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Abstract

Valerie Plumwood introduced in Some false laws of logic [15] a
series of arguments on how the rules Exported Syllogism, Disjunctive
Syllogism, Commutation, and Exportation are not acceptable. Based
on this we define the class of Plumwood algebras, logical matrices
that do not verify any of these theses. Afterwards we provide condi-
tional variants of the characteristic matrix of the logic RM3 that are
also Plumwood algebras. These matrices are given an axiomatization
based on First Degree Entailment and are endowed with Belnap-Dunn
Semantics. Finally we provide results of Soundness and Completeness
in the strong sense for each of the defined variants.

Keywords: Plumwood Algebras; Belnap-Dunn Semantics; 3-valued
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1 Introduction

V. Plumwood determined that there are four rules of proof, namely Exported
Syllogism, Disjunctive Syllogism, Commutation, and Exportation, that are
unacceptable as they fail to preserve the property of sufficiency of premiss
set for conclusion [15]. She went on to argue that this failure is independent
from their role of responsibility on paradoxes and their interpretations are
outright false. These aforementioned laws, are formalized as follows:

TP1. A → B ⇒ (B → C) → (A → C) – Exported Syllogism

TP2. A, (¬A ∨B) ⇒ B – Disjunctive Syllogism

TP3. A → (B → C) ⇒ B → (A → C) – Commutation

TP4. (A ∧B) → C ⇒ A → (B → C) – Exportation

These rules are more than often regarded as key items in many different
systems. For example, it is well known the role of TP1 in the relevance sys-
tems such as B [14] only that it is presented under the name of Suffixing.
TP2 is equivalent to Modus Ponens in any logic that validates the inter-
definition of the conditional with respect to negation and disjunction, i.e.,
A → B =df ¬A ∨ B.With TP3 and TP4 being classically valid theses that
play a minor role in some modal systems such as S5 or T [12]. The arguments
of Plumwood highlighting the reasons for discarding these rules, while never
published until recently [15], were influential enough that their imprint can
be felt in many reference texts such as [19] where she is one of the authors.

Despite the importance of Plumwood’s contributions, we fail to see the
explicit footprint of her work, and are rather shown the implicit outcome in
the further development of relevance logics in work such as [18]. With that
in mind, we set ourselves to explore the class of algebras that do not validate
the rules that Plumwood shown to be false. Thus, we can define the notion
of Plumwood algebras as follows:

Definition 1.1 (Plumwood algebras). A class of algebra A is a Plumwood
algebra if and only if (iff) no Plumwood thesis TPn is valid in said class of
algebra. That is to say that ̸|=A TPn where, of course, 1 ≤ n ≤ 4.

Nevertheless, setting ourselves with the task of exploring all the Plum-
wood algebras would be a daunting task, if not impossible to carry on. Thus,
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we need to provide further context on which this exploration can be per-
formed. For that matter we will consider the framework that the logic RM3
provides. Axiomatizations for the system RM3 can be found in [2] but prob-
ably the most recognizable work related to it was written by R. T. Brady
[9], which was seminal for multiple works afterwards [5]. RM3, which is part
of the family of relevance logics, was born as a three-valued extension of the
logic R-Mingle (RM), where RM is the result of adding the Mingle axiom,
A → (A → A), to the system of relevant conditional R [10]. Thus, RM3
is a logic in which propositions could be assigned an interpretation in terms
of three truth-values: True, False or Both. RM3 also lacks the more jarring
implication paradoxes [16], such as Verum Ex Quodlibet, A → (B → A).

It should be easy to see the connection between RM3 and Plumwood’s
work if we take into account the development of the first axiomatization of
RM3 by J. M. Dunn (cf. [2, 9]), and how he relates RM3 to the work of A. R.
Anderson and N. Belnap. In particular, Plumwood explicitly states that only
Anderson and Belnap have clearly committed themselves to the interpretation
of p ⇒ q as p is sufficient for the deduction of q [15]; this is especially clear
in [1, 4]. In this line of research, it is of common knowledge the work that
Belnap and Dunn did with regards to inconsistent data. It is the inception of
what nowadays is known as Belnap-Dunn semantics, that is extensively used
to explore different algebras whose interpretations are based upon the four
characteristic values of Belnap’s work [6, 8, 13] all the way up to colliding
data in networks [20].

Extending our scope beyond the work of Dunn, another topic that fo-
cuses on the nature of implication is the one of N. Tomova. In [21] Tomova
introduces the notion of natural conditional. In particular, Tomova defends
that a conditional is said to be natural if and only if it satisfies three dif-
ferent conditions: (I) If the truth-values are restricted to T and F , i.e.: the
classical truth-values, the conditional is the one of classical logic; (II) the
conditional verifies Modus Ponens; and (III) whenever the antecedent of the
conditional is assigned a lower value than the consequent, the interpretation
of the conditional is a designated truth-value; that is to say that for any
propositional variables p and q, if p ≤ q, then I(p → q) ∈ D12. While there
are certain weakenings of Tomova’s definition [17] we prefer to focus on the

1For the technical definitions of the notions of interpretation and designated values, we
refer the reader to Definitions 2.3 and 2.5 below.

2The definition of natural conditional can be found in this paper under Definition 7.3.
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original iteration of the idea.
Thus, the main aim of this paper is to explore all of the conditional vari-

ants of RM3 characteristic matrix that are Plumwood algebras. That is,
variants that do not verify the rules Exported Syllogism, Disjunctive Syl-
logism, Commutation, and Exportation. Additionally, to provide a more
specific context, in particular, we will focus only on those variants that hap-
pen to have a natural conditional according to Tomova’s definition. Given
RM3 conditional:

→RM3 0 1 2
0 2 2 2
1* 0 1 2
2* 0 0 2

We have to take into consideration variants in which the interpretation of
the cases f→RM3

{(0, 1), (1, 1), (1, 2)} varies because these are the only cases
with designated values whose possible variations will still result in other
natural conditionals. This means that we have to consider eight (8) different
variants including the characteristic case of RM3. Out of this variants, only
four (4) are Plumwood algebras and will be explored in this paper under
the name of MPi

matrices. Let us note that the characteristic matrix of
RM3 is not a Plumwood algebra since it validates both the aforementioned
rules TP1 and TP3. We will provide a definition of these logical matrices as
well as the inherent algebraic semantics. Afterwards we will axiomatize the
MPi

matrices as Pi-logics, which we will endow with Belnap-Dunn semantics.
Finally, we will show how the Pi-logics are both sound and complete in the
strong sense w.r.t. both semantics.

Finally, the paper is structured as follows: In Section 2 we introduce the
Pi-logics as well as the algebraic semantics that characterize them. In Section
3 we define the Belnap-Dunn semantics and endow the Pi-logics with it. In
Section 4 we provide a proof of the coextensiveness of the two semantics that
we have previously introduced and give a proof of soundness in the strong
sense for the Pi-logics. In Section 5 we prove the extension and primeness
lemmas that are used for the completeness proof. In Section 6 we show how
the Pi-logics are complete in the strong sense w.r.t. both semantics that
we have defined. In Section 7 we show some of the properties that the Pi-
logics have. Finally, in Section 8 we sum up the work done and present the
conclusions of the paper.
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2 Pi-logics and Algebraic Semantics

We begin by defining what a propostitional language is.

Definition 2.1 (Propositional Languages). A propositional language L is a
denumerable set of propositional variables p1, p2, ..., pn, ... and all or some
of the connectives ∧ (Conjunction), ∨ (Disjunction), ¬ (Negation) and →
(Conditional). We define ↔ as is customary: A ↔ B =df (A → B) ∧ (B →
A). The set of well-formed formulae (wff) is defined as usual. Finally A, B, ...
are used to represent metalinguistic variables.

Let us note that we use the term formula for singular and formulae for
plural. Thus, the abbreviation wff covers both. Additionally, we use ⇒ and
& as metaconnectives in their customary sense, and similarly, parentheses
are omitted around conjunctions and disjunctions when convenient. Next we
define what is a logic.

