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Abstract

In this paper, a connexive 4-valued implicative expansion of Belnap-
Dunn logic we have dubbed LMI4C is defined. It is a quasi relevant logic
in the sense that it enjoys the “quasi relevance property”. Also, LMI4C

defines “material connexive logic” MC. The fact that LMI4C defines clas-
sical positive logic C+ is used to provide it with a Hilbert-style formulation
presenting LMI4C as an expansion of C+. Said formulation is obtained by
using a Belnap-Dunn “two-valued semantics”.

Keywords: Belnap-Dunn logic; connexive logics; quasi relevant logics; ma-
terial connexive logic MC; Belnap-Dunn semantics.

Preamble

As Gemma Robles has commented in the introduction to her contribution to this
special issue, we have been working on topics originally defined by Ross T. Brady
since some time ago. The paper I present is on connexive logic, a topic he also has
contributed to in [6]. I surely know that my paper is a poor token of my gratitude
to Professor Brady’s work on relevant logics and akin topics. But lo que cuenta es
la intención, as we sometimes say in Spanish (“it is the intention that counts”).
Thus, I can only hope that my intention has been hinted above.
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1 Introduction

The name “connexive logic” was introduced by Storrs McCall and seems to suggest
that there is some sort of connection between the antecedent and the consequent
of valid implications in systems of connexive logic (cf. [29] for a clear exposition
of the state of the art in the topic). In this sense, connexive logics and relevant
logics pursue a similar aim, although with very different methodologies and results.
Particularly, and contrary to what the case is with relevant logics (cf., e.g., [16]),
connexive logics are contraclassical logics (cf. [15]): they are neither subsystems
nor extensions of classical logic. And nevertheless, in this paper we are going to
build a bridge between the two families of logics by presenting a connexive logic
enjoying the quasi relevance property (cf. Proposition 4.9).

Connexive logics can be in short characterized by having as theorems Aristotle’s
theses (AT, AT′) and Boethius’ theses (BT, BT′): (AT) ∼(A → ∼A); (AT′)
∼(∼A → A); (BT) (A → B) → ∼(A → ∼B); (BT′) (A → ∼B) → ∼(A → B)
(cf. Definition 2.5).

Well then, initially, the plan was to define an implicative expansion of Belnap-
Dunn logic (cf. Definition 2.3) resulting in an extension of some weak relevant
logic. But just at the outset we faced a problem: as proved in [20], it suffices to
add AT to Routley and Meyer’s basic relevant logic B for deriving ∼(A → B),
hardly acceptable as a theorem of any logic whatsoever. Consequently, we focused
on restrictions of B, in particular, to that obtained when the rules Suffixing (Suf)
and Prefixing (Pref) are replaced by the transitivity rule. Later, it developed that
the transitivity rule could be strengthened to the corresponding thesis. Thus, B′

(B without Suf and Pref but with the transitivity axiom —cf. Definition 2.9) is
the weak relevant logic we are going to extend to a 4-valued connexive logic. It
has to be noted that B′ is not included and neither includes B. It is, in fact, a
restriction of Brady’s DJ (cf. [7, 8]): roughly, it is DJ without Suf, Pref and the
contraposition axiom (notice, however, that B′ has the contraposition rule).

The connexive logic defined in the present paper and that we have dubbed
LMI4C is, we think, a strong logic with interesting properties, some of which are
briefly discussed at the end of section 4. One of them is the definability of material
connexive logic MC (cf. [29, §4.5.3]), a logic with a material conditional located at
the antipodes of the relevant logics province and containing every possible classical
instance of what relevant logicians have dubbed ‘positive paradox’, i.e., A ⊃ (B ⊃
A).

The fact that a material conditional is definable in LMI4C will be used in order
to provide a Hilbert-style formulation (H-formulation) for it. This H-formulation
is obtained by using Belnap-Dunn two-valued semantics (cf. [3, 4, 10, 11, 12]),
according to a strategy devised by Brady in [5] (cf. section 4).

The paper is organized as follows. In section 2, we display some preliminary no-
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tions and results. In section 3, the matrix MI4C and the logic LMI4C it determines
are defined. Also, we remark some definable connectives and, in particular MC-
material conditional. In section 5, LMI4C is given the H-formulation HLMI4C.
Then some significant properties of both LMI4C and HLMI4C are briefly dis-
cussed. Finally, in section 5, we note some remarks on the results obtained and on
possible future work in the same line. The paper is ended with an appendix and
some technical results referred to along it.

2 Preliminary notions and results

In this section, we define some prior concepts and results that will prove useful in
the sequel.

