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Abstract

H. Omori and H. Wansing introduced in a recent paper possible al-
ternatives for the negation of the logic of first-degree entailment. One
of their observations with regard to these alternative negations is that
some of them turn out to induce negation inconsistency, meaning that
some contradictions become provable (under an arbitrary premise)
when used in place of the original negation. Omori and Wansing also
considered a non-deterministic generalisation of such operators, but
it was left open whether the generalised negation similarly induces
negation inconsistency. In this paper, we provide an answer to this
question in the positive, and moreover look into further generalisation
and characterisation of non-deterministic operators which satisfy the
formal criteria of negation inconsistency and its pair notion of negation
incompleteness in the setting of Omori and Wansing.

Keywords— Contradictory logics; First-degree entailment; Negation incon-
sistency; Negation incompleteness; Non-deterministic semantics.

1 Introduction

The negation in the logic of first-degree entailment FDE, also known as Belnap-
Dunn logic [9, 10, 12, 13], can be characterised by a four-valued semantics with
values t (true), f (false), b (both true and false), and n (neither true nor false).

There are, on the other hand, other unary operators that are proposed as repre-
senting a type of negation (see e.g. [18]). In particular, H. Omori and H. Wansing
[17] considered possible variants of FDE-negation under the criterion that ∼A is
true if and only if A is false. In other words, the variants are obtained by chang-
ing the falsity condition of the FDE-negation, an approach sometimes called the
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Bochum plan [14]. Furthermore, Omori and Wansing also introduced a further
generalisation by considering non-deterministic matrices (Nmatrices) introduced
by A. Avron and I. Lev [6, 7].

One observation made in [17] is that there are four notions of negation which
makes the system negation inconsistent, in the sense that there is a formula A
such that both A and its negation ∼A are consequences of any arbitrary for-
mula B. Furthermore, the matrices of the four negations were generalised into a
non-deterministic matrix, and corresponding natural deduction systems was given.
However, it remained open whether this generalised system is negation inconsistent
as well. Similar observations are also made with respect to the negation incomplete
variants, and in this case as well it remained open whether the non-deterministic
generalisation of the negation incomplete variants is itself negation incomplete.

In the above cases, the problems are equivalent semantically to the definability
of a constant (b/n constant) which always gives the value b and n, respectively.
The definability of connectives in FDE and its neighbouring systems (with differ-
ent sets of connectives) has been well-studied. In [1, 3], O. Arieli and A. Avron
characterised sets of definable connectives in various languages in the context of the
bilattices FOUR and T HREE , in terms of the properties of their corresponding
operations. The papers also address the issue of functional completeness, as is also
done by e.g. A.P. Pynko [20], H. Omori and K. Sano [15] as well as L.Yu. Devy-
atkin [11]. Omori and Sano [15] moreover give a classification of certain expansions
of FDE. A. Přenosil [19] offers a description of expansions that is independent of
the choice of primitive connectives. Also related to our enquiry is a work by Arieli,
Avron and A. Zamansky [2] which investigates notions of maximality in paracon-
sistent three-valued logics given by non-deterministic semantics. Devyatkin [11]
makes analogous consideration into the deterministic expansions of FDE.

In this note, we shall first show that the non-deterministic system is indeed
negation inconsistent. Then we shall attempt to generalise this result, by consid-
ering operators obtainable by introducing further non-determinacy, and in the end
we shall present a characterisation of unary operators which formally satisfy the
criterion of negation inconsistency. Moreover, we shall make similar observations
with respect to the negation incomplete variants of FDE-negation. Finally, we
shall look at negation inconsistency obtainable by adding non-deterministic unary
operators to the full FDE with the FDE-negation.

2 Preliminaries

Let us first specify the propositional language to be used in our enquiry.

(LFDE) A ::= p | A ∧A | A ∨A | ∼A.
(LFDE◦) A ::= p | A ∧A | A ∨A | ∼A | ◦A.

The set of all formulas in LFDE (LFDE◦) will be denoted by Form (Form◦).
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We will occasionally attach subscripts to ∼ in order to differentiate negations in
multiple systems, but they do not constitute a proper part of the languages.

We next introduce the definition of non-deterministic matrices (for more de-
tails, see e.g. [8]).

Definition 2.1. A non-deterministic matrix (or Nmatrix ) for a language L is a
triple (V,D,O), where V ̸= ∅ stands for the set of truth values, ∅ ⊊ D ⊊ V stands
for the set of designated values, and O contains ⋄̃ : Vn −→ 2V \ ∅ for each n-ary
connective ⋄ in L. A valuation1 is then a function v : Form → V satisfying the
following condition for each connective ⋄ in L:

v(⋄(A1, . . . , An)) ∈ ⋄̃(v(A1), . . . , v(An)).

Then the semantical consequence relation Γ |= A is defined by: if for any valuation
v, v(B) ∈ D for all B ∈ Γ implies v(A) ∈ D.

For instance, if an Nmatrix is such that V = {t,b, f} and ⋄̃ ∈ O is such that
⋄̃(t) = {t,b}, then when v(A) = t, v(⋄A) must be one of t or b. An n-ary connec-
tive ⋄ will be called deterministic with respect to an Nmatrix if ⋄̃(x1, . . . , xn) is a
singleton set for all (x1, . . . , xn) ∈ Vn; otherwise it will be called non-deterministic.

Occasionally, we add a subscript for an element of O to indicate the Nmatrix
it is from. Also, given a set Γ of formulas we will use the notation v(Γ) for
{v(A) : A ∈ Γ}. Then the specific Nmatrix of our (initial) concern is given as
follows [17, Definition 69].

Definition 2.2 (four-valued negation inconsistent FDE-Nmatrix). The four-valued
negation inconsistent FDE-Nmatrix for LFDE is a triple (V,D,O), where V =
{t,b,n, f}, D = {t,b} and O = {∧̃, ∨̃, ∼̃}. The next tables for ∧̃, ∨̃ are identical
to those of FDE. (We abbreviate braces, e.g. n, f instead of {n, f}.):

∧̃ t b n f

t t b n f
b b b f f
n n f n f
f f f f f

∨̃ t b n f

t t t t t
b t b t b
n t t n n
f t b n f

∼̃
t n,f
b t,b
n f
f b

A valuation and the semantical consequence relation of the four-valued negation in-
consistent FDE-Nmatrix will be called a four-valued negation inconsistent FDE-
valuation and the four-valued negation inconsistent FDE-consequence relation.
The latter will be denoted |=4b and is identified with the logic b-FDE.

1We will focus on the so-called dynamic valuations, which are more general than another
notion called static valuations; see [5] for the details. At the same time, we note that one
of the reviewers expressed an expectation in favour of static valuations in the present
context.
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Remark 2.3. In order to compactly represent possible values a formula can take
under a valuation, we adopt an informal notational convention. Suppose, as an
example, that we have a four-valued negation inconsistent FDE-valuation v and
a formula A such that v(A) = b. Consider then a case of representing which of
the four values ∼A ∧ ∼∼A might take under v.

There are two steps where the value of formula is not deterministically given.
Firstly, v(∼A) may take either the value t or b according to Definition 2.2. Let
us denote these possibilities by an ordered pair (t,b)1 (the comma will be abbre-
viated) with a label 1 representing a step at which the non-determinism occurs.

Secondly, there are also multiple possibilities for v(∼∼A), in both of the cases
when v(∼A) = t and when v(∼A) = b. In the former case, v(∼∼A) either takes
the value n or f, and this will be denoted by (nf)2 with a new label 2 for the new
instance of non-determinism. In the latter case, v(∼∼A) either takes the value
t or b, and this will be denoted by (tb)2: we use the same label because they
concern the same formula ∼∼A. To denote all possibilities, then, we substitute
these pairs for t and b in (tb)1, obtaining an expression ((nf)2(tb)2)1.

