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NEGATED IMPLICATIONS IN CONNEXIVE RELEVANT LOGICS

ANDREW TEDDER

ABSTRACT. Connexive expansions of relevant logics tend to prove every
negated implication formula. In this paper I discuss why they tend to
satisfy this unsavoury property, and discuss avenues by which it can be
avoided, providing logics which stand as proofs of concept that these av-
enues can be made to work.

1. INTRODUCTION

Relevant logics and connexive logics are like (occasionally squabbling)
siblings. Originally introduced for similar motivations (to critique the clas-
sical theory of material implication, replacing it with one taking account of
the need for some connection between antecedents and consequents), they
were often studied in similar places and by similar people.1 Furthermore
connexivists and relevantists agreed on a number of commitments, such as
something like paraconsistency. They have, however, put their focus on
different properties of logics as expressing the desired connection.

Relevantists, as their name suggests, push relevance as the key require-
ment, so that in order for A to imply (or entail) B (i.e. for A → B to be (log-
ically) true), it must be that these are relevant to each other (as expressed in
Belnap’s VARIABLE SHARING principle, to be stated below). Connexivists
focus their attention not on implication → itself, but on its interaction with
negation ¬, in particular requiring the following theses to be valid:

ARISTOTLE ¬(A → ¬A) ¬(¬A → A)

BOETHIUS (A → B) → ¬(A → ¬B) (A → ¬B) → ¬(A → B)

The constraints amount to requiring that no formula implies, or is implied
by, its own negation (ARISTOTLE) and furthermore that no formula implies

Thanks are due, for helpful discussion or suggestions, to Katalin Bimbó, Fernando Cano-
Jorge, Sergey Drobyshevich, Luis Estrada-González, Thomas Macaulay Ferguson, Shay
Logan, Franci Mangraviti, Hitoshi Omori, Heinrich Wansing, Yale Weiss, and audiences at
Ruhr University Bochum, the University of Connecticut Logic Group, and the Australasian
Association of Logic 2023.
1In the 1960s, focus was put on connexive logics by Richard Angell [3] and Storrs McCall
[23], both of whom were in contact with advocates of relevant logics including Anderson
and Belnap [2] and their students.
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any contradictory pair of formulas (BOETHIUS). The upshot of this is, in
a sense, to keep formulas and their negations separate as far as implication
goes.2 As it turns out, one easy way to do something like the above is to
treat implication as a sort of biconditional, leading McCall [23] to place as a
further constraint that the following be invalid:

SYMMETRY (A → B) → (B → A)

Connexive logics, then, can be understood to be those in a language in-
cluding at least → and ¬ as connectives which validate ARISTOTLE and
BOETHIUS while invalidating SYMMETRY.

Relevant logics, on the other hand, do not tend to be presented as logics
validating some theses, but rather as those invalidating some theses, such
as those which contravene VARIABLE SHARING. There is, however, more or
less widespread agreement on principles which those logics called relevant
tend to share. One locus of such agreement comes out of the frame seman-
tics introduced by Sylvan (né Routley) and Meyer [31, 33], and generalised
outward to gaggle theory in work by Dunn [10] and his collaborators, most
notably Bimbó [6]. The distinctive feature of this semantic framework is
in requiring operations to have tonicity types, specifying whether they pre-
serve or anti-preserve valid implications in some or all of their argument
places. This kind of specification of connective meanings places entailment
(or provable implication) at the heart of the theory of the meaning of the log-
ical constants (as against, say, truth/falsity, which shows up downstream),
which is a move that fits the relevant logic enterprise well. One place where
this matters to recent debates, and for some of the discussion in this paper, is
in taking satisfaction of something like contraposition to be a key property of
negation. This has proved to be a point of contention between relevantists
and connexivists, broadly understood.3

Despite these differences, there have been a handful of attempts to com-
bine these research projects, and to study connexive relevant logics. Some
early results in this direction are in the work of Mortensen [25] and re-
lated work in [33]. There it was noted, as I’ll discuss below, that we can

2Variants on these relations can be found in the connexive literature. One notable variant
is Kapsner’s [18] strong connexivity requirement, amounting to the claims that implications
of the form A → ¬A and ¬A → A be unsatisfiable, and furthermore that the pair ⟨A →
B, A → ¬B⟩ not be jointly satisfiable. The algebraic semantics of [37] gives a precise sense
in which these requirements involve keeping the values of formulas and their negations
separate.
3A recent debate on the key properties of negation which touches on this theme is that
between Berto and Restall [5] and De and Omori [9]. I’ll not wade into the details of this
debate, except to briefly tip my hand in favour of the former – this, as we’ll see, motivates
some of my focus in this paper.
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extend at least some relevant logics with connexive theses while obtaining
reasonable, and interesting, results. There is an odd property which results
from adding connexive principles to relevant logics in almost all cases – do-
ing so results in every negated implication (i.e., every formula of the form
¬(A → B)) being valid. While this unsavoury result has raised eyebrows, it
interestingly turns out not to cause too much damage in some of the logics
in question (as we’ll see). It is, however, pretty unsavoury, and so worth
avoiding. The aim of this paper is to lay out the options for how we might
add connexive theses to relevant logics while avoiding this consequence,
and providing proofs of concept that it can be done in accordance with the
options I’ll consider. In doing so, I’ll spend most of my time interested in
logics with some form of contraposition, in accordance with the kinds of
commitments accepted in the (broadly) relevantist camp.

The rough plan of the paper is as follows. In §1 I’ll lay out some def-
initions and other preliminaries, including defining the class of relevant
logics (and fragments thereof) in which I’ll be interested. In §2, I’ll reca-
pitulate, from [33], the proof that almost all connexive relevant logics have
¬(A → B), and contexts in which these logics are, and are not, trivial. In
§3, I’ll lay out the options for avoiding this unsavouriness (and triviality),
and go through the options: ill-contraposing logics, ill-affixing logics, and in-
tensional logics. I conclude in §4 with some remarks on future directions.

2. PRELIMINARIES

2.1. Some Definitions.

Definition 2.1 (Languages). A language is a the absolutely free algebra
⟨Fm, {⊗i}i∈I⟩ constructed out of a countably infinite set AtFm of atomic for-
mulas by application of the connectives (operation symbols) {⊗i}i∈I , each of
some finite arity. The set of the arities of {⊗i}i∈I is the similarity type of the
language.4 I’ll use lower case letters from the middle of the Latin alphabet
(such as p, q, r, . . . ) as metavariables over AtFm, and upper case letters from
the beginning of that alphabet (such as A, B, C, . . . ) as metavariables over
Fm.