Definition 2.2 (Logics). A logic L is defined as a structure ⟨L, ⊢L⟩ where L
is a propositional language from Definition 2.1 and ⊢L is a (proof-theoretical)
consequence relation defined on L by a set of axioms and rules of inference.
The notions of proof and theorem are the usual ones of Hilbert-style ax-
iomatic systems, that is to say that Γ ⊢S A means that A is derivable from
the set of wff Γ in S, and ⊢S A means that A is a theorem of S.

With the previous definitions, now we can proceed unto defining what
a logical matrix is and, afterwards, we define the MPi

matrices that are
characteristics of the Pi-logics.

Definition 2.3 (Logical Matrix). A logical matrix M is a structure ⟨K,D,F , f⟩
where K is a set, D and F are non-empty subsets of K such that D∪F = K
and D ∩ F = ∅, and f is the set of functions defined over K. Thus, K it
the set of elements of M ; D is the set of designated values, while F is the
set of non-designated values. Finally, the functions of f provide the different
interpretations of the connectives over M .

Definition 2.4 (MPi
Matrices). The MPi

matrices are defined as a logical
matrix (cf. Definition 2.3) such that MPi

= ⟨KPi
, DPi

, FPi
, fPi

⟩, where KPi
=

{0, 1, 2}, DPi
= {1, 2}, FPi

= {0}, and fPi
= {f∧, f∨, f¬, f→}, where ∀a, b ∈

KPi
, f∧(a, b) is defined as min.(a, b) and f∨(a, b) is defined as max.(a, b).

f¬(a) is defined as an operation such that f¬(0) = 2, f¬(1) = 1, f¬(2) = 0.
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These connectives, in order to facilitate the reading, are explicitated in the
following truth-tables3:

∨ 0 1 2
0 0 1 2
1* 1 1 2
2* 2 2 2

∧ 0 1 2
0 0 0 0
1* 0 1 1
2* 0 1 2

¬
0 2
1* 1
2* 0

Finally, f→(a, b) is defined for each matrix of the Pi-logics according to
the following tables:

P1 0 1 2
0 2 2 2
1* 0 1 1
2* 0 0 2

P2 0 1 2
0 2 1 2
1* 0 1 1
2* 0 0 2

P3 0 1 2
0 2 1 2
1* 0 2 1
2* 0 0 2

P4 0 1 2
0 2 1 2
1* 0 2 2
2* 0 0 2

Once we have defined the matrices, we define the interpretations and the
notions of validity and consequence that derive from them.

Definition 2.5 (MPi
-interpretations). A MPi

-interpretation IMPi
is a func-

tion from the set of wff F to K and adjusted according to the connectives
defined in Definition 2.4. Same follows for any subset of wffs Γ.

Definition 2.6 (MPi
-consequence and MPi

-validity). For any set of wff Γ and
wff A, Γ |=MPi

A, A is consequence of Γ in the MPi
matrices iff IMPi

(A) ∈ D
as long as IMPi

(Γ) ∈ D for every MPi
-interpretation IMPi

. Furthermore, A is
MPi

-valid, |=MPi
A, iff IMPi

(A) ∈ D for every MPi
-interpretation.

Given these definitions, we now provide the following proposition so the
characterization of the MPi

matrices is fully fleshed out.

3Let us note that the truth-tables for these connectives are identical to those of RM3.
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Proposition 2.7 (The MPi
matrices are Plumwood algebras). All the MPi

matrices from Definition 2.4 are Plumwood algebras as seen in Definition
1.1.

Proof. The proof is straight forward and is left to the reader, who might feel
compelled to use [11].

With all this, we now proceed to introduce the axiomatizations of the
Pi-logics. First of all, let us note that the axiomatizations here presented
have substituted most of the usual derivation rules by their disjunctive coun-
terparts. This is due to the extension lemma that we will be using to show
the completeness of the logics. To further expand on disjunctive rules, the
reader can refer to [9] 4. With that in mind, the following is the axiomati-
zation of Disjunctive FDE, i.e., the result of adding the disjunctive version
of FDE derivation rules to its characteristic axioms 5. Let it be noted that
when convenient, we use the dot (.) notation in such a way that, whenever
the main connective is a conditional, it is denoted by the dot and parenthesis
are omitted.

4A necessary condition to apply the extension lemma that we will use later in this work
to a given logic L is that it is possible to build up prime regular theories closed under the
primitive rules of inference of L. But this necessary condition is not generally met by weak
logics. Thus, suppose that L is a logic closed by a rule R but lacking the corresponding
axiom. Then, following the aforementioned method, it is not possible to build prime L-
theories closed under that rule R, in general. Nevertheless, Brady himself showed that,
despite the absence of the axiom corresponding to the rule R, prime L-theories are available
if in addition to being closed by R, L is also closed under the disjunctive version of R.

5Regarding axioms A1-A6, we want to note that Anderson and Belnap’s original ax-
iomatization of FDE: (1) does not contain A1 as an axiom but, as they stated on page 160
[2], it can be easily derived from A5, A6 and transitivity rule; (2) the metalinguistic vari-
ables are restricted to wff composed only by truth-functional connectives –thus, excluding
any possible non first-degree formula.
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A1. A → A
A2. A ∧B → .A / A ∧B → .B
A3. A → .A ∨B / B → .A ∨B
A4. A ∧ (B ∨ C) → .(A ∧B) ∨ (A ∧ C)
A5. ¬¬A → A
A6. A → ¬¬A

R1. A, B ⇒ A ∧B
R2. A → B, A ⇒ B
R3. C ∨ (A → B), C ∨ A ⇒ C ∨B
R4. D ∨ (A → B), D ∨ (B → C) ⇒ D ∨ (A → C)
R5. D ∨ (A → B), D ∨ (A → C) ⇒ D ∨ (A → (B ∧ C))
R6. D ∨ (A → C), D ∨ (B → C) ⇒ D ∨ ((A ∨B) → C)
R7. C ∨ (A → ¬B) ⇒ C ∨ (B → ¬A)

FDE can be extended into FDEPi
+, FDE plus the common part of the

conditional of Pi-logics, with the addition of the following axioms:

A7. (A → B)∧A∧¬B → .¬A A10. (A → B) ∨ ¬B

A8. (A → B) ∧ A ∧ ¬B → .B A11. ¬A ∧B → .A → B

A9. (A → B) ∨ A

Thus, P1 is FDEPi
+ plus the following axioms and rules:

A12. ¬(A → B) → .A ∨ ¬B R8. C ∨ ¬(A → B) ⇒ C ∨ A

A13. A ∧ ¬B → .¬(A → B) R9. C ∨ ¬(A → B) ⇒ C ∨ (A ∨ ¬A)

A14. A ∧ ¬A → .¬(A → B) R10. C ∨ ¬(A → B) ⇒ C ∨ (¬A ∨ ¬B)

P2 is FDEPi
+, A12-A14, and R9 plus the following axioms and rules:

A15. B ∧ ¬B → .¬(A → B) R11. C ∨ ¬(A → B) ⇒ C ∨ (A ∨B)

R12. C ∨ ¬(A → B) ⇒ C ∨ (¬A ∨B ∨ ¬B)
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P3 is FDEPi
+ and A12 plus the following axioms:

A16. ¬(A → B) ∧ ¬A → .A ∨B
A17. ¬(A → B) ∧ ¬A → .¬A ∨ ¬B
A18. ¬(A → B) ∧ A ∧ ¬A ∧B ∧ ¬B → .C
A19. ¬(A → B) ∧ ¬A ∧B ∧ ¬B → .B
A20. A → .¬(A → B) ∨B
A21. A ∧ ¬A → .¬(A → B) ∨ ¬B
A22. ¬B → .¬(A → B) ∨ ¬A
A23. B ∧ ¬B → .¬(A → B) ∨ A

P4 if FDEPi
+, A16, A18, A20, A22, and A23 plus the following axiom:

A24. (¬(A → B) → ¬B) ∨ ¬B

Also, we add a remark about disjunctive rules:

Remark (Regular rules follow from their disjunctive counterpart). For any
of the disjunctive rules of the Pi-logics, the regular version follows from the
disjunctive one, except for the case of R3, as R2 is included as a primitive rule.
In particular, the proofs follow by A3, R2, and the corresponding disjunctive
rule.

