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Abstract

Ackermann’s motivational spin on his theory of rigorous implica-
tion is analyzed and it is shown to contain en equivalent idea to Plum-
wood’s notion of suppression freedom. The formal properties these
ideas back turn out to be properly weaker than Belnap’s variable shar-
ing property, but it is shown that they can be strengthen in various
ways. Some such strengthenings, it is shown, yield properties which
are equivalent to Belnap’s, and thus provide for new ways of motivat-
ing Belnap’s fundamental relevance principle.

Keywords: criteria of relevance · entailment · enthymeme · formal
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1 Introduction and background
This paper analysis two ideas related to the theory of entailment: one due
to Wilhelm Ackermann and one to Valarie Plumwood. Both relate, then,
to entailment as a broadly conceived relevant relation. Ackermann’s highly
influential paper Begründung Einer Strengen Implikation [1] is analysed and
it is shown that it contains four different motivating ideas. Ackermann,
like Lewis before him, wanted a theory of a conditional which could be in-
terpreted as expressing entailment. This is a theme explicitly discussed in
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Anderson and Belnap’s Grammatical Propaedeutic—the infamous appendix
to the first volume of their magnum opus, Entailment: The Logic of Rele-
vance and Necessity [6]—which has been enormously influential within the
tradition of relevant logics that Anderson and Belnap’s work initiated. Ack-
ermann’s paper, on the other hand, had an enormous influence on Anderson
and Belnap’s search for their own theory of entailment, yet they only picked
up two of Ackermann’s ideas. Ackermann’s fourth idea is here taken up for
the first time and compared to other relevance criteria.

Although Anderson and Belnap’s main motivation for their theory of en-
tailment is to be found in their use- and meaning-connection-criteria, they
also motivated their theory by pointing to the notion of an enthymeme—an,
for want of a missing premise, invalid argument, yet in many context accept-
able argument due to the missing premise being true and readily available
in the context the argument is given in. Anderson and Belnap viewed the
intuitionistic conditional, for instance, as one which allowed the suppession
of every true premise, whereas the strict conditional of S4 allowed the sup-
pression of only necessarily true premises. Neither plain, necessary, nor even
logical truths, however, can in general be suppressed in valid arguments,
according Anderson and Belnap. Their view, then, was that the theory of
entailment must be recast in such a way so as to uphold the distinction
between a valid argument and that of a merely enthymematically valid one.

The suppession-take on the theory of entailment, however, stands in con-
trasts to their two main other strands of motivating their theory: Anderson
and Belnap came up with, and stressed to importance of, formal properties
to account for their two relevance criteria, but non to give precise content
their notion of suppression. Valarie Plumwood’s conference paper Some False
Laws of Logic [19]—available for the first time in this issue of Australasian
Journal of Logic—does set forth such properties, however, and as such is the
first attempt within the tradition of relevant logics at giving precise content
to the notion of suppression. Plumwood’s analysis was further expanded
upon in her joint work with Richard Sylvan starting with [22], and espe-
cially [21] where a lot of the material from Plumwood’s conference paper was
incorporated.

Anderson and Belnap claimed that a theory of entailment with a total
ban on suppression would yield their logic E, and thus rule out principles
such as the permutation law (A → (B → C)) → (B → (A → C)), a law
which their logic R does validate without violating the variable sharing prop-
erty. Ackermann does not mention the notion of suppression, although one
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of his motivating ideas, we will see, is equivalent to one of Plumwood’s “anti-
suppression” principle. Even Ackermann mentions a weaker permutation
principle, namely the assertion axiom A → ((A → B) → B)—equivalent
to the rule version of the above permutation law—as ruled out by the same
considerations which is supposed to rule out more standard implicational
paradoxes such as the “positive paradox” A → (B → A). Plumwood and
Sylvan claimed that their notion of suppression-freedom would yield the
variable sharing property as a corollary. They furthermore claimed that
even though E does manage to rule out the most abominable suppressive
principles—manifest in the paradoxes of implication—it nevertheless does
harbor many suppressive principles. Chief amongst these is the principle
Plumwood and Sylvan for good measure calls Suppression, namely the E-
axiom ((A → A) → B) → B which is commonly categorized as a permuta-
tion principle.

Plumwood’s formal suppression-principles—the Anti-Suppression Princi-
ple and the Joint Force Principle—were analyzed in [16] where it was shown
that these formal principles are in fact properly weaker than the variable
sharing property.1 This paper shows first of all that Plumwood’s suppres-
sion principles are equivalent to principles motivated by one of Ackermann’s
motivational spins on his notion of rigorous implication. Even though the
formal suppression principles used in [16] turn out to be too weak to do the
job they were thought to do, it could be that tweaking the principles slightly
would be sufficient to rectify this. [16] did not explore any such tweaked
principles. This paper shows forth ways of tweaking the Plumwoodian and
Ackermannian principles so as to at least deliver on one of Plumwood and
Sylvan’s promise, namely to deliver the variable sharing property, and vari-
ant thereof, as a corollary. However, one does not obtain stronger principles
by so tweaking, and so neither these formal relevance principles manage to
categorize permutation principles as truly suppressive. In fact, the strongest
tweaked principles that will be considered in this paper turn out to be equiv-
alent to the variable sharing property.

The plan for the paper is as follows: Sect. 2 defines some of the logics
that will be of interest in this paper as well as the consequence relation that
will be used throughout. Sect. 3 discusses Ackermann’s motivational ideas

1[16] also discussed intensional variants of Plumwood and Sylvan’s formal suppression
principles and showed that also these fail to yield the variable sharing property. In this
paper, however, I will only focus on extensional suppression.
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for his theory of rigorous implication followed by sect. 4 where Anderson and
Belnap’s account of enthymemes and Plumwood’s formal take on the notion
of suppression is given. One way of strengthening Plumwood’s principles is
considered, but shown to allow implicational paradoxes to hold true. Sect. 5
introduces the notion of a topic and shows how to make use of the idea to
strengthen Ackermann’s and Plumwood’s ideas so as to yield formal rele-
vance properties on par with the variable sharing property. Sect. 6 gives a
short summary. The appendix shows that a strong sublogic of R augmented
with Dummett’s axiom—(A → B)∨ (B → A)—satisfies the variable sharing
property, despite, then, the fact that this formula is commonly regarded as an
implicational paradox and the variable sharing property as a guard against
such paradoxes.

2 Logics, logical consequence relations and en-
tailment

Table 1 shows how some of the logics used in the paper can be pieced together.
The minimal logic, unless otherwise stated, will be the weak relevant logic
BB. The consequence relation used in this paper is throughout the Hilbertian
one, defined as follows:

Definition 1 (Hilbert consequence). A Hilbert proof of a formula A from a
set of formulas Γ in the logic L is defined to be a finite list A1, . . . , An such
that An = A and every Ai≤n is either a member of Γ, a logical axiom of L,
or there is a set ∆ ⊆ {Aj | j < i} such that ∆ ⊩ Ai is an instance of a rule
of L. The existential claim that there is such a proof is is written Γ ⊢L A.

