϕ)→∀p(s |= p ≡ ϕ), (14)
provided s′ isn’t free in ϕ and ϕ is modally collapsed

The keys to the proof in the Appendix are the facts that s′ |= p is, by defini-
tion (3), an instance of the formula xF and that the modal logic of encoding is
xF → □xF. So by the Rule of Necessitation, □(xF → □xF) and, as an instance,
□(s′ |= p → □s′ |= p). This fact, and the fact that ϕ is modally collapsed, lets
us validly infer that the formula ∀p(s′ |= p ≡ ϕ) is modally collapsed. So the
description ıs′∀p(s′ |= p ≡ ϕ) will be governed by (13).

(14) plays a crucial role in what follows. All of descriptions of the form
ıs′∀p(s′ |= p ≡ ϕ) used in the present work will be constructed in terms of for-
mulas ϕ that are modally collapsed; it is provable that their truth necessarily
implies their own necessity. This should forestall any concerns about the fact
that we shall be working within a modal context in which definite descriptions
are interpreted rigidly.

2 Routley Star 1972: Definitions and Theorems

To capture the definition in Routley & Routley 1972, we say that the Routley
star image of situation s, written s∗, is the situation s′ that makes true all and
only those propositions whose negations aren’t true in s:

s∗ =df ıs
′∀p(s′ |= p ≡ ¬s |= p) (15)

Clearly, the definiens has a denotation: it is a canonical description for which
s′ doesn’t occur free in ¬s |= p. So s∗ is well-defined. Since it can be shown that
¬s |= p is a modally collapsed formula, it follows from (15) by (14) that p is true
in s∗ iff p fails to be true in s:

⊢ ∀p(s∗ |= p ≡ ¬s |= p) (16)

This holds for any situation s. (The first part of the proof in the Appendix
establishes that ¬s |= p is a modally collapsed formula.)

We now establish a number of facts that show (15) and theorem (16) prop-
erly capture the definition of s∗ in Routley & Routley 1972. Since formulas of
the form ϕ ≡ ¬ψ are necessarily equivalent to formulas of the form ¬ϕ ≡ ψ,
(16) implies that, for any proposition p, p is true in s if and only if p fails to be
true in s∗:
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⊢ ∀p(s |= p ≡ ¬s∗ |= p) (17)

Again, this holds for any situation s. (17) is an analogue of the Routleys’ prin-
ciple (iv), as formulated in the opening paragraph of Section 1 above.

To set up the next confirmation that (15) is correct, let us say that s has a
glut with respect to p, written GlutOn(s,p), if and only if both p and p are true
in s; and that s has a gap with respect to p, written GapOn(s,p), if and only if
neither p nor p is true in s:

GlutOn(s,p) ≡df s |= p & s |= p (18)

GapOn(s,p) ≡df ¬s |= p & ¬s |= p (19)

Then it follows that the condition s=s∗∗ implies that if s has a glut with respect
to p, then s∗ has a gap with respect to p:

⊢ s=s∗∗→ (GlutOn(s,p)→ GapOn(s∗,p)) (20)

And s= s∗∗ also implies that if s has a gap with respect to p, then s∗ has a glut
with respect to p:

⊢ s=s∗∗→ (GapOn(s,p)→ GlutOn(s∗,p)) (21)

Moreover, it can be shown, without the assumption that s=s∗∗, that if s neither
has a glut nor a gap w.r.t. p, then s∗ makes p true if and only if s makes p true:

⊢ (¬GlutOn(s,p) &¬GapOn(s,p))→ (s∗ |= p ≡ s |= p) (22)

It then follows that if, for every proposition p, s neither has a glut nor a gap
w.r.t. p, then s∗= s (since they make the same propositions true); and for every
proposition p, s neither has a glut nor a gap w.r.t. p if and only if for every
proposition p, s makes p true if and only if s fails to make p true:

⊢ ∀p(¬GlutOn(s,p) &¬GapOn(s,p))→ s∗=s (23)

⊢ ∀p(¬GlutOn(s,p) &¬GapOn(s,p)) ≡ ∀p(s |= p ≡ ¬s |= p) (24)

Intuitively, (24) tells us that if s is free of gluts and gaps, then it is coherent
with respect to negation.

We conclude this section by additionally deriving three interesting facts,
the first two of which require us to define the null situation (s∅), in which no
propositions are true, and the trivial situation (sV ), in which every proposition
is true:

s∅ =df ıs
′∀p(s′ |= p ≡ p,p) (25)

sV =df ıs
′∀p(s′ |= p ≡ p=p) (26)

The facts are that: if s∗∗=s holds universally, then the Routley star image of the
null situation is the trivial situation; if s∗∗=s holds universally, then the Routley
star image of the trivial situation is the null situation; and s∗∗ is identical to s if
and only if, for every proposition p, p is true in s iff p is true in s:
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⊢ ∀s(s∗∗=s)→ s∅
∗ = sV (27)

⊢ ∀s(s∗∗=s)→ sV
∗ = s∅ (28)

⊢ s∗∗=s ≡ ∀p(s |= p ≡ s |= p) (29)

(29) becomes interesting when we consider the passage in Routley & Routley
1972 (338) in which they discuss their principle (iv), which we reproduced
above in the opening paragraph of Section 1:

Requirement (iv) on its own does not suffice for the normality of the nega-
tion, since it does not assume such characteristic negation features as dou-
ble negation features. For these features it is, however, unnecessary to
adopt the over-restrictive condition H =H∗, which would take us back to
(ii); it suffices to require that H =H∗∗.

The Routleys don’t say here exactly which double negation features they are
referring to. But (29) tells us that the condition s∗∗=s is equivalent to a specific
double negation feature. As we’ve seen, the Routleys go on to suggest that a
‘set-up’, i.e., a situation s, is classical (‘normal’) with respect to double negation
when s∗∗ = s. Even if the fact expressed by (29) has been made explicit some-
where else in the literature, it has now been derived from general principles
that don’t assume any mathematics, and the derivation occurs in a hyperin-
tensional logical and metaphysical system in which propositions have been
axiomatized, and situations and their Routley star images have been defined.

3 An Alternative Definition

In Section 5 below, we investigate an alternative definition of the Routley star
image, given in Leitgeb 2019. Instead of defining s∗ as the situation that makes
true all and only the propositions whose negations aren’t true in s, the alter-
native defines s∗ as the situation that makes true all and only the negations of
propositions that aren’t true in s:

s∗ =df ıs
′∀p(s′ |= p ≡ ∃q(¬s |= q& p=q)) (ϑ)

Since the condition ∃q(¬s |= q& p=q) is modally collapsed,13 (ϑ) immediately
implies, by (14):

13We can show this by first noting that both conjuncts of this quantified conjunction are
modally collapsed. Since s |= q is modally collapsed (see the discussion immediately following
(14)), so is ¬s |= q. Moreover, as noted in footnote 7, p= q holds just in case the property identity
[λx p] = [λx q] holds, where the identity of properties F =G is defined as □∀x(xF ≡ xG). Given
the S4 axiom then, it is easy to show F =G→ □F =G. So by the Rule of Necessitation □(F =G→
□F = G). Instantiating F and G to [λx p] and [λx q] and applying the definition of identity for
propositions, we have the instance □(p = q→ □p= q), which holds for any propositions p and q.
Hence □(p = q→ □p= q).