All the languages in question here contain at least the unary operation ¬
and the binary operation →, but may also include some of the following
binary operations:

• ∧ (lattice or extensional conjunction)
• ∨ (lattice or extensional disjunction)
• ◦ (intensional conjunction, or fusion)
• + (intensional disjunction, or fission)

4A similar remark in the definition of similarity type applies for any algebra.
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The set of endomorphisms on Fm, written EndFm, is the collection of func-
tions σ : Fm −→ Fm which are homomorphic, i.e. those such that for each
n-ary operation ⊗ and collection {Ai}i≤n ⊆ Fm:

σ ⊗ (A1, . . . , An) = ⊗(σA1, . . . , σAn)

Alternately, these are called substitutions.
A homomorphism from Fm to an algebra of the same similarity type M is

a function satisfying the displayed condition.

Definition 2.2 (Logics). L ⊆ Fm is a logic just in case:
(1) For any σ ∈ EndFm, σL = {σA | A ∈ L} ⊆ L.
(2) For any A, B ∈ Fm, if {A → B, A} ⊆ L then B ∈ L.

Definition 2.3 (Axiomatic Extensions of Logics). Given a logic L and a col-
lection X ⊆ Fm (of “axioms”), call L ⊕ X, the axiomatic extension of L by X,
the least logic extending L ∪ X.5

Definition 2.4 (Fragments of Logics). Given a logic L in a language Fm such
that Fm′ ⊂ Fm is another language: the fragment of L relative to Fm′ (or the
Fm′-fragment of L) is L ∩ Fm′.6 Where Fm′ has operations {⊗i}i∈I , I’ll write
this as L{⊗i}i∈I

.

By the positive fragment of a logic, I mean that without the connective ¬, and
write this L+.

For any system L, I’ll call L→,¬ the intensional fragment.

Definition 2.5 (Contradictory Logics). A logic L is contradictory just in case
for some A ∈ Fm, {A,¬, A} ⊆ L.

Definition 2.6 (Trivial Logics). A logic L is trivial just in case L = Fm.

The following definitions are stated in generality, though I’ll be dealing
with logics in a fairly limited language here, as the possibilities for exten-
sions of the language are significant here.

Definition 2.7 (Matrices). A matrix is a tuple M = ⟨M, {⊗i}i∈I , D⟩ where
⟨M, {⊗i}i∈I⟩ is an algebra and ∅ ̸= D ⊆ M is a set of designated elements.
5The definition of “Logic” just requires these to be closed under the rule form of modus
ponens:

A → B A(rMP)
B

When I’m considering extensions of logics which are axiomatised here with other rules,
I’ll suppose that logical extensions thereof are also closed under those extra rules – this is
significant in this very section, where I give definitions for systems like R.
6That this is a logic is easy to verify, noting that we require all languages here to include →
among its operations.
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Definition 2.8 (Matrices as Models). Given a logic L in the language Fm,
M is a model of L just in case ⟨M, {⊗i}i∈I⟩ has the same similarity type as
Fm, and every homomorphism h : Fm −→ M is such that if A ∈ L then
hA ∈ D. In such a circumstance, ⟨M, h⟩ is called the model of L.

I introduce these last two definitions as I’ll be using the matrix method to
show that various connexive relevant logics fail to validate target formulas
(usually those of the form ¬(A → B)) by constructing matrix models of L
with homomorphisms which render the target formula undesignated. More
details on this method, and extensions thereof, can be found in any textbook
on algebraic logic, such as [15]. The methods I use here are a simplified
version of the usual methods in abstract algebraic logic, as I deal here with
logics as FMLA systems, in the terminology of [17].

Note that all the results I obtain using matrices will take the form of pro-
viding counterexamples to formulas, i.e., showing that some formula A is
not a theorem of the target logic L. To do this, it suffices to find some matrix
model (over an algebra in the appropriate language) which models all the
theorems of the logic while not modeling the target, counterexampled, for-
mula. This does not require proving or assuming the completeness of the
logic with respect to any class of matrices, but only requires that the logic
be sound with respect to the matrix and interpretation given. Completeness
results of the usual sort for matrix models are available, using the usual rela-
tionship between Tarskian consequence relations and classes of matrix models
(for details, see [15]), since logics understood as FMLA systems are a spe-
cial case of logics understood as SET-FMLA systems (see [17, p. 199 f.] for
discussion), but will not be needed here, so I omit them.7

2.2. Axiomatisations of Some Relevant Logics. The logic B, in the lan-
guage with connectives ¬,→,∧,∨, can be presented in terms of the follow-
ing axioms:

(Id) A → A
(∧E) (A1 ∧ A2) → Ai i ∈ {1, 2}
(∧I) ((A → B) ∧ (A → C)) → (A → (B ∧ C))
(∨I) Ai → (A1 ∨ A2) i ∈ {1, 2}

(∨E) ((A → C) ∧ (B → C)) → ((A ∨ B) → C)
(Dist) (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))

7If you want to have a Tarskian consequence relation associated with the logics presented
here, one can simply consider the global consequence relation associated with the axiom
systems, in much the same way that one considers global consequence relations associated
to modal logics (for the reason that in these systems, some of the rules are “rules of proof”
in the sense of [34] – in particular, this holds of (rAdj) for reasons discussed in [4]. For
example, consider the treatment in [8, p. 35 f.].
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(DNi) A → ¬¬A
(DNe) ¬¬A → A

and rules:
A → B A (rMP)B

A → B (rCont)¬B → ¬A
A B (rAdj)
A ∧ B

A → B (rB)
(C → A) → (C → B)

A → B (rB′)
(B → C) → (A → C)

When discussing axioms for logics, I’ll combine both (DNi) and (DNe) into
one axiom, (DNE), so that what it means to say that a logic L includes this
is that

{p → ¬¬p,¬¬p → p} ⊆ L

Definition 2.9 (Derivations). A derivation in an axiomatically presented logic
L is a tree each node of which is labeled by a formula, such that the leaves
are labeled by (instances of) axioms and each non-leaf node is labeled by a
formula which results by an application of one of the rules from formulas
labeling the immediate successor nodes.8

When A labels the root node of a proof tree of L, I’ll write ⊢L A.9

Note that in any logic which is closed under the rules (rB) and (rB′)10, we
can show the logic to be closed under the further rule:

A → B B → C (rHS)
A → B

Among the extensions of B, those which I’ll have cause to mention here
are those which add the following axioms:

(Cont) (A → B) → (¬B → ¬A)
(CM) (¬A → A) → A

(B) (A → B) → ((C → A) → (C → B))
(B′) (A → B) → ((B → C) → (A → C))
(W) (A → (A → B)) → (A → B)

8Where space makes presenting the tree impracticable, I’ll write these trees as linear se-
quences of formulas in a standard way.
9I’ll use similar notation when describing membership in logics more abstractly described,
i.e. writing ⊢L A in place of A ∈ L.
10Alternate names for these principles are “rule prefixing” and “rule suffixing”, respec-
tively. I use the letter-names for shortness, but will sometimes refer to the pair of these as
“affixing” rules.
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(C) (A → (B → C)) → (B → (A → C))
(K) A → (B → A)

and the rule:

A (rCI)
(A → B) → B

The extensions of B which will come up include the following:
E: B ⊕ {(Cont), (CM), (B), (B′), (W)} (closed under (rCI)).