BB Ax1–Ax5, R1–R7
E BB +: Ax6–Ax10, Ax12–Ax14; −: R3–R7
Π′ E +: R8
R E +: Ax11; −: Ax14
RUE R +: Ax15
RD R +: Ax16
RM R +: Ax17

Table 1: Some of the logics mentioned in this paper
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Ax1 A → A
Ax2 A → A ∨B and B → A ∨B
Ax3 A ∧B → A and A ∧B → B
Ax4 ∼∼A → A
Ax5 A ∧ (B ∨ C) → (A ∧B) ∨ (A ∧ C)
Ax6 (A → B) ∧ (A → C) → (A → B ∧ C) strong lattice ∧
Ax7 (A → C) ∧ (B → C) → (A ∨B → C) strong lattice ∨
Ax8 (A → ∼B) → (B → ∼A) contraposition axiom
Ax9 (A → B) → ((B → C) → (A → C)) suffixing axiom
Ax10 (A → B) → ((C → A) → (C → B)) prefixing axiom
Ax11 A → ((A → B) → B) assertion axiom
Ax12 (A → ∼A) → ∼A reductio
Ax13 (A → (A → B)) → (A → B) contraction axiom
Ax14 ((A → A) ∧ (B → B) → C) → C E-axiom
Ax15 A ∧ ∼A → B ∨ ∼B unrelated extremes
Ax16 (A → B) ∨ (B → A) Dummett’s axiom
Ax17 A → (A → A) mingle
R1 {A,B} ⊩ A ∧B adjunction
R2 {A,A → B} ⊩ B modus ponens
R3 {A → B} ⊩ (B → C) → (A → C) suffixing rule
R4 {A → B} ⊩ (C → A) → (C → B) prefixing rule
R5 {A → ∼B} ⊩ B → ∼A contraposition rule
R6 {A → B,A → C} ⊩ A → B ∧ C lattice ∧
R7 {A → C,B → C} ⊩ A ∨B → C lattice ∨
R8 {A,∼A ∨B} ⊩ B γ, disjunctive syllogism

We saw in the above section that one of the criteria for Anderson and
Belnap’s theory of relevant entailment was the meaning-relatedness criterion
which [8] cashed out using the following formal property:

Definition 2. A logic L has the Variable Sharing Property (VSP)
just in case for every formula A and B, ∅ ⊢L A → B only if A and B share
a propositional variable.

The only consequence relation that I will consider in this paper is the
Hilbertian one. For conceptual clarity, however, note, that Anderson and
Belnap’s theory of entailment was intended as a theory of logical consequence,
not of merely logically true conditionals. They specified their theory using
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a restriction on Hilbert proofs, as well as a Fitch calculus which would take
us too far afield to go into.2 For present purposes, however, it suffices to
note that their notion of entailment can simply be defined as the following
consequence relation:

Definition 3 (Entailment). Γ ⊢e
L A =df there are γi≤n ∈ Γ such that ∅ ⊢e

L

(γ1 ∧ . . . ∧ γn) → A.

It is easily seen, then, that the variable sharing property naturally extends
to entailment viewed as a consequence relation, and so if A does entail B given
some logic which does satisfy this property, then these formulas are indeed
meaning-related by way of sharing a propositional variable.

A last comment on notation: so as to cut back on unnecessary symbols,
and since many of the results in this paper relate to entailment, and thus to
logically true conditionals, I will usually write ‘⊢L A’ instead of the formally
correct ‘∅ ⊢L A.’

3 The forgotten motivational criteria of Acker-
mann’s rigorous implication

Ackermann’s paper Begründung einer strengen Implikation has had an enor-
mous influence on shaping the research program in relevant logics. Indeed,
Anderson and Belnap dedicated the first volume of Entailment to Ackermann
with the laudation “whose insights in Begründung einer strengen Implikation
[. . . ] provided the impetus to this enterprise” [6, p. v ]. This is so even though
the paper is merely 15 pages long, and, it must be admitted, rather vague
with regards to the motivation for the logics it sets forth. This section gives
a brief contextualisation of Ackermann’s paper, and then analyzes one of the
motivations that Ackermann states for his rigorous implication.3 In the next
section it will be shown how this connects up with Plumwood’s suppression
principles.

Russell had used “imply” to signify a merely true material conditional; he
writes in his Principles of Mathematics that

2See [6, § 23] for these calculi.
3Rigorous implication is the term Anderson and Belnap used [cf. 4] to translate

Ackermann’s strengen Implikation so as to set it apart from Lewis’ strict implication.
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the assertion that q is true or p false turns out to be strictly equiv-
alent to “p implies q”; [. . . ]. It follows from the above equivalence
that of any two propositions there must be one which implies
the other, that false propositions imply all propositions, and true
propositions are implied by all propositions. [23, §16]

Both MacColl and Lewis reacted at this use of “imply.” In response, MacColl,
for instance, writes that

It is surely an awkward assumption (or convention) that leads
here to the conclusion that “either W implies E or else E implies
W ”. War in Europe does not necessarily imply a disastrous earth-
quake the same year in Europe; nor does a disastrous earthquake
in Europe necessarily imply a great war the same year in Europe.
[15, p. 453]

Lewis responded similarly some years later claiming that the consequences
of such a view of implication is preposterous:

If ‘p implies q’ means only ‘it is false that p is true and q false,’
then the implication relation is far too ubiquitous to be of any
use. If we ask for the consequences of any proposition, we are
immediately confronted with all the truths we can think of. If we
are so foolish as to make a condition contrary to fact, we must
at once accept its own contradictory as the logical result. [12,
p. 246]

MacColl’s and Lewis’ remedy was to replace the material conditional with
the strict conditional as the analysis of implication. It is this tradition that
[1] must be read. Indeed, it is quite evident from its short motivational
introduction that Ackermann proposed his logic Π′ of rigorous implication
as a competitor to Lewis’ logics of strict implication. Although different
results, they share the theoretical aim of giving an account of the relation
of logical consequence, or entailment, expressed using an object-language
conditional. MacColl and Lewis claimed—and few, I think it fair to say,
have ever disagreed—that the material conditional cannot be read this way:
A proposition is not entailed by every proposition just because it is true, nor
does a proposition logically imply every other just because it is false. One
may debate how to best read the material conditional. Anderson and Belnap,
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for instance, famously claimed that it simply is no kind of conditional at all
on account that modus ponens does not hold for it. It is argued in [18]
that this view is not forced by Anderson and Belnap’s selection criteria for a
theory of entailment, but that, of course, does not provide an answer to the
question of just what kind of conditionality—if any—the material conditional
expresses.

Ackermann, Anderson and Belnap, as well as Plumwood, all agree with
MacColl and Lewis’s theoretical ambition of providing a theory of entailment,
that is logical consequence, expressed using an object-language conditional.
Where they disagree is over which logical laws hold true of such a conditional
and which logical laws the theory of entailment itself is subject to. Lewis
and Langford, for instance write that “p J q has the property requisite to
that relation which holds when q is deducible from p and does not hold
when q is not deducible from p” [13, p. 245]. Note, however, that this is
stated immediately after affirming that “whenever any truth-implication, pIq,
expresses a tautology (is necessarily true) the relation p J q holds.”4 Thus
the correctness, so to speak, of B, suffices for any A entailing it. Similarly,
the MacColl-Lewis analysis yields that if A is classically unsatisfiable, then
A J B holds for every B. Thus the incorrectness of A suffices for it entailing
any B. These two consequences of the “strict” analysis of entailment—that
entailment is identifiable as the strict conditional—are commonly known as
the paradoxes of strict implication. The first class of authors—Ackermann,
Anderson, Belnap and Plumwood—all agree that these features point to that
the strict account is incorrect due to precisely this feature. Let’s first look
at Ackermann’s account. Ackermann writes that

The rigorous implication, expressed as A → B, expresses that
there exists a logical connection between A and B; that the con-
tent of B is part of the content of A, or how now best to put
it. That there exists such a connection has nothing to do with
the correctness or falsity of A and B. This is why one ought to
reject the validity of the formula A → (B → A); it expresses that
B → A can be inferred from A while it is obvious that the correct-
ness of A has no bearing on whether there is a logical connection
between B and A. The same reason tells agains viewing any of
A → (B → A & B), A → (A → B) or A → ((A → B) → B) as

4From context it is clear that any formula p ⊃ q which is a classical tautology would
fit the bill here.
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universally valid. The same also holds for B → (A → A), since
the validity of A → A is independent of the correctness of B.
My own rigorous implication differs from the strict one in that
the latter formula,5 as well as (A & A) → B, is rejected as a
universally valid formula on account of the fact that the concept
of implication—understood as a logical connection between two
statements—does not encompass statements which imply or are
implied by every other. [1, p. 113]6

There are four ideas related to the entailment- or rigorous implication
conditional that can be glimpsed here:

1. A logical connection expressed by the conditional

2. Meaning-relatedness between the antecedent and consequent of the con-
ditional

3. That entailment cannot be decided on the basis of truth or correctness
criteria applying to the antecedent and the consequent.