So it remains to show that the quantified conjunction is modally collapsed. But if ϕ and ψ
are modally collapsed, it follows that ϕ &ψ is modally collapsed, i.e., if □(ϕ → □ϕ) and □(ψ →
□ψ), then □((ϕ & ψ) → □(ϕ & ψ)). From these facts it doesn’t take much more work to show
□(∃q(¬s |= q& p=q)→ □∃q(¬s |= q& p=q)).
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∀p(s∗ |= p ≡ ∃q(¬s |= q& p=q)) (ξ)

(ϑ) and its consequence (ξ) are of interest because the key condition,
∃q(¬s |= q & p = q), is not equivalent to the condition ¬s |= p used in (15); in
other words, (ϑ) and (15) don’t always define the same s∗ for any given situa-
tion s.14

To see why, consider a simple situation, say s1, in which a single propo-
sition, say p1, is true. Let’s ignore all other propositions and consider what
propositions are true in s∗1 according to (16) vs. what propositions are true s∗1
according to consequence (ξ). According to (16), the following propositions
are true in s∗1:

• p1 (since ¬s1 |= p1),

• p1 (since ¬s1 |= p1),

• p1 (since ¬s1 |= p1),

• and so on.

But according to (ξ), neither p1 nor p1 are true in s∗1 (neither p1 nor p1 is the
negation of a proposition that s1 fails to encode). Instead, the following propo-
sitions are true in s1 according to (ξ):

• p1 (since ¬s1 |= p1 and p1 is the negation of p1),

• p1 (since ¬s1 |= p1 and p1 is the negation of p1),

• and so on.

So the two alternative ways of defining s∗1, namely (15) and (ϑ), yield different
situations even in this very simple case. They aren’t equivalent. Clearly, then,
one can’t simply replace the definiens of (15) with the definiens:

ıs′∀p(s′ |= p ≡ ∃q(¬s |= q& p=q))

This won’t preserve the results we’ve established thus far.
Though there may be multiple ways one could bring (15) and (ϑ) into align-

ment and force them into defining the same Routley star situation for a given
s, the simplest way is to limit some of the hyperintensionality in propositions.
In particular, we can show that ∃q(¬s |= q&p=q) and ¬s |= p become equivalent
whenever propositions are identical to their double negations, i.e., whenever:

14In what follows, it is important to distinguish the following two conditions:

(a) ∃q(¬s |= q& p=q)

(b) ∃q(¬s |= q& q=p)

Condition (b) is equivalent to ¬s |= p, by the following argument:

(→) Assume ∃q(¬s |= q& q=p) and suppose r is such a propositions, so that we know both
¬s |= r and r=p. Then ¬s |= p. (←) Assume ¬s |= p. Then ¬s |= p& p=p, by the reflexivity of
identity and &I. Hence, ∃q(¬s |= q& q=p).

But we’re now going to focus on condition (a), to see why it isn’t equivalent to ¬s |= p.
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∀p(p = p) (ζ)

Consider how (ζ) plays a role in the proof of both directions of the bicondi-
tional asserting the following equivalence:

∃q(¬s |= q& p=q) ≡ ¬s |= p (ω)

Proof : (→) Assume ∃q(¬s |= q& p=q) and let r be such a proposition, so
that we know both ¬s |= r and p = r. The latter implies that p = r, for if
propositions are identical, so are their negations. But by (ζ), r=r. Hence,
p= r and so ¬s |= p. (←) Assume ¬s |= p. Then by (ζ), ¬s |= p& p=p. By
existentially generalizing on p we have: ∃q(¬s |= q& p = q). ▷◁

Note that OT does not imply (ζ) since the identity conditions of relations and
propositions are hyperintensional; one may consistently claim that proposi-
tions and their double negations are distinct despite being necessarily equiva-
lent. That’s because in OT, propositions p and q are identical just in case the
corresponding propositional properties [λx p] and [λx q] are identical, where
property identity is, in turn, defined in terms of being necessarily encoded by
the same objects, not in terms of being necessarily exemplified by the same ob-
jects (see footnote 7). Since necessarily equivalent properties and propositions
are not identified, one may regard properties and propositions as more fine-
grained. But one can easily and consistently add (ζ) as an axiom to OT or, in
the alternative, derive consequences from the assumption that (ζ) and thereby
derive conditional theorems in which (ζ) is the antecedent, via the Deduction
Theorem.

But we don’t even have to go as far as adding (ζ) an axiom. In Section 4.1,
we’ll (a) define a group of propositions that are identical with their double
negations, (b) assert only that there are at least some such propositions (with-
out asserting that every proposition is identical to its double negation), and
then (c) focus our attention on situations that are built out of such proposi-
tions. Then, in Section 5, we’ll use (ϑ) to define Routley star relative to that
group of situations.

4 HYPE

Leitgeb (2019, 321ff) builds a semantics for a system of hyperintensional propo-
sitional logic (‘HYPE’). He first builds a propositional language L by starting
with atomic propositional letters p1,p2, . . ., and logical symbols ¬, ∧, ∨, →,
and ⊤ (where → does not express the material conditional). He writes pi for
¬pi , and uses pi as an abbreviation for pi . The proposition letters and their
negations constitute the literals. Leitgeb then constructs HYPE-models for L
in terms of structures ⟨S,V ,◦,⊥⟩, where the elements of the models are simul-
taneously constrained by the requirements of a Routley star operation ∗. He
describes the elements of the models as follows (Leitgeb 2019, 321–22):

• S is a non-empty set of states.
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• V is a function (the valuation function) from S to the power set of the set
of literals of the language L, so that each state s in S is associated with a
set of literals V (s).

• ◦ is a partial fusion function on states that is idempotent and, when de-
fined, commutative and partially associative.

• ⊥ is a relation of incompatibility that relates states s and s′ when some
proposition p is true at one and its negation p is true at the other. [Note:
The relation ⊥ among HYPE states is not to be confused with the sym-
bol ⊥ that Leitgeb uses as a metalinguistic abbreviation of the proposi-
tion ¬⊤ (2019, 321). In what follows, the context should make it clear
whether ⊥ denotes the relation or the proposition.]

The Routley star operation that constrains these models will be discussed and
defined later, in Section 5.

Consequently, in the remainder of this paper, we use OT to reconstruct the
above elements of HYPE models and we’ll see that the reconstruction comports
with both of the suggestions for understanding HYPE states quoted above in
Leitgeb 2019 (323, footnote 9). In Section 4.1 we develop basic definitions and
show how to interpret the V function in HYPE; in Section 4.2 we show how
to interpret the HYPE fusion operation ◦; and in Section 4.3, we show how to
interpret the HYPE incompatibility relation ⊥. Finally, in Section 5, we define
the HYPE version of Routley star and prove that it has the expected features.

4.1 HYPE Propositions and HYPE States

First, we work our way towards a definition of a Hype-state by defining Hype-
propositions. We say that (30) a Hype-proposition is any proposition p that is
identical to its double negation:

Hype(p) ≡df p=p (30)

Clearly, then it follows that if p is a Hype-proposition, then so is its negation p:

⊢Hype(p)→Hype(p) (31)

Though OT guarantees the existence of propositions (by 0-ary relation com-
prehension) and provides identity conditions for them (footnote 13), it doesn’t
guarantee the existence of Hype-propositions. The identity conditions for propo-
sitions in OT leave one free to assert the existence of Hype-propositions and the
existence of propositions that are more fine-grained, e.g., by asserting
∃p(p , p). Though □(p ≡ p) is a theorem, it doesn’t follow that p = p.

However, it is a trivial matter to extend OT by asserting the existence of
at least some Hype-propositions. This hypothesis shouldn’t be controversial
to logicians who have worked in systems where propositions are represented
as functions from possible worlds to truth values; such logicians have implic-
itly accepted that all propositions are identical with their double negations in
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those systems, since such propositions have the same truth value at every pos-
sible world. Nor does such a hypothesis significantly increase the resources
OT needs for its analysis; it only ensures the existence of a subclass of propo-
sitions from among those that already exist. More importantly, by asserting
there are Hype-propositions, we are asserting a metaphysical counterpart of
Leitgeb’s stipulation that the symbol ‘p’ is to be an abbreviation of ‘p’ (i.e.,
when he defines the HYPE language; 2019, 321). Every proposition letter in
HYPE’s language is thereby identified with its double negation, but here we
require only that some propositions are so identifiable.