Finally, to conclude the section, we mention some derived rules and
theorems that are common to all the Pi-logics. These are Modus Tollens
Rule, A → B, ¬B ⇒ ¬A, that follows from R2 and R7; Summation Rule,
A → B ⇒ C ∨A → .C ∨B, that follows by A3, R6 and R7; De Morgan (I),
¬A ∨ ¬B → .¬(A ∧ B), that follows from A2, R6 and R7; De Morgan (II),
¬(A ∧ B) → .¬A ∨ ¬B, that follows from A3, A5, R5 and R6; De Morgan
(III), ¬A∧¬B → .¬(A∨B), that follows from A2, A6, R6 and R7; De Morgan
(IV), ¬(A∨B) → .¬A∧¬B, that follows from A3, R5 and R7; Distribution,
[A∨ (B ∧C)] ↔ [(A∨B)∧ (A∨C)], that follows by A2, A3, R4, R5 and R6
from left to right, and by A4, A5, R4, R5, and De Morgan (II) and (IV) from
right to left; Associativity of Disjunction, [A ∨ (B ∨ C)] ↔ [(A ∨ B) ∨ C],
that follows by A3, R4 and R6 in both directions; and Idempotence of Dis-
junction, A ↔ (A∨A), that follows by A3 from left to right, and by A1 and
R6 from right to left.
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3 Belnap-Dunn Semantics

In this section we introduce the Belnap-Dunn semantics for the Pi-logics. We
begin by defining the models and the notions of validity and consequence.

Definition 3.1 (Pi-models). A Pi-model MPi
is a structure such that ⟨KPi

, IPi
⟩

where KPi
= {{T}, {F}, {T, F}}, and IPi

is a Pi-interpretation, a function
from F over KPi

where the following clauses apply for a propositional variable
p and wff A and B:

(I) IPi
(p) ∈ KPi

(II) T ∈ IPi
(¬A) iff F ∈ IPi

(A)

(III) F ∈ IPi
(¬A) iff T ∈ IPi

(A)

(IV) T ∈ IPi
(A ∧B) iff T ∈ IPi

(A) and T ∈ IPi
(B)

(V) F ∈ IPi
(A ∧B) iff F ∈ IPi

(A) or F ∈ IPi
(B)

(VI) T ∈ IPi
(A ∨B) iff T ∈ IPi

(A) or T ∈ IPi
(B)

(VII) F ∈ IPi
(A ∨B) iff F ∈ IPi

(A) and F ∈ IPi
(B)

(VIII) T ∈ IPi
(A → B) iff T ̸∈ IPi

(A) or F ̸∈ IPi
(B) or (F ∈ IPi

(A)
and T ∈ IPi

(B))

We distinguish four different instances of the clause (IX), one for each model
for the corresponding logic. These clauses are as follow:

(IX1) F ∈ IP1(A → B) iff (T ∈ IP1(A) and F ∈ IP1(B)) or (T ∈ IP1(A)
and F ∈ IP1(A))

(IX2) F ∈ IP2(A → B) iff [T ∈ IP2(A) and (F ∈ IP2(A) or F ∈ IP2(B))]
or (T ∈ IP2(B) and F ∈ IP2(B))

(IX3) F ∈ IP3(A → B) iff {T ∈ IP3(A) and [T ̸∈ IP3(B) or (F ∈ IP3(A)
and F ̸∈ IP3(B))]} or {F ∈ IP3(B) and [F ̸∈ IP3(A) or (T ̸∈ IP3(A)
and T ∈ IP3(B))]}

(IX4) F ∈ IP4(A → B) iff F ∈ IP4(B) and [F ̸∈ IP4(A) or (T ∈ IP4(A)
and T ̸∈ IP4(B)) or (T ̸∈ IP4(A) and T ∈ IP4(B))]
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Definition 3.2 (Pi-consequence and Pi-validity). For any set of wff Γ and
wff A, Γ |=MPi

A, A is consequence of Γ in the Pi-model MPi
iff T ∈ IPi

(A)
if T ∈ IPi

(Γ) (T ∈ IPi
(Γ) iff ∀B ∈ Γ | T ∈ IPi

(B); F ∈ IPi
(Γ) iff ∃B ∈

Γ | F ∈ IPi
(B)). Particularly, |=MPi

A, A is true in MPi
iff T ∈ IPi

(A).
Then, Γ |=Pi

A, A is semantic consequence of Γ in the semantics for the
Pi-logics, iff Γ |=MPi

A for every Pi-model. Particularly, |=Pi
A, A is valid

in the semantics for the Pi-logics, iff |=MPi
A for every Pi-model MPi

.

4 Soundness of Pi-logics

After introducing the Pi-logics as well as the Algebraic and Belnap-Dunn
semantics for them, we proceed to show the soundness of these, the Pi-
logics, w.r.t. both semantics defined above. Before that, we prove that
both semantics are equivalent so the proof can be shown in a more straight
forward way. We begin by giving a establishing a correspondence between the
interpretations of the semantics; first it is defined for propositional variables
and then is extended to wff and sets of wff.

Definition 4.1 (Corresponding Interpretations). Given any MPi
-interpretation,

a corresponding Pi-interpretation can be defined. Conversely, the same thing
happens. In particular, given a MPi

-interpretation IMPi
for a propositional

variable p, the corresponding Pi-interpretation is defined as follows:

(1) IMPi
(p) = 0 iff IPi

(p) = {F}

(2) IMPi
(p) = 1 iff IPi

(p) = {T, F}

(3) IMPi
(p) = 2 iff IPi

(p) = {T}

Proposition 4.2 (Extension of the corresponding interpretations to any
wff). Given the corresponding interpretations of Definition 4.1, we extend
them to any wff as follows:

(1) IMPi
(A) = 0 iff IPi

(A) = {F}

(2) IMPi
(A) = 1 iff IPi

(A) = {T, F}

(3) IMPi
(A) = 2 iff IPi

(A) = {T}
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Proof. IPi
integrates the wff according to the clauses of Definition 3.1. With

that in mind, the proof proceeds by induction and is left to the reader. Let
us state that there are two different cases to be considered. The case in which
A is a propositional variable, which is trivial as it corresponds to Definition
4.1. And the case in which A is, indeed, a wff. There are four different cases,
one for each connective; in particular, the case of the conditional is specific
to each of the Pi-logics, as the clause for falsehood varies. It is obvious that
the proof needs to be addressed in both directions: once assuming the IMPi

as the hypothesis, and another one where the assumed hypothesis is the IPi
.

As stated above, the proof is left to the reader, who might be interested in
similar proofs to this like the ones appearing in [7, 13].

Proposition 4.3 (Extension of the corresponding interpretation to a set of
wff). Given a IPi

-interpretation and a IMPi
-interpretation, for any set of wff

Γ, it follows that:

(1) IMPi
(Γ) = 0 iff IPi

(Γ) = {F}

(2) IMPi
(Γ) = 1 iff IPi

(Γ) = {T, F}

(3) IMpi
(Γ) = 2 iff IPi

(Γ) = {T}

Proof. This proof, as the case of Proposition 4.2, proceeds by induction. As
above, it is also left to the reader.

Now, we are able to show the coextensiveness of both semantics, the
algebraic one and the Belnap-Dunn semantics.

Theorem 4.4 (Coextensiveness of |=MPi
and |=Pi

). For any set of wff Γ and
wff A, Γ |=MPi

A iff Γ |=Pi
A.