Remark 2.1 (Some preliminary notions). The propositional language consists of
a denumerable set of propositional variables p0, p1, ..., pn, ..., and some or all of
the following connectives: → (conditional or implication1), ∧ (conjunction), ∨
(disjunction) and ∼ (negation). The biconditional (↔) and the set of formulas
(wffs) are defined in the customary way. A,B,C, etc. are metalinguistic variables.
Then the ensuing concepts are understood in a fairly standard sense: logical matrix
M, M-interpretation, M-consequence and M-validity. Also, the following notions:
functions definable in a matrix, functional inclusion and functional equivalence
(cf., e.g., [24, §2] or [25]).

Remark 2.2 (Logics). In this paper, logics are primarily viewed as M-determined
structures, i.e., as structures of the type (L,⊨M) where L is a propositional lan-
guage and ⊨M is a (consequence) relation defined in L according to the logical
matrix M as follows: for any set of wffs Γ and wff A, Γ ⊨M A iff I(A) ∈ D when-
ever I(Γ) ∈ D for all M-interpretations I (I(Γ) ∈ D iff I(A) ∈ D for all A ∈ Γ;
D is the set of designated values in M). Thus, from this viewpoint, we can safely
travel back and forth from matrices to logics, given the aims of this paper.

Nevertheless, logics are sometimes defined as Hilbert-type axiomatic systems,
the notions of “theorem” and “proof from premises” being the usual ones. Fur-
thermore, in a derived or secondary sense, we can regard an M-determined logic
as a, say, Hilbert-type system (or a natural deduction system or a Gentzen-type
system) L such that Γ ⊢L A iff Γ ⊨M A, where ⊨M is the consequence relation
defined above and Γ ⊢L A means “A is provable from Γ in L”.

1We follow Anderson and Belnap’s “Grammatical Propaedeutic”, Appendix to [1]: “The
principal aim of this piece is to convince the reader that it is philosophically respectable to
“confuse” implication and entailment with the conditional, and indeed philosophically suspect
to harp on the dangers of such “confusion”” ([1, p. 473].
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Definition 2.3 (Belnap and Dunn’s matrix FOUR). The propositional language
consists of the connectives ∧,∨ and ∼. Belnap and Dunn’s matrix FOUR is the
structure (V , D, F) where (1) V is {0, 1, 2, 3} and is partially ordered as shown in
the following lattice:

(2) D = {2, 3}; F = {f∧, f∨, f∼} where f∧ and f∨ are defined as the glb (or
lattice meet) and the lub (or lattice join), respectively. Finally, f∼ is an involution
with f∼(0) = 3, f∼(3) = 0, f∼(1) = 1, f∼(2) = 2 (cf. [3, 4, 10, 11, 12]). We display
the tables for ∧,∨ and ∼:

∧ 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

∨ 0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

∼
0 3
1 1
2 2
3 0

Remark 2.4 (On the symbols for referring to the four truth-values). It is cus-
tomary to use f, n, b and t instead of 0, 1, 2 and 3, respectively (cf., e.g., [21]). The
former stand for false only, neither true nor false, both true and false and true
only, respectively. The latter have been chosen in order to use the tester in [14], in
case one is needed and to put in connection the results in the present paper with
previous work by us.

Definition 2.5 (Connexive logics). Let L be a language with connectives → and
∼ and L′ be an expansion of L. A logic L built upon L′ is a connexive logic
if the theses AT, AT′, BT and BT′ are L-theorems but (A → B) → (B → A)
fails to be an L-theorem (that is, implication is non-symmetric). As noted in
the introduction, AT (resp., BT) abbreviate ‘Aristotle’s thesis’ (resp., ‘Boethius’
thesis’) which can be given in two versions (cf. [29]):

AT. ∼(A → ∼A)

AT′. ∼(∼A → A)

BT. (A → B) → ∼(A → ∼B)

BT′. (A → ∼B) → ∼(A → B)
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Definition 2.6 (The logic B). Routley and Meyer’s basic logic B can be defined
with the following axioms and rules of inference (cf. [28, Chapter 4]; A1, ..., An ⇒
B means “if A1, ..., An, then B”).

Axioms:

a1. A → A

a2. (A ∧B) → A; (A ∧B) → B

a3. A → (A ∨B); B → (A ∨B)

a4. [(A → B) ∧ (A → C)] → [A → (B ∧ C)]

a5. [(A → C) ∧ (B → C)] → [(A ∨B) → C]

a6. [A ∧ (B ∨ C)] → [(A ∧B) ∨ (A ∧ C)]

a7. A → ∼∼A

a8. ∼∼A → A

Rules of inference:

r1 (Adj). A,B ⇒ A ∧B

r2 (MP). A → B,A ⇒ B

r3 (Suf). A → B ⇒ (B → C) → (A → C)

r4 (Pref). B → C ⇒ (A → B) → (A → C)

r5 (Con). A → B ⇒ ∼B → ∼A

Adj, MP, Suf, Pref and Con abbreviate “adjunction”, “modus ponens”, “suf-
fixing”, “prefixing” and “contraposition”, respectively.