Moreover, we need not even assert this hypothesis as an axiom; it is suf-
ficient to take it on board as an assumption. Of course, by asserting the hy-
pothesis as an axiom, the results below would all become theorems. But to
accomplish the goals of this paper, we need only show what follows in OT from
the assumption that there are Hype-propositions. This demonstrates that if
we extend OT with a principle (i.e., ∃pHype(p)) used to frame the target logic
(HYPE), the result is a metaphysical system for defining HYPE’s Routley star
and deriving the principles that govern it. By collapsing at least some proposi-
tions and their negations, and deriving the basic principles of HYPE relative to
those propositions, we establish that one can analyze the metaphysics of HYPE
in terms of a domain of propositions that are not themselves hyperintensional
entities; the hyperintensionality will arise via other means.

So, in what follows, we shall work under the assumption that there are
Hype-propositions:

∃pHype(p) (32)

Then we may define x is a HypeState just in case x is a situation such that every
proposition true in x is a Hype-proposition:

HypeState(x) ≡df Situation(x) &∀p(x |= p→Hype(p)) (33)

So we’re identifying HypeStates not as primitive entities but as situations. Thus
when Leitgeb speaks of the members of V (s) as the facts or states of affairs
obtaining at s (2019, 322), we may interpret this in terms of our defined notion,
p is true in s, as follows:

• p ∈ V (s) ≡df s |= p

Now it is easy to prove the existence of HypeStates; (32) guarantees there are
Hype-propositions and (8) guarantees that for any condition on Hype-propo-
sitions, there are situations that make true all and only such propositions.
Clearly, any such situation is a HypeState.

Indeed, we now invoke (8) to derive comprehension conditions for Hype-
States with the help of some new variables. Note that the conditions Hype(p)
and HypeState(x), defined respectively in (30) and (33), are modally collapsed
conditions. So may use introduce rigid restricted variables to range over them.
For clarity, we use special new variables in a distinguished, sans-serif font:

• p,q, . . . are restricted variables ranging over Hype-propositions.
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• s,s′, . . . are restricted variables ranging over HypeStates.

Using these variables we may formulate Simplified Comprehension for Hype-
States as follows:

⊢ ∃s∀p(s |= p ≡ ϕ), provided s isn’t free in ϕ (34)

Clearly, in the usual way, it is provable that there is a unique such HypeState
for each such instance:

⊢ ∃!s∀p(s |= p ≡ ϕ), provided s isn’t free in ϕ (35)

And this yields that canonical descriptions for HypeStates of the form
ıs∀p(s |= p ≡ ϕ) are always well-defined, provided s isn’t free in ϕ.

It should also be clear that there are HypeStates that are counterexamples to
classical laws, just like the ones described in Section 1.3. Those show us how to
construct HypeStates that falsify Explosion (ECQ) and Disjunctive Syllogism,
i.e., two of the laws mentioned in the last bullet point of Observation 14 in
Leitgeb 2019 (333). And there are HypeStates that falsify some of the others
mentioned there as well, such as Excluded Middle, Law of Non-Contradiction,
and (General) Contraposition.15 In the next section, we’ll specifically discuss
the last example of a HYPE-invalid inference mentioned in Observation 14
(involving the proposition ⊥), namely, ϕ→⊥ |= ¬ϕ.

4.2 The HYPE Fusion Operation

If we put aside, for the moment, the fact that the fusion function ◦ in HYPE is
a partial binary operation on HypeStates, then we can represent the HYPE ◦ op-
eration as the following (total) summation operation ⊕ on situations generally:

s⊕ s′ =df ıs
′′∀p(s′′ |= p ≡ (s |= p∨ s′ |= p)) (36)

In other words, s ⊕ s′ is the situation that makes a proposition p true just in
case either s makes p true or s′ makes p true. Since s |= p ∨ s′ |= p is modally
collapsed, it follows that a proposition p is true in s⊕ s′ just in case either p is
true in s or p is true in s′:

⊢ ∀p(s⊕ s′ |= p ≡ (s |= p∨ s′ |= p)) (37)

To see that ⊕ captures additional features about the partial nature of situations
generally, let us say that s is a part of s′ just in case every proposition true in s
is true in s′:16

15For example, let p1 and q1 be arbitrary Hype-propositions and consider any HypeState, say s1,
that makes just q1 true and no other propositions true. Then ¬s1 |= (p1 ∨¬p1). So in OT there is a
HypeState in which Excluded Middle doesn’t hold. In general, it is not provable that s |= (ϕ ∨¬ϕ)
for arbitrary s and ϕ. And any HypeState s that isn’t maximal will be such that there are Hype-
propositions q such that neither s |= q nor s |= ¬q. We leave it to the reader to construct HypeStates
in which the Law of Non-Contradiction and (General) Contraposition are false.

16The definition that follows was derived as a theorem in Zalta 1993 (412), as a consequence
of the more general definition x ⊴ y ≡df ∀F(xF → yF) and the fact that situations encode only
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s⊴ s′ ≡df ∀p(s |= p→ s′ |= p) (38)

It follows relatively straightforwardly that s is a part of s′ if and only if the sum
of s and s′ just is s′:

⊢ s⊴ s′ ≡ s⊕ s′ = s′ (39)

A further consequence of these definitions and theorems is that ⊕ is idempo-
tent, commutative, and associative with respect to situations generally. Since
HypeStates are situations, it follows that:

⊢ ⊕ is idempotent, commutative, and associative on HypeStates. (40)

Formally:

⊢ s⊕ s
⊢ s⊕ s′ = s′ ⊕ s
⊢ s⊕ (s′ ⊕ s′′) = (s⊕ s′)⊕ s′′

So by ignoring the partiality of ◦, we may interpret s ◦ s′ in Leitgeb 2019 as
s⊕ s′.

But the ◦ operation is in fact partial while s⊕s′ is defined for any HypeStates
s and s′. So one might be concerned that our results don’t properly capture
the metaphysics of the fusion operation in HYPE. I don’t think that concern is
justified, however, for we could in fact model the partiality of ◦ by introducing
a partial ternary relation R3 (not the ternary relation R of Routley-Meyer 1972,
1973) that may or may not relate a pair of HypeStates s and s′ to a unique third
HypeState.17 But we shall leave further details for some other occasion and
continue with our total fusion operation ⊕.

Moreover, it should be remembered that Leitgeb explicit labels the partial-
ity of ◦ a ‘design choice’ and concludes with the hope that the “success of the
system as a whole is going to justify the design choice” (2019, 323, footnote 9).
I similarly suggest that the success of our metaphysical analysis of the two ap-
proaches to Routley star and analysis of HYPE has to be judged by the success
of what the system can represent as a whole. So let me further suggest that the

propositional properties. But for the present investigation, we may simply take the following
as a definition. It follows from our definition that ⊴ is reflexive, anti-symmetric, and transitive
on situations generally (Zalta 1993, 413, Theorem 7), and on HypeStates in particular (exercise).
Compare these theorems about ⊴with Barwise 1989b (185) and 1989a (259), where they are taken
as axioms of situation theory. Similarly, Restall 2000 (853), stipulates that there is an analogous
relation ⊑ that is reflexive, anti-symmetric and transitive on the points of compatibility frames.