4. Total weakening failure: That no statement entails or is entailed by
every other.

Note, then, that the latter two ideas directly latch on to ideas of Lewis:
Since Lewis allows for the necessary truth of B to suffice for A entailing B,
Lewis-entailment is far too ubiquitous, according to Ackermann. Anderson
and Belnap appealed to Ackermann’s notion of a logical connection when ar-
guing for their use-criterion of entailment,7 whereas Belnap’s variable sharing
property is naturally seen as a way of giving precise content to Ackermann’s
second mereologically framed idea of meaning-relatedness. What we will look
closer at here, however, is Ackermann’s explication of the notion of rigorous
implication using the fourth idea—the negative property that it does not en-
compass statements which imply or are implied by every other. This is an
idea that, as far as I know, have not discussed before.

5As noted in [17, p. 6997], Ackermann seems to think that B J (A J A) holds in Lewis’
systems. This is true for normal modal logics such as S4, but it fails in Lewis’ preferred
systems S2 and S3. Note, however, that Ackermann does not mention B J (A J A) in
the sequel-paper [2] wherein he compares his logic to S2.

6My own translation.
7See for instance [3] and [8] for two early examples of such appeals.
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The problem, to quote Belnap, is to restate this condition in formal terms
[cf. 8, p. 144]. As a straight-forward first attempt, consider the following
formal property:

Definition 4. A logic L has the property of Total Weakening Failure
(TWF) just in case for every formula A there is a formula B such that
⊬L B → A.

(TWF) seems clearly covered by Ackermann’s dictum in the above quote.
That requirement seems to demand more, however, than merely the non-
existence of a formula which is rigorously implied every other: there should
neither be any which itself implies every other. It seems therefore evident
that (TWF) ought to be strengthened to its “double” variant if it is to capture
Ackermann’s idea:

Definition 5. A logic L has the property of Total Double Weakening
Failure (TDWF) just in case for every formula A there are formulas B
and C such that both ⊬L A → C and ⊬L B → A.

In the presence of the contraposition rule (R5), however, it turns out that
this is no strengthening at all:

Theorem 1. (TDWF) co-entails (TWF).

Proof.

⇒ Trivial

⇐ Assume (TWF) and for contradiction that (TDWF) fails. Then there is
some A such that for all B’s and C’s, either ⊢L B → A, or ⊢L A → C.
Thus for some A, either ⊢L B → A for all B’s or ⊢L A → C for all C’s.
Since (TWF) holds, however, there is a D such that ⊬L D → A, so ⊢L

A → C for all C’s. By using contraposition one gets that ⊢L C → ∼A
for all C’s. However, since (TWF) is assumed to hold, there is a B1

such that ⊢L B1 → ∼A. We thus arrive at a contradiction which, then,
ends the proof.

Theorem 2. (TWF) rules out all of the following “implicational paradoxes”:

(1) A → (B → A) (2) A → (∼A → B) (3) A → (B → B)
(3) A ∧ ∼A → B (4) A → B ∨ ∼B (5) A → (B → A ∧B)
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Proof. The proofs are almost trivial and are left for the reader.

Note, then, that (TWF) rules out every logical law mentioned by Acker-
mann, except for A → ((A → B) → B)—the assertion axiom. Anderson and
Belnap agreed with Ackermann that this ought not to be a valid entailment,
but their reason for this was due to modal considerations, not to relevance
[cf. 6, §. 28].

We have seen that Ackermann formulated four different motivating ideas
for his notion of rigorous implication—an object language conditional in-
tended to express entailment. One of these is shun light on for the first
time here and it was shown that it can be formalized so as to yield a prin-
ciple which rules out many of the standard implicational paradoxes. Even
though Ackermann’s idea hasn’t directly been discussed before, the issue of
how weakening thwarts relevance has. For instance, in Standefer’s recent
discussion of what is to count as a properly relevant propositional connec-
tive, [26] appeals to so-called ubiquitously true/false formulas. A formula is
defined to be ubiquitously true (false) relative to a Routley-Meyer model just
in case it is true (false) in every point/world in the model. Such formulas, it
is pointed out, will allow a kind of weakening to hold in the model since if
A is ubiquitously true, then so will B → A for any formula B. Standefer’s
ubiquitous-lesson, then, is that if a connective generates formulas which are
ubiquitously true (false) in ever model, then it will engender violations of
variable sharing which goes against the motivating idea that every formula
is non-trivially satisfiable: every formula fails somewhere [cf. 26, § 7]. Ack-
ermann’s third motivational idea—that entailment cannot be decided on the
basis of truth or correctness criteria—is evidently connected to Standefer’s
notion of freedom from ubiquitous formulas. Note, then, that the model-
theoretic equivalent of (TDWF) is that no formula is either ubiquitously
true or ubiquitously false: every formula A holds somewhere and fails to
hold somewhere. Thus Ackermann’s fourth motivational idea of entailment
is evidently also connected to Standefer’s notion of freedom from ubiquitous
formulas.

Ackermann’s totally total weakening failure-idea can be strengthened in
various ways. I will get back to this after having presented Plumwood’s ideas
for logical theory choice.
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4 Plumwood’s formal account of Suppression
The arguably most central motivational idea behind relevant logics is that if
B is entailed by A, then these sentences must be meaning-related somehow.
This is an idea that we’ve seen voiced by Ackermann, and which Anderson
and Belnap cashed out as the by now well-known variable sharing property—
that if A → B is to be logically true, then A and B must share a propositional
variable. Ackermann’s notion of a “logical connection” was furthermore recast
as the requirement that B must be connected to A by way of a notion of
premise use—it cannot be the case that B follows from A if A need not be
used in obtaining B from the assumption A. I will not go into details of
this from-nes aspect, save to comment that their Entailment Theorem is to
the effect that A does indeed entail B according to their theory, just in case
A → B is to be logically true. The two criteria put together, then, yield that
if A entails B, according to their theory of entailment, then A and B share
a propositional variable and thus are, arguably, meaning-related.8

In addition to motivating their theory using the notions of a connection
of meaning and the proper use of premises, Anderson and Belnap gave a
radically different motivation for their logic E even after having established
that the variable sharing property and the Entailment Theorem hold true of
E, namely as the—and I should emphasize that singular particle here—logic
which allows one to distinguish between valid entailments and enthymemes in
which premises—be they merely true, necessarily or even logically so—have
been suppressed:

If we are very careful, and always put down all the premises we
need (i.e., if we argue logically), then we arrive precisely at the
formal system E of logical implication (without quotes, this time),
or entailment. [5, p. 722]

The heart of [5]’s argument is that a theory of entailment must be able
to account for the difference between a valid argument and an enthymeme
which they identify rather vaguely as a valid argument had it not been for
a required premise which happens to be true, necessarily true, or logically
true. To exemplify their view, they showed forth a two-premised argument
in which the minor premise is true, yet where the argument without this

8For a more in depth discussion of Anderson and Belnap’s relevance criteria and se-
lection criteria for logical theory choice more generally, see [18].
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premise is not valid:9

(M) All bodies moving in elliptic orbits are subject to the law of
gravitation;

(m) Comets move in elliptic orbits;
(C) Therefore comets are subject to the law of gravitation.

From this valid argument, however, there corresponds a logically true condi-
tional proposition, namely that expressed by “if M and m, then C.” Since,
however, m is true, so is “if M , then C” if the conditional expressed in these
propositions are that of either the material conditional or the intuitionistic
one. A similar example shows, then, that the same also holds true for the
strict conditional where the example is but tweaked so that the minor premise
be necessarily true. But M without m does not entail C, and so, or so goes
Anderson and Belnap’s argument, these conditionals can at best be taken
to express enthymematic relations of implication where certain premises are
indeed suppressible, but not the relation of entailment itself.