Proof. There are two different cases:

(a) Γ = ∅

(b) Γ ̸= ∅

For (a) we have to show that |=MPi
A iff |=Pi

A. This means that for any IMPi

and IPi
, IMPi

(A) = 1 or 2 iff T ∈ IPi
, which was already shown in Proposition

4.2.
For (b) we need to show that Γ |=MPi

A iff Γ |=Pi
A. This is divided in

two different subcases: (i) from left to right, if Γ |=MPi
A, then Γ |=Pi

A;
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(ii) and from right to left, if Γ |=Pi
A then Γ |=MPi

A. We proceed with
(i). We assume (1). Γ |=MPi

A and need to show that T ∈ IPi
(A). We also

assume a Pi-interpretation such that (2). T ∈ IPi
(Γ). By Proposition 4.3,

we have a corresponding MPi
-interpretation such that (3). IMPi

(Γ) = 1 or 2.
Given (1) and (3), it follows (4). IMPi

(A) = 1 or 2. Given Proposition 4.2
and (4) we have T ∈ IPi

as we needed to show. For subcase (ii) we assume
(1). Γ |=Pi

A and need to show that IMPi
(A) = 1 or 2. Additionally we also

assume (2). IMPi
(Γ) = 1 or 2 by the corresponding interpretation defined

above. Given (2) and Definition 3.2 it follows (3). T ∈ IPi
(Γ). From (1), (3)

and Definition 3.2 it follows (4). T ∈ IPi
(A). Finally, using Proposition 4.2

we have IMPi
= 1 or 2 just as we need.

Thus, we have shown the coextensiveness of |=MPi
and |=Pi

.

With the result of Theorem 4.4 we can proceed to the soundness proof.

Theorem 4.5 (Soundness of Pi-logics). For any set of wff Γ and wff A, if
Γ ⊢Pi

A then Γ |=Pi
A and Γ |=MPi

A.

Proof. We firstly show that if Γ ⊢Pi
A then Γ |=MPi

A. We proceed by
induction on the length of proofs. For that matter we have to distinguish
three different cases:

(1) A ∈ Γ

(2) A is an axiom of Pi

(3) A is derived using a Pi rule

(1) follows automatically and it is trivial. (2) requires to show the validity
of the axioms in their corresponding matrices. This is left to the reader,
who is advised to use [11] to simplify the process. Finally, (3) requires us to
show the validity of the rules. Although it could be done similarly to (2),
we provide one example and the rest of the rules are left to the reader. We
show the case of non-disjunctive R10.

R10. ¬(B → C) ⇒ ¬C ∨ ¬B
1. Γ ⊢Pi

¬(B → C) Hypothesis
2. Γ |=MPi

¬(B → C) Induction Hypothesis, 1

We need to demonstrate Γ |=MPi
¬C∨¬B. Thus, we assume IMPi

(Γ) = 1
or 2, and prove IMPi

(¬C ∨ ¬B) = 1 or 2.
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3. IMPi
(Γ) = 1 or 2 Hypothesis

4. IMPi
(¬(B → C)) = 1 or 2 Definition 2.6, 2, 3

5. IMPi
(¬C ∨ ¬B) = 1 or 2 MPi, 4

Now, to show that if Γ ⊢Pi
A then Γ |=Pi

A, follows automatically by the
coextensiveness of |=Pi

and |=MPi
shown in Theorem 4.4 and what we have

shown above.

5 Extension and Primeness Lemmas

In this section we introduce the extension and primeness lemmas that are
required for showing that the Pi-logics are complete. We begin by defining the
notion of Pi-theories and their classes. Afterwards we proceed to introduce
the notion of disjunctive derivability associated with Pi-logics and what is a
maximal set in said logics.

Definition 5.1 (Pi-theories and their Classes). A Pi-theory T is a set of wff
closed under Adjunction and Pi-entailment. In particular, for wff A and B,
(1) T is closed under Adjunction iff if A ∈ T and B ∈ T , then A ∧ B ∈ T ;
(2) T is closed under Pi-entailment if iff ⊢Pi

A → B and A ∈ T , then B ∈ T .
Additionally, the following classes of Pi-theories are defined for a Pi-theory
T and wff A and B:

(I) Prime Pi-theories: T is prime iff if A ∨ B ∈ T , then A ∈ T or
B ∈ T .

(II) Regular Pi-theories: T is a regular Pi-theory iff if ⊢Pi
A, then

A ∈ T .

(III) A-consitent Pi-theories: T is an a-consistent Pi-theory iff T is not
trivial, that is, T does not contain all the wff.

(IV) Empty Pi-theories: T is an empty Pi-theory iff T does not contain
any wff.

(V) Appropriately closed Pi-theories: T is an appropriately closed Pi-
theory iff for all the Pi-logic derivation rules of the form Γ ⇒ B, it
follows that if Γ ⊆ T , then B ∈ T , for a set of wff Γ.
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In the following sections we will show that the theories for P1 and P2

need to be appropriately closed, while the theories for P3 and P4 need to be
a-consistent but not appropriately closed.

Remark (Closure under derived rules). For any T Pi-theory that is appro-
priately closed, it follows automatically that it also closed under any derived
rules as long as T is also a regular theory. As an example, the closure under
Modus Tollens Rule can be shown thanks to the closure of T under R2 and
R7.

Definition 5.2 (Disjunctive Pi-derivability). For any set of wff Γ, Θ, and
wff A1, ..., Am and B1, ..., Bn such that A1, ..., Am ∈ Γ and B1, ..., Bn ∈ Θ, Γ
disjunctively implies Θ in a Pi-logic L, in symbols Γ ⊢d

L Θ, iff ⊢L (A1 ∧ ... ∧
Am) → (B1 ∨ ... ∨Bn).

Definition 5.3 (Pi-maximal set). For any wff set Γ and its complement, Γ,
Γ is a Pi-maximal set iff Γ ⊬d

L Γ for any Pi-logic L.

Now we can introduce the auxiliary lemma for the extension lemma and
afterwards we will prove this extension lemma for the Pi-logics. Then we
introduce the primeness lemma:

Lemma 5.4 (Auxiliary lemma to the extension lemma). For an appropri-
ately closed Pi-logic L, and wff A, B1, ..., Bn, if {B1, ..., Bn} ⊢L A, then for
any wff C, it follows that C ∨ (B1 ∧ ... ∧Bn) ⊢L C ∨ A.

Proof. The proof proceeds by induction over the length of the proof of A
from {B1, ..., Bn}. With this in mind there are three main cases:

(a) A ∈ {B1, ..., Bn}: It follows by Summation Rule and the basic
properties of conjunction.

(b) A is an axiom: It follows by A3 and R2.

(c) A is the result of the application of a rule: This case has multiple
subcases, one for each derivation rule that is part of L. In particular,
the proof is different for the cases of P1 and P2 as both have more rules
in the axiomatization than P3 and P4; thus, the proof has a common
ground, in which we show the cases in which A follows by R1-R7, and
then we show the cases of P1, in which it might follow by R8-R10,
and P2, in which it might follow by R11 or R12. The common part
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of the proof is as follows: if A is derived by R1, it follows by R1 and
Distribution. All the other cases, R2-R7, follow by the corresponding
rule and Associativity of Disjunction, except for R2 that requires R3.
For the cases of P1 and P2, in which A follows by one of the rules that
are part of their axiomatization but not of the common one, it follows
by the rule of the case and Associativity of Disjunction. That is, in P1,
if A follows by R8-R10, it would suffices to use the corresponding rule
of the case and the aforementioned theorem. A similar method can be
used when A is derived by R11 and R12 in P2.

Lemma 5.5 (Extension to Pi-maximal sets). For a Pi-theory L, let Γ, Θ be
sets of wff, such that Γ ⊬d

L Θ. Then, there are sets of wff Γ′, Θ′, such that
Γ ⊆ Γ′, Θ ⊆ Θ′, Θ′ = Γ′ and Γ′ ⊬d

L Θ′. That is, Γ′ is Pi-maximal set such
that it does not disjunctively Pi-derive its complement.