17Intuitively, Rwould be a partial relation that is idempotent and commutative when ıs0Rss
′s0

exists. Then we could re-define ⊕ for HypeStates so that it meets the following condition:

s⊕ s′ =df ıs
′′∀p(s′′ |= p ≡ s |= p ∨ s′ |= p ∨ ıs0(Rss′s0) |= p)

The intuition here is that R ensures that s⊕ s′ makes true Hype-propositions other than the ones
true in s and s′. Moreover, we must also require:

ıs0Rs1((s1 ⊕ s2)⊕ s3)s0 ⊴ (s1 ⊕ s2)⊕ s3

The extra constraint on R guarantees partial associativity. Thus, constraints on R validate idempo-
tence, commutativity when defined, and partial associativity when defined.
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loss of partiality in the analysis of ◦ by ⊕ isn’t serious because the system of OT
as a whole reconstructs the partiality to which ◦ is put to use in HYPE by other
means. For example, in Example 3 (2019, 335), Leitgeb makes use of the par-
tiality of ◦ to build a countermodel in HYPE to the inference ϕ→ ⊥ |= ¬ϕ. In
that countermodel, there are two HYPE states sa and sb, and though ◦ is idem-
potent, both sa ◦ sb and sb ◦ sa are undefined. Leitgeb then shows this model
yields a counterexample to A→⊥ |= ¬A.18

By contrast, in OT, ⊕ needn’t be partial to construct a HypeState s and a
Hype-proposition p such that s |= (p→ ⊥) and s ̸|= ¬p. To see this, just take on
board the assumption made in HYPE’s language that⊤ (or ¬⊤ or ⊥) is a distin-
guished proposition term. Then let p2 be an arbitrary Hype-proposition. Note
that OT doesn’t require the identity p2 → ⊥ = ¬p2. So consider the HypeState
s2 that makes just p2→⊥ true:

s2 =df ıs∀p(s |= p ≡ p = (p2→⊥))

One cannot validly infer in OT that s2 |= ¬p2. And if given the hyperinten-
sional claim that p2 → ⊥ , ¬p2, it does follow that ¬s2 |= ¬p2. So, we don’t
need partiality in ⊕ to build a countermodel of the inference ϕ→ ⊥ |= ¬ϕ; in-
stead, we just exploit the hyperintensionality already built into OT’s theory of
propositions. But if one is, nevertheless, still convinced that the metaphysics
of HYPE can’t be reconstructed with the partiality of ◦, then see footnote 17
for a means of doing so.

4.3 The HYPE Explicit Incompatibility Relation

Next we define, in object-theoretic terms, the HYPE explicit incompatibility con-
dition ⊥ (not to be confused with the proposition ⊥ just discussed) that holds
between HypeStates, by first defining it on situations generally. We say s is ex-
plicitly incompatible with s′ (s !s′) just in case there is a proposition p such that
s makes p true and s′ makes the negation of p true:

s !s′ ≡df ∃p(s |= p & s′ |= p) (41)

Since explicit incompatibility is now defined for all situations, it is defined on
HypeStates, i.e., we may henceforth write s !s′ when HypeStates are explicitly
incompatible.

Now the first principle governing ⊥ in HYPE is (Leitgeb 2019, 322):

• If there is a v with v ∈ V (s) and v ∈ V (s′), then s ⊥ s′.

Given our interpretation of⊥ in terms of !, this becomes represented and deriv-
able as the following theorem governing HypeStates and Hype-propositions:

⊢ (s |= p& s′ |= p)→ s !s′ (42)

18For those familiar with HYPE, the argument is this (mostly quoting from 2019, 335): [It holds
that] sa |= p2 → ⊥, as there is no p2 state with which sa could be fused. However, sa ̸|= ¬p2, since
p2 has not been assigned to sa, or, equivalently (by Lemma 8), because sa does not stand in the ⊥3
relation to the p2-satisfying state sb .
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And the second principle governing ⊥ in HYPE is (Leitgeb 2019, 322):

• If s ⊥ s′ and both s ◦ s′′ and s′ ◦ s′′′ are defined, then s ◦ s′′ ⊥ s′ ◦ s′′′.

Given our interpretation of ◦ as ⊕ and the fact that s⊕ s′ is always defined for
any situations s and s′, this becomes represented and derivable as the following
theorem regarding HypeStates:

⊢ s !s′→ (s⊕ s′′) ! (s′ ⊕ s′′′) (43)

The proofs of both (42) and (43) are in the Appendix.19

5 Routley Star in HYPE

We continue to use our restricted variables ‘p’ and ‘s’ to range over Hype-
propositions and HypeStates, respectively. Our next goal, then, is to reconstruct
and derive the principles that govern the HYPE Routley star operator. That is,
we must reconstruct and derive the following conditions laid down in Leit-
geb 2019 (322), in which we’ve replaced Leitgeb’s variable ‘s’ by our restricted
variable ‘s’:

For every s in S,

(A) there is a unique s∗ ∈ S (the star image of s) such that:

19In addition to analyzing the HYPE incompatibility condition ⊥ in terms of the object-
theoretic definition of ! in (41), we may also analyze the compatibility relation C used in Restall
2000 (853), Berto 2015 (767), and Berto & Restall 2019 (1127) as the negation of !, i.e., via the
following definition, cast in terms of situations generally:

sCs′ ≡df ¬∃p(s |= p& s′ |= p)

That is, s is compatible with s′ just in case there is no proposition p that smakes p true and s′ makes
p true. (Depending on the purpose at hand, one might prefer to revise this definition to ensure
that compatibility holds only when no proposition p is such that p is true in the modal closure of s
while p is true in the modal closure of s′. But we don’t need this more sophisticated understanding
of compatibility in what follows.) Then, the semantic principle governing C stipulated in Restall
2000 (853, Definition 1.1), namely:

for any x, y, x′, and y′, if xCy, x′ ⊑ x, and y′ ⊑ y, then x′Cy′,

becomes derivable in OT, with ⊴ instead of ⊑. To see how, let us temporarily use x,y as restricted
variables ranging over situations. Then we have:

⊢ (xCy & x′ ⊴ x& y′ ⊴ y)→ x′Cy′

Proof : Assume xCy, x′ ⊴ x, and y′ ⊴ y. These assumptions imply, respectively:

(A) ¬∃p(x |= p& y |= p)

(B) ∀p(x′ |= p→ x |= p)

(C) ∀p(y′ |= p→ y |= p)

To show x′Cy′, suppose not, for reductio. Then ∃p(x′ |= p& y′ |= p). Suppose p1 is such a
proposition, so that we know both x′ |= p1 and y′ |= p1. Then by (B) and (C), respectively,
these entail that x |= p1 and y |= p1. But this contradicts (A).

As noted in footnote 3, this same principle, labeled ‘Backwards’ (compatibility), is stipulated in
Berto 2015 (768) and Berto & Restall 2019 (1129).
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(B) V (s∗) = {v |v < V (s) },
(C) s∗∗ = s,

(D) s and s∗ are not incompatible, i.e., ¬(s⊥ s∗), and

(E) s∗ is the largest state compatible with s, i.e., if s is not incompatible
with s′, then the fusion of s′ and s∗ is defined and the fusion of
s′ ◦ s∗ = s∗.

Note that s∗ is defined in HYPE as V (s∗) = {v |v < V (s) }, instead of as V (s∗) =
{v |v < V (s) }. However, as we saw in Section 3, these two definitions become
equivalent if propositions and their double negations are generally identified.
And as we saw in Section 4, Leitgeb does identify p and p in his propositional
language L. Since we’ve defined Hype-propositions as ones that exhibit this
behavior, let us examine how the HYPE Routley star and the principles gov-
erning it can be defined or derived given our analysis of Hype-propositions and
HypeStates.