RW−: B ⊕ {(B), (B’), (C)}.
RW: RW− ⊕ {(Cont)}

R: RW ⊕ {(W)}
J+: R+ ⊕ {(K)}.

Note that J+ is the positive fragment of intuitionistic logic (it’s included here
just for comparison purposes).

Given one of these logics, or any other logic, I’ll specify their connexive
extensions according to the following formula:

LA: L ⊕ {(Ari1), (Ari2)}
LB: L ⊕ {(Boe1), (Boe2)}

where we name the (positive) connexive theses:
(Ari1) ¬(A → ¬A)
(Ari2) ¬(¬A → A)
(Boe1) (A → B) → ¬(A → ¬B)
(Boe2) (A → ¬B) → ¬(A → B)

This is enough to be going on with for now. During the proceedings (par-
ticularly in § 4.2) I’ll introduce some ad hoc logics via axiomatisations, but
will leave those evils to the section thereof.

3. UNSAVOURINESS AND TRIVIALITY

3.1. Unsavouriness. Let’s now recapitulate the proof in [33, Thm. 3.17(2)]
that almost all connexive relevant logics prove ¬(p → q), and hence every
formula ¬(A → B). For sake of comparison, I’ll break these up into two
parts.

Proposition 3.1. Let L validate the axioms (∧E) and (Ari) and be closed
under the rules (rMP), (rCont), (rB), and (rB′). Then ⊢L ¬(p → ¬q).

Proof. The derivation is as follows:
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(p ∧ q) → q
(rCont)

¬q → ¬(p ∧ q)
(rB)

(p → ¬q) → (p → ¬(p ∧ q))
(p ∧ q) → p

(rB′)
(p → ¬(p ∧ q)) → ((p ∧ q) → ¬(p ∧ q))

(rHS)
(p → ¬q) → ((p ∧ q) → ¬(p ∧ q))

(rCont)
¬((p ∧ q) → ¬(p ∧ q)) → ¬(p → ¬q)

by (Ari), (rMP)
¬(p → ¬q)

Note that (Ari) is only needed in the last step, so that all others are deriv-
able in any logic with the other principles in question. □

Note that this first ‘unsavoury’ principle is characteristic of what Estrada-
Gonzaléz and Cano-Jorge [12, p. 192] call “ultra-Abelardian” logics. They
suggest that Abelard gave reasons to reject any implication of the form
A → ¬B, and that might provide a reason not to be too upset with the
unsavouriness involved in Prop. 3.1. There is a question, then, of whether
it’s worth avoiding this first principle, though it’s not a question I’ll go into
here. For now I’ll just move on to the second part using it and some addi-
tional principles.

Proposition 3.2. Suppose L satisfies the constraints of Prop. 3.1 and further-
more L ∪ {¬¬p → p, p → ¬¬p} ̸= ∅. Then ⊢L ¬(p → q).

Proof. First suppose that ⊢L q → ¬¬q, then we can reason as follows:
q → ¬¬q

(rB)
(p → q) → (p → ¬¬q)

(rCont)¬(p → ¬¬q) → ¬(p → q)
∆

¬(p → ¬¬q)
(rMP)¬(p → q)

Where ∆ is the derivation in Prop. 3.1, but with ¬q uniformly substituted
for q. The proof in the case that ⊢L ¬¬p → p is similar, just using (rB′)
rather than (rB). □

These have some immediate corollaries for the inconsistency of such log-
ics:

Corollary 3.3. If L satisfies the conditions of Prop. 3.1, and is closed under
substitutions, then whenever ⊢L A → ¬B, it follows that {A → ¬B,¬(A →
¬B)} ⊆ L.

Corollary 3.4. If L satisfies the conditions of Prop. 3.1, Prop. 3.2, and is
closed under substitutions, then whenever ⊢L A → B, it follows that {A →
B,¬(A → B)} ⊆ L.

So connexive relevant logics, at least in the usual sense, are not just con-
tradictory as logics, but they are really rather contradictory, as most satisfy
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the constraints of both Props. 3.1 and 3.2.11 Of particular note in the case
of generating contradictions there is the well-known recipe making use of
the fact that basically all seriously proposed relevant logics (in the full lan-
guage) prove the following formula, directly contradicting (Ari):

(p ∧ ¬p) → ¬(p ∧ ¬p)

which follows directly from (∧E) and (rCont).

3.2. Triviality. As is now well known the full logic R trivialises its con-
nexive extensions. This is for the simple reason that it trivialises all of its
contradictory extensions, as was shown by Maksimova [21] and Meyer (re-
ported in [2, §29.11]).12 Recently [28, Thm. 2] it has been shown that R→,¬
also trivialises its connexive extensions, in particular that RA→,¬ is trivial.
Just as in the case of full R, though, this can be seen as a consequence of the
fact that R→,¬ trivialises all of its contradictory extensions.

Theorem 3.5. Let L be a logic s.t.
(1) R→,¬ ⊆ L
(2) for some A ∈ Fm, {A,¬A} ⊆ L

Then L = Fm.

Proof. First note that since we have the following, by applications of (C) and
(Cont):

⊢R→,¬ A → (¬A → ¬(A → A))

it follows from (2) that:
⊢L ¬(A → A)

Let σp be the constant p substitution, for p some atomic formula. But then
⊢L ¬(σp A → σp A), as σp(¬(A → A)) = ¬(σp A → σp A) and L is a logic.
Furthermore (as follows from the results in [1]):

⊢R→,¬ (p → p) → (σp A → σp A)

from which it follows, by (1), (rCont), and (rMP), that:

⊢L ¬(p → p).

11In particular, most commonly studied relevant logics are expansions or extensions of the
basic system B (this is the case of the systems mentioned in [33, ch. 4], for example). Indeed,
the constraints, besides (Ari), needed for unsavouriness are also satisfied in the system
BB introduced in [19]. So the “relevant” part of almost all connexive relevant systems
will satisfy all the parts of the results needed besides (Ari), and the “connexive” part will
supply at least (Ari). Of course, one could focus on other systems, such as CB of [32], but
I’ll leave that aside here, except to note that it’s an intensional system in line with the kind
of systems discussed in § 4.3.
12To my knowledge, these results were obtained independently.
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Hence taking σ(p) = q → (q → q):

⊢L ¬((q → (q → q)) → (q → (q → q)))

But now note the following:

⊢R→,¬ q → ((q → (q → q)) → (q → (q → q)))

Here’s the proof:
(1) (q → (q → q)) → ((q → q) → (q → (q → q))) (B)
(2) ((q → q) → (q → (q → q))) → ((q → (q → q)) → (q → (q → (q → q)))) (B)
(3) (q → (q → q)) → ((q → (q → q)) → (q → (q → (q → q)))) from (1), (2)
(4) (q → (q → q)) → (q → (q → (q → q))) from (3) by (W)
(5) q → ((q → (q → q)) → (q → (q → q))) from (4) by (C)

In fact, all the steps up to, but not including, (5) are provable in relevant
logics significantly weaker than R→.13

Thus we have, by (Cont), that:

⊢L ¬q

and so, substituting ¬q for q, and by (DNE) we have that ⊢L q, and so for
any formula B, ⊢L B. Hence Fm ⊆ L, and so L is trivial. □

Corollary 3.6. RA→,¬ is trivial.