Proof. Let A1, ..., An, ... be an enumeration of wff. For k ∈ N, the sets Γ′ and
Θ′ are defined as follows: Γ′ =

⋃
k Γk and Θ′ =

⋃
k Θk, where Γ0 = Γ and

Θ0 = Θ. For each k ∈ N, Γk+1 and Θk+1 are defined as follows:

(i) If Γk+1 ∪ {Ak+1} ⊢d
L Θ, then Γk+1 = Γk and Θk+1 = Θk ∪ {Ak+1}.

(ii) If Γk+1 ∪ {Ak+1} ⊬d
L Θk, then Γk+1 = Γk ∪ {Ak+1} and Θk+1 = Θk.

It is obvious, but should be noted nonetheless, that Γ ⊆ Γ′, Θ ⊆ Θ′ and
Γ′ ∪ Θ′ = F. We prove: (I) Γk ⊬d

L Θk for all k ∈ N. We proceed by reductio,
so we suppose that for some i ∈ N, (II) Γi ⊬d

L Θi but Γi+1 ⊢d
L Θi+1. Then

we have to take into consideration (i) and (ii), how the sets Γk+1 and Θk+1

are built. We begin with (ii): (a) Γi+1 ∪ {Ai+1} ⊬d
L Θi. By (ii) we have

Γi+1 = Γi ∪ {Ai+1} and Θi+1 = Θi. By the reductio hypothesis, (II), we get
Γi∪{Ai+1} ⊢d

L Θi, which leads to a contradiction. We continue with the case
(i): (b) Γi+1∪{Ai+1} ⊢d

L Θi. By (i) we have Γi+1 = Γi and Θi+1 = Θi∪{Ai+1}.
By the reductio hypothesis, (II), we get (1) Γi ⊢d

L Θi ∪ {Ai+1}. Now, we
assume the wff of this derivation to be B1, ..., Bm and C1, ..., Cn respectively;
also we will refer to B1, ..., Bm by B, and by C to C1, ..., Cn. Therefore, (1)
is as follows: (2) ⊢L B → .C ∨ Ai+1. On the other hand, given (b), there
is a conjunction of elements of Γi that we name B′; and also a disjunction
of elements of Θi that we name C ′. This leads to: (3) ⊢L B′ ∧ Ai+1 → .C ′.
Now, by B′′ and C ′′ we refer to B∧B′ and C ∨C ′ respectively. We will show
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(III) ⊢L B′′ → C ′′, and hence Γi ⊢d
L Θi, contradicting the reductio hypothesis

and proving (I). From (2) and some elementary properties of conjunction and
disjunction, we have: (4) ⊢L (B ∧ B′) → [(C ∨ C ′) ∨ Ai+1]. From (3) and
by R2 we have: (5) ⊢L [(B ∧ B′) ∧ Ai+1] → (C ∨ C ′). Now, by applying
R4, Idempotence of Disjunction, and Lemma 5.4 in (4) and (5), we have: (6)
⊢L (B ∧ B′) → (C ∨ C ′). But (6) is actually (III), ⊢L B′′ → C ′′, and hence,
as we pointed out above, Γi ⊢d

L Θi, contradicting the reductio hypothesis.
Consequently, (I), Γk ⊬d

L Θk, for all k ∈ N, follows. Thus, we have two
sets of wff, Γ′ and Θ′, such that Γ ⊆ Γ′, Θ ⊆ Θ′, Γ′ ⊬d

L Θ′, and Θ′ = Γ′

as it was required all along. Also, notice that Γ′ is a Pi-maximal set, since
Γ′ ⊬d

L Γ′.

Lemma 5.6 (Pi-maximal sets are prime Pi-theories). If Γ is a Pi-maximal
set, then Γ is a prime Pi-theory.

Proof. We need to prove that Γ is closed under Adjunction, Pi-entailment
and that is prime. Let A, B be wff and Γ a set of wff. For Adjunction we
assume that A, B ∈ Γ but A∧B ̸∈ Γ. By A1 we have ⊢L (A∧B) → (A∧B),
contradicting Γ maximality. For Pi-entailment, we assume ⊢L A → B and
A ∈ Γ. If B ̸∈ Γ happens, then there is a contradiction with Γ maximality.
The primeness of Γ is proven just like the closure under Adjunction but using
A1 in the form ⊢L (A ∨B) → (A ∨B).

6 Completeness of Pi-logics

To tackle the completeness proof we need to prove some preliminary lemmas
that will help us after defining the canonical model. We begin by defining
the notion of T -interpretation.

Definition 6.1 (T -interpretations). Let K be the set from Definition 3.1, L
a Pi-logic, and T a prime, regular and a-consistent theory. Then, a function
IT is defined in a way such that for each propositional variable p it follows
that:

(a) T ∈ IT (p) iff p ∈ T

(b) F ∈ IT (p) iff ¬p ∈ T
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Additionally, each wff is assigned an element from K according to the clauses
(IV)-(IX) from Definition 3.1. Thus, IT is a T -interpretation, and following
Definition 3.2 it follows that T ∈ IT (Γ) iff ∀B ∈ Γ|T ∈ IT (B); F ∈ IT (Γ) iff
∃B ∈ Γ|F ∈ IT (B).

With the above definition we can now introduce the canonical model, its
consequence relation and show that it is, indeed, a model.

Definition 6.2 (Canonical Pi-models). A canonical Pi-model is a struc-
ture ⟨KPi

, IT ⟩, where KPi
is the set from Definition 3.1, and IT is a T -

interpretation from Definition 6.1 above.

Definition 6.3 (Canonical Relation |=T ). The canonical relation |=T is de-
fined as an evaluation function such that for any set of wff Γ and wff A,
Γ |=T A iff T ∈ IT (A) if T ∈ IT (Γ). Particularly, |=T A iff T ∈ IT (A).

Proposition 6.4 (The canonical Pi-model is a Pi-model). For a Pi logic L,
a Pi-theory T , and canonical Pi-model M, it follows that each M is, indeed,
a Pi-model, for (1 ≤ i ≤ 4).

Proof. It follows automatically by Definitions 3.1 and 6.2. Of course, there
are four different cases, regarding each of the different falsity clauses. Let us
additionally note that each propositional variable and wff is assigned {T},
{F}, or {T, F}, as T is required to be a-consistent, but does not require to
be complete or consistent in the classical sense.

At this point we introduce a number of lemmas that will help greatly with
the completeness theorem. All these lemmas are directed towards creating a
solid interpretation of the theory upon which the canonical model is created.

Lemma 6.5 (Theories and Double Negation). For a Pi-logic L, a Pi-theory
T , and wff A it follows that A ∈ T iff ¬¬A ∈ T .

Proof. From left to right it follows by A6 and the closure of T by Pi-
entailment. The proof from right to left uses A5 and the same closure.

Lemma 6.6 (Conjunction and Disjunction in Prime Theories). For a Pi-
logic L, a prime Pi-theory T , and wff A and B it follows that (1) A∧B ∈ T
iff A ∈ T and B ∈ T ; (2) ¬(A ∧ B) ∈ T iff ¬A ∈ T or ¬B ∈ T ; (3)
A∨B ∈ T iff A ∈ T or B ∈ T ; (4) ¬(A∨B) ∈ T iff ¬A ∈ T and ¬B ∈ T .
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Proof. (1), from left to right, follows by A2 and the closure of T under
Pi-entailment. From right to left follows by A2 and the closure T under ad-
junction. (2), from left to right, follows by De Morgan (II) and the primeness
and closure under Pi-entailment of T . From right to left it follows by A3, De
Morgan (I), and the closure of T under Pi-entailment. (3), from left to right,
follows by the primeness of T . From right to left it follows by A3, and the
closure of T under Pi-entailment. (4), from left to right, follows by De Mor-
gan (IV), A2, and the closure under Pi-entailment of T . From right to left
it follows by De Morgan (III) and the closure of T under Pi-entailment.