This simply represents that two possibilities are introduced at the step labelled
by 1, and in each of the possibilities a further pair of possibilities is introduced at
the step labelled by 2. The situation is also representable in a table.

A 1 : ∼A 2 : ∼∼A ∼A ∧ ∼∼A
b (tb)1 ((nf)2(tb)2)1 ((nf)2(bb)2)1

Now this presentation makes it easy to calculate the possible values for v(∼A ∧
∼∼A). There are four possible values for v(∼∼A), and if it has one of the value
n or f from (nf)2, then it is a result of v(∼A) being t, because of the convention
we adopted. So v(∼A ∧ ∼∼A) is either n or f in this case, from ∧̃ in Definition
2.2. Otherwise, it has one of the values t or b from (tb)2, and it is a result of
v(∼A) being b; so v(∼A ∧ ∼∼A) is b in both cases. Hence the possibilities for
v(∼A∧∼∼A) can be expressed as ((nf)2(bb)2)1 or more simply as ((nf)2b)1 since
the second non-determinism does not affect the value when v(∼A) = b.

One important notion in non-deterministic matrices is that of refinement, of
which we give a specific version for our specific purpose; for the full definition, see
e.g. [8, Definition 30].

Definition 2.4 (refinement). Let M1 = (V,D,O1) and M2 = (V,D,O2) be
Nmatrices in a language L. We say M1 is a refinement of M2 if for each n-ary
connective ⋄ in L and for all x1, . . . , xn ∈ V, ⋄̃M1(x1, . . . , xn) ⊆ ⋄̃M2(x1, . . . , xn).

Essentially, this just means that a refinement of an Nmatrix is obtained by
eliminating some entries from its tables.

Proposition 2.5. Let M1 be a refinement of M2, and |=M1 , |=M2 be their
semantical consequence relations. Then Γ |=M2 A implies Γ |=M1 A.

Proof. See e.g. [4, Proposition 3.3].
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3 Negation-inconsistent variants of FDE-negation

According to [17], there are four types of negation which produce a negation in-
consistent system (FDEi for i ∈ {4, 8, 12, 16}) in their framework. Moreover, the
negations can be generalised into a non-deterministic type of negation, whose table
is identical to the one we saw above.

A ∼4 A ∼8A ∼12 A ∼16A ∼A
t f f n n n,f
b b t b t t,b
n f f f f f
f b b b b b

The question [17, Remark 73] that remained unanswered is whether ∼A gives
rise to negation inconsistency. Here, a logic L is said to be negation inconsistent
if for some A, both B |=L A and B |=L ∼A for any B. (cf. [17, Definition 28]).
The formula A will sometimes be referred to as a provable contradiction.

3.1 Negation inconsistency of b-FDE

We will show that the answer to the open question is positive. This is more easily
seen from a proof-theoretic perspective. The following natural deduction system is
proved in [17] to be sound and complete with respect to the four-valued negation
inconsistent FDE-Nmatrix.

Definition 3.1 (Nb-FDE). The following rules define a natural deduction Nb-
FDE in LFDE.

A B (∧I)
A ∧B

A1 ∧A2 (∧E)
Ai

Ai (∨I)
A1 ∨A2 A ∨B

[A]

...
C

[B]

...
C (∨E)

C

∼Ai (∼∧I)
∼(A1 ∧A2) ∼(A ∧B)

[∼A]

...
C

[∼B]

...
C

(∼∧E)
C

∼A ∼B (∼∨I)
∼(A ∨B)

∼(A1 ∨A2)
(∼∨E)∼Ai

(∼∼)
A ∨ ∼∼A (where i ∈ {1, 2}.)

The derivability in Nb-FDE is denoted by ⊢bFDE.
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The following formulas witness the negation inconsistency of b-FDE.

Proposition 3.2. The following formulas are derivable in Nb-FDE.

(i) ∼(A∧∼∼A) ∧ ∼((A∧∼∼A)∧∼∼(A∧∼∼A)).

(ii) ∼(∼(A∧∼∼A) ∧ ∼((A∧∼∼A)∧∼∼(A∧∼∼A))).

Proof. For (i), the left conjunct can be derived from an instance of (∼∼), namely
∼A∨∼∼∼A. Similarly, the right conjunct can be obtained from another instance
∼(A ∧ ∼∼A) ∨ ∼∼∼(A ∧ ∼∼A).

For (ii), we use the instance of (∼∼):

((A∧∼∼A)∧∼∼(A∧∼∼A)) ∨ ∼∼((A∧∼∼A)∧∼∼(A∧∼∼A))),

from which we infer ∼∼(A∧∼∼A)∨∼∼((A∧∼∼A)∧∼∼(A∧∼∼A))). Then apply
(∼∧I).

The contradictory formulas may be seen as an instance of a general schema
∼A∧∼(A∧∼∼A). What does it signify? To answer this question, we go back to
the semantical perspective. We introduce first what we mean in this paper when
a deterministic connective is said to be definable in a logic.

Definition 3.3. LetM = (V,D,O) be an Nmatrix, and let ⋄ be a deterministic
n-ary connective given by ⋄̃ : Vn −→ 2V \ ∅. We say ⋄̃ is definable inM, if there
is a formula A(p1, . . . , pn) such that for each (x1, . . . , xn) ∈ Vn, if ⋄̃(x1, . . . , xn) =
{y} then v(Bi) = xi for 1 ≤ i ≤ n implies v(A(B1, . . . , Bn)) = y. Then ⋄ is
definable in a logic L when ⋄̃ is definable in an Nmatrix whose associated semantical
consequence relation gives rise to L.

Now we can see what ∼A ∧ ∼(A ∧ ∼∼A) amounts to in b-FDE.

Proposition 3.4. ∼4 is definable in b-FDE.

Proof. The following table shows that for any four-valued negation inconsistent
FDE-valuation v, the valuation of ∼A ∧ ∼(A ∧ ∼∼A) matches that of ∼4.

A 1 : ∼A 2 : ∼∼A A∧∼∼A 3 : ∼(A∧∼∼A) ∼A∧∼(A∧∼∼A)

t (nf)1 (fb)1 (fb)1 (b(tb)3)1 f
b (tb)1 ((nf)2(tb)2)1 (fb)1 (b(tb)3)1 b
n f b f b f
f b (tb)2 f b b

Proposition 3.2 can now be double-checked semantically.

Corollary 3.5. The following statements hold.
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(i) v(∼(A∧∼∼A)∧∼((A∧∼∼A)∧∼∼(A∧∼∼A))) = b for any four-valued nega-
tion inconsistent FDE-valuation v.

(ii) b-FDE is negation inconsistent.

Proof. For (i), note that the formula in Proposition 3.2 can be read as ∼4(A ∧
∼∼A). Moreover, the table in Proposition 3.4 shows that A ∧ ∼∼A must attain
either the value b or f. Hence the value of ∼4(A ∧ ∼∼A) must be b. For (ii), by
(i), ∼4(A∧∼∼A) attains the value b for any v, and so v(∼∼4(A∧∼∼A)) ∈ {t,b}.
Therefore B |=4b ∼4(A∧∼∼A) and B |=4b ∼∼4(A∧∼∼A) for any B, i.e. b-FDE
is negation inconsistent.

Remark 3.6. It is also possible to reuse the example of a provable contradiction
for FDE4 given in [17, Theorem 29]. The formula ∼4∼4A becomes in b-FDE an
abbreviation of:

∼(∼A∧∼(A∧∼∼A)) ∧ ∼((∼A∧∼(A∧∼∼A)) ∧ ∼∼(∼A∧∼(A∧∼∼A))).