Proof. By Thm. 3.5, it suffices to show that RA→,¬ is contradictory. In [28,
Lem. 1], it is shown that for any p, q, ⊢RA→,¬ (p → ¬p) → q. So fixing the
substitution σ(p) = A and σ(q) = ¬(A → ¬A), we obtain:

⊢RA→,¬ (A → ¬A) → ¬(A → ¬A)

but because of the presence of (Ari), we have that:

⊢RA→,¬ ¬((A → ¬A) → ¬(A → ¬A))

and the result follows. □

So R→,¬ is a bad place to store one’s connexive theses. Indeed, the same
holds for the contraction-free subsystem RW→,¬.

Remark 3.7. Weiss [41, note 31] notes that if we consider the intensional
fragment of RW, with (Cont) instead of just (rCont), then even the addition
of (Ari) causes → to be symmetric. The key lemma here

⊢RW→,¬ ¬((A → B) → ¬(A → B)) → ((B → A) → (A → B))

was proved by Marko Malink, as communicated to me by Weiss, and is
straightforward to prove in a sequent system, such as that discussed in [7,
§ 9.1.2] minus the contraction rule as follows (I’ll name rules following the

13Note however that for the full result we need both (W) and (C), which has the result of
pinning down R among the usual relevant logics – at least, those of the ‘Anderson-Belnap’
school.
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kind of naming convention employed in [7], and write labels on the left to
distinguish from the axiomatic derivations presented elsewhere):

A � A
B � B

A � A B � B(→ �)
A → B, A � B(→ �)

A → B, B → A, B � B(→ �)
A → B, B → A, A → B, A � B(�¬)

B → A, A → B, A � B,¬(A → B)
(� →)

B → A, A � B, (A → B) → ¬(A → B)
(¬ �) ¬((A → B) → ¬(A → B)), B → A, A � B

(� →) ¬((A → B) → ¬(A → B)), B → A � A → B
(� →) ¬((A → B) → ¬(A → B)) � (B → A) → (A → B)

Note that the proof system here is essentially Gentzen’s LK but without
the weakening and contraction rules, which is adequate for RW→,¬.

Note: since first writing this remark, Shawn Standefer has communicated
to me a simple proof showing that unsavoury extensions of RW→,¬ are triv-
ial:

(1) ¬p → ((¬p → q) → q) (CI)
(2) ¬((¬p → q) → q) → p 1 (rCont), (DNE)
(3) ¬((¬p → q) → q) Unsavouriness
(4) p 2,3 (rMP)

This just goes to show that RW is also a bad place to store your connexive
theses.

Furthermore, it is also rather strong, and so these negative results are
preserved to a number of candidate intensional connexive relevant logics.

If, however, we go a bit weaker, in the direction of E, we can do better.

3.3. EA and its Relevance Properties. We know that ⊢EA ¬(p → q) holds,
but the interesting upshot of [33, Cor. 3.10(1)] is that this fact does not pre-
vent EA from having desirable relevance properties. In particular, it satisfies
Belnaps VARIABLE SHARING criterion:

Proposition 3.8. [33, Cor. 3.10(1)] If ⊢EA A → B then A and B have an
atomic subformula in common.

as well as the ACKERMANN property, which Anderson and Belnap [2] touted
as the further property justifying E as against R:

Proposition 3.9. [33, Cor. 3.11(2)]
If ⊢EA A → (B → C) then A has at least one occurrence of →.
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So the fact that EA is unsavoury does not get in the way of its being rel-
evant in a rather strong sense.14 Furthermore, these facts even allow one
to construct consistent theories on the basis of this contradictory logic (as
discussed in [22]).

Nonetheless, it seems desirable to avoid unsavouriness. Even if it doesn’t
trivialise the logics in question, or undermine their claims to relevance, it’s
an odd theory of implication that says “no!” to every implication statement
(even if it also says “yes!” to some of them). To that end, let’s turn our
attention to our real focus, how to avoid unsavouriness.

4. AVOIDING UNSAVOURINESS

Looking back at the proof of unsavouriness, there are three candidate
principles we could drop (excepting, of course, the connexive theses). These
are:15

(1) Contraposition in its (rCont) or its (Cont) guise.
(2) Lattice operators – especially (∧E) and (∨I).
(3) The affixing rules (rB) and (rB′).

If we drop the first, we obtain an ill-contraposing logic; if we drop the second,
we obtain an intensional logic; if we drop the third, we obtain an ill-affixing
logic. Let’s consider the options for these three avenues in turn.

4.1. Ill-Contraposing Logics. The first, and most popular option among
connexivists, is to reject contraposition in the rule form:

A → B(rCont) ¬B → ¬A
In [38], a connexive logic C is obtained by adding to J+ a negation con-
nective ∼ (so-called “strong” negation, in contrast to the “weak” negation
usually defined in intuitionistic logic) obeying the following biconditional
axioms:

• ∼∼A ↔ A
• ∼ (A ∧ B) ↔ (∼A∨ ∼B)
• ∼ (A ∨ B) ↔ (∼A∧ ∼B)
• ∼ (A → B) ↔ (A →∼B)

14Sylvan [33, §3] used these facts about EA to argue, against Anderson and Belnap, that
E did not, contrary to appearances, constitute the strongest logic satisfying the VARIABLE
SHARING and ACKERMANN properties.
15It was pointed out to me, by Luis Estrada-González, that another option is to reject clo-
sure under substitution. I will forgo considering that option here, but note that it is another
potential avenue.
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The first three of these hold in all the relevant logics under consideration
here, swapping ∼ for ¬: indeed, they are, in a sense, definitive of ¬’s being
the De Morgan negation of FDE, which is a subsystem of all the usual relevant
logics. It is the final biconditional, which combines (Boe1) with its converse,
which does the trick, allowing for all the connexive theses to be provable,
while retaining non-triviality.

Note, however, that if we were to add (rCont) to C, we’d be able to mimic
the kind of reasoning done in the proof of Thm. 3.5, and obtain a trivial
system.16 So trading out (rCont) for these different axioms for negation is a
key part of the move. Doing so does, however, allow us to avoid proving
every negated implication (we’ll come back to this point in § 4.2.4).