For any HypeState s, we may define the HYPE Routley star image of s, writ-
ten s∗, as the HypeState s′ that makes a Hype-proposition p true just in case p is
the negation of a proposition not true in s:20

s∗ =df ıs
′∀p(s′ |= p ≡ ∃q(¬s |= q& p=q)) (44)

We take (44) to be a reconstruction of principle (B) above. Now although the
HYPE principle (A) requires that there be a unique s∗ satisfying (B) – (E), it
should be clear that s∗ is already uniquely defined; for any s, exactly one s∗

has been identified by a canonical description.
So we may immediately conclude that s∗ exists, for any s. Before we show

that the unique star image s∗ of a HypeState s also satisfies constraints (C) –
(E), it proves useful to first confirm a few facts that follow from (44). By now
familiar reasoning, we may infer from (44) that the Hype-propositions true in
s∗ are precisely the negations of the Hype-propositions that fail to be true in s:

⊢ ∀p(s∗ |= p ≡ ∃q(¬s |= q& p=q)) (45)

Moreover, we may verify that the principle proved in Section 3 holds for Hype-
States, namely that p is the negation of some proposition that s fails to make
true if and only if s fails to make p true:

⊢ ∃q(¬s |= q& p=q) ≡ ¬s |= p (46)

Clearly, then, (45) and (46) imply both that s∗ makes p true if and only if s fails
to make p true and, by a simple logical consequence of this fact, p is true in a
HypeState s if and only if it is not the case that p is true in s∗:

⊢ ∀p(s∗ |= p ≡ ¬s |= p) (47)

20The following should be considered a redefinition of the Routley star image. That’s because
HypeStates are situations and, in Section 2, (15) defines the Routley star on situations. So to avoid
conflicting definitions, just consider the following as a redefinition of this operator.
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⊢ ∀p(s |= p ≡ ¬s∗ |= p) (48)

(48) is a direct analogue of the Routley & Routley condition (iv) described in
the Introduction above, and so corresponds directly to (17).

Note next that we can make use of the definitions of gaps and gluts in (18)
and (19), respectively; these notions were defined generally for any situations
and propositions and so apply to HypeStates and Hype-propositions. We may
then further confirm that (44) is correct by establishing that if s has a glut
w.r.t. p, then s∗ has a gap w.r.t. p; if s has a gap w.r.t. p, then s∗ has a glut
w.r.t. p; and if s has neither a glut nor a gap w.r.t. p, then s∗ agrees with s∗ on p:

⊢ GlutOn(s,p)→ GapOn(s∗,p) (49)

⊢ GapOn(s,p)→ GlutOn(s∗,p) (50)

⊢ (¬GlutOn(s,p) &¬GapOn(s,p))→ (s∗ |= p ≡ s |= p) (51)

Now that we have confirmed that (44) is a definition of s∗ that yields the latter’s
desired characteristics, we turn to the derivation of principle (C) governing
HYPE s∗, namely, that s∗∗ is identical to s:

⊢ s∗∗= s (52)

Cf. Leitgeb 2019 (322). So, whereas (29) establishes that the stipulation
s∗∗=s in Routley & Routley 1972 is equivalent to the double-negation condition
∀p(s |= p ≡ s |= p), (52) establishes that the analogous stipulation s∗∗=s in Leit-
geb 2019 can be derived from the double-negation fact about Hype-propostions
that ∀p(p=p). These results give us a deeper understanding of the connection
between the two ways of defining the Routley star image of a situation.

Principles (D) and (E) of HYPE s∗ may be derived as follows. (D) can be
captured as the theorem that s is not explicitly incompatible with s∗:

⊢ ¬s!s∗ (53)

And since s′ ⊕ s∗ is always defined in our reconstruction, we can reconstruct
and derive (E) as the simpler claim if s is not incompatible with s′, then the
sum/fusion of s′ and s∗ just is s∗:

⊢ ¬s!s′→ (s′ ⊕ s∗ = s∗) (54)

(54) guarantees that s∗ is the largest state compatible with s.
Finally, if we recall definition (38) of s ⊴ s′ and fact (39) that s ⊴ s′ ≡

∀p(s |= p → s′ |= p), we may prove that the HYPE Routley star operation re-
verses ⊴:

⊢ s⊴ s′→ s′∗ ⊴ s∗ (55)

Cf. Observation 3, Leitgeb 2019 (325). This completes the derivation of the
principles stipulated in HYPE for the Routley star operation, modulo the par-
tiality of the HYPE fusion operation.
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6 Conclusion

We’ve now answered the question: What kind of metaphysics is represented
by a semantics making use of Routley star? Without assuming any mathe-
matical entities or theory of sets and functions, we’ve used OT to define two
forms of the Routley star operation and derive the principles that govern these
forms. And the better we understand the theorems that are implied by the two
ways of defining it, the better we understand how the star operation might be
used. The existence of the Routley star image s∗ of a situation s is guaranteed
not by set theory but by a theory of abstract objects. And out reconstruction
shows that situations have both a metaphysical character and an informational
character, at least as these are described in the quote above from Leitgeb 2019
(footnote 9). One can view situations in OT as “chunks of reality” that are
“located in the world” if one takes the Aristotelian view that they are (ab-
stracted, logical) forms that are immanent in what there is. Alternatively, one
can view situations informationally, as abstract entities that systematize infor-
mation contents about which we might communicate. But these metaphilo-
sophical considerations about how to interpret OT as a theory shouldn’t divert
attention away from the tight conceptual framework that OT provides for rec-
ognizing and reconciling two non-equivalent definitions of Routley star.

Indeed, if you look at how situations are defined in (2) and at how the Rout-
ley star operation is defined in (15) and (44), one might even suggest that the
star operation is a logical one. Propositions are axiomatized as 0-ary relations
and can be considered part of logic. Situations are defined in (2) as abstract
objects that encode only propositional properties. And the ∗ operation is then
defined on situations in terms of the notions the, truth in (which is in turn
defined in terms of the encoding mode of predication), every and some, if and
only if, and not. If the star operation is logical, then we can explain why some
have thought that the uses to which Routley star has been put in the literature
helps us to capture semantically a more general and flexible logical concept of
negation.21

Finally, we’ve shown that the basic principles governing Routley star need
not be stipulated but can be derived from its definition. This integrates Rout-
ley star into a more general theory of (partial) situations that has been shown,
in previous work, to ground the theory of both possible worlds and impossible
worlds. This analysis of the Routley star operation clarifies our understanding
of the Routley-Meyer ternary relation R (Routley-Meyer 1972, 1973) on ‘set-
ups’, by systematically validating many of the assumptions of situation theory
used in Mares’ (2004) motivation and justification for R. But we shall not at-
tempt to further explore the various definitions of the ternary relation R in
this paper. It is sufficient to have shown how different groups of situations
(e.g., those defined in (2), HypeStates, or others) can constitute a proper sub-
domain for ternary R. I take those subdomains to be consistent with all of the
various attempts at understanding that relation.

21I’m indebted to Hannes Leitgeb for suggesting this point.
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Appendix: Proofs of the Theorems

(8)22 If we eliminate the restricted variable, then the theorem we have to prove
becomes:

∃x(Situation(x) &∀p(x |= p ≡ ϕ)), provided x isn’t free in ϕ

So let ϕ be any formula in which x doesn’t occur free. (Note that the variable p
may or may not be free in ϕ.) Now, pick a property variable that doesn’t occur
free in ϕ. Without loss of generality, suppose it is G. Then let ψ be the formula
∃p(ϕ &G = [λz p]). Clearly, since x doesn’t occur free in ψ, the following is a
schematic instance of of the comprehension schema for abstract objects, stated
in the text as (1):

∃x(A!x&∀G(xG ≡ ψ))

But given our choice of ψ, this amounts to:

∃x(A!x&∀G(xG ≡ ∃p(ϕ&G=[λz p])))

Let a be such an object, so that we know both A!a and:

(A) ∀G(aG ≡ ∃p(ϕ&G=[λz p]))

It follows a fortiori that ∀G(aG → ∃p(G = [λz p])). Hence Situation(a), by def-
inition (2). So it remains to show ∀p(a |= p ≡ ϕ). By GEN, it suffices to show
a |= p ≡ ϕ, since we’ve made no special assumptions about p.