Unlike their other two motivating features, however, Anderson and Bel-
nap never tried to identify a formal criterion of suppression-freedom and
therewith substantiate their claim that one would reach their logic E by ad-
hering to it. This is where Plumwood comes in. Plumwood’s conference
paper Some False Laws of Logic explicitly acknowledges its commonality
with [5] [cf. 19, fn. 3]. Contra Lewis and Langford’s claim that “Socrates
is a man” entails “Socrates is mortal,” provided that “all men are mortal” is
necessarily true and thus that necessary truths may be suppressed from valid
argument [cf. 13, p. 165], Anderson and Belnap restrict themselves to stating
that they “believe, rather, that [. . . ] Necessary premises are just as necessary
as premises that are not necessary” [5, p. 713]. Plumwood does not merely
state what she believes, but directly argues that premises, whether merely,
necessarily or logically true, cannot simply be dropped in valid arguments.
The purpose of this paper is not to evaluate her arguments, but rather her
notion of suppression and how it relates to the meaning-connectivity thesis.
Now Ackermann’s idea in so regard seems to have been that since entail-
ment requires logical connectivity and meaning relatedness, it cannot be as
ubiquitous—to reuse Lewis’ idea—as either Russell or Lewis thought. Plum-
wood, on the other hand, thought of the logical connectivity of true entail-

9The argument is to be found in [5, p. 713] and is therein a quote from Jevons’
Elementary Lessons in Logic.
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ment as involving meaning-connectivity, and that suppression may take one
from a true entailment wherein meaning-connectivity does obtain to one in
which it doesn’t:

But a most important objection to the deductive suppression de-
rives from deducibility as a meaning relation between proposi-
tions. q should be deducible from p only if there is a connection
of meaning between p and q. But this connection may be de-
stroyed if suppression is allowed; for the suppressed proposition,
which although used no longer appears in the premiss set p, may
be just what originally made the meaning connection between p
and q. Once this used proposition has been dropped off, p and q
may no longer have the right connection of meaning (e.g. inclu-
sion), or worse still, may have no connection at all. [19, § I]

After pointing to various features of logical consequence, Plumwood’s
tentative conclusion is as follows:

All these features of deducibility, then, provide reasons for say-
ing that every proposition sometimes occurs essentially and has
its own bit to add. This leads to the Suppression Principle: for
every proposition p there is some proposition q such that the con-
sequences of q are a proper subset of the joint consequences of
p and q. There is no priviliged class of propositions which are
generally suppressible. [19, §I]

This principle of suppression was restated in [21, p. 146]—with reference to
Plumwood’s paper as its source—but therein renamed as the Anti-Supression
Principle.

Not only, then, did Plumwood argue for her conclusion, but she also pro-
vided a quasi-formal principle with which one can evaluate the content of her
notion of suppression. Even though Anderson and Belnap claimed that the
formal use-condition for relevance was both necessary and sufficient, but that
the variable sharing property was only necessary [cf. 6, §. 5.1], they never
tried to derive the latter from the former. Similarly, then, with their notion
of suppression: if a total ban on suppression does yield the logic E, then one
would expect that it could be formulated in such a way as to yield the vari-
able sharing property as a consequence. [5] was reprinted—with only minor
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changes—over 30 years later in [7, § 36]. It is worth noting, then, that the
conclusion of the first enthymeme-study was retained in the latter, namely
that by not allowing any suppression one would thereby arrive “precisely at
the formal system E of logical implication [. . . ] or entailment” [7, § 36]. The
reader, however, is left without any indication as to how this will come to
be, nor even how to derive at least a necessary criteria of entailment such
as the variable sharing property using this notion of suppression-freedom.
Although Anderson and Belnap had already motivated their theory of en-
tailment by using the traditional notion of an enthymeme, it was Plumwood
who first came up with formal properties—the Anti-Supression Principle and
the Joint Force Principle which we’ll get to shortly—which one then can use
to evaluate whether or not a logic can distinguish between valid and merely
enthymematically valid arguments, and whether or not such a principle does
yield E or not.

Plumwood’s ideas were further expanded upon by her joint work with
Richard Sylvan. Plumwood and Sylvan explicitly claimed that the variable
sharing property is derivable given their account of entailment [cf. 21, p. 3].
[16] showed that Plumwood’s two principles are in fact properly weaker than
the variable sharing property, in fact properly weaker than the so-called quasi
version of that property. In the remainder of this section I will show that
Plumwood’s principles are equivalent to Ackermannian principles in the spirit
of the weakening-failure principle of the previous section. I will then show
forth some straight forward ways of strengthening Plumwood’s principle and
show that this does not suffice for in fact deriving the variable sharing prop-
erty as Plumwood and Sylvan thought should be the case given a “a good
sufficiency relation” [21, p. 3]. In the next section I will then show how to in
fact strengthen these principle so as to make the derivation hold true.

4.1 Comparing formal relevance properties: initial re-
sults

It was mentioned in [16, fn. 8] that Ackermann’s fourth motivational idea for
his concept of rigorous implication is in fact equivalent to Plumwood’s first
suppression principle. The first task of this subsection is to prove that this
is in fact the case.

Definition 6. A logic L satisfies the Anti-Suppression Principle (ASP)
just in case for every formula A, there exist formulas B and C such that
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⊢L A ∧B → C, but ⊬L B → C.

Theorem 3. (ASP) co-entails (TWF).

Proof.

⇒ Assume that (ASP) holds, but that (TWF) fails. Since (TWF) fails,
there is a formula A such that for every D, ⊢ D → A. According to
(ASP), however, there are B’s and C’s such that ⊢ A ∧ B → C, but
⊬ B → C. Since ⊢ B → A, however, we also get that ⊢ B → A ∧ B,
and therefore ⊢ B → C. Hence, (TWF) can’t fail if (ASP) holds.

⇐ Assume (TWF). Let A be any formula. According to (TWF) there
is a formula B such that B → A is not a logical theorem. However,
⊢ A ∧ B → A. Hence, for every A there is a B and a C such that
⊢ A ∧B → C, but ⊬ B → C.

Plumwood’s first suppression principle, however, seems not to quite cover
the notion of suppression as it allows for there being consequences r which q
does not yield, but p together with q does, but for the simple reason, then,
that p yields r on its own. Plumwood must have realised this and does
provide a principle to guard against this, namely the Joint Force Principle:
“for every proposition p there is some other q such that p and q are jointly
sufficient for r but neither p nor q on its own is sufficient for r” [19, § II].10

Plumwood mentioned the Joint Force Principle as one which is properly
stronger than the Anti-Suppression Principle.11 Plumwood stated this prin-
ciple formally as

(∀p)(∃q)(∃r)(p & q ⇒ r & ∼(p ⇒ r) & ∼(q ⇒ r)),

where ‘⇒’ is Plumwood’s object-language arrow of entailment. Although
open to interpretation, it was argued in [16, fn. 10] that this ought to be
stated as follows:

10Both these principles re-occur in [21]. See [16] for details.
11“Exportation also violates another principle which implies, but is not implied by, the

Suppression Principle—the Joint Force Principle” [19, § II]. It is evidently at least as strong
as, but I have not been able to find an interesting logic which satisfies the latter but not
the former.
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Definition 7. A logic L satisfies the Joint Force Principle (JFP) just
in case for every formula A, there exist formulas B and C such that ⊢L

A ∧B → C, but ⊬L A → C and ⊬L B → C.

We have seen that (ASP) is equivalent to the Ackermannian principle
(TWF), which in turn was shown to be equivalent to (TDWF). Is there,
then, a way of strengthening the latter so as to obtain a principle equivalent
to (JFP)? The answer is in the affirmative: by making it uniform:

Definition 8. A logic L has the property of Uniform Total Double
Weakening Failure (UTDWF) just in case for every formula A there is
a formula B such that both ⊬L A → B and ⊬L B → A.