Given this, then, a natural strategy to pursue in giving ill-contraposing
connexive relevant logics is to mimic this trick, but trading out the positive
basis J+ for that of some relevant logic, such as R+. Precisely this last move
has been done recently, and the results turn out to be fairly natural. We get
natural deduction systems [16] and natural frame-theoretic semantics [26,
40]. For the latter bit, the trick is to replace the usual frame-theoretic treat-
ment for negation among relevant logics (the “star” operation of [31], and
its interaction with the relation interpreting implication) with a four-valued
semantic machinery.17 Related work has been done by Estrada-González
and Tanús-Pimentel [13], who start from a non-contraposing variant of a
logic near B, and consider VARIABLE SHARING-like properties which ob-
tain there.18 In such a setting, there is a straightforward way to characterise
this kind of ‘strong’ negation, and gently lay it on top of whatever positive
logic you like. So one could just choose a relevant logic to lay the connexive
theses upon.

Of the three approaches this is the one I have the least to say about. First
of all, it’s been done. Second, though, is that for reasons I mentioned in the
introduction, dropping contraposition involves a fairly significant depar-
ture from the theory of meaning which seems to be the best fit for relevant
logics – namely, the frame/algebraic semantics of gaggle theory. So while
this is an option, it’s not the one I’ll focus on here any more than I’ve done
so already.

4.2. Ill-Affixing Logics. The final remaining option I’ll consider here con-
cerns dropping one of the affixing rules:

16As {(p∧ ∼ p) →∼ (p∧ ∼ p),∼ ((p∧ ∼ p) →∼ (p∧ ∼ p))} ⊆ C.
17The difference between the four-valued approach to negation, and the star-based one, is
the crux of the dispute in [9, 5].
18That is, they investigate properties like VARIABLE SHARING which hold for connexive
logics – they do not investigate connexive logics which satisfy VARIABLE SHARING.
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A → B (rB)
(C → A) → (C → B)

A → B (rB′)
(B → C) → (A → C)

Dropping at least one of these allows us to retain the full vocabulary, in-
cluding the lattice connectives, as well as contraposition in various forms.
It does, however, have the somewhat undesirable consequence of altering
the behaviour of → to no longer have the usual tonicity type. That is to say,
it is in lieu of these two rules that we have, respective, that → is monotone
in the second argument place, and antitone in the first. That is, in algebraic
semantics corresponding to these logics, for instance those given in terms of
gaggles [6], which are partially ordered algebras with operations standing in
certain relations, we have certain quasi-inequations provable. In particular,
these are:

a ≤ a′

b → a ≤ b → a′
a′ ≤ a

a → b ≤ a′ → b
So one clear downside of this strategy is that it cuts against the logical

behaviour of → in much the same way that rejecting contraposition cuts
against that of ¬.

Having said this, however, nonetheless we can obtain some suprisingly
powerful logics by dropping one (or both) of these rules, and adding in
other principles. What we can add does seem to rely, to a significant extent,
on which of these we remove. We can see right away that keeping (rB′) is
more difficult that keeping (rB).

Proposition 4.1. If L includes the axioms (Cont), (∨E), and (DNE), along
with the rules (rMP), (rHS), and (rB′), then ⊢L ¬(¬A → B).

Proof. Take the following derivation, dual, in a sense, to that from Prop. 3.1:
A → (A ∨ B)

(rCont)
¬(A ∨ B) → ¬A

(rB′)
(¬A → B) → (¬(A ∨ B) → B)

(⋆)
(¬A → B) → (¬B → (A ∨ B))

B → (A ∨ B)
(rCont)

¬(A ∨ B) → ¬B
(rB′)

(¬B → A ∨ B) → (¬(A ∨ B) → (A ∨ B))
(rHS)

(¬A → B) → (¬(A ∨ B) → (A ∨ B))
(rCont)

¬(¬(A ∨ B) → (A ∨ B)) → ¬(¬A → B)
(Ari), (rMP)

¬(¬A → B)

Note that the derivation step labeled (⋆) can be derived by appeal to
(rMP) as well as the following theorem, using an instance of (Cont) as the
left-most premise:

(¬(A ∨ B) → B) → (¬B → ¬¬(A ∨ B))

(A ∨ B) → ¬¬(A ∨ B)
(rB′)

(¬B → ¬¬(A ∨ B)) → (¬B → (A ∨ B))
(rHS)

(¬(A ∨ B) → B) → (¬B → (A ∨ B))

□
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Note that if we have (DNE), we can easily trade this result in for one show-
ing that ⊢L ¬(A → B), as before. This goes to show that we are somewhat
limited by the inclusion of (rB′), but below I’ll consider three ad hoc logics
which show the possibilities if we reject this.

4.2.1. Thing1. Our first ad hoc logic, Thing1, drops both of (rB) and (rB′),
while retaining (Cont) and both (Ari) and (Boe). Hence it is a truly connex-
ive relevant logic (in axiomatising these, I omit (rMP) since it is built into
the definition of something’s being a logic).

(Id) A → A
(W) (A → (A → B)) → (A → B)

(∧E) (A1 ∧ A2) → Ai i ∈ {1, 2}
(∧I) ((A → B) ∧ (A → C)) → (A → (B ∧ C))

(∨E) Ai → (A1 ∨ A2) i ∈ {1, 2}
(∨E) ((A → C) ∧ (B → C)) → ((A ∨ B) → C)

(Dist) (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))
(WB) ((A → B) ∧ (B → C)) → (A → C)

(Cont) (A → ¬B) → (B → ¬A)
(DNE) ¬¬A → A

(CM) (A → ¬A) → ¬A
(LEM) A ∨ ¬A

(Ari) ¬(A → ¬A), ¬(¬A → A)
(Boe) (A → B) → ¬(A → ¬B), (A → ¬B) → ¬(A → B)

A B (rAdj)
A ∧ B

In the argument below, in order to show that the logics are savoury, we’ll
show that we can invalidate the special case ¬(A → A).

Proposition 4.2. ⊬Thing1
¬(A → A)

Proof. The following countermodel suffices – we start with the hasse dia-
gram:

5

4

32

1

0
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where we fix ¬x = 5 − x and the definition of → to be:

→ 0 1 2 3 4 5
0 1 1 1 1 1 1
1 0 1 1 1 1 1
2 0 0 5 0 1 1
3 0 0 0 5 1 1
4 0 0 0 0 1 1
5 0 0 0 0 0 1

and take the designated values to be {x | 1 ≤ x}. Note that ¬(2 → 2) =
0. □

It’s worth noting that Thing1 is a sublogic of the system M3V, which is
the complete logic of the matrix used in [33, §3.6] to show that EA satis-
fies ACKERMANN. This system was independently studied in [12]. As a
result, Thing1 also satisfies ACKERMANN. I don’t as of yet know, however,
whether Thing1 satisfies VARIABLE SHARING (and the argument to this ef-
fect in [33] relies on the fact that EA is an extension of E by only negated
implication theses, which is not the case when we also add (Boe)).19

Having said this, note that there is at least one rather irrelevant extension
of Thing1 to which the given countermodel applies, namely the expansion
by the further axioms:

(Safety) (A ∧ ¬A) → (B ∨ ¬B)
(3-isch) A ∨ (A → B)

But these principles are deeply undesirable in a relevant setting.20 In fact,
both of the following logics, and countermodels, I’ll give permit the inclu-
sion of these principles, though I’ll not mention this fact any more than I
just have.