Proposition 2.7 (No acceptable connexive extensions verifying B). The wff ∼(A →
B) is derivable from B plus ∼(A → ∼A) (AT).

Proof. In [20], it is proved that ∼(A → B) follows from Anderson and Belnap’s
logic of entailment E (cf. [1]) plus AT. But the proof holds in fact if E is restricted
to B (cf. the first two lines of the proof of Theorem 2 in [20] —notice that the
first occurrence of B in line 2 should be actually an A). The proof (abbreviated)
could run as follows. (1) (A → ∼B) → [A → ∼(A ∧ B)] by a2, Con and Pref.
(2) [A → ∼(A ∧ B)] → [(A ∧ B) → ∼(A ∧ B)] by a2 and Suf. (3) (A → ∼B) →
[(A ∧ B) → ∼(A ∧ B)] by (1), (2) and transitivity of →. (4) ∼[(A ∧ B) →
∼(A ∧ B)] → ∼(A → ∼B), by (3) and Con. (5) ∼(A → ∼B), by (4) and AT.
Finally, (6) ∼(A → B), by (5), a7, Pref and Con2.

Moreover, a similar unacceptable result can be obtained without appealing to
the entire strength of B.

2Here and throughout the paper, MP is occasionally used without explicit reference to it.
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Proposition 2.8 (Derivability of ∼(A → ∼B)). Let L be a logic containing at
least a2, Con and Suf plus BT′. Then ∼(A → ∼B) is provable in L.

Proof. (Abbreviated) (1) (A → ∼B) → [(A∧B) → ∼B], by a2 and Suf. (2) (A →
∼B) → ∼[(A∧B) → B], by 1, BT′ and transitivity of →. (3) ∼(A → ∼B) by (2),
a2 and Con (notice that Con is used in the form (A → ∼B) ⇒ (B → ∼A)).

Now, ∼(A → ∼B) seems hardly more acceptable than ∼(A → B), whence
it follows that there are not acceptable connexive expansions of B minus Pref.
Well then, although the result in Proposition 2.8 does not follow if Suf is replaced
by the Prefixing axiom (cf. matrix M1 in the appendix), we propose to consider
extensions of the logic B′ defined below. Anyway, the connexive logic introduced
in this paper is an extension of B′, which, in addition, will have Pref.

Definition 2.9 (The logic B′). The logic B′ is axiomatized exactly as B except
that Suf and Pref are replaced by the transitivity axiom

Trans. [(A → B) ∧ (B → C)] → (A → C)

Notice that B′ is not contained in B. In fact, it is contained in Brady’s DJ (cf.
[7, 8]) (B′ is, roughly, DJ minus Pref, Suf and the contraposition axiom but with
the rule Con).

In the next section, we define the matrix MI4C and the logic LMI4C.

3 The matrix MI4C and the logic determined by it

The matrix MI4C (the label intends to abbreviate “a connexive implicative expan-
sion of FOUR”) can be defined as follows.

Definition 3.1 (The matrix MI4C). The matrix MI4C is the structure (V , D, F),
where V , D and F are defined exactly as in FOUR, except for the addition of f→
interpreted according to the following truth-table:

→ 0 1 2 3
0 2 2 2 2
1 0 2 0 2
2 0 1 2 3
3 0 1 0 3

Definition 3.2 (The logic LMI4C). The logic LMI4C is the one determined
by the matrix MI4C in the sense explained in Remark 2.2: for any set of wffs Γ
and wff A, Γ ⊨LMI4C A iff I(A) ∈ {2, 3} whenever I(Γ) ∈ {2, 3} for all MI4C-
interpretations I (I(Γ) ∈ {2, 3} iff I(A) ∈ {2, 3} for all A ∈ Γ).
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Next, we observe a remark on some useful conventions. Then we note some
definable connectives.

Remark 3.3 (Functions and truth-tables. On displaying proofs of definability).
Let f∗ be a function defined in V = {0, 1, 2, 3}. In this paper, f∗ is usually
represented by means of a truth-table t∗ (or simply ∗), as for instance, it is the
case with ∧, ∨ and ∼ in FOUR (Definition 2.3). In addition, by k∗ (or simply ∗)
we refer to the connective defined by t∗. Now, let M be FOUR or an expansion of
it. The proof that a given unary or binary function f∗ is definable in M is easily
visualized by using the connectives corresponding to the functions in M needed
in the proof in question. In general, proofs provided below are simplified as just
indicated (A, B refer to any wffs —cf. Remark 2.1).

Proposition 3.4 (Four unary connectives). Consider the following negation con-
nectives given by the ensuing truth-tables

¬1

0 3
1 3
2 2
3 0

¬2

0 3
1 2
2 2
3 0

¬3

0 3
1 0
2 2
3 0

and the unary connective given by the following truth-table:

◦
0 0
1 1
2 2
3 2

These connectives are definable in LMI4C.

