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Abstract

This note extends earlier results on geometrical interpretations of the logic
KR to prove some additional results, including a simple undecidability
proof for the four-variable fragment of KR.

1 The Logic KR

The logic KR results from logic R of relevant implication by adding the axiom
ex falso quodlibet, that is to say, (A ∧ ¬A) → B. The model theory for KR
is elegantly simple. The usual ternary relational semantics for R includes an
operation ∗ designed to deal with the truth condition for negation

x |= ¬A⇔ x∗ ̸|= A.

The effect of adding ex falso quodlibet to R is to identify x and x∗; this in turn
has a notable effect on the ternary accessibility relation. The postulates for an
R model structure include the following implication:

Rxyz ⇒ (Ryxz &Rxz∗y∗).

The result of the identification of x and x∗ is that the ternary relation in a KR
model structure (KRms) is totally symmetric. In detail, a KRms K = ⟨S,R, 0⟩ is
a 3-place relation R on a set containing a distinguished element 0, and satisfying
the postulates:

1. R0ab⇔ a = b;

2. Raaa;

3. Rabc⇒ (Rbac&Racb) (total symmetry);

4. (Rabc&Rcde) ⇒ ∃f(Radf &Rfbe) (Pasch’s postulate).

2 Modular lattices and geometrical frames

In this section, we state the main results of the earlier paper [12] to which the
current paper is a sequel. The proofs can be found in [12].

Given a KR model structure K = ⟨S,R, 0⟩, we can define an algebra A(K)
as follows:
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Definition 2.1 The algebra A(K) = ⟨P(S),∩,∪,¬,⊤,⊥, t, ◦⟩ is defined on the
Boolean algebra ⟨P(S),∩,∪,¬,⊤,⊥⟩ of all subsets of S, where ⊤ = S,⊥ = ∅, t =
{0}, and the operator A ◦B is defined by

A ◦B = {c | ∃a ∈ A, b ∈ B(Rabc)}.

The algebra A(K) is a De Morgan monoid [1],[3] in which a∧a = ⊥, where ⊥ is
the least element of the monoid; we shall call any such algebra a KR-algebra.
Hence the fusion operator A ◦B is associative, commutative, and monotone. In
addition, it satisfies the square-increasing property, and t is the monoid identity:

A ◦ (B ◦ C) = (A ◦B) ◦ C,

A ◦B = B ◦A,

(A ⊆ B ∧ C ⊆ D) ⇒ A ◦ C ⊆ B ◦D,

A ⊆ A ◦A,

A ◦ t = A.

In what follows, we shall assume basic results from the theory of De Morgan
monoids, referring the reader to the expositions in Anderson and Belnap [1] and
Dunn and Restall [3] for more background. We have defined KR-algebras above
as arising from De Morgan monoids by the addition of the axiom a ∧ ¬a = ⊥.
However, we could also have defined them using the construction of Definition
2.1, since any KR-algebra can be represented as a subalgebra of an algebra
produced by that construction. This is not hard to prove by using the known
representation theorems for De Morgan monoids – see for example [10]. KR-
algebras are closely related to relation algebras. In fact, they can be defined as
square-increasing symmetric relation algebras – for basic definitions the reader
can consult the monograph [7] by Roger Maddux.

In a KR-algebra, we can single out a subset of the elements that form a
lattice; this lattice plays a key role in the analysis of the logic KR.

Definition 2.2 Let A be a KR-algebra. The family L(A) is defined to be the
elements of A that are ≥ t and idempotent, that is to say, a ∈ L(A) if and only
if a ◦ a = a and t ≤ a. If K is a KR model structure, then we define L(K) to
be L(A(K)).

The following lemma provides a useful characterization of the elements of
L(A); it is based on some old observations of Bob Meyer.

Lemma 2.3 Let A be a KR-algebra. Then the following conditions are equiv-
alent:

1. a ∈ L(A);

2. a = (a→ a);

3. ∃b[a = (b→ b)].
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If K = ⟨S,R, 0⟩ is a KR model structure, then a subset A of S is a linear
subspace if it satisfies the condition

(a, b ∈ A ∧Rabc) ⇒ c ∈ A.

A non-empty linear subspace must contain 0, since Raa0 holds in anyKRmodel
structure.