4.2.2. Thing2. In the following system, Thing2, we retain (rB) and (Cont),
but drop (Boe), obtaining a merely connexive-isch relevant logic.

(Id) A → A
(W) (A → (A → B)) → (A → B)

(∧E) (A1 ∧ A2) → Ai i ∈ {1, 2}
(∧I) ((A → B) ∧ (A → C)) → (A → (B ∧ C))

(∨E) Ai → (A1 ∨ A2) i ∈ {1, 2}
(∨E) ((A → C) ∧ (B → C)) → ((A ∨ B) → C)

19Note that, as a consequence of [33, Thm. 3.16], ⊬EA (A → B) → ¬(A → ¬B), and so a
distinct proof of VARIABLE SHARING is needed, if it holds at all, for EAB=EB.
20An argument against the former can be found in [36].
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(Dist) (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))
(WB) ((A → B) ∧ (B → C)) → (A → C)

(Cont) (A → ¬B) → (B → ¬A)
(DNE) ¬¬A → A

(CM) (A → ¬A) → ¬A
(LEM) A ∨ ¬A

(Ari) ¬(A → ¬A), ¬(¬A → A)

A B (rAdj)
A ∧ B

A → B (rB)
(C → A) → (C → B)

Proposition 4.3. ⊬Thing2
¬(A → A).

Proof. We can obtain a countermodel by taking the three-valued matrix for
LP (see [30] for its most famous introduction), with 2 as just true, 1 as both
true and false, and 0 as just false21, along with implication defined in terms
of the following table:

→ 0 1 2
0 2 1 1
1 0 1 1
2 0 0 2

Fixing the designated values to be {1, 2}, we have ¬(0 → 0) = 0. □

The major downside here is the loss of (Boe), but it still serves as some
proof of concept that we can retain (rB) and axiom contraposition while
avoiding unsavouriness. Furthermore, it is clear that Thing2 is a subsystem
of EA, and thus also satisfies VARIABLE SHARING and ACKERMANN.

Now let’s see an example where we go for only the rule form of contra-
position.

4.2.3. Thing3. It turns out that if we trade out (Cont) for (rCont), we can
have (rB) and (Boe) as well.

(Id) A → A
(W) (A → (A → B)) → (A → B)

(∧E) (A1 ∧ A2) → Ai i ∈ {1, 2}
(∧I) ((A → B) ∧ (A → C)) → (A → (B ∧ C))
(∨I) Ai → (A1 ∨ A2) i ∈ {1, 2}

(∨E) ((A → C) ∧ (B → C)) → ((A ∨ B) → C)
(Dist) (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))

(WI) ((A → B) ∧ A) → B

21This is the naming convention used in [25].

Australasian Journal of Logic (22:1) 2025, Article no. 2



25

(WB) ((A → B) ∧ (B → C)) → (A → C)
(DNE) ¬¬A → A

(CM) (A → ¬A) → ¬A
(LEM) A ∨ ¬A

(Ari) ¬(A → ¬A), ¬(¬A → A)
(Boe) (A → B) → ¬(A → ¬B), (A → ¬B) → ¬(A → B)

A B (rAdj)
A ∧ B

A → B (rB)
(C → A) → (C → B)

A → ¬B (rCont)
B → ¬A

Proposition 4.4. ⊬Thing3
¬(A → B).

Proof. We can use the matrix described in Prop. 4.3, trading out the defini-
tion of → for the following:

→ 0 1 2
0 1 1 1
1 0 1 2
2 0 0 1

Then with {1, 2} as the designated values once again, we have ¬(1 → 2) =
¬2 = 0. □

While rather ad hoc, these three systems at least provide proof of concept,
that we can obtain the desired results while dropping (rB′) (perhaps in ad-
dition to (rB)), and still build in a number of axioms and principles.

4.2.4. A Less Ad Hoc Ill-Affixing Logic. A more complex, but less ad hoc, ex-
ample of a system can be obtained by considering the ‘strong’ implication,
in the style of [35], defined in the connexive system C3 in [27]. The primitive
connexive implication of C, and that of the expansion C3 of C, doesn’t obey
contraposition, but in [27] the authors add a defined connective which vali-
dates the axiom form. I’ll alter their notation a bit, using → for the primitive
implication, ¬ for negation, and ≺ for the defined implication22, so that:

A ≺ B := (A → B) ∧ (¬B → ¬A)

As they discuss, this system proves (Cont), (∧E) and (∨I), (DNE), and (Ari),
and is closed under (rHS), while avoiding both forms of unsavouriness, and
falsifying ¬(¬A ≺ B).23 Thus it is not closed under (rB′) as, given Prop. 4.1,
if it were it would prove ¬(¬A ≺ B).24

22I reserve “⇒” for the metalanguage implication.
23In [27] a countermodel is given to show that C3 does not prove ¬(A ≺ B), and that model
can easily be adapted to show that it also does not prove ¬(A ≺ ¬B) or ¬(¬A ≺ B).
24The task of finding a concrete counterinstance of (rB′) in C3≺ is left to the interested
reader.
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C3 with ≺ as the main implication connective provides an “in the wild”
example of a connexive logic which avoids at least some irrelevant theses
(such as A ≺ (B ≺ A), which is not provable), and which avoids unsavouri-
ness by means of going ill-affixing.

4.2.5. Issues with Extensions and Meanings. It is important to note that (rB)
and (rB′) play a similar role to the meaning of →, in the broadly gaggle-
theoretic framework, that (rCont) does to that of ¬. So the reasons to want
to hold on to (rCont) would seem also to push one to want to hold onto
(rB) and (rB′). One noteworthy point here is that rejecting (rB′) is a com-
mon move in conditional logics in the ‘Lewis-Stalnaker-Chellas-Segerberg-
Kratzer’ dynasty.25 So if we consider not relevant logics as concerning en-
tailment, primarily, but as concerning conditionals, then there is some wig-
gle room as far as rejecting (rB′) goes. Indeed, connexive and conditional
logics do have some overlap, e.g. [39].

Beyond conceptual difficulties, there are also theoretical difficulties. Re-
moving one of (rB), (rB′) puts constraints on what sort of additions we can
make to the language – as discussed in [6], these rules are tightly tied to
properties of the ternary relation, in the usual ternary relation semantics for
relevant logics, and removing these will rule out giving such a semantics
without some tweaks. Such tweaks are available, for instance in the “neigh-
bourhood ternary relation” framework developed by Lavers [19] and since
then also by Ferenz and Tedder [14].

4.3. Intensional Logics. As we saw, R→,¬ is inhospitable to connexive the-
ses. We can, however, cook up weaker intensional relevant systems which
provide a much more inviting home. In fact, by going only slight weaker,
to RW→,¬, and systems in its vicinity, we have options.