Theorem 4. (UTDWF) co-entails (JFP)

Proof. Assume first that (UTDWF) holds, but that (JFP) does not. Then
there is a A such that for all B’s and C’s, if ⊢L A∧B → C, then ⊢L A → C
or ⊢L B → C. However, since (UTDWF) holds, there is a D such that
⊬L D → A and ⊬L A → D. Furthermore, since ⊢L A ∧D → A ∧D, either
⊢L A → A ∧D, and therefore ⊢L A → D, or ⊢L D → A ∧D, and therefore
⊢L D → A. Both disjunct yield a contradiction, which therefore ends the
proof.

Assume now that (JFP) holds, but that (UTDWF) does not. It follows,
then, that there is some formula A such that for every D, ⊢L A → D or
⊢L D → A. From (JFP) it follows that there is some B and some C such
that ⊢L A∧B → C, but ⊬L A → C and ⊬L B → C. Now either ⊢L A → B or
⊢L B → A. If the first, then ⊢L A → A∧B, and so ⊢L A → C by transitivity.
If the latter, then ⊢L B → A ∧ B, and so ⊢L B → C by transitivity. Both
options lead to a contradiction which, then, ends the proof.

(UTDWF), it seems to me, could legitimately be regarded as implied
by Ackermann’s considerations. In terms of variable sharing, however, it
remains rather weak: It was shown in [16, thm. 1f] that its equivalent (JFP)
is in fact properly weaker than Meyer’s quasi variable sharing property:

Definition 9. A logic L has the Quasi Variable Sharing Property
(QVSP) just in case for every formula A and B, ⊢L A → B only if either
A and B share a propositional parameter, or both ⊢L ∼A and ⊢L B.
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One idea for how to strengthen Plumwood’s suppression idea would be to
take note of the fact that strong logics such as R satisfy a certain deduction
theorem to the effect that {A} ⊢R B just in case ∅ ⊢R A ∧ θ → B, where
∅ ⊢R θ.12 Such a logical theorem θ will in many cases be insuppressible.
For instance {A → B} ⊢R A → A ∧ B, and by letting θ be A → A, we
have as an instance of (Ax6) that ∅ ⊢R (A → B) ∧ θ → (A → A ∧ B), yet
∅ ⊬R (A → B) → (A → A∧B) and ∅ ⊬R θ → (A → A∧B). One idea, then,
would be to try to strengthen Plumwood’s ideas of anti-suppression and joint
forces so as to require, respectively, that every formula be insuppressible in
the context of a logical theorem and have non-reducible joint consequences
with some logical theorem:

Definition 10. A logic L satisfies the Strong Anti-Suppression Prin-
ciple (SASP) just in case for every formula A, there exist formulas B and
C such that ⊢L A ∧B → C and ⊢L B, but ⊬L B → C.

Definition 11. A logic L satisfies the Strong Joint Force Principle
(SJFP) just in case for every formula A, there exist formulas B and C such
that ⊢L A ∧B → C and ⊢L B, but ⊬L A → C and ⊬L B → C.

Note first of all that (SJFP) is easily shown to be equivalent to the sim-
ilarly strengthened version of the Ackermannian principle (UTDWF) and
similarly for (SASP) vs. (TWF). Let’s briefly look at (SASP) first.

Theorem 5. (QVSP) implies (SASP) provided the logic in question is theorem-
wise consistent.

Proof. Let A be any formula. Let B be any logical theorem which does
not share any propositional variables with A. Lastly, let C simply be A∧B.
Since the logic is theorem-vise consistent it follows that ⊬L ∼B since we have
assumed that ⊢L B. Since A and B do not share any propositional variable
and ⊬L ∼B, it follows that ⊬L B → A, and therefore also that ⊬L B → C
which ends the proof.

RM satisfies (QVSP) [cf. 6, p. 417], and since it is theorem-wise con-
sistent, it follows from the above theorem that it also satisfies the beef-up
version of Plumwood’s anti-suppression principle. It does not, however, sat-
isfy the strengthened principle of joint forces. Before I show this, note that

12See [10, § 1.5] and references therein for various deduction theorems for relevant logics.
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the proof used in [16, thm. 2] to show that (JFP) is properly weaker than
(QVSP) also shows that Π′ augmented with the axiom (A → A) → ∼(∼B →
B) ∨ ∼(B → ∼B) satisfies (SASP) without, then, satisfying (QVSP). We
therefore have the following corollary:

Corollary 1. (QVSP) is properly stronger than (SASP).

Thus strengthening Plumwood’s anti-suppression principle so as to have
every formula insupppressible even in the context of a logical theorem does
not seem to yield a substantially stronger relevance principle. The corre-
sponding strengthening of the joint forces idea, however, does. I will first
show that (SJFP) is not implied by (QVSP). Afterwards, however, it will be
shown that it is too is properly weaker than the variable sharing property it-
self. To get going we first need a lemma which relies on that the Kleene axiom
which in relevant contexts sometimes goes by the name Unrelated Extremes,
namely

(UE) A ∧ ∼A → B ∨ ∼B,

is a theorem of RM [cf. 24].

Lemma 1. ⊢RM ∼A & ⊢RM B =⇒ ⊢RM A → B

Proof. Let ∼A, and B be any logical RM-theorem. Because of the Kleene
axiom, we have that (1) ⊢RM A ∧ ∼A → B ∨ ∼B. Since both B → (B →
B) and ∼B → (B → B) are logical theorems of RM, it follows that (2)
⊢RM B ∨ ∼B → (B → B). Furthermore, B → ((B → B) → B) is a logical
theorem of RM, and since B was assumed to be so as well, it follows that
(3) ⊢RM (B → B) → B. From (1), (2) and (3) it follows by transitivity
that (4) ⊢RM A ∧ ∼A → B. Now ∼A → ((∼A → ∼A) → ∼A) is an axiom
of RM, and since ∼A is an assumed theorem, so is (∼A → ∼A) → ∼A.
The negation axioms then easily yield that ⊢RM (A → A) → ∼A which
coupled with the mingle axiom yield that ⊢RM A → ∼A, and therefore that
⊢RM A → A ∧ ∼A which together with (4) yield ⊢RM A → B.

Let A be any formula and p any propositional variable which does not
occur in A. Since RM satisfies (QVSP) and neither p nor ∼p are logical
theorems, it follows that both p → A and A → p fail to be theorems of RM.
It follows then, that RM does not have ubiquitous formulas in the sense of
[26] which we looked at in sect. 3—in the Routley-Meyer semantics for the
logic there is for every formula A a model in which A holds true at some
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point, and a model in which A fails to hold true at some point since for every
formula A. Despite this, however, the above lemma shows that RM does
validate “mild” instances of weakening: it validates the admissibility-version
of the weakening rule with regards to the negation of any other theorem.
This cannot be the case if a logic is to validate the strengthened version of
Plumwood’s joint forces principle:

Corollary 2. RM does not satisfy (SJFP).

Proof. Let ∼A be any logical theorem of RM. According to (SJFP) there
must be a logical theorem B and a formula C such that ⊢RM A ∧ B → C,
but ⊬RM A → C. From Lem. 1, however, it follows that ⊢RM A → B, and
therefore that ⊢RM A → A∧B which by transitivity yields that ⊢RM A → C.
It follows, then, that RM does not satisfy (SJFP).

Theorem 6. (VSP) implies (SJFP).

Proof. For (SJFP) to fail to hold, there must be a formula A such that for
every formula B and C, if ⊢L A ∧ B → C and ⊢L B, then either ⊢L A → C
or ⊢L B → C. Let B be p → p for some propositional variable not occurring
in A and let C be A ∧ B. ⊢L A → C or ⊢L B → C implies that ⊢L A → B
or ⊢L B → A, and since A and B do not share a propositional variable, it
follows that L cannot satisfy (VSP).