Proof. We set (cf. Remark 2.1) ¬1A =df (A → ∼A)∨∼A; ¬2A =df ¬1A∧∼(∼A →
A); ¬3A =df ¬2A ∧ ∼A; ◦A =df ∼(¬2A → ¬3A) ∧ A.

In addition to the unary connectives defined above, we note that acceptable
truth-functional necessity and possibility modal connectives are definable in MI4C

(we use  Lukasiewicz’s symbols L and M for the necessity and possibility operators,
respectively —cf. [13, notes 2 and 3]).

Proposition 3.5 (Necessity and possibility connectives). Consider the modal con-
nectives given by the ensuing truth-tables:

L
0 0
1 0
2 2
3 3

M
0 0
1 3
2 2
3 3
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These connectives are definable in MI4C.

Proof. We set LA =df ∼¬1A; MA =df ∼L∼A.

These modal connectives have been studied in the context of Brady’s important
4-valued logic BN4 (cf. [19] and references therein). In the appendix, we show
how to interpret them in Belnap-Dunn semantics, independently of the 4-valued
extension or expansion of FOUR (if any) they have been defined in or added to.
Also, we describe the modal logic these connectives define in the case of MI4C which
will immediately facilitate a, so to speak, ‘descriptive’ comparison with standard
modal systems such as, for example, Lewis’ strong logics S4 and S5 and those in
the vicinity of them.

Proposition 3.6 (A conditional connective). Consider the conditional connective
given by the ensuing truth-table:

◦→ 0 1 2 3
0 2 3 2 3
1 2 2 2 2
2 0 1 2 3
3 0 1 2 3

This connective is definable in LMI4C

Proof. We set A
◦→ B =df [(¬3A → B) ∧ (¬2A ∨B)] ∨ (A → B).

Moreover, let MI4◦ be the matrix obtained when replacing the f→-table in
Definition 3.1 by that for f ◦→ in Proposition 3.6. Then MI4◦ defines a “material

conditional” in the sense that, together with modus ponens for
◦→, A1, A2 and A3

listed below are verified when replacing ∗ by
◦→.

A1. A ∗ (B ∗ A)

A2. [A ∗ (B ∗ C)] ∗ [(A ∗B) ∗ (A ∗ C)]

A3. [(A ∗B) ∗ A] ∗ A

This fact will be used for giving a Hilbert-style formulation of LMI4C.
Finally, it is shown that MC-logic (cf. [29, §4.5.3] and references therein), a

system of material connexive logic, is definable in LMI4C.

Proposition 3.7 (Definability of MC-logic). Material connexive logic MC is
definable in LMI4C.
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Proof. It suffices to define the MC-conditional table since the MC-tables for con-
junction, disjunction and negation are the same as those in FOUR. The MC-
conditional table is the following one:

MC→ 0 1 2 3
0 2 2 2 2
1 2 2 2 2
2 0 1 2 3
3 0 1 2 3

Well then, we have A
MC→ B =df ◦(A

◦→ B) ∨ (A → B) (cf. Propositions 3.4
and 3.6).

The section is ended by showing that LMI4C is an acceptable connexive logic.
In the following section, we note some other properties of this logic.

Proposition 3.8 (LMI4C is an acceptable connexive logic). The logic LMI4C

is an acceptable connexive logic in the sense that it has the theses AT, AT′, BT
and BT′, a non-symmetric conditional, but it is free from ∼(A → B)

Proof. Matrix MI4C verifies ∼(A → ∼A), ∼(∼A → A), (A → B) → ∼(A → ∼B),
(A → ∼B) → ∼(A → B), but falsifies (A → B) → (B → A) and ∼(A → B) (in
fact, ∼(A → A)). (In case a tester is needed, the one in [14] can be used.)

4 A Hilbert-style formulation of the logic LMI4C

In order to give a Hilbert-style formulation (H-formulation) for LMI4C, we rely
upon a strategy based upon Belnap-Dunn two-valued semantics (cf. [3, 4, 10, 11,
12]) introduced by Brady in [5] (cf. also [7, 8, 28]) as applied in some papers as
[17, 18] or [19]).

This strategy has been meticulously explained, step by step, in [27, §5]. So here
it will suffice to provide the H-formulation HLMI4C of LMI4C, a Belnap-Dunn
semantics for LMI4C and then prove soundness and completeness of HLMI4C

w.r.t. said semantics.