Yet another example is the formula (A∨∼∼A)∧∼(∼(A∨∼∼A)∧∼∼∼(A∨∼∼A)).
In this case, the schema A∧∼(∼A∧∼∼∼A) defines a connective giving the value
b when v(A) ∈ {t,b}, and f when v(A) ∈ {n, f}. An obvious consequence is that
A is a theorem of b-FDE iff A ∧ ∼(∼A ∧ ∼∼∼A) is a provable contradiction.

At the same time, it is worth noting that the negation inconsistency of b-FDE
is restricted in an important way.

Proposition 3.7. For no formula A, B ⊢bFDE ∼A and B ⊢bFDE ∼∼A for all B.

Proof. We shall confirm the statement semantically. It suffices to show that for
any A there is a four-valued negation inconsistent FDE-valuation v which gives
the value v(A) = b. Choose v such that v(p) = b for all p, and v(C) = b implies
v(∼C) = b, except when C ≡ ∼A. Then v(A) = b and v(∼A) = t. Thus
v(∼∼A) /∈ D and so A ̸|=4b ∼∼A.

3.2 Interdefinability of inconsistent negations

In the last subsection, we saw that ∼4 is definable from the non-deterministic
negation ∼. This raises the question of whether other inconsistent negations,
namely ∼8,∼12 and ∼16, are definable as well. First we recall the definitions of
the sixteen variants of negation in [17].
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A ∼1A ∼2A ∼3A ∼4A ∼5A ∼6A ∼7A ∼8A

t f f f f f f f f
b b b b b t t t t
n n n f f n n f f
f t b t b t b t b

∼9A ∼10A ∼11A ∼12A ∼13A ∼14A ∼15A ∼16A
n n n n n n n n
b b b b t t t t
n n f f n n f f
t b t b t b t b

The consequence relations |=i
FDE for i ∈ {1, . . . , 16} are defined from that of

|=b
FDE by using an Nmatrix whose ∼̃ is defined according to the i-th negation

above. vi will be used to denote a valuation with respect to |=i
FDE.

We can now answer the question we posed earlier.

Proposition 3.8. b-FDE does not define any of ∼8,∼12,∼16.

Proof. Since any valuation for |=4
FDE can be mimicked by a four-valued negation

inconsistent FDE-valuation, it suffices to show the existence of a valuation v4 for
|=4

FDE that contradicts the definability of the respective negation. Firstly, if ∼8

is definable, then v4(A) = b implies v4(∼8A) = t. But as the set {b} is closed
under the matrix operations for |=4

FDE, taking v4(p) = b forces v4(∼8A) = b, a
contradiction. Thus ∼8 and similarly ∼16 are not definable in |=4

FDE. For ∼12 to
be definable, v4(A) = t must imply v4(∼12A) = n. But since the set {t,b, f} is
closed under the matrix operations, we obtain a counterexample to the definability
by again taking the valuation assigning b to all propositional variables.

We can extend the result to observe that none of the consistent negations are
definable in b-FDE.

Corollary 3.9. b-FDE does not define any of the sixteen variants except for ∼4.

Proof. We again argue via the undefinability of the negations from ∼4. The con-
sideration in Proposition 3.8 rules out ∼5–∼16. For ∼1 and ∼3, when v4(A) = f we
have to have v4(∼1A) = (∼3A) = t if they are definable. But this is not possible
if we take v4 such that v4(p) = b for all p, because the set {b, f} is closed under
the matrix operations.

Finally, for ∼2, consider a formula A and another formula B in which A occurs
as a subformula. Let S be the set of pairs of possible values B can take given a
valuation v, where the first coordinate is the value when v4(A) = t, and the second
when v4(A) = n. We claim S = {(t,n), (b, f), (t, t), (b,b), (n,n), (f , f)}. Then it
follows that ∼2 is undefinable, for that would require the combination (f ,n).

The claim can be checked by induction on the complexity of B. If B ≡ A,
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then we have the pair (t,n). Otherwise, if B ≡ C ∧D or B ≡ C ∨D, then there
are two cases depending on whether A occurs in both C and D as a subformula.
It is however straightforward to check that in each case, the possible combination
of values is contained in S. When B ≡ ∼4C, then the possible combinations are
either (b,b) or (f , f). Thus the claim follows.

It is also possible to consider non-deterministic semantics that are intermediate
between the four-valued negation inconsistent FDE-Nmatrix and the deterministic
ones. They are of interest to see if less non-determinacy enables us to define more
types of negation.

∼̃b1 ∼̃b2 ∼̃b3 ∼̃b4

t f n n,f n,f
b t,b t,b b t
n f f f f
f b b b b

Let the bi-FDE-Nmatrix be the semantics obtained from the four-valued nega-
tion inconsistent FDE-Nmatrix by replacing ∼̃ with ∼̃bi for i ∈ {1, 2, 3, 4}. (The
subscripts will be omitted when there is no fear of confusion.) The logics bi-FDE
for i ∈ {1, 2, 3, 4} are then defined by setting their consequences relations as in
Definition 2.1.

Proposition 3.10. The following statements hold.

(i) ∼12 is definable in b2-FDE.

(ii) ∼8 is definable in b4-FDE.

Proof. (i) Recall that ∼4 is definable in b-FDE; the connective is therefore also
definable in the b2-FDE. Then we claim that ∼12A is definable as (A ∧ ∼b2A) ∨
∼4A.

A 1 : ∼b2A A ∧ ∼b2A ∼4A (A ∧ ∼b2A) ∨ ∼4A

t n n f n
b (tb)1 b b b
n f f f f
f b f b b

(ii) We claim ∼8A is definable as ∼b4A ∧ ∼b4(A ∧ ∼b4A).

A 1 : ∼b4A A ∧ ∼b4A 2 : ∼b4(A ∧ ∼b4A) ∼b4A ∧ ∼b4(A ∧ ∼b4A)

t (nf)1 (nf)1 (fb)1 f
b t b t t
n f f b f
f b f b b
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In other cases, the deterministic negations are not definable.

Proposition 3.11. The following statements hold.

(i) ∼8 is not definable in bi-FDE for i ∈ {1, 2, 3}.

(ii) ∼12 is not definable in bi-FDE for i ∈ {1, 3, 4}.

(iii) ∼16 is not definable in bi-FDE for i ∈ {1, 2, 3, 4}.

Proof. The arguments are analogous to the one in Proposition 3.8.

4 Introducing more non-determinacy

Having noted the negation inconsistency of b-FDE, one may question if the same
holds for a weaker system obtained by introducing more non-determinacy for ∼.
For such generalisations, we must consider operators outside the framework for
what counts as a negation in [17]. Hence ∼ in this section should be seen as a kind
of ‘sub-negation’ operator, rather than a full-fledged negation: nonetheless, for the
sake of simplicity, we will keep using the term ‘negation inconsistency’ to refer to
the property of a logic that satisfies the condition explained at the beginning of
the last section.

What interests us at present are Nmatrices which can be refined to the four-
valued negation inconsistent FDE-Nmatrix by changing ∼̃. Aside from deepening
our understanding of the phenomenon of negation inconsistency, such Nmatrices
may turn out to be useful for ones with a more liberal view on the definition
of negation than in [17]. There are many options to introduce additional values
to the table of negation in the four-valued negation inconsistent FDE-Nmatrix.
We can however check that most of them remove negation inconsistency, either
by allowing a valuation which either excludes the target designated value (b in
this case), or damages the closure of the target value under matrix operations.
Stating the conclusion first, we claim that the following three operators are the
only candidates for negation inconsistency that can be obtained in this manner.

∼̃w1 ∼̃w2 ∼̃w3

t b,n,f n,f b,n,f
b t,b t,b t,b
n f b,f b,f
f b b b

Proposition 4.1. The other ways of introducing a new value to the four-valued
negation inconsistent FDE-Nmatrix produce negation consistency.