In [29], a system in this vicinity is obtained which allows for connexive
principles, and a three-valued characteristic matrix semantics, while avoid-
ing unsavouriness. The trick relies on the use of an intuitionistic-style nega-
tion, and so involves the rejection of (DNe). Of course, having a three-
valued semantics makes this difficult for VARIABLE SHARING, and indeed
their system proves (A → A) → (B → B) for any A, B. Nonetheless, their
way of proceeding does show that an intensional-fragment-extension strat-
egy can work. We just need to find a way to do so while retaining relevance.

I’ll investigate a related nearby option below, where we have FDE as a
subsystem. Namely, this system is RW−, retaining (DNE) but removing
(Cont), in favour of (rCont).

25For various references here, one can see the SEP article [11].
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But before digging into that issue, let’s consider a further issue, namely,
the potential for adding intensional conjunction and disjunction to inten-
sional logics.

4.3.1. Adding Fusion and Fission. In the setting of R→,¬, we can straightfor-
wardly define two additional intensional connectives recapturing some of
the desired behaviour of “and” and “or”. These are fusion ◦ and fission +
(or “intensional conjunction/disjunction”), definable as follows:

A ◦ B = ¬(A → ¬B)
A + B = ¬A → B

With these definitions, we then capture some of the desired properties,
namely those captured by the following validities (writing A ↔ B ∈ L as
shorthand for {A → B, B → A} ⊆ L):

((A ◦ B) → C) ↔ (A → (B → C))(1)

((A ◦ B) → C) ↔ (A → (¬B + C)(2)

((A + B) ◦ ¬A) → B(3)

(A ◦ B) ↔ ¬(¬A + ¬B)(4)

(A + B) ↔ ¬(¬A ◦ ¬B)(5)

Item (4) indicates that → residuates ◦: to put these in terms of the algebraic
behaviours of their associated operators, relative to an order ≤, this means
that:

a ◦ b ≤ c ⇐⇒ a ≤ b → c

Item (5) recapitulates the usual behaviour of lattice conjunction/disjunction,
mediated by Boolean negation, but now in an intensional setting. Item (6)
shows that we recapture a form of intensional disjunctive syllogism, which
was one of the original motivations for introducing +, and related opera-
tors (for examples of which, see [20, 24]). Items (7) and (8) then indicate that
a De Morgan duality obtains between ◦ and +, so defined.

The main thing distinguishing ◦ and + from their lattice counterparts,
then, are the failures of implications, for i ∈ {1, 2}:

(A1 ◦ A2) → Ai(6)

Ai → (A1 + A2)(7)

This is, basically, what sets these apart as intensional conjunction and dis-
junction.
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The positive properties (4)–(8) for defined ◦ and +, however, do depend
on the properties of R→,¬ which, as we’ve seen, is a bad place to store your
connexive principles. So if we want to investigate connexive extensions of
intensional relevant logics, we need to go to weaker logics, where some of
those positive properties may fail. It is possible to retain at least a rule form
of (4) if we take ◦ as a defined operator:

(A ◦ B) → C

A → (B → C)
and obtain thereby conservative extensions of most of the intensional rel-
evant logics. We don’t, however, have any guarantee that doing so will
result in conservative extensions of connexive extensions of intensional rel-
evant logics, but as a matter of fact it seems that adding ◦ usually doesn’t do
too much damage.26

When it comes to +, however, things are less clear. It’s properties are
usually characterised relative to ◦, as you can see above, and once we no
longer take that connective as defined, we have a choice about how we want
+ to behave. Basically, there are two options:

(1) Preserve intensional disjunctive syllogism: (A + B) ↔ (¬A → B)
(2) Preserve De Morgan duality: (A + B) ↔ ¬(¬A ◦ ¬B)

In certain contexts, such as those which have (Cont) among the axioms, try-
ing to preserve both the above will force the logic to include (C). So while ei-
ther of the above biconditionals amount to definitions, and so automatically
conservative, trying to have both of them may result in non-conservative
extensions of the target logic.

So if we want an intensional vocabulary containing analogues of the usual
bits of logical vocabulary, including disjunction, we have a choice point. I
don’t have solid reasons for preferring one or the other, but just flag the is-
sue here. In the result below, we can add + to the target logic in accordance
with either (but not both) of the above options, and preserve the results.

4.3.2. RWB−
→,¬,◦: A Savoury Connexive Logic Constructible from an Intensional

Relevant Logic. The target system is RWB−
→,¬, in accordance with our nam-

ing conventions from § 2.2, noting that in the context of RW−, all instances
of ARISTOTLE are provable from instances of BOETHIUS. It satisfies all the
positive criteria, but we need to show that it satisfies two negative criteria,
which we can do so with one countermodel.

Theorem 4.5. ⊬RWB−
→,¬,◦

¬(A → B) and ⊬RWB−
→,¬,◦

(A → B) → (B → A).

Proof. Take the four element matrix ⟨{0, 1, 2, 3}, {0},¬,→, ◦⟩, defined:

26It is included in [29], and we’ll have it in the logic below.
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◦ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

→ 0 1 2 3
0 0 1 2 3
1 3 0 1 2
2 2 3 0 1
3 1 2 3 0

¬
0 2
1 3
2 0
3 1

Note that ¬(0 → 0) = 2 and (1 → 2) → (2 → 1) = 2. It is tedious, but
straightforward, to verify that this matrix satisfies all the theorems of the
target logic.

□

This shows that RWB−
→,¬,◦ is not only a connexive logic, but also avoids

unsavouriness.

Note that the matrix used in the proof of Thm. 4.5 is just ⟨Z4,+4⟩, with
+4 = ◦ and x → y = y −4 x, though in this group structure ¬ is not the
group inverse. Given this definition, we can take → to residuate ◦, but with
respect to the discrete order – that is, x ◦ y = z ⇐⇒ x = y → z holds.
That is, in this model, x → y = y −4 x. Given that we have a discrete order,
in accordance with the results in [37], this model will have ¬ as a Kapsner
complementation operator just in case it has no fixed point, which this does
not.27

In fact, that we have this model tells us a few things. Since there is only
one designated value and no fixed point for negation, it follows that:

Corollary 4.6 (Consistency). Either ⊬RWB−
→,¬,◦

A or ⊬RWB−
→,¬,◦

¬A holds for
any A ∈ Fm.

Unfortunately, it’s not clear, to me at least, whether this logic satisfies
VARIABLE SHARING. Indeed the above model, and others I’ve found of
it (using MaGIC), all seem to validate (A → A) → (B → B), which is a
problem. Indeed, I’ve not been able to find a proof of variable sharing for
any logic including (rCont) and (Boe).28 Nor have I found any proof that
RWB−

→,¬,◦, at least, fails to satisfy VARIABLE SHARING. As of now, it’s un-
clear to me whether there is a deeper problem here, or just a failure of imag-
ination. So I propose the following:

27This gives some insight into why we don’t use the group inverse here, as that does have
fixed points. Thanks to Shay Logan and Yale Weiss for helpful discussion surrounding
this model and the results obtained from it. Weiss pointed out to me that this style of
construction works generally for ⟨Zn,+n⟩ for any even n > 2, but that it seems unlikely
to work for any odd n, as we won’t guarantee that there aren’t cycles in the table for ¬,
speaking against their Kapsner complementation-ness.
28Including those systems mentioned in § 4.2 which include (Boe).
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Open Problem 4.7. Does RWB−
→,¬,◦ satisfy VARIABLE SHARING?