Thus Plumwood’s principle can naturally strengthened so as to yield a
stronger principle than here principle of joint forces. (SJFP) isn’t strong
enough, however; at least not strong enough to yield the variable sharing
property as derivable, which Plumwood and Sylvan thought it ought to be
from “a good sufficiency relation” [21, p. 3]. Quite the contrary, in fact. That
(VSP) is properly stronger than (SJFP) follows by noting as the next lemma
does that RUE—R augmented by unrelated extremes axiom (UE) above—
satisfies this stronger property without—obviously—satisfying the variable
sharing property.

Lemma 2. RUE satisfies (SJFP).

Proof. Let A be any formula. We must show that there is a RUE-theorem
B and a formula C such that A ∧ B → C is a logical theorem while A → C
and B → C are not. Let B be p → p where p is some propositional variable
which does not occur in A, and let C be A ∧ B. It suffices, then, to show
that there is a model in which both A → B and B → A fails to hold.
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With that in mind, note that the model in Fig. 1 is a model for RUE.13

Now assign to every propositional variable occurring in A the value 4. It is
easy to check that {4} is closed under every propositional function, and so
A will be evaluated to 4. By assigning p to 5, B will be evaluated to 5 as
well. Inspecting the implicational matrix shows, then, that both A → B and
B → A fails to hold in this model.

T = {1, 4, 5, 6, 7, 8}

8

6

@@

7

OO

5

@@

4

@@OO

3

OO

1

OO^^

2

OO^^

0

OO^^

→ 0 1 2 3 4 5 6 7 8 ∼
0 8 8 8 8 8 8 8 8 8 8
1 0 1 2 3 4 5 6 7 8 7
2 0 0 1 5 4 0 4 6 8 6
3 0 0 0 5 0 0 0 5 8 5
4 0 0 0 0 4 0 4 4 8 4
5 0 0 0 3 0 5 5 3 8 3
6 0 0 0 0 0 0 1 2 8 2
7 0 0 0 0 0 0 0 1 8 1
8 0 0 0 0 0 0 0 0 8 0

Figure 1: A model for RUE

Corollary 3. (VSP) is properly stronger than (SJFP).

Proof. Immediate from Thm. 6 and Lem. 2.

We saw above that (QVSP) does not imply (SJFP). It seems rather un-
likely that the latter should imply the former, but it is not at all evident
what kind of logic would satisfies (SJFP), but not (QVSP). On that note I
would like to point out that it is unsettled whether RUE and its stronger
sibling R augmented by Dummett’s axiom—both of which are sublogics of
RM [cf. 24, § 3]—satisfy (QVSP) or not. If, then, it should turn out that
RUE fails to satisfy this property, it would follow that (SJFP) and (QVSP)
are truly incomparable properties.

13All models displayed in this paper have been found with the aid of MaGIC—an acronym
for Matrix Generator for Implication Connectives—which is an open source computer
program created by John K. Slaney [25].
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There are other ways to strengthen Ackermannian and Plumwoodian prin-
ciples that lead to stronger properties. One idea for strengthening (SJFP)
would be to require that C also be a logical theorem. Another would be
to take note of Plumwood’s claim that the logical law (A ∧ B → C) →
(A → C) ∨ (B → C) “which for every proposition denies the Joint Force
Principle” [19, § II]14 and then restate the joint force principles as having
⊬L (A → C) ∨ (B → C) instead of the conjunctive clause that ⊬L A → C
and ⊬L B → C. Similarly, since Dummett’s axiom—as the MacColl war-
earthquake quote testifies to—was already at the time acknowledge as an
implicational paradox, it is not unlikely that Ackermann’s fourth idea was
rather intended as claiming that there for every formula A must be a for-
mula B such that ⊬L (A → B) ∨ (B → A).15 Or one might even strengthen
Ackermann’s idea to yield that every formula should be logically independent
from some formula, i.e. that

⊬L (A → B) ∨ (A → ∼B) ∨ (B → A) ∨ (∼B → A)

should rather hold. It is easily verified, however, that the model in Fig. 1
is such as to verify such stronger properties as well, and so these ways of
strengthening the Ackermannian and Plumwoodian principles also fail to
yield the variable sharing property as a corollary. The next section, however,
shows forth more successful such strengthenings.

This section has shown that Plumwood’s idea of suppression is equivalent
to that of Ackermann which by itself is nicely surprising fact. Plumwood
and Sylvan thought of logical consequence as a sufficiency relation which,
then, couldn’t validate any suppression principles. Indeed such a relation
would, according to them, yield the variable sharing property as a “derivable
feature” They furthermore claimed that one by eliminating suppression would
thereby also eliminate the implicational paradoxes [cf. 21, p. 359]. Neither of
these claims are verified by cashing out suppression freedom using either the
original, or the strengthened formal properties obtained from Ackermann’s
and Plumwood’s motivational ideas of entailment: we have seen that these
properties can hold true yet allow A ∧ ∼A to entail B ∨ ∼B. The next
section tries out a different idea of how to strengthen the Ackermannian and

14The claim is also to be found in [21, p. 269, fn. 1].
15The variable sharing property does somewhat surprisingly not rule out Dummett’s

axiom. See the appendix for a strong sublogic of R augmented by Dummett’s axiom which
satisfies the variable sharing property.
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Plumwoodian principles which will be shown to yield properties equivalent
with Belnap’s variable sharing property.

5 Insuppressible topics
The reason, according to Ackermann, a well-formed formula such as A →
(B → B) should not be a theorem of the theory of rigorous implication is
that A and B can express unrelated propositions. We saw that Ackermann
appealed to a mereological part-whole relation on propositional content to
give some content to the idea that rigorous implication involves a non-trivial
meaning-relation of some sort. I will suggest, however, that a better way of
obtaining an intuitive motivation for the theory of rigorous implication, and
theories in its vicinity, is by appealing to the notion of a topic or subject-
matter. It is because p and q can be taken to express propositions about dif-
ferent topics that the relation of rigorous implication cannot obtain between
p → p and q → q. For instance, the subject-matter-overlap of “Socrates is a
man” and that of “that ‘comets move in elliptical orbits’ entails that ‘comets
move in elliptical orbits’ ” What happens, then, if we take the Ackerman-
nian dictum and update it to the requirement that the theory of rigorous
implication does not encompass formulas implicationally related to formulas
expressing different topics? Or if we update Plumwood’s idea of joint forces
to the effect that every formula have joint irreducible consequences with top-
ically unrelated formulas? The problem, to again quote Belnap, is to restate
this condition in formal terms [cf. 8, p. 144].

Now theories of topics diverge quite radically on just what topics are.
[14], for instance, cashes out topics as equivalence classes of possible worlds.
The metaphysical side to topics will not concern us in this paper, nor will I
attempt a general discussion of theories of topics.16 I will follow the recent
and topically related [9] in regarding the topic of a formula as the fusion
of the topics of its atomic subformulas. If A and B, then, are about non-
overlapping topics, then so will A and any subformula C of B. This, then,
is the guiding idea behind the definitions and results in this section.

Definition 12.

Var(A) =df the set of propositional variables occurring in A
WFF(A) =df the set of well-formed formulas generable from Var(A)
16See [11] for a good discussion and overview over theories of topics.
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Now if C ∈ WFF(B), C must be about some suptopic of B. If, then,
some such C entails A, if, that is, C → A is a logical truth, then B must be
topically connected to A somehow. The guiding idea in the following is that
it should also be the case that if all such C’s fail to yield A—if C → A fails to
be a logical truth for every C ∈ WFF(B)—then B is topically unconnected
to A.17

Definition 13 (Topically Unconnected). B is topically unconnected
to A given the logic L,

TopUConL(B,A) =df ∀C(C ∈ WFF(B) ⇒ ⊬L C → A)

This property is easily seen to be a strengthened version of the Ackerman-
nian property (TWF) to the effect that ever formula fails to be rigorously
implied by some formula. It’s topical sibling is then as follows:

Definition 14. A logic L has the property of Topical Weakening Fail-
ure (TopWF) just in case

∀A∃B(TopUConL(B,A)).