Proof. It suffices to check all the cases where one value is added to one of ∼̃(t),
∼̃(b), ∼̃(n), ∼̃(f): if the addition of one value breaks negation inconsistency, the
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addition of more values does not restore it.
To ∼̃(t) we can add t, i.e. ∼̃(t) = {t,n, f}. For negation inconsistency, we

would need a formula attaining v(A) = b for any v. However, if we set v(p) = t
and v(∼B) = t for all p and B occurring in A, we get v(A) = t.

If we add further values to ∼̃(b) then even when v(A) = b we can set v(∼A)
to be undesignated; so we no longer have negation inconsistency.

To ∼̃(n) we can add t or n, but then we can choose a valuation which assigns
values only from {t,n}. So negation inconsistency is lost in both cases.

To ∼̃(f) we can add t, n or f, but then we can choose a valuation which assigns
values only from {t,n, f}.

Now it remains to show that ∼w1–∼w3 above keep the negation inconsistency.
Let us denote by |=w1 – |=w3 the consequence relations defined by the Nmatrices
with the operators (to be called the w1-FDE – w3-FDE-Nmatrices), which give
rise to systems wi-FDE for i ∈ {1, . . . , 3}. (Similar remarks apply for the systems
introduced afterwards.)

Theorem 4.2. w1-FDE – w3-FDE are negation inconsistent.

Proof. It suffices to show that w3-FDE is negation inconsistent, as the other two
are based on refinements of w3-FDE-Nmatrix. We will show the formula

(B∨∼∼B)∧(∼B∨∼∼∼B)∧∼(B∧∼B∧∼∼B∧∼∼∼B)

where B ≡ (A ∧ ∼A) gives an instance of negation inconsistency. This can be
checked through the following tables.

B 1 : ∼B 2 : ∼∼B B∨∼∼B
t (bnf)1 ((tb)2(bf)2b)1 t
b (tb)1 ((bnf)2(tb)2)1 ((btb)2(tb)2)1
n (bf)1 ((tb)2b)1 t
f b (tb)2 (tb)2

3 : ∼∼∼B ∼B∨∼∼∼B
(((bnf)3(tb)3)2((tb)3b)2(tb)3)1 (((btb)3(tb)3)2t(tb)3)1
(((tb)3(bf)3b)2((bnf)3(tb)3)2)1 (t((btb)3(tb)3)2)1

(((bnf)3(tb)3)2(tb)3)1 (((btb)3(tb)3)2(tb)3)1
((bnf)3(tb)3)2 ((btb)3(tb)3)2

(B∨∼∼B)∧(∼B∨∼∼∼B) B∧∼B B∧∼B∧∼∼B
(((btb)3(tb)3)2t(tb)3)1 (bnf)1 (bff)1
((btb)2((btb)3b)2)1 b ((bff)2b)1

(((btb)3(tb)3)2(tb)3)1 f f
((btb)3b)2 f f
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B∧∼B∧∼∼B∧∼∼∼B 4 : ∼(B∧∼B∧∼∼B∧∼∼∼B)

(((bff)3b)2ff)1 ((((tb)4bb)3(tb)4)2bb)1
((bff)2((bff)3b)2)1 (((tb)4bb)2(((tb)4bb)3(tb)4)2)1

f b
f b

(B∨∼∼B)∧(∼B∨∼∼∼B)∧∼(B∧∼B∧∼∼B∧∼∼∼B)

((b(t or b))2bb)1
b
b
b

(In the last table, ‘(t or b)’ represents that the possible values depend on more
than one non-determinacy, in this case the ones introduced at 3 and 4.)

Now since A ∧ ∼A never obtains the value t, then taking the formula as B
gives the desired formula which attains the value b under any valuation.

Does ∼̃w3 give the most general negation inconsistent operator in the present
setting? While this is true if we start from the four-valued negation inconsistent
FDE-Nmatrix, it is possible to obtain another generalisation by starting instead
from the b1-FDE-Nmatrix, namely the one given by the following table.

∼̃w4

t b,f
b t,b
n t,b,f
f b

Theorem 4.3. w4-FDE is negation inconsistent.

Proof. First note that if v(B) ∈ {b, f}, then the formula we used in Theorem 4.2:

(B∨∼∼B)∧(∼B∨∼∼∼B)∧∼(B∧∼B∧∼∼B∧∼∼∼B)

attains the value b in v as well, because v assigns one of the values from {t,b, f}
for formulas constructed from B, and in particular there are less choices in ∼̃w4

than in ∼̃w3 when it comes to these values. Now, taking B ≡ ∼A∧∼∼A gives the
desired instance of a formula attaining only b or f.

A 1 : ∼A 2 : ∼∼A ∼A ∧ ∼∼A
t (bf)1 ((tb)2b)1 (bf)1
b (tb)1 ((bf)2(tb)2)1 ((bf)2b)1
n (tbf)1 ((bf)2(tb)2b)1 ((bf)2bf)1
f b (tb)2 b
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The incomparability of w3-FDE and w4-FDE is witnessed by the following
formulas.

Proposition 4.4. The following statements hold.

(i) |=w3 A ∨ ∼∼A but ̸|=w4 A ∨ ∼∼A.

(ii) |=w4 ∼A ∨ ∼∼A but ̸|=w3 ∼A ∨ ∼∼A.

Proof. It is not difficult to observe these from the tables given in Theorem 4.2 and
Theorem 4.3.

The proposition tells that contrary to the impression b-FDE might give, A ∨
∼∼A is not essential for negation inconsistency2. It also means the negation
inconsistency w.r.t. ∼4 and ∼8 can be interpreted to come from two different
sources.

5 Characterising negation inconsistency

So far, we have considered generalisations of negation inconsistent alternatives to
the FDE-negation. In this section, we shall take a broader view in order to capture
all non-deterministic unary operators which give rise to ‘negation inconsistency’
when combined with the deterministic conjunction and disjunction. This will
characterise the limit of negation inconsistency in the setting. It will also provide
someone with a liberal account of negation a larger pool of unary connectives to
choose from, when negation inconsistency is desired.

The methodology for obtaining the operators remains the same as the one
in the previous sections. The operators will be presented in some groups, to be
followed by the observation that they exhaust all possibilities.

5.1 First group

The operators in the first group are such that negation inconsistency is obtained
when and only when there is a formula which attains the value b under any
valuation: recall that ∼w3 and ∼w4 are also of this character.

∼̃w5 ∼̃w6

t b,n b,n,f
b t,b t,b
n b b
f t,b,n b,n

Proposition 5.1. w5-FDE and w6-FDE are negation inconsistent.

2However, note also that |=w4 ∼A ∨ ∼∼∼A because ∼A never attains the value n,
which is the source of invalidity of A ∨ ∼∼A.
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Proof. For |=w5, let C[p] be the formula:

((∼p ∧ ∼∼p) ∨ (∼∼p ∧ ∼∼∼p)) ∧ ∼(∼∼p ∧ ∼∼∼p).

We claim the formula ∼B∧ (B∨ (C[B]∧∼C[B])), where B ≡ (∼A∧∼∼A)∨C[A]
is a witness of the negation inconsistency.