In any case, the results in this section are somewhat equivocal, but sug-
gestive.

5. CONCLUSION

This paper has investigated options for avoiding the unsavouriness which
seems endemic to connexive relevant logics. I’ve investigated the prospects
of these avenues, suggesting systems for the latter two, which are the lesser
studied of the three. While perhaps yet more logics are not needed in the
literature on either relevant or connexive logics, I’ve laid out a few, though
mainly by way of illustration. An intended upshot of this, besides the core
project of avoiding unsavouriness, is to provide some structure, and a clas-
sification of some key types of connexive relevant logics. With any luck,
there are other systems worth investigating here. Furthermore, there may
be some other positive reasons for investigating connexive extensions of
relevant logics – mine here have mainly been historical. In any case, I leave
these and any further issues for future work.
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ing in Connexive Logic”. Journal of Philosophical Logic 50:1377–1388 (2021).
doi.org/10.1007/s10992-021-09602-y

[14] Nicholas Ferenz and Andrew Tedder. “Neighbourhood Semantics for
Modal Relevant Logics”. Journal of Philosophical Logic 52:145–181 (2023).
doi.org/10.1007/s10992-022-09668-2

[15] Josep Maria Font. Abstract Algebraic Logic: An Introductory Textbook. College Publica-
tions (2016).

[16] Nissim Francez. “Relevant Connexive Logic”. Logic and Logical Philosophy 28:409–425
(2019). apcz.umk.pl/LLP/article/view/LLP.2019.007

[17] Lloyd Humberstone. The Connectives. MIT Press (2011).
[18] Andreas Kapsner. “Strong Connexivity”. Thought: A Journal of Philosophy 1(2):141–145
(2012). doi.org/10.1002/tht3.19

[19] Peter Lavers. Generating Intensional Logics. M.A. Thesis, University of Adelaide
(1985).

[20] Clarence Irving Lewis. “Implication and the Algebra of Logic”. Mind 21:522–531
(1912). jstor.org/stable/2249157

[21] Larisa Maksimova. “On E-Theories”. Algebra i Logika 9(5):530–538 (1970). (originally
in Russian, translated to English in 1971).

[22] Franci Mangraviti and Andrew Tedder. “Consistent Theories in In-
consistent Logics”. Journal of Philosophical Logic 52(4): 1133–1148 (2023).
doi.org/10.1007/s10992-023-09700-z

[23] Storrs McCall. “Connexive Implication”. Journal of Symbolic Logic 31:415–433 (1966).
doi.org/10.2307/2270458

[24] Robert K. Meyer. Topics in Modal and Many-Valued Logic. Ph.D. Dissertation, University
of Pittsburgh (1966).

[25] Chris Mortensen. “Aristotle’s Thesis in Consistent and Inconsistent Logics”. Studia
Logica 43(1-2):107–116 (1984). doi.org/10.1007/BF00935744

[26] Hitoshi Omori. “A Simple Connexive Extension of the Basic Relevant
Logic BD”. IfCoLog Journal of Logics and Their Applications 3:467–478 (2016).
collegepublications.co.uk/ifcolog/?00007

[27] Hitoshi Omori and Heinrich Wansing. “An Extension of Connexive Logic C”. Ad-
vances in Modal Logic, AiML20, ed. N. Olivetti, R. Verbrugge, S. Negri, G. Sandu, pp. 503–
522. College Publications (2020). aiml.net/volumes/volume13/Omori-Wansing.pdf

[28] Hitoshi Omori. “A Tension for Mares”. Organon F (Forthcoming).
[29] Hitoshi Omori and Andreas Kapsner. “Angell and McCall meet Wansing”. Studia Log-

ica (Forthcoming).
[30] Graham Priest. “The Logic of Paradox”. Journal of Philosophical Logic 8(1):219–242

(1979).
[31] Richard Routley and Robert K. Meyer. “The Semantics of Entailment - I”. Truth, Syntax
and Modality (ed.) H. Leblanc, pp. 199-243. North-Holland (1973).

[32] Richard Routley. “Semantics for Connexive Logics I”. Studia Logica 37:393–412 (1978).
doi.org/10.1007/BF02176171

Australasian Journal of Logic (22:1) 2025, Article no. 2



32

[33] Richard Routley, Robert K. Meyer, Val Plumwood, and Ross T. Brady. Relevant Logics
and Their Rivals, Volume 1. Ridgeview Publishing (1982).

[34] T.J. Smiley. “Relative Necessity”. Journal of Symbolic Logic 28: 113–134 (1963).
[35] Matthew Spinks and Robert Veroff. “Paraconsistent constructive logic with strong

negation as a contraction-free relevant logic”. Don Pigozzi on Abstract Algebraic Logic, Uni-
versal Algebra, and Computer Science, J. Czelakowski (ed.), pp. 323–379. Springer (2018).
doi.org/10.1007/978-3-319-74772-9 13

[36] Andrew Tedder. “A Note on R-Mingle and the Danger of Safety”. Australasian Journal
of Logic 19(1):51–58 (2022). doi.org/10.26686/ajl.v19i1.7449

[37] Andrew Tedder. “Kapsner Complementation: An Algebraic Take on Kapsner Strong
Logics”. Studia Logica 111:321–352 (2023). doi.org/10.1007/s11225-022-10025-2

[38] Heinrich Wansing. “Connexive Modal Logic”. Advances in Modal Logic, volume 5, pp.
367–383. King’s College Publications (2006). philpapers.org/rec/WANCML-3

[39] Heinrich Wansing and Matthias Unterhuber. “Connexive Condi-
tional Logic. Part I”. Logic and Logical Philosophy 28(3):567–610 (2018).
apcz.umk.pl/LLP/article/view/LLP.2018.018

[40] Yale Weiss. “Semantics for Pure Theories of Connexive Implication”. Review of Sym-
bolic Logic 15(3):591–606 (2022). doi.org/10.1017/S1755020320000374

[41] Yale Weiss. “Did Aristotle Endorse Aristotle’s Thesis? A Case Study in
Aristotle’s Metalogic”. Notre Dame Journal of Formal Logic 63(4):551–579 (2022).
doi.org/10.1215/00294527-2022-0032

DEPARTMENT OF PHILOSOPHY I, RUHR UNIVERSITY BOCHUM
Email address: ajtedder.at@gmail.com

Australasian Journal of Logic (22:1) 2025, Article no. 2