Definition 4.1 (The system HLMI4C). The system HLMI4C can be formulated
as follows:

Axioms:

A1. A ⊃ (B ⊃ A)

A2. [A ⊃ (B ⊃ C)] ⊃ [(A ⊃ B) ⊃ (A ⊃ C)]

A3. (A ∧B) → A; (A ∧B) → B
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A4. A ⊃ [B ⊃ (A ∧B)]

A5. [(A ⊃ C) ∧ (B ⊃ C)] ⊃ [(A ∨B) ⊃ C]

A6. [(A → B) ∧ (B → C)] → (A → C)

A7. [(A → B) ∧ (A → C)] → [A → (B ∧ C)]

A8. (A → B) ⊃ (A ⊃ B)

A9. A → ∼∼A

A10. ∼∼A → A

A11. (A → B) ⊃ (∼B → ∼A)

A12. ∼A ⊃ [A ∨ (A → B)]

A13. B ⊃ [∼B ∨ (A → B)]

A14. (A ∨ ∼B) ∨ (A → B)

A15. (∼A ∧B) ⊃ (A → B)

A16. (A ∧ ∼B) ⊃ ∼(A → B)

A17. (A ∨ ∼A) ∨ ∼(A → B)

A18. ∼A ⊃ [A ∨ ∼(A → B)]

A19. [∼(A → B) ∧ A] ⊃ ∼B

Rule of inference:

MP⊃. A ⊃ B,A ⇒ B

Definitions:

DF⊃. A ⊃ B =df A
◦→ B (cf. Proposition 3.6)

DF∨. A ∨B =df ∼(∼A ∧ ∼B)

DF↔. A ↔ B =df (A → B) ∧ (B → A)

Notice that A18 is “contraclassical” (cf. [15]). That is, ∼A ⇒ [A∨∼(A → B)]
is not valid when →,∧,∨ and ∼ are understood as the corresponding classical
connectives.

Next, we note some theorems and rules of HLMI4C that will prove useful in
the completeness proof.

Proposition 4.2 (Some theorems and rules of HLMI4C). The following are prov-
able in HLMI4C: (1) Adj: A,B ⇒ A ∧ B; (2) MP→: A → B,A ⇒ B; (3) E∧:
A ∧ B ⇒ A,B; (4) deduction theorem for ⊃ (DT⊃): if Γ, A ⊢HLMI4C B, then
Γ ⊢HLMI4C A ⊃ B; (5) (A → ∼B) ⊃ (B → ∼A); (∼A → B) ⊃ (∼B → A);
(∼A → ∼B) ⊃ (A → B); (6) (A ∧ B) ⊃ A, (A ∧ B) ⊃ B; (7) A → (A ∨ B),
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B → (A∨B); (8) A ⊃ (A∨B), B ⊃ (A∨B); (9) if A is an intuitionistic positive
propositional tautology, then ⊢HLMI4C A; (10) [(A → C)∧ (B → C)] ⊃ [(A∨B) →
C]; (11) ∼(A ∧ B) ↔ (∼A ∨ ∼B), ∼(A ∨ B) ↔ (∼A ∧ ∼B); (12) modus tollens
(MT): A → B,∼B ⇒ ∼A.

Proof. (1) A4, MP⊃. (2) A8, MP⊃. (3) A3, MP→. (4) A1, A2 and MP⊃. (5) A6,
A9, A10, A11. (6) A3, A8, MP⊃. (7) A3, the items in (5) and DF∨. (8) By the
items in (7) and A8. (9) A1, A2, A4, A5, the items in (6), (8) and MP⊃ (of course,
when ⊃ is replaced by the intuitionistic conditional). (10) A7, the items in (5)
and DF∨. (11) A6, A7, A9, A10, DF∨ and DF↔. (12) A11, MP→ and MP⊃.

As a second step of the strategy commented upon above, we define a Belnap-
Dunn semantics for LMI4C (BDLMI4C-semantics). The key notions are ‘BDLMI4C-
model’ and the accompanying ones ‘BDLMI4C-consequence’ and ‘BDLMI4C-validity’.

Definition 4.3 (BDLMI4C-models). A BDLMI4C-model is a structure (K, I)
where (i) K = {{T}, {F}, {T, F}, ∅}, and (ii) I is a BDLMI4C-interpretation from
the set of all wffs to K, this notion being defined according to the following con-
ditions (‘clauses’)3 for each propositional variable p and wffs A,B:

1. I(p) ∈ K

2a. T ∈ I(∼A) iff F ∈ I(A)

2b. F ∈ I(∼A) iff T ∈ I(A)

3a. T ∈ I(A ∧B) iff T ∈ I(A) & T ∈ I(B)

3b. F ∈ I(A ∧B) iff F ∈ I(A) or F ∈ I(B)

4a. T ∈ I(A ∨B) iff T ∈ I(A) or T ∈ I(B)

4b. F ∈ I(A ∨B) iff F ∈ I(A) & F ∈ I(B)

5a. T ∈ I(A → B) iff [T /∈ I(A) & F ∈ I(A)] or [T ∈ I(B) & F /∈ I(B)] or [T /∈
I(A) & F /∈ I(B)] or [F ∈ I(A) & T ∈ I(B)]

5b. F ∈ I(A → B) iff [T /∈ I(A) & F ∈ I(A)] or [T /∈ I(A) & F /∈ I(A)] or [T ∈
I(A) & F ∈ I(B)]

Definition 4.4 (BDLMI4C-consequence, BDLMI4C-validity). Let M be a BDLMI4C-
model. For any set of wffs Γ and wff A:

1. Γ ⊨M A (A is a consequence of Γ in M) iff T ∈ I(A) whenever T ∈ I(Γ)
(T ∈ I(Γ) iff ∀A ∈ Γ(T ∈ I(A)); F ∈ I(Γ) iff ∃A ∈ Γ(F ∈ I(A)).)