B 1 : ∼B 2 : ∼∼B 3 : ∼∼∼B
t (bn)1 ((tb)2b)1 (((bn)3(tb)3)2(tb)3)1
b (tb)1 ((bn)2(tb)2)1 (((tb)3b)2((bn)3(tb)3)2)1
n b (tb)2 ((bn)3(tb)3)2
f (tbn)1 ((bn)2(tb)2b)1 (((tb)3b)2((bn)3(tb)3)2(tb)3)1

∼B∧∼∼B ∼∼B∧∼∼∼B (∼B∧∼∼B)∨(∼∼B∧∼∼∼B)

(bf)1 (((bn)3b)2b)1 (((bt)3b)2b)1
((bn)2b)1 ((bf)2((bn)3b)2)1 ((bn)2((bt)3b)2)1

b ((bn)3b)2 ((bt)3b)2
((bn)2bf)1 ((bf)2((bn)3b)2b)1 ((bn)2((bt)3b)2b)1

4 : ∼(∼∼B ∧ ∼∼∼B) C[B]

((((tb)4b)3(tb)4)2(tb)4)1 b
(((tb)4(tbn)4)2(((tb)4b)3(tb)4)2)1 ((b(nfn)4)2b)1

(((tb)4b)3(tb)4)2 b
(((tb)4(tbn)4)2(((tb)4b)3(tb)4)2(tb)4)1 ((b(nfn)4)2bb)1

5 : ∼C[B] C[B] ∧ ∼C[B]

(tb)5 b
(((tb)5(b(tbn)5b)4)2(tb)5)1 ((bf)2b)1

(tb)5 b
(((tb)5(b(tbn)5b)4)2(tb)5(tb)5)1 ((bf)2bb)1

Now it is straightforward to see that if v(B) ∈ {b,n} then v(∼B ∧ (B ∨ (C[B] ∧
∼C[B]))) = b. It is also not difficult to check using the above tables that (∼A ∧
∼∼A)∨C[A] always attains one of the values b and n; hence we obtain the desired
negation inconsistency.

For |=w6, we claim the following formula:

(B∧∼B)∨((∼B∧∼∼B)∧∼(∼B∧∼∼B))∨((∼∼B∧∼∼∼B)∧∼(∼∼B∧∼∼∼B))

where B ≡ (A ∧ ∼A), witnesses the negation inconsistency.

B 1 : ∼B 2 : ∼∼B 3 : ∼∼∼B
t (bnf)1 ((tb)2b(bn)2)1 (((bnf)3(tb)3)2(tb)3((tb)3b)2)1
b (tb)1 ((bnf)2(tb)2)1 (((tb)3b(bn)3)2((bnf)3(tb)3)2)1
n b (tb)2 ((bnf)3(tb)3)2
f (bn)1 ((tb)2b)1 (((bnf)3(tb)3)2(tb)3)1
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B ∧ ∼B ∼B ∧ ∼∼B ∼∼B ∧ ∼∼∼B
(bnf)1 (bff)1 (((bnf)3b)2b(bf)2)1

b ((bnf)2b)1 ((bff)2((bnf)3b)2)1
f b ((bnf)3b)2
f (bf)1 (((bnf)3b)2b)1

The table for B∧∼B indicates that when a conjunction is formed by a formula
and its ‘negation’, it does not affect the values b,f and the value n is transformed
into f. We therefore obtain the following tables.

(∼B ∧ ∼∼B) ∧ ∼(∼B ∧ ∼∼B) (∼∼B ∧ ∼∼∼B) ∧ ∼(∼∼B ∧ ∼∼∼B)

(bff)1 (((bff)3b)2b(bf)2)1
((bff)2b)1 ((bff)2((bff)3b)2)1

b ((bff)3b)2
(bf)1 (((bff)3b)2b)1

It is now easy to check that when v(B) ∈ {b,n, f}, then the claimed formula
attains the value b. Then it is clear from the above table that A ∧ ∼A always
attains one of the three values.

5.2 Second group

The operators in the second group are such that a formula witnesses negation
inconsistency if and only if it always attains the value t. We will consider four
such operators.

∼̃w7 ∼̃w8 ∼̃w9 ∼̃w10

t t,b t,b t,b t,b
b t,n t,n t,n,f t,n,f
n t,b t,b,f t,b t,b,f
f t,b,n t,b t,n t

Proposition 5.2. w7-FDE – w10-FDE are negation inconsistent.

Proof. In each case we need to construct a formula such that v(A) = t for all
respective valuations. For |=w7, the formula ∼w7A∨∼w7∼w7A witnesses the nega-
tion inconsistency. For |=w8, the formula A ∨ ∼w8A ∨ ∼w8∼w8A witnesses the
negation inconsistency. These can be checked readily from the tables below.

A 1 : ∼w7A 2 : ∼w7∼w7A

t (tb)1 ((tb)2(tn)2)1
b (tn)1 (tb)2
n (tb)1 ((tb)2(tn)2)1
f (tbn)1 ((tb)2(tn)2(tb)2)1

A 1 : ∼w8A 2 : ∼w8∼w8A

t (tb)1 ((tb)2(tn)2)1
b (tn)1 ((tb)2(tbf)2)1
n (tbf)1 ((tb)2(tn)2(tb)2)1
f (tb)1 ((tb)2(tn)2)1
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For |=w9, the formula A ∨ ∼w9A ∨ ∼w9∼w9A witnesses the negation inconsis-
tency. Finally, A ∨ ∼w10A ∨ ∼w10∼w10A witnesses the negation inconsistency for
|=w10.

A 1 : ∼w9A 2 : ∼w9∼w9A

t (tb)1 ((tb)2(tnf)2)1
b (tnf)1 ((tb)2(tb)2(tn)2)1
n (tb)1 ((tb)2(tnf)2)1
f (tn)1 (tb)2

A 1 : ∼w10A 2 : ∼w10∼w10A

t (tb)1 ((tb)2(tnf)2)1
b (tnf)1 ((tb)2(tbf)2t)1
n (tbf)1 ((tb)2(tnf)2t)1
f t (tb)2

5.3 Third group

The third group concerns operators which are closed under the designated values
t and b. We will consider the next two tables.

∼̃w11 ∼̃w12

t t,b t,b
b t,b t,b
n t,b t,b,f
f t,b,n t,b

If we define |=w11 and |=w12 with these operators, then it is straightforward to
observe that ∼wiA ∨ ∼wi∼wiA witnesses the negation inconsistency of wi-FDE
for i ∈ {11, 12}.

5.4 A characterisation

Having observed the negation inconsistency of w1-FDE – w12-FDE, we are now
ready to obtain a characterisation of operators which give rise to negation incon-
sistency. For a precise statement, we introduce another definition.

Definition 5.3. We define the four-valued general FDE-Nmatrix to be like four-
valued negation inconsistent FDE-Nmatrix, except that ∼̃ is given by:

∼̃
t t,b,n,f
b t,b,n,f
n t,b,n,f
f t,b,n,f

We claim that ∼̃w3–∼̃w12, listed again below, cover all the possibilities for
negation inconsistent unary operators in LFDE.
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∼̃w3 ∼̃w4 ∼̃w5 ∼̃w6 ∼̃w7

t b,n,f b,f b,n b,n,f t,b
b t,b t,b t,b t,b t,n
n b,f t,b,f b b t,b
f b b t,b,n b,n t,b,n

∼̃w8 ∼̃w9 ∼̃w10 ∼̃w11 ∼̃w12

t,b t,b t,b t,b t,b
t,n t,n,f t,n,f t,b t,b
t,b,f t,b t,b,f t,b t,b,f
t,b t,n t t,b,n t,b

Theorem 5.4. LetM be a refinement of the four-valued general FDE-Nmatrix.
Then the logic defined by M is negation inconsistent if and only if M is also a
refinement of one of the wi-FDE-Nmatrices for i ∈ {3, . . . , 12}.

Proof. We first note that ⋄̃M = ⋄̃ for ⋄ ∈ {∧,∨}. Then the ‘if’ direction of the
statement immediately follows from the fact that w3-FDE – w12-FDE are nega-
tion inconsistent. For the ‘only if’ direction, suppose the logic defined by M is
negation inconsistent. Then one of ∼̃M(t) or ∼̃M(b) has to be contained in the
set of designated values {t,b}. Hence we have the next three cases.