Lemma 6.7 (Conditional in regular, prime and appropriately closed theo-
ries). For any Pi-logic L, wff A and B, and a regular, prime and appropriately
closed Pi-theory T , it follows that A → B ∈ T iff A ̸∈ T or ¬B ̸∈ T or
(¬A ∈ T and B ∈ T )

Proof. From left to right there are two subcases. The first follows by the
closure of the theories under R2 and the second by the closure under the
Modus Tollens Rule. Both subcases use the closure of T under Pi-entailment
and its regularity. From right to left there are three subcases. The first
follows by A9 and the primeness of T ; the second follows by A10 and, again,
the primeness of T . The final third subcase follows by A11, R2 and the
regularity of T .

Lemma 6.8 (Negated conditional in regular, prime, a-consistent, and ap-
propriately closed theories). For the corresponding Pi-logic L, wff A and B,
and a regular, prime, a-consistent, and appropriately closed Pi-theory T , it
follows that:

(P1) ¬(A → B) ∈ T iff (A ∈ T and ¬B ∈ T ) or (A ∈ T and
¬A ∈ T )

(P2) ¬(A → B) ∈ T iff [A ∈ T and (¬A ∈ T or ¬B ∈ T )] or
(B ∈ T and ¬B ∈ T )

(P3) ¬(A → B) ∈ T iff {A ∈ T and [B ̸∈ T or (¬A ∈ T and
¬B ∈ T )] } or { ¬B ∈ T and [¬A ̸∈ T or (A ̸∈ T and B ∈ T ) ] }

(P4) ¬(A → B) ∈ T iff ¬B ∈ T and [¬A ̸∈ T or (A ∈ T and
B ̸∈ T ) or (A ̸∈ T and B ∈ T )]
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Proof. We show the proof of P1 in detail and then propose a draft of the
other proofs that the reader might follow if interested. Tto prove P1, from
left to right, we proceed by reductio. Thus, we have (I) ¬(A → B) ∈ T as
hypothesis, and (II) (A ̸∈ T or ¬B ̸∈ T ) and (A ̸∈ T or ¬A ̸∈ T ) as reductio
hypothesis. From (II), we have four (4) different cases: (III) A ̸∈ T ; (IV)
A ̸∈ T and ¬A ̸∈ T ; (V) ¬B ̸∈ T and A ̸∈ T ; (VI) ¬B ̸∈ T and ¬A ̸∈ T .
Let us start with case (III), we apply R8 and closure of T on (I) to get
A ∈ T , which contradicts the reductio hypothesis. Regarding case (IV), we
get A∨¬A ∈ T given that T is also closed under R9 and, by the primeness of
T , we get A ∈ T or ¬A ∈ T , which contradicts the reductio hypothesis. The
case (V) follows by the fact that T is closed under Pi-entailment; thus, using
A12, we get A ∨ ¬B ∈ T . Then, by the primeness of T , we get A ∈ T or
¬B ∈ T , whence contradicting the reductio hypothesis. The last case (VI) is
solved by the fact that T is closed under R10, i.e., we get ¬A∨¬B ∈ T and,
again by primeness of T , ¬A ∈ T or ¬B ∈ T , contradicting the reductio
hypothesis. Now, to prove it from right to left, we have two different cases.
The first one has (VII) A ∈ T and ¬B ∈ T as main hypothesis, while the
second one has (VIII) A ∈ T and ¬A ∈ T as main hypothesis. Let us also
suppose for both cases (IX) ¬(A → B) ̸∈ T as reductio hypothesis. Starting
with case (VII), by A13 and the closure of T under Pi-entailment, we have
¬(A → B) ∈ T , contradicting the reductio hypothesis (IX). Finally, case
(VIII) is solved using A14 and the closure of T under Pi-entailment, this is,
we get ¬(A → B) ∈ T , again contradicting the reductio hypothesis (IX).

P2, from left to right, proceeding by reductio and after distributing the
reductio hypothesis, has four (4) cases. The first case is proven using the
closure of T under R11 as well as primeness. The second one can be proven
using primeness too, and also A12 and the closure of T under Pi-entailment.
The third case is based on the closure under R12 of T and primeness. Finally,
in the fourth case the primeness of T as well as the closure of the theory under
R10 are applied. On the other hand, we get (3) different cases from right to
left –after proceeding by reductio and distributing the reductio hypothesis.
For all three cases, the closure of T under adjunction and Pi-entailment is
used in addition to A14, A13 and A15, respectively for each case.

P3, from left to right. By proceeding as in P2, we distinguish nine (9)
cases. The second, fifth, sixth, and ninth lead to a contradiction right on the
reductio hypothesis. The first one is solved using A12, and the primeness
and closure under Pi-entailment of T . The third one uses A16 as well as
the primeness and closure under Pi-entailment of T . The fourth one follows
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by A17, the closure of T under Pi-entailment, and its primeness. The sev-
enth uses A19, and the closure of T under Pi-entailment. The eighth one
utilizes A18, the closure under Pi-entailment of T , and the fact that T is a-
consistent. From right to left, proceeding by reductio and after distributing
the reductio hypothesis, there are four cases. These cases can be proven by
the aforementioned properties of T and A20, A21, A22 and A23, respectively
for each case.
P4, from left to right. By following the previous method, we get five dif-
ferent cases. The second and fifth cases lead to a contradiction right away.
The first and third case can be solved by applying the closure of T under
Pi-entailment, primeness and A24 for the former, A16 for the latter. The
fourth case also needs the closure of T under Pi-entailment, but also the
a-consistency of T and A18. Lastly, from right to left and proceeding by re-
ductio, there are three (3) cases (after distributing the reductio hypothesis),
each of them can be proven by using respectively A22, A20, A23, and the
properties of T .

Lemma 6.9 (T -interpretation of the set of wff). For a Pi-logic L, a reg-
ular, prime, a-consistent and appropriately closed Pi-theory T , and a T -
interpretation IT , if follows that for each wff A:

(I) T ∈ IT iff A ∈ T

(II) F ∈ IT iff ¬A ∈ T

Proof. The proof proceeds by induction over the complexity of the wff A.
In particular, for wff B and C, we have the following cases: (a) A is a
propositional variable; (b) A is of the type B∨C; (c) A is of the type B∧C;
(d) A is of the type ¬A; (e) A is of the type B → C. Given the nature of the
Pi-logics, case (e) will be divided in multiple subcases, in particular, one in
which the conditional is assigned the value T , and one for each of the cases
in which the conditional is assigned the value F ; this way we will have five
(5) different subcases for case (e).

(a) A is a propositional variable: It follows automatically by clauses (a)
and (b) of Definition 6.1.

(b) A is of the type B ∨C: (I) T ∈ IT (B ∨C) iff T ∈ IT (B) or T ∈ IT (C),
by Lemma 6.6 is B ∈ T or C ∈ T iff B ∨ C ∈ T . (II) F ∈ IT (B ∨ C)
iff F ∈ IT (B) and F ∈ IT (C), by Lemma 6.6 is ¬B ∈ T and ¬C ∈ T
iff ¬(B ∨ C) ∈ T .
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(c) A is of the type B∧C: (I) T ∈ IT (B∧C) iff T ∈ IT (B) and T ∈ IT (C),
by Lemma 6.6 is B ∈ T and C ∈ T iff B ∧C ∈ T . (II) F ∈ IT (B ∧C)
iff F ∈ IT (B) or F ∈ IT (C), by Lemma 6.6 is ¬B ∈ T or ¬C ∈ T iff
¬(B ∧ C) ∈ T .

(d) A is of the type ¬B: (I) T ∈ IT (¬B) iff F ∈ IT (B), by Lemma 6.5 is
¬B ∈ T . (II) F ∈ IT (¬B) iff T ∈ IT (B), by Lemma 6.5 is B ∈ T iff
¬¬B ∈ T .

(e1) A is of the type B → C and is assigned the value T : T ∈ IT (A → B)
iff T ̸∈ IT (A) or F ̸∈ IT (B) or (F ∈ IT (A) & T ∈ IT (B)), by Lemma
6.7 is A ̸∈ T or ¬B ̸∈ T or (¬A ∈ T and B ∈ T ) iff A → B ∈ T .