3A referee of the AJL notes that clause (5b) can be simplified as follows: F ∈ I(A → B) iff
T /∈ I(A) or [T ∈ I(A) & F ∈ I(B)].
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2. Γ ⊨BDLMI4C A (A is a consequence of Γ in BDLMI4C-semantics) iff Γ ⊨M A
for each BDLMI4C-model M.

3. In particular, ⊨BDLMI4C A (A is valid in BDLMI4C-semantics) iff ⊨M A for
each BDLMI4C-model M (i.e., iff T ∈ I(A) for each BDLMI4C-model M).

By ⊨BDLMI4C we shall refer to the relation just defined.

Proposition 4.5 (⊨BDLMI4C and ⊨LMI4C are equivalent). For each set of wffs Γ
and wff A, Γ ⊨BDLMI4C A iff Γ ⊨LMI4C A.

Proof. Recall that ⊨BDLMI4C (resp., ⊨LMI4C) is the consequence relation defined in
Definition 4.4 (resp., Definition 3.2). Then the proof is easy: cf., e.g, the proof of
Theorem 8 in [5] or that of Proposition 4.4 in [18], where the simple proof procedure
is exemplified in the cases of the logics BN4 and Sm4, respectively.

Notwithstanding its simplicity, Proposition 4.5 is very useful since it gives us
the choice of proving soundness and completeness w.r.t. no matter which of the
two equivalent consequence relations. Well then, concerning soundness, the easiest
way is to prove that MI4C verifies all axioms of HLMI4C and the rule MP⊃; as
regards completeness, we prove it by a canonical model construction.

Thus, after noting a couple of definitions, we prove the soundness and com-
pleteness theorem.

Definition 4.6 (Theories). An HLMI4C-theory (theory, for short) is a set of wffs
containing all HLMI4C-theorems and closed under MP⊃. Then, a theory t is prime
if A ∈ t or B ∈ t whenever A ∨B ∈ t.

Definition 4.7 (Canonical models). Let t be a prime HLMI4C-theory. A canonical
HLMI4C-model (canonical model, for short) is a structure (Kc, It) where Kc is
defined as in Definition 4.3 and It is a function from the set of all wffs to Kc

defined as follows: for each wff A, T ∈ I(A) iff A ∈ t and F ∈ I(A) iff ∼A ∈ t.

Now, in order to prove the completeness of HLMI4C w.r.t. ⊨BDLMI4C , we need
to prove the two ensuing facts.

Fact 1. A theory without a given wff can be extended to a prime theory without
the same wff (primeness).

Fact 2. Canonical models are indeed models, which is proved when showing that
the canonical translations of clauses (1) through (5b) are provable in any
prime theory.
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Proof. Fact 1 is easily proved by using positive intuitionistic logic (cf. Proposi-
tion 4.2(9)), as, for example, in [26, Lemma 5.9].

Regarding fact 2, the canonical translations of clauses (2b) through (5b) are
proved as follows (clauses (1) and (2a) are trivial). Clause (2b): A9 and A10;
clause (3a): by using A4 and the theorems (A ∧ B) ⊃ A, (A ∧ B) ⊃ B; clause
(3b): by the theorem ∼(A ∧ B) ↔ (∼A ∨ ∼B); clause (4a): by primeness of
t and the theorems A ⊃ (A ∨ B), B ⊃ (A ∨ B); clause (4b): by the theorem
∼(A∨B) ↔ (∼A∧∼B) (cf. Proposition 4.2 on the quoted theorems); clause (5a):
A12, A13, A14, A15, MP→ and MT→; clause (5b): A16, A17, A18 and A19.

Finally, given the argument developed so far, we have:

Theorem 4.8 (Soundness and completeness of HLMI4C). For any set of wffs Γ
and wff A, (1) Γ ⊨BDLMI4C A iff Γ ⊢HLMI4C A; (2) Γ ⊨LMI4C A iff Γ ⊢HLMI4C A.