1. the containment holds for both ∼̃M(t) and ∼̃M(b)

If the containment holds for both of them, then we claim that M has to be a
refinement of the w11-FDE-Nmatrix or the w12-FDE-Nmatrix. For suppose it
is not a refinement of the w11-FDE-Nmatrix. Then there must be values x and y
such that y ∈ ∼̃M(x) but y /∈ ∼̃w11(x). x cannot be t or b because ∼̃w11 contains
both of the designated values. If x = n, then first y ̸= n since that would allow a
valuation assigning all formulas the value n, which results in negation consistency.
So y must be f. But then n, f /∈ ∼̃M(f) because otherwise a valuation assigning
all formulas either a value from {f} or from {n, f} becomes possible. Hence the
Nmatrix must be a refinement of the w12-FDE-Nmatrix.

2. the containment holds only for ∼̃M(t)

If the containment holds only for ∼̃M(t), then we claim that M is a refinement
of one of the wi-FDE-Nmatrices for i ∈ {7, 8, 9, 10}. For if it is not a refine-
ment of the w7-FDE-Nmatrix, then again there must be values x and y such that
y ∈ ∼̃M(x) but y /∈ ∼̃w7(x). For the same reason as the last time, x cannot be t.
It cannot be f either, so as to avoid a valuation assigning all formulas the value f.

If x = b, then y ̸= b because that would allow a valuation assigning formu-
las the value b up until a certain point, which results in negation consistency by
the argument in Proposition 3.7. (Note by assumption, ∼̃M(b) must contain an
undesignated value.) So y must be f. In this case, we shall see that M must
be a refinement of either the w9-FDE-Nmatrix or the w10-FDE-Nmatrix. If it
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is not a refinement of the w9-FDE-Nmatrix, then there are x′ and y′ such that
y′ ∈ ∼̃M(x′) but y′ /∈ ∼̃w9(x

′). Again x′ ̸= t and also x′ = b implies y′ = b, which
is impossible for the reason we saw earlier. Moreover, if x′ = f then y′ must be
either b or f, but this is impossible as they each enable a valuation assigning all
formulas a value from {b, f} or {f}. Thus x′ must be n. Then y′ must be f to avoid
a valuation assigning all formulas the value n. This necessitates ∼̃M(f) = {t} since
if other values are in the set then a valuation assigning all formulas a value from
one of {b, f}, {n, f} or {f} becomes possible. ThereforeM is a refinement of the
w10-FDE-Nmatrix.

If x = n, then y must be f . In this case, we shall see that M must be a
refinement of either the w8-FDE-Nmatrix or the w10-FDE-Nmatrix. If it is
not a refinement of the w8-FDE-Nmatrix, then there are x′ and y′ such that
y′ ∈ ∼̃M(x′) but y′ /∈ ∼̃w8(x

′). We can check that y′ must be b and x′ must be f .
This necessitatesM being a refinement of the w10-FDE-Nmatrix.

3. the containment holds only for ∼̃M(b)

If the containment holds only for ∼̃M(b), then M has to be a refinement of one
of the wi-FDE-Nmatrices for some i ∈ {3, 4, 5, 6}. To establish this, assume that
it is not a refinement of the w3-FDE-Nmatrix. Then there must be values x and
y such that y ∈ ∼̃M(x) but y /∈ ∼̃w3(x). x cannot be t or b, so it must be that
x = n or x = f .

If x = n, then y must be t; but then n must not be an element of ∼̃M(t) nor
∼̃M(f). From this we can infer thatM is a refinement of the w4-FDE-Nmatrix.

If x = f , then either y = t or y = n. In the former case, it must be the
case that f /∈ ∼̃M(t) and consequently we must have n ∈ ∼̃M(t), as ∼̃M(t) is
not contained in the set of designated values. This necessitates ∼̃M(n) = {b} for
otherwise a valuation assigning all formulas a value from {t,n, f} becomes possible.
Hence M is a refinement of the w5-FDE-Nmatrix. In the latter case, we claim
M is a refinement of either the w5-FDE-Nmatrix or the w6-FDE-Nmatrix. If it
is not a refinement of the w5-FDE-Nmatrix, then there are x′ and y′ such that
y′ ∈ ∼̃M(x′) but y′ /∈ ∼̃w5(x

′). One can again straightforwardly see that x′ is
neither b nor f. Furthermore, if x′ is n then y′ is either t or f. This however
enables a valuation assigning all formulas a value from {t,n, f}, since one of n or f
has to be in ∼̃M(t). Thus x′ is t, and y′ must be f. This necessitates ∼̃M(n) = {b}
and soM is a refinement of the w6-FDE-Nmatrix.

6 Negation-incomplete variants

Since it is possible to argue in an analogous manner, we shall briefly study negation-
incomplete variants of the FDE-negation, whose known instances are∼13–∼16. We
may motivate these operators in a mirroring way, namely that it provides possible
options for somebody interested in negation incompleteness. First we look at a
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non-deterministic generalisation of these, given by the next table:

∼̃
t n
b t
n n, f
f t, b

A valuation/the semantical consequence relation with respect to this negation is
called a four-valued negation incomplete FDE-valuation/the four-valued negation
incomplete FDE-consequence relation, and defined analogously to the negation
inconsistent case. The consequence relation is denoted by |=4n.

It remained open in [17] whether the resulting system n-FDE is negation
incomplete, that is to say whether there there is a formula A such that A |=4n B
and ∼A |=4n B for all B.

Definition 6.1. For a formula A, we define its dual formula A∗ by setting p∗ = p,
(B ∧ C)∗ = B∗ ∨ C∗, (B ∨ C)∗ = B∗ ∧ C∗ and (∼A)∗ = ∼A∗

Note that (A∗)∗ ≡ A. We can then show the negation incompleteness of the
four-valued negation incomplete FDE-consequence relation.

Theorem 6.2. n-FDE is negation incomplete.

Proof. Let v be a four-valued negation incomplete FDE-valuation. Let d : V → V
be a mapping s.t. d(t) = f , d(b) = n, d(n) = b and d(f) = t. Define v′ : Form→ V
by setting v′(A) = d(v(A∗)). We claim v′ is a four-valued negation inconsistent
FDE-valuation.

We show this by induction on the complexity of A. When A ≡ p, there is
nothing to prove. When A ≡ (B ∧ C), then A∗ = B∗ ∨ C∗. By I.H., v′(B) =
d(v(B∗)) and v′(C) = d(v(C∗)) are in accordance with the condition for a four-
valued negation inconsistent FDE-valuation. So for instance, if v′(B) = b and
v′(C) = n, then v(B∗) = n and v(C∗) = b. Thus v(B∗ ∨ C∗) = t and as a result
v′(B ∧ C) = f ∈ ∧̃(b,n), as required. Other cases can be checked similarly. The
case A ≡ B ∨ C is analogous. Finally, when A ≡ ∼B, then v′(B) = t implies
v(B∗) = f , and so v(∼B∗) is either t or b. Therefore v′(∼B) is either f or n,
which are included in ∼̃(t) = {n, f}. The other cases are analogous.

Now, as we saw in Corollary 3.5, there is a formula A which attains the value b
in any four-valued negation inconsistent FDE-valuation. In particular, v′(A) = b
for any four-valued negation incomplete FDE-valuation v. This implies v(A∗) = n
for all v; whence it follows that A∗ |=4n B and ∼A∗ |=4n B for all B.