To prove this biconditional, we’ll rely on the fact that a |= p is defined as
a[λz p], by (3), given that a is a situation. We’ll therefore want to instantiate
a[λz p] into (A). But there is a clash of variables and, to avoid this, we use the
following alphabetic variant of (A), where q is a variable that is substitutable
for p, and doesn’t occur free, in ϕ:

(A′) ∀G(aG ≡ ∃q(ϕqp &G=[λz q]))

Now we can properly instantiate [λz p] into (A′), and if we remember that G
doesn’t occur free in ϕ, we obtain:23

(B) a[λz p] ≡ ∃q(ϕqp & [λz p]=[λz q])

With these facts we can prove a |= p ≡ ϕ.
(→) Assume a |= p, to show ϕ. Then a[λzp], by (3). So by (B), it follows that:

∃q(ϕqp & [λz p]=[λz q])

Now suppose q1 is such a proposition, so that we know:

22I’m indebted to Uri Nodelman for spotting a flaw in the original proof of this theorem.
23Strictly speaking, when we instantiate [λz p] into (A′), we obtain:

a[λz p] ≡ ∃q((ϕ
q
p)

[λz p]
G & [λz p]=[λz q])

But since G isn’t free in ϕ, (ϕ
q
p)

[λz p]
G is just ϕ

q
p .
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(C) (ϕqp)q1
q & [λz p]=[λz q1]

In OT, propositions are identical whenever the propositional properties con-
structed from them are identical (Zalta 1993, 409). So by the second conjunct
of (C), it follows that p=q1. Hence, by the first conjunct of (C), it follows that
(ϕqp)pq . But since the conditions of the Re-replacement Lemma are met (Ender-
ton 2001, 130), this latter is just ϕ.

(←) Assume ϕ. Then ϕ&[λzp]=[λzp], by the reflexivity of identity. Hence,
by existential introduction:

∃q(ϕqp & [λz p]=[λz q])

Then by (B), a[λz p]. So by (3) and the fact that a is a situation, a |= p. ▷◁

(9) This is Theorem 2 in Zalta 1993. The proof was given in Zalta 1991 (Ap-
pendix A), which served as a precursor to Zalta 1993.

(10) This follows from (8) and (9) by the standard definition of the uniqueness
quantifier ∃!sψ.

(12) Suppose y is substitutable for x in ϕ and assume y = ıxϕ. Then by axiom
(11), ∀x(𝒜ϕ ≡ x=y). But since y is substitutable for x in ϕ, we can instantiate
this last fact to y and we obtain 𝒜ϕ

y
x ≡ y = y. So by the reflexivity of identity,

𝒜ϕ
y
x . ▷◁

(13) By hypothesis, ϕ is modally collapsed and y is substitutable for x in ϕ.
Now assume y = ıxϕ, to show ϕ

y
x . It follows from this assumption by theorem

(12) that 𝒜ϕyx . But since ϕ is modally collapsed, there is a proof of □(ϕ→ □ϕ).
Since this latter is a theorem, it follows by GEN that ∀x□(ϕ → □ϕ). Instan-
tianting to y it follows that □(ϕyx → □ϕ

y
x ). But as we saw in footnote 12, a

formula of this form implies 𝒜ϕyx ≡ ϕ
y
x . Hence, ϕyx . ▷◁

(14) Suppose s′ isn’t free in ϕ and ϕ is modally collapsed. To show:

s = ıs′∀p(s′ |= p ≡ ϕ)→∀p(s |= p ≡ ϕ)

it suffices to show that the formula ∀p(s′ |= p ≡ ϕ) is modally collapsed, for
then our theorem becomes an instance of (13). So we have to prove:

□(∀p(s′ |= p ≡ ϕ)→ □∀p(s′ |= p ≡ ϕ))

By the Rule of Necessitation, it suffices to prove:

∀p(s′ |= p ≡ ϕ)→ □∀p(s′ |= p ≡ ϕ)

So assume ∀p(s′ |= p ≡ ϕ), to show □∀p(s′ |= p ≡ ϕ). By the Barcan Formula,
it suffices to show ∀p□(s′ |= p ≡ p). Since p isn’t free in our assumption, it re-
mains, by GEN, to show □(s′ |= p ≡ p). So p is a fixed, but arbitrary proposition,
and so our assumption that ∀p(s′ |= p ≡ ϕ) implies:

(A) s′ |= p ≡ ϕ
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By hypothesis, ϕ is modally collapsed, and so we know that the following is a
theorem:

(B) □(ϕ→ □ϕ)

But independently, note that s′ |= p is defined in (3) as s′[λy p] , and so it is a
formula of the form xF. Since the modal logic of encoding is expressed by the
principle xF → □xF (Zalta 1993, 403), it follows by the Rule of Necessitation
that □(xF→ □xF). Hence as an instance, we know:

(C) □(s′ |= p→ □s′ |= p)

But it is a theorem of modal logic that if formulas ψ and χ necessarily im-
ply their own necessity, then the material equivalence of ψ and χ necessarily
implies their necessary equivalence:

(□(ψ→ □ψ) &□(χ→ □χ))→ □((ψ ≡ χ)→ □(ψ ≡ χ))

Given this theorem and setting ψ to s |= p and χ to ϕ, (C) and (B) jointly imply:

□((s′ |= p ≡ ϕ)→ □(s′ |= p ≡ ϕ))

So by the T schema,

(s′ |= p ≡ ϕ)→ □(s′ |= p ≡ ϕ)

Hence, by (A), □(s′ |= p ≡ ϕ), which is what it remained to show. ▷◁

(16) First, we show that ¬s |= p is a modally collapsed formula:

Lemma: □(¬s |= p→ □¬s |= p)

Proof. By the Rule of Necessitation, it suffices to prove ¬s |= p→ □¬s |= p.
So assume ¬s |= p, to show □¬s |= p. Now, as previously noted in the text,
the modal logic of encoding is xF → □xF. So, by the T schema and the
Rule of Necessitation, we know □(xF ≡ □xF). This implies □(^xF ≡ xF).
As an instance of this latter, □(^s |= p ≡ s |= p). Then by the T schema,
^s |= p ≡ s |= p. So, negating both sides, ¬^s |= p ≡ ¬s |= p. Then by
our assumption, it follows that ¬^s |= p, which is equivalent to □¬s |= p,
which is what we had to show.

Now note that we can apply GEN to (14), since s is a free variable, to conclude:

∀s(s = ıs′∀p(s′ |= p ≡ ϕ)→∀p(s |= p ≡ ϕ)),
provided s′ isn’t free in ϕ and ϕ is modally collapsed

Now since s′ isn’t free in ¬s |= p and this formula is modally collapsed, we can
let ϕ be ¬s |= p, so that as an instance of the foregoing, we know:

∀s(s = ıs′∀p(s′ |= p ≡ ¬s |= p)→∀p(s |= p ≡ ¬s |= p))

So we may instantiate s∗ into this universal claim and the result is:
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s∗ = ıs′∀p(s′ |= p ≡ ¬s |= p)→∀p(s∗ |= p ≡ ¬s |= p)

So by definition (15), ∀p(s∗ |= p ≡ ¬s |= p). ▷◁

(17) By (16) we know:

(A) ∀p(s∗ |= p ≡ ¬s |= p)

Since ϕ ≡ ¬ψ is necessarily equivalent to ¬ϕ ≡ ψ, it follows from (A) by the
Rule of Substitution that:

(B) ∀p(¬s∗ |= p ≡ s |= p)

And since ϕ ≡ ψ is necessarily equivalent to ψ ≡ ϕ, it follows from (B) by the
Rule of Substitution that:

∀p(s |= p ≡ ¬s∗ |= p) ▷◁

(20) Take the following as a global assumption:

(A) s=s∗∗

We want to prove that if GlutOn(s,p), then GapOn(s∗,p). So assume GlutOn(s,p),
i.e., by (18), that:

(B) s |= p& s |= p

To show GapOn(s∗,p), we have to show both (a) ¬s∗ |= p and (b) ¬s∗ |= p, by (19).