A lattice is modular if it satisfies the implication

x ≥ z ⇒ x ∧ (y ∨ z) = (x ∧ y) ∨ z.

We include a zero element satisfying the equality x ∨ 0 = x in the modular
lattices discussed below, and use the notation M0 for the variety of modular
lattices with zero. For background on modular lattice theory, the reader can
consult the texts of Birkhoff [2] or Grätzer [5].

A chain in a lattice L is a totally ordered subset of L; the length of a finite
chain C is |C| − 1. A chain C in a lattice L is maximal if for any chain D in L,
if C ⊆ D then C = D. If L is a lattice, a, b ∈ L and a ≤ b, then the interval
[a, b] is defined to be the sublattice {c : a ≤ c ≤ b}.

Let L be a lattice with least element 0. We define the height function: for
a ∈ L, let h(a) denote the length of a longest maximal chain in [0, a] if there
is a finite longest maximal chain; otherwise put h(a) = ∞. If L has a largest
element 1, and h(1) <∞, then L has finite height.

Lemma 2.4 If K is a KR model structure, then the elements of L(K) are
exactly the non-empty linear subspaces of K.

Theorem 2.5 If A is a KR-algebra, then L(A), ordered by containment, forms
a modular lattice, with least element t, and the lattice operations of join and meet
defined by a ∧ b and a ◦ b.

Definition 2.6 Let L be a lattice with least element 0. Define a ternary relation
R on the elements of L by:

Rabc⇔ a ∨ b = b ∨ c = a ∨ c,

and let K(L) be ⟨L,R, 0⟩.

Theorem 2.7 K(L) is a KR model structure if and only if L is modular.

In Definition 2.6, if a, b, c are distinct points in a projective space, then Rabc
holds if and only if the three points are collinear. Hence, the defined ternary
relation can be considered as a generalized notion of collinearity that applies to
any elements in a modular lattice.

Definition 2.8 If L is a lattice, then an ideal of L is a non-empty subset I of
L such that

1. If a, b ∈ I then a ∨ b ∈ I;
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2. If b ∈ I and a ≤ b, then a ∈ I.

The family of ideals of a lattice L, ordered by containment, forms a complete
lattice I(L). The original lattice L is embedded in I(L) by mapping an element
a ∈ L into the principal ideal containing a, (a] = {b | b ≤ a}. It is easy to verify
that the mapping a 7−→ (a] is a lattice isomorphism between L and a sublattice
of I(L).

Theorem 2.9 Let L be a modular lattice with least element 0, and K(L) =
⟨L,R, 0⟩ the KR model structure constructed from L. Then L(K(L)) is identical
with the lattice of ideals of L.

Corollary 2.10 Any modular lattice of finite height (hence any finite modular
lattice) is representable as L(K) for some KR model structure K. In addition,
any modular lattice is representable as a sublattice of L(K) for some KR model
structure K.

3 Applications of the main construction

Theorem 3.1 Let A be a KR-algebra, and G a subset that freely generates A.
If G∗ = {a→ a : a ∈ G}, then G∗ freely generates L(A).

Proof. Let L be the sublattice of L(A) generated by G∗. If M is a modular
lattice with least element 0, and f : G∗ 7−→ M a function from G∗ to M , then
we need to show that f can be extended to a lattice homomorphism from L to
M .

Using Definition 2.6, we can define theKRmodel structureK(M), and hence
by Definition 2.1, the KR-algebra B = A(K(M)). For a ∈ G, define g(a) =
f(a→ a). Since G freely generates A, g can be extended to a homomorphism h
from A to B. By Theorem 2.9, L(B) is identical with the lattice of ideals of M ,
so that we can identify M with a sublattice of L(B) by the embedding a⇌ (a]
that maps an element a ∈M into the principal ideal generated by a.

For a ∈ G∗, let a = b→ b, for b ∈ G. Then

h(a) = h(b→ b) = h(b) → h(b) = g(b) → g(b)

= f(b→ b)→ f(b→ b) = f(a)→ f(a) = f(a).

Thus, h restricted to L is a lattice homomorphism from L to M extending f ,
showing that G∗ freely generates L.