Theorem 7. (TopWF) implies (VSP) for any logic L for which the meta-
rule of uniform substitution—that if ⊢L A, then also ⊢L A[p/q], where A[p/q] is
the formula A in which the propositional variable p is everywhere substituted
by q—holds.

Proof. Assume that L satisfies (TopWF), and for contradiction that L does
not satisfy (VSP). Then there are formulas A and B such that Var(A) ∩
Var(B) = ∅ and ⊢L A → B. Since L satisfies (TopWF) there is a formula
C such that ⊬L D → B for every D ∈ WFF(C).

Let q by some propositional variable such that q ∈ Var(C), and assume
that Var(A) = {pa1 , . . . , pan}. For any formula E, let Eq =df E[pa1/q, . . . , pan/q]
where this latter formula, then, is simply D where each propositional vari-
able occurring in A has been replaced by q if it occurs in E. It follows that

17If unconnected seems too strong a term to cover this notion, the reader is of course
welcome to substitute it for some other. One could, however, define topically unconnect-
edness as

∀A′∀B′((A′ ∈ WFF(A) & B′ ∈ WFF(B)) ⇒ ⊬L B′ → A′)

which would do the same job as the definition of topically unconnectedness used here.
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Aq ∈ WFF(C), and since Var(A)∩Var(B) = ∅, that (A → B)q = Aq → B.
Since L is assumed to satisfy the meta-rule of uniform substitution, it follows
from the assumption that ⊢L A → B, that also ⊢L Aq → B which contradicts
the fact that ⊬L Aq → B since Aq ∈ WFF(C).

Theorem 8. (VSP) implies (TopWF).

Proof. Assume that L satisfies (VSP). Let A be any formula, and let B be any
formula with no propositional variables in common with A. Since L satisfies
(VSP) it follows that ⊬L B → A. Let C be any formula in WFF(B). Since
the propositional variables occurring in C are amongst Var(B), it follows
that neither C shares any propositional variables with B. Since L satisfies
(VSP) it follows, then, that also ⊬L C → A, and therefore that L satisfies
(TopWF).

Satisfying uniform substitution is a reasonable requirement on being a
logic to begin with, and so it follows that one may for extensional purposes
identify the topical weakening failure property and the well-known variable
sharing property. How about, then, Plumwood’s suppression ideas? One
way to strengthen the joint forces idea would be as the claim that every for-
mula have non-reducible joint consequences with some topically unconnected
formula:

Definition 15. A logic L has Topically Unconnected Forces (TUF)
=df

∀A∃B∃C(TopUConL(B,A)&
⊢L A ∧B → C & ⊬L A → C & ⊬L B → C)

Lemma 3. (TUF) implies (TopWF).

Proof. Trivial.

To show that (TUF) is in fact equivalent to the variable sharing property,
I will show that it is implied by the topical version of the Ackermannian
property (UTDWF)—that for every formula A there is some formula B such
that neither does A entail B, nor does B entail A. The variable sharing
property, it will be shown, implies the topical version of this Ackermannian
property, which by transitivity, then, yields that it implies (TUF).
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Definition 16 (Topically Unrelated). A and B are topically unrelated
given the logic L,

TopURelL(A,B) =df TopUConL(A,B) & TopUConL(B,A).

Definition 17. A logic L has the property of Topical Ackermannian
Unrelatedness (TAU) just in case

∀A∃B(TopURelL(A,B)).

Lemma 4. (TAU) implies (TUF).

Proof. Let A be any formula. From (TAU) it follows then that there is some
formula B such that both TopUConL(A,B) and TopUConL(B,A). We must
show that there is some C such that all of ⊢L A ∧ B → C ⊬L A → C, and
⊬L B → C) hold true.

Let C be A ∧ C. Since A ∧ B → C is a logical axiom, the the first
task is done. If ⊢L A → C, then also ⊢L A → B, which cannot be the
case since A ∈ WFF(A) and TopUConL(A,B) this cannot be the case.
Similarly, if ⊢L B → C, then also ⊢L B → A which is ruled out since
TopUConL(B,A).

Lemma 5. (VAR) implies (TAU).

Proof. Similar to Thm. 8.

Corollary 4. (VAR), (TAU), (TUF) and (TopWF) are all equivalent prop-
erties.

Proof.

• (VAR) implies (TAU) (Lem. 5).

• (TAU) implies (TUF) (Lem. 4).

• (TUF) implies (TopWF) (Lem. 3).

• (TopWF) implies (VAR) (Thm. 7).
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This, then, goes to show that Ackermann’s and Plumwood’s early moti-
vational ideas of relevance can in fact be used to carve out the same formal
notion of relevance that Belnap’s variable sharing property does. This goes
some way towards backing up Plumwood and Sylvan’s claim that the vari-
able sharing property is but a derivative feature of a truly non-suppressive
account of entailment [cf. 21, p. 3]. It should be noted, however, that the
real oomph of (TUF), for instances, comes from the topically unconnectivity
requirement, not the joint forces part of the property. Of course, it may
be possible to come up with other generalizations of these properties with a
more “active” suppression-part.

What these relevance properties all fail to do, however, is to, as Anderson
and Belnap had hoped, allow one to “arrive precisely at the formal system
E of logical implication [. . . ] or entailment” [5, p. 722], or to show that
permutation laws are incorrect as Ackermann though, and suppressive as
Plumwood and Sylvan thought. They are, as was evident from the get-go
with regards to the variable sharing property, at best necessary criteria for a
theory of entailment for which the premises must be content-related—be it
cashed out in terms of meaning or in terms of topicology—to the conclusion.
What they do, however, is to provide a different context in which to ground
the variable sharing property, namely the theory of topics.

6 Summary
This paper has shed light on two different ways of motivating a conditional
theory of entailment in the tradition of relevant logics. The first goes back
to Ackermann’s essay—Begründung Einer Strengen Implikation—in which
Ackermann motivates his rigorous implication-conditional as one which does
not encompass statements which rigorously imply or are implied by every
other. This is but one of four features Ackermann mentions to motivate
his theory. The other three are that the conditional expresses some sort
of logical connection, non-reducible to the “correctness or falsity” of its an-
tecedent and consequent, and lastly that the content of the latter be part of
the content of the former. These two latter ideas were picked up by Anderson
and Belnap. The latter was specified as the requirement that a conditional
expressing entailment must be such as to ensure that the meaning of the an-
tecedent is connected to the meaning of the consequent, given, that is, that
the former does indeed entail the latter. Belnap, then, suggested the variable
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sharing property as a formal property to ensure such meaning connectedness.
The logical connectedness-feature was rebranded as the “use-condition”, that
A must be used in obtaining B for A to entail B. Anderson and Belnap,
however, never touched on Ackermann’s fourth explication of the concept
of rigorous implication. They did, however, provide a motivation for their
theory—the theory of entailment as they preferred—which they did not trace
back to Ackermann, namely as the theory which could uphold the difference
between a valid argument and enthymemes. Enthymematically valid argu-
ments generally allow one to suppress certain true premises, but Anderson
and Belnap thought that truths in general—be they merely, necessarily or
even logically true—are generally not suppressible. They then speculated
that their account—the logic E—of entailment would turn out to be the ac-
count which could differentiate between valid argument and enthymemes for
the three truth-modes of suppression.

In discussing the selection criteria for the theory of entailment, Anderson
and Belnap were keen to stress the importance of formal properties. However,
they never tried to come up with a formal criteria to identify suppression.
This is one of the important contributions of Plumwood. In her conference
paper Some false laws of logic, Plumwood presents two properties meant as
adequacy-criteria for a theory of entailment for which suppression of premises
is argued to be lead to false entailment-claims. Plumwood’s two criteria
turn out to be equivalent to two criteria extracted using Ackermann’s fourth
explication of his rigorous implication.