(a) If we instantiate (17) to s and p, we obtain:

s |= p ≡ ¬s∗ |= p

So by the 2nd conjunct of (B), ¬s∗ |= p.

(b) If we instantiate (17) to s∗ and p, we obtain:

(C) s∗ |= p ≡ ¬s∗∗ |= p

But the 1st conjunct of (B) implies, under our global assumption s=s∗∗ (A), that
s∗∗ |= p. But this fact and (C) jointly imply ¬s∗ |= p. ▷◁

(21) Take the following as a global assumption:

(A) s=s∗∗

We want to prove that if GapOn(s,p), then GlutOn(s∗,p). So assume GapOn(s,p),
i.e., by (19), that:

(B) ¬s |= p&¬s |= p

Then to show GlutOn(s∗,p), we show both (a) s∗ |= p and (b) s∗ |= p, by (18).

(a) If we instantiate (16) to s and p, we obtain:

s∗ |= p ≡ ¬s |= p
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This result and the second conjunct of (B) imply s∗ |= p.

(b) If we instantiate (17) to s∗ and p, we obtain:

(C) s∗ |= p ≡ ¬s∗∗ |= p

But given our global assumption (A) that s= s∗∗, it follows from the first con-
junct of (B) that ¬s∗∗ |= p. But from this fact and (C), it follows that s∗ |= p.
▷◁

(22) Assume both ¬GlutOn(s,p) and ¬GapOn(s,p). Then by definitions (18)
and (19), we know:

¬(s |= p & s |= p)

¬(¬s |= p & ¬s |= p)

These are, respectively, equivalent to:

(A) ¬s |= p∨¬s |= p

(B) s |= p∨ s |= p

We may then prove both directions of s∗ |= p ≡ s |= p. (→) Assume s∗ |= p. Then
by (16), ¬s |= p. It follows from this and (B) that s |= p. (←) Assume s |= p. This
and (A) imply ¬s |= p. So by (16), s∗ |= p. ▷◁

(23) Assume:

∀p(¬GlutOn(s,p) &¬GapOn(s,p))

To show s∗ = s, we have to show ∀p(s∗ |= p ≡ ¬s |= p), by (9). By GEN, we
show s∗ |= p ≡ s |= p. But if we instantiate our assumption to p, we obtain
¬GlutOn(s,p) &¬GapOn(s,p), and so s∗ |= p ≡ s |= p follows by (22). ▷◁

(24) (→) Our (global) assumption is:

∀p(¬GlutOn(s,p) &¬GapOn(s,p))

We want to show ∀p(s |= p ≡ ¬s |= p). By GEN, it suffices to show s |= p ≡ ¬s |= p.
But it is an immediate consequence of our global assumption that:

(A) ¬GlutOn(s,p) &¬GapOn(s,p)

We use this to prove both directions of our biconditional:

(→) Assume (locally) s |= p. The first conjunct of (A) and definition (18) im-
ply ¬(s |= p & s |= p), i.e., ¬s |= p ∨ ¬s |= p. This last fact and our local
assumption jointly imply ¬s |= p.

(←) Assume (locally) ¬s |= p. The second conjunct of (A) and definition (19)
imply ¬(¬s |= p&¬s |= p), i.e., s |= p∨ s |= p. But his last fact and our local
assumption jointly imply s |= p.
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(←) Our (global) assumption is:

∀p(s |= p ≡ ¬s |= p)

To show ∀p(¬GlutOn(s,p) & ¬GapOn(s,p)), it suffices by &I and GEN and to
show both (a) ¬GlutOn(s,p) and (b) ¬GapOn(s,p). But it is an immediate con-
sequence of our global assumption that:

(B) s |= p ≡ ¬s |= p

We use this to show both directions of our biconditional:

(→) Assume, for reductio, that GlutOn(s,p). Then by definition (18), we know
both s |= p and s |= p. But the former implies the negation of the latter, by
(B). Contradiction.

(←) Assume, for reductio, that GapOn(s,p). Then by (19), we know both
¬s |= p and ¬s |= p. But again, the former implies the negation of the
latter, by (B). Contradiction. ▷◁

(27) Take as our global assumption that ∀s(s∗∗=s). From definition (25) and the
fact that the condition p,p is modally collapsed (by the necessity of identity),
it follows that ∀p(s∅ |= p ≡ p , p), by (14). But since no proposition fails to
be self-identical, it follows from this last fact that ¬∃p(s∅ |= p). This implies
∀p¬(s∅ |= p). Now let q be an arbitrarily chosen proposition, so that we know
both ¬s∅ |= q and ¬s∅ |= q. Then by definition (19), GapOn(s∅,q). But given
our global assumption, we know s∅

∗∗=s∅. So by the relevant instance of (21), it
follows from GapOn(s∅,q) that GlutOn(s∅∗,q). From this, it follows a fortiori by
definition (18) that s∅∗ |= q. Since q was arbitrary, we have established:

(A) ∀p(s∅∗ |= p)

But, independently, we also know, given definition (26) and the fact that the
condition p = p is modally collapsed (by the necessity of identity), that
∀p(sV |= p ≡ p = p). Since every proposition is self-identical, it follows from
this last fact that:

(B) ∀p(sV |= p)

Now ∀pϕ&∀pψ implies ∀p(ϕ ≡ ψ). So we may conclude from (A) and (B) that:

∀p(s∅∗ |= p ≡ sV |= p)

Since s∅∗ and sV are situations that make the same propositions true, it follows
by (9) that s∅∗=sV . ▷◁

(28) (Exercise)

(29) (→) Assume s∗∗ = s. By GEN, it suffices to show s |= p ≡ s |= p. The identity
of s∗∗ and s implies, by (9), that ∀p(s∗∗ |= p ≡ s |= p). Hence s∗∗ |= p ≡ s |= p, which
commutes to:
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(A) s |= p ≡ s∗∗ |= p

Now, independently, if we instantiate (16) to s∗ and p, we also know:

(B) s∗∗ |= p ≡ ¬s∗ |= p

Moreover, independently, we know s∗ |= p ≡ ¬s |= p, by instantiating (16) to s
and p. By negating both sides and eliminating the double negation, we have:

(C) ¬s∗ |= p ≡ s |= p

So s |= p ≡ s |= p, by biconditional syllogism from (A), (B), and (C).

(←) Assume:

(D) ∀p(s |= p ≡ s |= p)

To establish s∗∗ = s, we appeal to (9) and show ∀p(s∗∗ |= p ≡ s |= p). By GEN, it
suffices to show s∗∗ |= p ≡ s |= p. First note that, by GEN, (16) holds for all s and
so if we instantiate the resulting universal claim to s∗ and p, we obtain:

(E) s∗∗ |= p ≡ ¬s∗ |= p

Independently, if we instantiate (17) to s and p and commute the result, we
obtain:

(F) ¬s∗ |= p ≡ s |= p

Moreover, if instantiate (D) to p and commute the result, we know:

(G) s |= p ≡ s |= p

But now, (E), (F), and (G) jointly imply:

s∗∗ |= p ≡ s |= p ▷◁

(31) Assume Hype(p). Then by (30), p = p. So we may substitute p for the first

occurrence of p in the identity p = p, to obtain p = p. So by definition (30),
Hype(p). ▷◁

(34) By reasoning analogous to (8).