We can thus obtain instances of negation incompleteness from instances of
negation inconsistency in b-FDE. For example,

((A ∨ ∼∼A) ∧ ∼(∼(A ∨ ∼∼A) ∧ ∼∼∼(A ∨ ∼∼A)))∗

=(A ∧ ∼∼A) ∨ ∼(∼(A ∧ ∼∼A) ∨ ∼∼∼(A ∧ ∼∼A))

can be checked to be such an instance.
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6.1 Characterising negation incomplete variants

We shall generalise the preceding observation by introducing more non-determinacy,
as we did in the negation inconsistent case. We introduce ∼̃w3′–∼̃w12′ , with which
the corresponding Nmatrices and semantical consequence relations are defined.

∼̃w3′ ∼̃w4′ ∼̃w5′ ∼̃w6′ ∼̃w7′

t n n b,n,f b,n b,n,f
b t,n t,n,f n n n,f
n n,f n,f n,f n,f b,f
f t,b,n t,n b,n t,b,n n,f

∼̃w8′ ∼̃w9′ ∼̃w10′ ∼̃w11′ ∼̃w12′

n,f b,f f b,n,f n,f
t,n,f n,f t,n,f n,f t,n,f
b,f t,b,f t,b,f n,f n,f
n,f n,f n,f n,f n,f

We shall use wi′-FDE to refer to the logics defined by the Nmatrix with ∼̃wi′

(to be called the wi′-FDE-Nmatrix) for i ∈ {3, . . . , 12}.

Theorem 6.3. w3′-FDE–w12′-FDE are negation incomplete.

Proof. The argument is analogous to Theorem 6.2. We take v′ to be a wi-FDE-
valuation for each of i ∈ {3, . . . , 12}. In checking that v′ is well-defined, the cases
for conjunction and disjunction are identical, so the only difference is in the case
of negation. But it is routine to observe that ∼̃w3′–∼̃w12′ are defined in such a way
that this works.

Hence we obtain a characterisation for negation incompleteness.

Theorem 6.4. LetM be a refinement of the four-valued general FDE-Nmatrix.
Then the logic defined by M is negation incomplete if and only if M is also a
refinement of one of the wi′-FDE-Nmatrices for i ∈ {3, . . . , 12}.

Proof. Analogous to Theorem 5.4, but we appeal to Theorem 6.3 instead.

7 Negation inconsistency induced by another

operator

We have so far looked at unary operators whose combination with the conjunction
and disjunction of FDE bring about ‘negation inconsistency’. In the same vein,
one may also add another non-deterministic operator ◦ to the proper language
of FDE i.e. LFDE, and consider which operators cause negation inconsistency
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(in terms of ∼). As none of the other negations (except for ∼16 in [16]) seems to
have an independent motivation, this might be a more plausible approach to some.
The material connexive logic MC [23], which adds an implication to FDE, is one
example of negation inconsistent systems obtained in such a manner. Here we shall
first take up the case for unary operators, by applying the same methodology as
before. After characterising unary operators which create negation inconsistency,
we shall also observe its consequence for the case of binary operators.

Let us begin by introducing another type of Nmatrix for this purpose.

Definition 7.1. We define the ◦i-Nmatrix (i ∈ {1, . . . , 6}) in LFDE◦ as (V,D,O),
where V = {t,b,n, f}, D = {t,b} and O = {∧̃, ∨̃, ∼̃, ◦̃i}. ∧̃ and ∨̃ are as in the
four-valued negation inconsistent FDE-Nmatrix, and ∼̃ = ∼̃1 in Section 3.2. Each
◦̃i is given by the table below.

◦̃1 ◦̃2 ◦̃3 ◦̃4 ◦̃5 ◦̃6
t t,b,n,f t,b,n,f t,b,n,f b n b,n
b t,b,n,f t,b,n,f t,b,f t,b,n,f t,b,n,f t,b,f
n t,b,f b b t,b,f b b
f b n b,n t,b,n,f t,b,n,f t,b,n,f

We shall use |=◦i for the semantical consequence relations, and call the resulting
systems ◦i-FDE.

As already mentioned, in this section the negation inconsistency of a system is
evaluated only with respect to ∼, and not with respect to ◦. Hence the definability
of the b constant is what we are after.

Lemma 7.2. ◦1-FDE – ◦6-FDE are negation inconsistent.

Proof. Since ◦1–◦3 are replicable in terms of ◦4–◦6 respectively as ∼◦i, it suffices
to show the negation inconsistency of ◦1-FDE–◦3-FDE.

For ◦1-FDE, we claim B ∨ ∼(B ∨ ◦1B), where B ≡ (A ∧ ◦1(A ∧ ∼A)) ∧ ∼ ◦1
(A ∧ ∼A) witnesses the negation inconsistency.

A ∼A A∧∼A 1 : ◦1(A∧∼A) ∼◦1(A∧∼A) A∧◦1(A∧∼A)

t f f b b b
b b b (tbnf)1 (fbnt)1 (bbff)1
n n n (tbf)1 (fbt)1 (nff)1
f t f b b f

B 2 : ◦1B B∨◦1B ∼(B∨◦1B) B ∨ ∼(B∨◦1B)

b (tbnf)2 (tbtb)2 (fbfb)2 b
(fbff)1 (b(tbnf)2bb)1 (b(tbtb)2bb)1 (b(fbfb)2bb)1 b

f b b b b
f b b b b

Australasian Journal of Logic (21:2) 2024, Article no. 2



85

For ◦2-FDE, we claim ∼B∧(B∨∼◦2◦2B), where B ≡ A∧∼A∧◦2A witnesses the
negation inconsistency.

B ∼B 1 : ◦2B 2 : ◦2◦2B ∼◦2◦2B
t f (tbnf)1 ((tbnf)2(tbnf)2bn)1 ((fbnt)2(fbnt)2bn)1
b b (tbnf)1 ((tbnf)2(tbnf)2bn)1 ((fbnt)2(fbnt)2bn)1
n n b (tbnf)2 (fbnt)2
f t n b b

B∨∼◦2◦2B ∼B∧(B∨∼◦2◦2B)

t f
((bbtt)2(bbtt)2bt)1 b

(ntnt)2 n
b b

It is now straightforward to deduce from the table that A∧∼A∧◦2A always attains
either the value b or f.

For ◦3-FDE, we claim −−A, where

−B := (◦3(A∧∼A)∨∼◦3(A∧∼A))∧(∼A∨∼(◦3(A∧∼A)∨∼◦3(A∧∼A)))

witnesses the negation inconsistency.

A ∼A A∧∼A 1 : ◦3(A∧∼A) ∼◦3(A∧∼A) ◦3(A∧∼A)∨∼◦3(A∧∼A)

t f f (bn)1 (bn)1 (bn)1
b b b (tbf)1 (fbt)1 (tbt)1
n n n b b b
f t f (bn)1 (bn)1 (bn)1

∼(◦3(A∧∼A)∨∼◦3(A∧∼A)) ∼A∨∼(◦3(A∧∼A)∨∼◦3(A∧∼A)) −A
(bn)1 (bn)1 (bn)1
(fbf)1 b b

b t b
(bn)1 t (bn)1

Now, since −A attains either the value b or n, it is immediate that −−A always
attains the value b.

The next unary operator is also related to our interest.

Definition 7.3. We define the ◦7-Nmatrix as the same as the ◦i-Nmatrix except
for the following ◦̃.

◦̃7
t b,n
b n
n b
f b,n
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◦7-FDE is then defined analogously to ◦1-FDE–◦6-FDE.

Lemma 7.4. ◦7-FDE is negation consistent.

Proof. Let v be a valuation for the ◦7-Nmatrix. We define another valuation v′

by:

v′(A) =


t if v(A) = t.

b if v(A) = n.

n if v(A) = b.

f if v(A) = f .