(e2) A is of the type B → C and is assigned the value F in P1: F ∈ IT (A →
B) iff (T ∈ IT (A) & F ∈ IT (B)) or (T ∈ IT (A) & F ∈ IT (A)), by
Lemma 6.8 is (A ∈ T and ¬B ∈ T ) or (A ∈ T and ¬A ∈ T ) iff
¬(A → B) ∈ T .

(e3) A is of the type B → C and is assigned the value F in P2: F ∈ IT (A →
B) iff [T ∈ IT (A) & (F ∈ IT (A) or F ∈ IT (B))] or (T ∈ IT (B) &
F ∈ IT (B)), by Lemma 6.8 is [A ∈ T and (¬A ∈ T or ¬B ∈ T )] or
(B ∈ T and ¬B ∈ T ) iff ¬(A → B) ∈ T .

(e4) A is of the type B → C and is assigned the value F in P3: F ∈ IT (A →
B) iff {T ∈ IT (A) & [T ̸∈ IT (B) or (F ∈ IT (A) & F ̸∈ IT (B))]} or
{F ∈ IT (B) & [F ̸∈ IT (A) or (T ̸∈ IT (A) & T ∈ IT (B))]}, by Lemma
6.8 is {A ∈ T and [B ̸∈ T or (¬A ∈ T and ¬B ∈ T ] } or { ¬B ∈ T
and [¬A ̸∈ T or (A ̸∈ T and B ∈ T ) ] } iff ¬(A → B) ∈ T .

(e5) A is of the type B → C and is assigned the value F in P4: F ∈
IT (A → B) iff F ∈ IT (B) & [F ̸∈ IT (A) or (T ∈ IT (A) & T ̸∈ IT (B))
or (T ̸∈ IT (A) & T ∈ IT (B))], by Lemma 6.8 is ¬B ∈ T and [¬A ̸∈ T
or (A ∈ T and B ̸∈ T ) or (A ̸∈ T and B ∈ T )] iff ¬(A → B) ∈ T .

Definition 6.10 (The set CnΓ(L)). The set of consequences in a logic L
of a set of wff Γ, in symbols CnΓ(BE4), is defined as follows: CnΓ(L) :=
{A|Γ ⊢L A}.
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Remark (The set of consequences is a regular theory). For a Pi-logic L, and
a set of wff Γ, the set of consequences of Γ in L, CnΓ[L], is regular theory.
On the one hand CnΓ[L] is closed under all the rules of L, thus being also
appropriately closed, and contains all its theorems and, therefore, is closed
under Pi-implication. As L is also closed under adjunction, it is obvious that
CnΓ[L] is a regular theory.

With all of the above, we proceed to show the completeness of the Pi-
logics w.r.t. the Belnap-Dunn and algebraic semantics that we have defined
above.

Theorem 6.11 (Completeness of Pi-logics). For any Pi-logic, set of wff Γ
and wff A, if follows that:

(I) If Γ |=Pi
A, then Γ ⊢Pi

A

(II) If Γ |=MPi
A, then Γ ⊢Pi

A

Proof. For (I) we assume a set of wff Γ and wff A such that Γ ̸⊢Pi
A, then we

will show that Γ ̸|=Pi
A. Given the hypothesis we know that A ̸∈ CnΓ[Pi],

which is equivalent to CnΓ[Pi] ̸⊢d
Pi

A; otherwise it would follow that B1∧ ...∧
Bn ⊢Pi

A for some wff B1, ..., Bn ∈ CnΓ[Pi] and thus leading to A ∈ CnΓ[Pi]
and a contradiction. By Lemma 5.5 there is a maximal set T such that
CnΓ[Pi] ⊆ T and, consequently, Γ ∈ T and A ̸∈ T . By Lemma 5.6 we know
that T is a prime theory and, furthermore, thanks to Remark 6 we know
that T is also a regular and an appropriately closed theory. Additionally, T
is also a-consistent as A ̸∈ T . Finally, we have a T -interpretation IT such
that by Lemma 6.9 T ∈ IT (T ) but T ̸∈ IT (A). With all this, by Definition
6.3 and Proposition 6.4, we have Γ ̸|=IT A and, subsequenty, Γ ̸|=IPi

A by
Definition 3.2 as we wanted to show. (II) follows automatically by part (I)
and the coextensiveness of |=Pi

A and Γ |=MPi
A shown in Theorem 4.4.

7 Properties of the Pi-logics

In this section we introduce a series of concepts that are of interest when char-
acterizing logics related to RM3. In particular we will provide an overview of
what paraconsistent logics, natural conditionals, variable sharing property,
and quasi-relevance property are. Of course, we will also show how these
concepts relate to the Pi-logics. First of all, we take a look at the idea of
paraconsistent logics.
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Definition 7.1 (Paraconsistent logics). Let ⊩ represent a consequence rela-
tion (may it be defined either semantically or proof-theoretically). Then, a
logic L is paraconsistent if, for any wffs A, B, the rule ECQ (E Contradictione
Quodlibet) A, ¬A ⊩ B does not hold in L.

In other words, a logic is paraconsistent if theories built upon L are not
necessarily trivial when a contradiction arises.

Proposition 7.2 (Pi-logics are paraconsistent). Let L be a Pi-logic (1 ≤ i ≤
4). Then, L is paraconsistent.

Proof. Let M be the matrix determining the logic L and let p and q be distinct
propositional variables. There is an M-interpretation I such that I(p) = 1
and I(q) = 0. Therefore, {p, ¬p} ⊭M q, this is, ECQ does not hold in any
Pi-logic.

Now, we address natural conditionals that we already mentioned in Sec-
tion 1.

Definition 7.3 (Natural conditionals). Let L be a propositional language
with → among its connectives and M be a matrix for L where the values x
and y represent the maximun and the infimum in K. Then, an f→-function
on K defines a natural conditional if the following conditions are satisfied:

1. f→ coincides with the classical conditional when restricted to the subset
{x, y} of K;

2. f→ satisfies Modus Ponens, that is, for any a, b ∈ K, if a → b ∈ D and
a ∈ D, then b ∈ D;

3. For any a, b ∈ K, a → b ∈ D if a ≤ b.

Proposition 7.4 (Natural conditionals in 3-valued matrices). Let L be a
propositional language and M a 3-valued matrix for L where K y D are
defined exactly as in Definition 2.4. Consider the 24 f→-functions defined in
the following general table:

→ 0 1 2
0 2 a1 2
1 b a2 a3
2 0 c 2

Where ai(1 ≤ i ≤ 3) ∈ D, b /∈ D and c ∈ K. The set of functions of the
previous truth-table is the set of all natural conditionals definable in M.
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Proof. (1) The following cases are needed in order to fulfill clause 1 in the
previous definition: f→(0, 0) = 2, f→(0, 2) = 2, f→(2, 2) = 2 and f→(2, 0) =
0. (2) Regarding clause 2 in the same definition, a non-designated value (i.e.,
0) needs to be assigned to f→(1, 0). (3) Finally, we also need f→(0, 1) ∈ D,
f→(1, 1) ∈ D, f→(1, 2) ∈ D for the last condition to be guaranteed.

Corollary 7.5 (All MPi
possess a natural conditional). Each MPi

possess
one of the 24 natural conditionals reflected in Proposition 7.4.

Proof. It is obvious given that each MPi
is one of the 24 f→-functions defined

in Proposition 7.4 and therefore all of them fulfill the requirements mentioned
in Definition 7.3.

To finish our look at the properties of the Pi-logics we will investigate
the cases of the variable sharing property and the quasi-relevance property
in relation to them.

Definition 7.6 (Variable-sharing property). A logic L has the “variable-
sharing property” (vsp) if for every theorem of L of the form A → B, A and
B share at least a propositional variable.

Proposition 7.7 (All Pi-logics lack the vsp). Let L be a Pi-logic. Then, L
lacks the vsp.