(35) By (34) and the definition of identity for situations (9).

(37) This is a consequence of (36) and (14), and the fact that s |= p ∨ s′ |= p is
modally collapsed. ▷◁

(39) We prove both directions.
(→) Assume s⊴s′. It follows that ∀p(s |= p→ s′ |= p), by definition (38). Now

to show s⊕s′ = s′, we have to show that s⊕s′ and s′ make the same propositions
true, by (9). That is, we have to show, for an arbitrary p, that s⊕ s′ |= p ≡ s′ |= p.
But both directions of this biconditional hold. If s⊕ s′ |= p then either s |= p or
s′ |= p, by (37). But in either case, s′ |= p, given that every proposition true in
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s is true in s′. And if s′ |= p, then clearly, by a fact about ⊕ (37), it follows that
s⊕ s′ |= p.

(←) Assume s ⊕ s′ = s′. It follows by (9) that s ⊕ s′ and s′ make the same
propositions true. Now to show s⊴ s′, we need to show, for an arbitrary propo-
sition p, that s |= p→ s′ |= p. So assume s |= p, to show s′ |= p. But since s ⊕ s′
and s′ make the same propositions true, it suffices to show s ⊕ s′ |= p. But this
follows from our assumption that s |= p, by (37). ▷◁

(40) The idempotence, commutativity, and associativity of ⊕ with respect to
situations and, a fortiori, HypeStates, follows from (37) and the the facts that ∨
is idempotent, commutative, and associative. ▷◁

(42) This follows from the definition of s !s′ (41) once it is instantiated when
to HypeStates s and s′.

(43) Assume s !s′. Then by definition (41), we know ∃p(s |= p & s′ |= p). Sup-
pose p1 is such a proposition, so that we know s |= p1 and s′ |= p1. But since
s |= p1, so does s⊕s′′, by theorem (37). And by that same theorem, since s′ |= p1,
so does s′ ⊕ s′′′. Hence:

∃p((s⊕ s′′ |= p) & (s′ ⊕ s′′′ |= p))

So by definition (41), (s⊕ s′′) ! (s′ ⊕ s′′′). ▷◁

(45) (Exercise)

(46) By reasoning analogous to the proof of (ω) in Section 3, though stated in
terms of Hype-propositions and HypeStates. ▷◁

(47) This follows from (45) by (46) and the Rule of Substitution. ▷◁

(48) (Exercise)

(49) Assume GlutOn(s,p), i.e., by (18) that:

(A) s |= p

(B) s |= p

We want to to show GapOn(s∗,p), i.e., by (19), that both (a) ¬s∗ |= p and (b)
¬s∗ |= p. (a) This follows from (B) by (48). (b) If we instantiate (47) to p,
we have s∗ |= p ≡ ¬s |= p. But this is equivalent to ¬s∗ |= p ≡ s |= p. Since
Hype-propositions are identical to their double-negations (30), it follows that
¬s∗ |= p ≡ s |= p. Then by (A), we may infer ¬s∗ |= p. ▷◁

(50) Assume GapOn(s,p), i.e., by (19):

(A) ¬s |= p

(B) ¬s |= p
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We want to show GlutOn(s∗,p), i.e., by (18), that both (a) s∗ |= p and (b) s∗ |= p.
(a) This follows from (B) by (47). (b) If we instantiate (47) to p, we have s∗ |= p ≡
¬s |= p. Since Hype-propositions are identical to their double-negations (30), it
follows that s∗ |= p ≡ ¬s |= p. From this and (A) it follows that s∗ |= p. ▷◁

(51) This follows by applying the reasoning in (22) to HypeStates and Hype-
propositions. ▷◁

(52) To establish s∗∗ = s, we note that since HypeStates encode only Hype-
propositions (33), it suffices by (9) to show ∀p(s∗∗ |= p ≡ s |= p). By GEN, it
then suffices to show s∗∗ |= p ≡ s |= p. Now if we instantiate (47) to s∗, we
obtain:

(A) s∗∗ |= p ≡ ¬s∗ |= p

Independently, if instantiate (48) to p, we obtain s |= p ≡ ¬s∗ |= p, which by the
commutativity of the biconditional, implies:

¬s∗ |= p ≡ s |= p

And since Hype-propositions are identical with their double negations, it fol-
lows from this last result that:

(B) ¬s∗ |= p ≡ s |= p

But (A) and (B) imply s∗∗ |= p ≡ s |= p. ▷◁

(53) Assume, for reductio, that s !s∗. So by definition (41), ∃p(s |= p& s∗ |= p).
Let q1 be such a proposition, so that we know s |= q1 and s∗ |= q1. By a key
fact about s∗ (47), the latter implies ¬s |= q1. But since Hype-propositions are
identical with their double negations, it follows that ¬s |= q1. Contradiction. ▷◁

(54) Assume ¬s !s′. So by definition (41):

(A) ¬∃p(s |= p& s′ |= p)

We want to show s′ ⊕ s∗ = s∗. By (9) and the fact that HypeStates encode only
Hype-propositions (33), it suffices to show that ∀p((s′ ⊕ s∗) |= p ≡ s∗ |= p). So, by
GEN, we show (s′ ⊕ s∗) |= p ≡ s∗ |= p.

(→) Assume (s′ ⊕ s∗) |= p. Independently, by (37), we know:

∀p((s′ ⊕ s∗) |= p ≡ s′ |= p∨ s∗ |= p)

Hence, s′ |= p ∨ s∗ |= p. Assume, for reductio, that ¬s∗ |= p. Then s′ |= p, and
since Hype-propositions are identical to their double negations (30), we know
s′ |= p. But it also follows from our reductio assumption, by (48), that s |= p. So
we’ve established s |= p& s′ |= p. Existentially generalizing on p, it follows that
∃q(s |= q& s′ |= q), which contradicts (A).

(←) Exercise. ▷◁

(55) Assume s ⊴ s′. Since theorem (39) holds for any situations, it holds for
HypeStates. So it follows that:
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(A) s⊕ s′ = s′

Now independently, by (53), we know that s′ is not incompatible with its Rout-
ley star image s′∗, i.e., ¬s′ !s′∗. From this and (A), it follows that the fusion of
s and s′ is not incompatible with with the Routley star image of s′, i.e., that:

(B) ¬(s⊕ s′) !s′∗

Now consider the following Lemma, which holds for any situations s, s′, and
s′′:

Lemma: ¬(s⊕ s′) !s′′→¬s !s′′

Proof : Assume ¬(s⊕s′) !s′′. Then by definition of ! (41), ¬∃p((s⊕s′) |= p&
s′′ |= p). Now suppose, for reductio, that s !s′′. Then ∃p(s |= p& s′′ |= p).
Suppose q1 is such a proposition, so that we know both s |= q1 and s′′ |= q1.
But the former implies s⊕ s′ |= q1, by definition of s⊕ s′ (36). So we know
(s⊕ s′) |= q1 & s′′ |= q1. Hence, ∃p((s⊕ s′) |= p& s′′ |= p). Contradiction.

Given this Lemma, it follows from (B) that s is not incompatible with s′∗, i.e.,
¬s !s′∗. But by (54), this last result implies s′∗⊕s∗ = s∗. Hence, by (39), s′∗⊴s∗.
▷◁
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