We check that v′ is well-defined by induction on the complexity of formulas. For
A ≡ B ∧C, if e.g. v(A) = b, then the pair of (v(B), v(C)) is either (t,b), (b, t) or
(b,b). So (v′(B), v′(C)) is either (t,n), (n, t) or (n,n). In each case, v′(A) = n,
as required. Other cases for conjunction and the cases for disjunction and negation
are analogously checked. For A ≡ ◦B, if v(A) = b then either v(B) = t,n or f .
Hence v′(B) = t,b or f . Hence it is allowed to take v′(B) = n, as required.

Now, by the stipulation either v(A) ̸= b or v′(A) ̸= b. Therefore no formula
attains the value b under all valuations.

We similarly obtain negation consistency when ◦̃(t) = {t} or {f} instead.

Remark 7.5. Note that the negation consistency is obtained even though the
◦7-Nmatrix does not have a valuation assigning all formulas a value from the set
{t,n, f}. On the other hand, the refinements of the ◦7-Nmatrix where ◦̃(t) = {b}
and ◦̃(t) = {n} both create negation inconsistency, as witnessed by the formulas
◦(◦A ∨ ◦ ◦A) and ◦ ◦ (◦A ∨ ◦ ◦A), respectively. This is in contrast to the case for
b-FDE, in which the negation inconsistency is preserved when generalised from
∼4,∼8,∼12 and ∼16.

Let the four-valued general ◦-FDE-Nmatrix be defined from the ◦i-Nmatrices
in such a way that ◦̃ is identical to ∼̃ in the four-valued general FDE-Nmatrix.
Then we obtain a characterisation of unary operators whose addition to FDE
induce negation inconsistency.

Theorem 7.6. LetM be a refinement of the four-valued general ◦-FDE-Nmatrix.
Then the logic defined by M is negation inconsistent if and only if M is also a
refinement of one of the ◦i-FDE-Nmatrices for i ∈ {1, . . . , 6}.

Proof. The ‘if’ direction follows from Lemma 7.2. For the ‘only if’ direction, since
{n} is closed under ∧̃, ∨̃, ∼̃, it must be that ◦̃(n) ⊆ {t,b, f}. First consider the
case ◦̃(n) = {b}. In this case, to avoid a valuation assigning all formulas a value
from {t, f}, we must have either t, f /∈ ◦̃(t) or t, f /∈ ◦̃(f). We shall consider the
latter case: the former case is similarly argued. In this case, if ◦̃(f) = {b,n}
then n ∈ ◦̃(b) and ({b,n} ⊆ ◦̃(t) or t ∈ ◦̃(t) or f ∈ ◦̃(t)) results in negation
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consistency, by Lemma 7.4. Hence either n /∈ ◦̃(b) or ({b,n} ⊈ ◦̃(t) and t /∈ ◦̃(t)
and f /∈ ◦̃(t)). But thenM is a refinement of the ◦3-FDE-Nmatrix or one of the
◦4-FDE-Nmatrix or the ◦5-FDE-Nmatrix, respectively. Otherwise, ◦̃(f) is either
{b} or {n}, in which case M is a refinement of the ◦1-FDE-Nmatrix or the ◦2-
FDE-Nmatrix.

When ◦̃(n) ̸= {b}, we must have either ◦̃(t) = {b} or ◦̃(f) = {b} in order to
avoid a valuation assigning all formulas a value from {t,n, f}. But then M is a
refinement of the ◦1-FDE-Nmatrix or the ◦4-FDE-Nmatrix.

Remark 7.7. The above unary operators are also useful for defining some binary
operators whose addition to FDE creates negation inconsistency. In the tables
below (where commas are abbreviated), A⋆iaA, ∼A⋆ib∼A, A⋆ic∼A and ∼A⋆idA
each replicates ◦i for i ∈ {1, . . . , 3}. Hence the b constant is definable when
a connective defined by one of the tables below is added to FDE, instead of
◦1, . . . , ◦6.

⋆̃1a t b n f

t tbnf tbnf tbnf tbnf
b tbnf tbnf tbnf tbnf
n tbnf tbnf tbf tbnf
f tbnf tbnf tbnf b

⋆̃1b t b n f

t b tbnf tbnf tbnf
b tbnf tbnf tbnf tbnf
n tbnf tbnf tbf tbnf
f tbnf tbnf tbnf tbnf

⋆̃1c t b n f

t tbnf tbnf tbnf tbnf
b tbnf tbnf tbnf tbnf
n tbnf tbnf tbf tbnf
f b tbnf tbnf tbnf

⋆̃1d t b n f

t tbnf tbnf tbnf b
b tbnf tbnf tbnf tbnf
n tbnf tbnf tbf tbnf
f tbnf tbnf tbnf tbnf

⋆̃2a t b n f

t tbnf tbnf tbnf tbnf
b tbnf tbnf tbnf tbnf
n tbnf tbnf b tbnf
f tbnf tbnf tbnf n

⋆̃2b t b n f

t n tbnf tbnf tbnf
b tbnf tbnf tbnf tbnf
n tbnf tbnf b tbnf
f tbnf tbnf tbnf tbnf

⋆̃2c t b n f

t tbnf tbnf tbnf tbnf
b tbnf tbnf tbnf tbnf
n tbnf tbnf b tbnf
f n tbnf tbnf tbnf

⋆̃2d t b n f

t tbnf tbnf tbnf n
b tbnf tbnf tbnf tbnf
n tbnf tbnf b tbnf
f tbnf tbnf tbnf tbnf
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⋆̃3a t b n f

t tbnf tbnf tbnf tbnf
b tbnf tbf tbnf tbnf
n tbnf tbnf b tbnf
f tbnf tbnf tbnf bn

⋆̃3b t b n f

t bn tbnf tbnf tbnf
b tbnf tbf tbnf tbnf
n tbnf tbnf b tbnf
f tbnf tbnf tbnf tbnf

⋆̃3c t b n f

t tbnf tbnf tbnf tbnf
b tbnf tbf tbnf tbnf
n tbnf tbnf b tbnf
f bn tbnf tbnf tbnf

⋆̃3d t b n f

t tbnf tbnf tbnf bn
b tbnf tbf tbnf tbnf
n tbnf tbnf b tbnf
f tbnf tbnf tbnf tbnf

Then e.g. the connectives →13, →16 (the implication of MC) and ←16 in [18]
fall under the scope of possible refinements for ⋆̃1a. Note however that the above
tables do not exhaust all binary connectives which induce negation inconsistency.
For instance,

⋆̃ t b n f

t n n b n
b n n n n
n b n t n
f n n n n

cannot be obtained from any of the above connectives via a refinement, but (A ⋆
A) ⋆ (A ⋆ A) ⋆ (A ⋆ A) defines the b constant.

8 Concluding remarks

The starting point of our enquiry was to answer the question raised by Omori and
Wansing [17] concerning the negation inconsistency and incompleteness of systems
with a non-deterministic negation. We observed that the two non-deterministic
operators given by them do give rise, respectively, to negation inconsistency and
incompleteness. We then attempted to generalise the result by defining and char-
acterising non-deterministic unary operators which give rise to negation inconsis-
tency and incompleteness in the same setting. Moreover, we studied the case when
a non-deterministic unary connective is added to the full language of FDE as well.

The value of taking (non-trivial) negation inconsistent logics seriously is vig-
orously defended by Wansing [21], who also endorses [22] an informational view
of logical values (e.g. t interpreted as signifying the support of truth (only) rather
than truth (only)) inspired by the reading of the values in FDE by N. Belnap
[9, 10], and through which (non-trivial) negation inconsistent systems can be seen
to support the logico-informational view which he calls dimathematism. It would
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then be an interesting next step to consider how and what kind of systems with
non-deterministic negation (or other connectives) can be taken as sensible logics
in this type of framework. A possible hint for this may be the ‘partial’ tables
Belnap [9] presents in his three-step strategy to motivate the deterministic tables
for conjunction and disjunction.
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