Proof. Let M be the matrix determining the logic L. The proof is immediate
since, for any distinct propositional variables p and q, the wff ¬(p → p) →
(q → q) is M-valid, this is, the wff is valid in any Pi-logic (cf. [11]).

Definition 7.8 (Quasi-relevance property). A logic L has the “quasi-relevance
property” (qrp) if for every theorem of L of the form A → B, either A and B
share at least a propositional variable or both ¬A and B are also theorems
of L.

Proposition 7.9 (Logics P1 and P2 possess the qrp). Let L be either the
logic P1 or P2. Then, L possess the qrp.

Proof. Let M be the matrix determining the logic L. By reductio, suppose
that there are wffs A and B which have no propositional variable in common
and such that A → B is M-valid but either ¬A or B is not.

(i) Let us suppose that ¬A is not M-valid. Then, there is an M-interpretation
I such that I(¬A) = 0 (i.e., I(A) = 2). Now, let I ′ be exactly as I except
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that for each propositional variable p in B, I ′(p) = 1. Then, clearly I ′(B) = 1
since {1} is closed under →, ∧, ∨ and ¬, and I ′(A) = 2, since A and B do
not share propositional variables. Consequently, we get I ′(A → B) = 0,
contradicting the M-validity of the wff A → B.

(ii) Let us suppose now that B is not M-valid. Then, there is an M-
interpretation I such that I(B) = 0. Let I ′ be exactly as I except that for
each propositional variable p in A, I ′(p) = 1. Similarly, as in case (i), we get
I ′(A) = 1 and I ′(B) = 0. Then, I ′(A → B) = 0, contradicting the M-validity
of A → B.

Proposition 7.10 (Logics P3 and P4 lack the qrp). Let L be either the logic
P3 or P4. Then, L lacks the qrp.

Proof. Let M be the matrix determining the logic L. The proof is immediate
since, for any distinct propositional variables p and q, the wff ¬(p → p) → q
is M-valid, that is, the wff is valid in both P3 and P4 (cf. [11]).

To conclude this section we will take a look at certain theses and their
provability and validity in the different Pi-logics. This will help to give a
more broad overview of what these Plumwood algebras can offer.

Proposition 7.11 (Some theses provable in the Pi-logics). The following
are provable in the Pi-logics: A → (A → A); ¬(A ∧ ¬A); A ∨ ¬A; (A →
B)∨ (B → A); A∨ (A → B); ¬(A → A) → (B → B); [(A → A) → B] → B;
[((A → A) ∧ (B → B)) → C] → C.

Proof. All these theses are verified by any Pi-interpretation. Then, they are
provable by the completeness theorem (cf. Theorem 6.11).

Thus, among the theses verified by any Pi-logics, we find Mingle ax-
iom, non-contradiction principle, excluded middle principle, Dummet axiom,
specialized assertion axiom and the characteristic axiom of the logic of en-
tailment E.

Proposition 7.12 (Some theses provable in P1 and P2). The following are
provable in P1 and P2: (A → ¬A) → ¬A; (A → B) → (¬A∨B); (A∧¬B) →
¬(A → B).

Also, contraction axiom is provable in P1: [A → (A → B)] → (A → B).

Proof. All these theses are verified by any P1-interpretation and/or P2 -
interpretation. Then, they are provable by the corresponding completeness
theorems.
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Consequently, P1 and P2 are the only ones that verify reductio axiom,
and the classical interdefinitions between the conditional and the disjunc-
tion/conjunction. Moreover, P1 verifies the contraction axiom.

Proposition 7.13 (Some wff not provable in the Pi-logics). The following
are not provable in the Pi-logics: ¬A → (B → ¬A); ¬A → (A → B);
A → (¬A → B); A → (B → A); (A → B) → [C → (A → B)].

Proof. All these wff are falsified in the matrices MPi
. Then, they are not

provable by the soundness theorem (cf. Theorem 4.5).

Interestingly, any of the Pi-logics falsified conditional paradoxes such as
the various forms of ex falso quodlibet and verum et quodlibet showed in the
previous proposition.

Proposition 7.14 (Some wff not provable in P1 and P2). The following are
not provable in P1 and P2: B → (A → A); ¬(A → A) → B.

Proof. The previous wff are falsified in the matrices MP1 and MP2 . Then,
they are not provable by the corresponding soundness theorems.

8 Conclusion

Throughout this article, we have coined the notion of Plumwood algebra to
refer to a class of matrices that do not verify any of the theses Plumwood
criticised in [15]. Then, in order to narrow the spectrum of logical systems,
we focused on three-valued matrices. In particular, we put the spotlight
on the variants of the well-known logic RM3, which is considered of great
interest among weak relevance logics. More specifically, we have studied the
conditional variants of RM3 and determined that there are only four systems
among them that are indeed Plumwood algebras and, at the same time,
possess what Tomova called ’natural conditionals’. We have axiomatized
the logics characterized by the four resulting matrices and named them Pi-
logics. Finally, we have provided a Belnap-Dunn semantics for all the four
logics and proved that they are strongly sound and complete with respect to
this semantics. It is of interest to note that, given the results shown in the
paper, not all the Pi-logics behave in the same way: the theories for P1 and P2

need to be appropriately closed, while the theories for P3 and P4 need to be
a-consistent but not appropriately closed (cf. Definition 5.1). Coincidentally,
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P1 and P2 posses the quasi-relevance property, while P3 and P4 do not posses
it. To which extent this coincidence is something more than pure fortuity is
a question that remains open.

It is worth recalling that Plumwood argued against these four rules of
proof regarding their unacceptable character as rules of relevance logics. In
particular, they failed to preserve the property of ‘sufficiency of the premiss
set for conclusion’, according to her. However, we have shown that the lack
of these four rules is not enough for the resulting systems to have some other
properties related to relevance, such as the vsp. In any case, the lack of the
vsp in the case of the Pi-logics is not surprising since they are variants of
RM3, a logic which lacks itself said property. Nevertheless, the fact that
RM3 lacks the vsp has never been reason enough to claim that RM3 lacks
interest within the relevance family. Thus, we believe that the same could be
said about some of the logics that have been presented here. In particular,
as it has been proved in the previous section of the article, logics P1 and P2

have the quasi-relevance property and therefore lack the most controversial
paradoxes of implication. Furthermore, not only the latter couple of systems
but the four of them are paraconsistent logics in the sense that they do not
verify the explosion principle, as it has been shown in Proposition 5.

To end this article, we would like to note a couple of final remarks. On
the one hand, since we decided to narrow the spectrum of considered matri-
ces to the variants of RM3, one could naturally wonder which would be the
case regarding other families of many-valued logics related in some way to
relevance 6. Thus, we believe that there is some room for further research
on the topic of Plumwood algebras. On the other hand, some research re-
lating Plumwood algebras to the Australian Plan may be of interest too. In
particular, providing a ternary relational semantics to the Pi-logics. In this
respect, we note that some workaround would provably be needed in order
to find a replacement for Suffixing rule, the one Plumwood called Exported
Syllogism in [15] (named TP1 at the beginning of this article).

6We are thinking, for example, in possible variants of four-valued logics of historical
importance in the relevance project, such as Smiley’s expansion of B4 [3] or Brady’s BN4
[9]
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[13] Sandra M. López. Belnap-Dunn Semantics for the Variants of BN4 and
E4 which Contain Routley and Meyer’s Logic B. Logic and Logical
Philosophy, 31(1):29–56, 2022. Number: 1.

[14] Edwin D. Mares. Relevant Logic: A Philosophical Interpretation. Cam-
bridge University Press, Cambridge, 2008.

[15] Valerie Plumwood. Some False Laws of Logic. Australasian Journal of
Logic.

[16] Gemma Robles. The quasi-relevant 3-valued logic RM3 and some
of its sublogics lacking the variable-sharing property. Reports on
Mathematical Logic, 2016(Number 51):105–131, September 2016. Num-
ber: Number 51 Publisher: Portal Czasopism Naukowych Ejournals.eu.
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