These Ackermannian and Plumwoodian principles turn out to be properly
weaker than Belnap’s variable sharing property. Taking inspiration from the
theory of topics, it was shown, however, that it is possible to strengthen
these principles. The resultant properties were shown to be equivalent to
the variable sharing property. Even though, then, they fail to deliver what
Anderson and Belnap had hoped an account of suppression would deliver—
namely the logic E—and furthermore fail to show up permutation laws as
fundamentally suppressive principles which Plumwood together with Sylvan
claimed, these principles do show that it is possible to motivate the property
in a slightly different way than what Belnap did, namely as a consequence
of the inexistence of a sentence topically related to ever other.
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Appendix: The variable sharing property for a
strong logic with Dummett’s axiom
One of the classical examples of an implicational paradox is that, to re-quote
Russell, “that of any two propositions there must be one which implies the
other”[23, §16]. We have already seen that MacColl thought this to be false—
war in Europe, according to [15], does not imply a disastrous earthquake
happening the same year, nor does such an earthquake imply war. Thus
MacColl would deny the truth of one of the logical theorems of RM, namely
Dummett’s axiom:

(D) (A → B) ∨ (B → A).

According to Anderson and Belnap, Dummett’s axiom brings the implica-
tional theory of RM so close to the dreaded material “implication” [cf. 6,
p. 429] that, despite it’s nice formal properties, has no claim to capture the
“if. . . then__”-locution. Beyond these rather inconclusive reasons, Anderson
and Belnap never seem to have given something closer to an argument as to
why Dummett’s axiom should fail.

Anderson and Belnap thought of the variable sharing property as a safe-
guard against implicational paradoxes in the strong sense that if a logic has
that property, then it will not validate any implicational paradoxes. But is
this true? Now Dummett’s axiom does imply Kleene’s axiom—A ∧ ∼A →
B∨∼B—and so even though it itself does not directly violate the requirement
of the variable sharing property, it seems to entail the existence of such a
violation. An argument in line with Anderson and Belnap’s view, then, for
why Dummett’s axiom cannot hold true is that it entails such a violation.
And indeed it does:

Theorem 9. Any logic extending BBD—BB augmented by Dummett’s axiom—
for which the meta-rule of reasoning by cases holds, has the Kleene axiom as
a logical theorem.

Proof. For any formulas A and B, it is easy to derive A ∧ ∼A → B ∨ ∼B
from B ∨ ∼B → A ∧ ∼A. Thus the Kleene axiom follows using reasoning
by cases and the contraposition rule together with the following instance of
Dummett’s axiom

(A ∧ ∼A → B ∨ ∼B) ∨ (B ∨ ∼B → A ∧ ∼A).
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The interesting part of the proof goes as follows:

(1) B ∨ ∼B → A ∧ ∼A assumption
(2) B → B ∨ ∼B axiom
(3) A ∧ ∼A → ∼A axiom
(4) B → ∼A 1–3 transitivity
(5) A → ∼B 4, contraposition rule
(6) A ∧ ∼A → A axiom
(7) ∼B → B ∨ ∼B axiom
(8) A ∧ ∼A → B ∨ ∼B 5–7 transitivity

The purpose of this section is to show that the variable sharing property
can hold true in quite strong logics, both in terms of implicational validity,
but also in terms of negation laws, despite validating Dummett’s axiom and
the meta-rule of reasoning by cases. That Dummett’s axiom is compatible
with the variable sharing property was to my knowledge first shown in [20,
prop. 6.19], but therein for a rather weak logic. The following model shows
that one may add Dummett’s axiom to even R if, basically, the contraposition
axiom is but weakened slightly.

Let RDt+ be the positive fragment of the logic R, but augmented by
Dummett’s axiom. RDt+ is defined to have the truth-constant known as the
Ackermann constant which in the current case we can axiomatize using the
two axiom A → (t → A) and (t → A) → A. This truth constant is added so
as to have the negation-laws statable as axioms and not as mere rules. The
model displayed in Fig. 2 is a model for RDt+. To see that the model can be
used to show that RD+t has the variable sharing property, let A and B be
any two negation- and t-free formulas which share no propositional variables.
Assign every propositional variable in A to 3 and every propositional variable
in B to 2. Then it is easy to verify that A will be evaluated to 3 and B to
2, and therefore that JA → BK = 0. Thus A → B is not a logical theorem
of RDt+. Now the model displays two different matrices for how to evaluate
∼. Using the ∼1-matrix we obtain a model for RDt—R augmented by
Dummett’s axiom as well as the Ackermann constant. As such, however, it
also validates p ∧ ∼1p → q ∨ ∼1q. This formula is in fact a theorem of RD
[cf. 24, § 3], and so this logic obviously fails to satisfy the variable sharing
property. However, if we rather use the ∼2-matrix to evaluate the negation,
this is no longer the case. In fact, since both ∼23 = 3 and ∼22 = 2 the proof
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of the variable sharing property extends to formulas with negation. The
question, then, is which negation laws hold true in the model. The following
formulas are easily verified to hold in the model.

A ↔ B =df (A → B) ∧ (B → A)
A 7→ B =df A ∧ t → B
A ↭ B =df (A 7→ B) ∧ (B 7→ A)

A ↔ ∼∼A
∼(A ∧B) ↭ (∼A ∨ ∼B)
∼(A ∨B) ↭ (∼A ∧ ∼B)
(A → A) 7→ (∼A → ∼A)
(A → B) 7→ (∼B 7→ ∼A)
(A → ∼B) 7→ (B 7→ ∼A)
(∼A → B) 7→ (∼B 7→ A)
(∼A → ∼B) 7→ (B 7→ A)
A ∨ ∼A
(A → ∼A) → ∼A
A 7→ ∼(A → ∼A)
(A → B) → (∼A ∨B)
(A ∧ ∼B) 7→ ∼(A → B)
∼A ↭ (A → ∼t)

Note that 7→ is weaker than →: (A → B) → (A 7→ B) holds, but
the antecedent can hold true without the antecedent: 2 7→ 1 holds true in
the displayed model, but 2 → 1 does not. The enthymematic conditional
7→ can be viewed as a sort of object-language representative of the Hilbert
consequence relation, seeing as the enthymematical deduction theorem—-
that Γ, A ⊢ B ⇐⇒ Γ ⊢ A 7→ B—also holds for RDt+ augmented by any of
the negation laws above.18

All the negation axioms listed above hold true in R in the stronger form
where 7→ is everywhere replaced by →. In all these axioms, however, it can be
verified that the model does not hold if 7→ is replaced by →. Even so, the list
of negation principles which do hold true in the model is quite extensive as it
includes both double negation, distribution of negation over conjunction and
disjunction, contraposition axioms, excluded middle and reductio-axioms as
well as the interderivability of the negation of A and it implying the negated

18The proof is a simply induction on the length of proof, and so I leave the proof to
the reader. Using this theorem it is easily shown that reasoning by cases also holds true.
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Ackermann constant. Thus RDt+ can be augmented by quite strong negation
laws while still validating the variable sharing property.

6

5

OO

4

OO

3

OO

2

OO

1

OO

0

OO

T = {1, 2, 3, 4, 5, 6}
JtK = 1

→ 0 1 2 3 4 5 6 ∼1 ∼2

0 6 6 6 6 6 6 6 6 6
1 0 1 2 3 4 5 6 5 5
2 0 0 2 3 4 4 6 4 2
3 0 0 0 3 3 3 6 3 3
4 0 0 0 0 2 2 6 2 4
5 0 0 0 0 0 1 6 1 1
6 0 0 0 0 0 0 6 0 0

Figure 2: A model for RDt
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