Proof. (a) Soundness: Immediate. Given Proposition 4.5, it suffices to prove that
the axioms of HLMI4C are LMI4C-valid and that its rules preserves LMI4C-
validity. (b) Completeness: (1) Suppose Γ ⊬HLMI4C A, that is, that A does not
belong to the set of consequences derivable in HLMI4C from Γ (in symbols, A /∈
CnΓ[HLMI4C]). Then CnΓ[HLMI4C] is extended to a prime HLMI4C-theory t
such that A /∈ t. Next, the canonical HLMI4C-model Mc = (Kc, It) based upon t
is defined, and we have Γ ⊭Mc A since T ∈ It(Γ) (as T ∈ It(CnΓ[HLMI4C])) but
T /∈ It(A), whence Γ ⊭LMI4C A (by Definition 4.3 and 4.4), as was to be proved.
(2) It is immediate by (1) and Proposition 4.5.

In the appendix, we have noted a few theorems and rules of HLMI4C, as well
as several non-provable wffs of HLMI4C. In what follows, we highlight some inter-
esting properties of this logic.

1. The H-formulation of HLMI4C is not more complex than those of, say, certain
well-known strong 3-valued logics (cf. [2] and references therein).

2. HLMI4C enjoys the replacement property (RP): A ↔ B ⇒ C[A] ↔ C[A/B],
where C[A] is a wff in which A appears and C[A/B] is the result of replacing
A by B in one or more places where A occurs. This fact is immediately
provable (by induction on the length of C[A]), leaning upon the rules about
the biconditional appearing in the list of theorems and rules of HLMI4C in
the appendix.

3. Given that HLMI4C has the rules MP, transitivity, replacement and the self-
identity axiom (A → A), it fulfills all the conditions defining ‘implicative
logics’ in the classical Polish tradition (cf., e.g., [22, pp. 179-180] or [30, p.
228]), except for the rule ‘verum e quodlibet’ (Veq: A ⇒ B → A) that does
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not hold. In this sense, could we speak of ‘weak implicative logics’ to refer
to logics with the four properties mentioned above but without Veq?4

4. LMI4C defines material connexive logic MC (cf. [29, §4.5.3] and refer-
ences therein). So notice that everything that MC can do can be ac-
complished with LMI4C. Also, notice, by the way, that the HLMI4C-
conditional contraposes, but the rule contraposition is inadmissible in MC:
(A ∨ ∼A) → (A → A) is an MC-theorem but ∼(A → A) → ∼(A ∨ ∼A) is
not.

5. In [20, Theorem 1], it is proved that B (cf. Definition 2.6) plus AT is
inconsistent. In fact, it is easy to see that the proof holds for the logic
resulting from B′ (cf. Definition 2.9) by restricting the transitivity axiom
to its rule form. Consequently, LMI4C is inconsistent. Nevertheless, it is
not trivial: not every wff is provable in HLMI4C; moreover, for any A, the
rule Ecq, (A ∧ ∼A) ⇒ B, does not hold. Thus, LMI4C is paraconsistent.
Moreover, it is paracomplete too: A ∨ ∼A is not provable.

6. As shown above (cf. Proposition 3.8), LMI4C is an acceptable connexive
logic.

7. LMI4C is interpretable in the important Belnap-Dunn semantics.

8. And, sorry for the tag, last but not least, HLMI4C has what Meyer named
“the correct form of the relevance property for the intermediate logic RM”
([1, p. 417] —RM is the logic R-Mingle; cf.[1, Chap. IV, §29]) and it is
dubbed the “quasi relevance property” in [23].

Proposition 4.9 (QRP). HLMI4C has the ‘quasi relevance property’ (QRP),
that is, if A → B is an HLMI4C-theorem, then (1) A and B share at least a
propositional variable or (2) both ∼A and B are HLMI4C-theorems.

Proof. By following the strategy in [23, Proposition 8.5], where it is proved
that E4 has the QRP. (In fact, the proof is quite similar.)

5 Concluding remarks

In this paper, it is defined a 4-valued implicative expansion of Belnap-Dunn logic
which is a connexive logic and enjoys the ‘quasi relevance property’: if A → B is
a theorem, then either A and B share at least one propositional variable or both
∼A and B are theorems.

4Cf. [9, Definition 2.8.1] (I owe this remark to a referee of the AJL).
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It has been proved that this logic we have dubbed LMI4C is a strong logic
with considerable expressive power and interesting properties as the following ones.
It is inconsistent but not trivial, paracomplete, enjoys the replacement property
and defines material connexive logic MC, which means that everything you can
do with MC is feasible with LMI4C. On the other hand, following a strategy
devised by Brady in [5], LMI4C is given a Hilbert-style formulation presenting
LMI4C as an expansion of positive classical propositional logic.

In what respects further work in the same line, we limit ourselves to note two
paths.

1. We wonder whether the matrix MI4C is but one of a class with similar proper-
ties. In this sense, consider the matrix MI4C

2 which is defined when replacing
the conditional table in MI4C by the following one:

→ 0 1 2 3
0 2 2 2 2
1 0 2 0 2
2 0 1 2 3
3 0 0 0 3

It is not difficult to prove that the logic LMI4C
2 determined by this matrix is a

connexive implicative expansion of Belnap-Dunn logic with similar properties
to those enjoyed by LMI4C, including the QRP and definability of MC.

2. The logic LMI4C is a connexive logic with the QRP, a characteristic property
of the logic R-Mingle (RM). Now, as Meyer puts it “sometimes one doesn’t
need the whole relevance principle, and, on these occasions, RM is good
enough, when some relevance is desirable” ([1, p. 393]). Fair enough. But
we wonder whether it is possible to define interesting connexive implicative
expansions of Belnap-Dunn logic with “the whole relevance principle”, that
is, with the “variable sharing property”.
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Appendix

Matrix M1

Consider the 6-element matrix defined by using the following truth-tables (desig-
nated values are starred):

→ 0 1 2 3 4 5 ∼
0 2 3 2 3 2 3 5
1 0 5 0 5 0 5 4
∗2 0 1 2 3 2 3 3
∗3 0 1 0 5 0 5 2
∗4 0 1 0 1 2 3 1
∗5 0 1 0 1 0 5 0

∧ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 0 1 0 1
∗2 0 0 2 2 2 2
∗3 0 1 2 3 2 3
∗4 0 0 2 2 4 4
∗5 0 1 2 3 4 5

∨ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 1 3 3 5 5
∗2 2 3 2 3 4 5
∗3 3 3 3 3 5 5
∗4 4 5 4 5 4 5
∗5 5 5 5 5 5 5

M1 verifies B′ and BT plus the prefixing axiom, (B → C) → [(A → B) →
(A → C)], and in addition, [(A → B) ∧ A] → B, [A → (A → B)] → (A →
B), A ∨ ∼A and (A → ∼A) → ∼A but falsifies ∼(A → A) (let I be some
M1-interpretation such that for some propositional variable p, I(p) = 1; then
I(∼(p → p)) = 0).

A brief ‘syntactical’ descriptive view of HLMI4C

The following are provable in HLMI4C: (a) [(A → B) ∧ A] → B; (b) [A →
(A → B)] → (A → B); (c) ∼(A → A) → (B → B); (d) A → [(A → A) →
[(A → A) → A]]; (e) (A ↔ B) ⇒ (∼B → ∼A); (A ↔ B) ⇒ (∼A ↔ ∼B);
(A ↔ B) ⇒ (A → C) ↔ (B → C); (A ↔ B) ⇒ (C → A) ↔ (C → B); [(A ↔
B) ∧ (B ↔ C)] → (A ↔ C); A ↔ B ⇒ (A ∧ C) ↔ (B ∧ C), (C ∧ A) ↔ (C ∧ B);
A ↔ B ⇒ (A ∨B) ↔ (B ∨ C), (C ∨ A) ↔ (C ∨B).

We note (1) the rules in (e) can be used in the proof (by induction) of the
replacement theorem (cf. section 4); (2) the thesis (c) proves that HLMI4C lacks
the variable sharing property (“antecedent and consequent share at least a propo-
sitional variable in each conditional theorem”); (3) the thesis in (d) proves that
HLMI4C lacks the Ackermann property (“A contains at least a conditional con-
nective in each theorem of the form A → (B → C)”).
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On the other hand, HLMI4C does not prove, for example, A → (A → A) (the
‘mingle’ axiom), (A → A) → (B → B), ∼(A → ∼B) ⇒ A → B or Suf.

The modal logic in LMI4C

1. The clauses for the two modal operators (cf. Proposition 3.5) are:

• T ∈ I(LA) iff T ∈ I(A); F ∈ I(LA) iff T /∈ I(A) or F ∈ I(A).

• T ∈ I(MA) iff T ∈ I(∼L∼A); F ∈ I(MA) iff F ∈ I(A).

These clauses can be introduced in any BD-semantics independently of the
definability of the connectives they here interpret in the case of LMI4C.

In order for completeness to be proved, the logic these connectives extend or
expand needs to have the ensuing theses: LA → A, A∨∼LA, (LA∧∼LA) →
∼A, ∼A → ∼LA and the rule A ⇒ LA (Nec).

2. Anyway, the connectives L and M can alternatively be introduced according
to the ensuing tables (not definable in LMI4C):

L
0 0
1 0
2 0
3 3

M
0 0
1 3
2 3
3 3

The clauses are:

• T ∈ I(LA) iff T ∈ I(A) and F /∈ I(A); F ∈ I(LA) iff T /∈ I(LA).

• T ∈ I(MA) iff T ∈ I(∼L∼A); F ∈ I(MA) iff T /∈ I(MA).

In order to prove completeness the required wffs are LA → A, ∼A → ∼LA,
A → (∼A ∨ LA), (LA ∧ ∼LA) → B, (∼LA ∧ A) → ∼A and LA ∨ ∼LA.

Finally, we note that both modal logics sketched work in very much the same
way as the corresponding ones w.r.t. Brady’s BN4 treated in [19].
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