To complete the proof of the theorem, we show that L = L(A). Define

X = {a ∈ A : a→ a ∈ L}.

Since G∗ ⊆ L, G ⊆ X, and in addition, X is closed under ∧ and ◦, since L is
closed under these operations. If a ∈ X, then (¬a→¬a) = (a→ a) ∈ L, so that
¬a ∈ X. Since G generates A, it follows that X = A, so that L = L(A). 2
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Corollary 3.2 In the logic KR, there are infinitely many distinct formulas
built from the formulas p→ p, q→ q, r→ r and s→ s using only the connectives
∧ and ◦.

Proof. Theorem 3.1 shows that the formulas p→ p, q → q, r → r and s→ s
generate an algebra of formulas isomorphic to the free modular lattice on four
generators. This algebra is infinite [2, p. 64]. 2

Corollary 3.2 was the only consequence deduced in [12] from Theorem 3.1.
However, there are quite a few added conclusions that we can draw, as we
explain in what follows.

Theorem 3.3 The free KR-algebra on three generators is finite.

Proof. Let A3 be the free KR-algebra on three generators. By Theorem 3.1,
L(A3) is an M0 lattice freely generated by three elements. This lattice is finite
[2, pp. 63-64], so the KR-model structure K3 constructed from this lattice is
finite. Since by Corollary 2.10, A3 is isomorphic to L(K3), it follows that it is
finite. 2

Corollary 3.4 The decision problem for KR for formulas in three variables is
solvable.

The main problem discussed in the paper [11], written in honour of my old
friend Bob Meyer, was this: given a logic L intermediate between T-W +A15
andKR, what is the smallest number of variables for which the decision problem
for L is unsolvable? (A15 is the axiom scheme [(A→ B) ∧ A ∧ t] → B.) The
main theorem of that paper shows that this number is at most four. For KR,
Corollary 3.4 shows that this number is exactly four.

The construction proving the main theorem of [11] is a fairly intricate com-
putation in coordinate frames. This seems to be necessary for logics weaker than
KR; however, for KR itself, we can give a very quick and easy undecidability
proof by exploiting some deep results from the theory of modular lattices.

Theorem 3.5 The decision problem for KR in four variables is unsolvable.

Proof. Define a lattice formula to be one built from p→p, q→q, r→r and s→s
using only the connectives ∧ and ◦, and a lattice implication to be a formula of
the form A→B, where A and B are lattice formulas.

If φ is a term in the theory of modular lattices in the variables x1, x2, x3, x4,
we define its translation φτ as the lattice formula constructed from φ by replac-
ing x1, x2, x3, x4 by p→ p, q→ q, r→ r, s→ s and the lattice join ∨ by the fusion
connective ◦. Theorem 3.1 shows that an inequality φ ≤ ψ in four variables
holds in the free modular lattice if and only if φτ → ψτ is a theorem of KR.

Ralph Freese showed [4] that the word problem for the free modular lattice
in five free generators is unsolvable. This was improved by Christian Herrmann
[6] to four free generators. The results of Freese and Herrmann complete the
proof of the theorem. 2
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4 Free associative connectives

Bob Meyer and his collaborators had an ingenious plan for proving R undecid-
able. The idea was to search for a free associative connective in R that could
then be used to encode an undecidable problem in the theory of semigroups. As
part of this search, they developed a suite of programs to help in the investi-
gation. Their research program is described in the monograph by Thistlewaite,
McRobbie and Meyer [9].

This monograph does not give a precise formal definition of the notion of
free associative connective. However, the discussions in [9] and the examples
given there suggest the following definition. Let L be a logic in the language of
R, and p⊙ q a formula of L with two free variables. If σ is a term in the theory
of semigroups with the free variables x1, . . . , xn, then we define the translation
of σ into L as the formula σt of L that results by replacing x1, . . . , xn by the
propositional variables p1, . . . , pn and the semigroup operation by the defined
connective ⊙. Then we define ⊙ to be a free associative connective in L if an
equation σ = τ holds in the free semigroup if and only if σt ↔ τ t is provable in
the logic L.

The paper [11] contains a discussion of the question of the existence of such
a connective in R, as well as the problem of proving or disproving its existence.
However, for KR, we can settle the question easily.

Theorem 4.1 There is no free associative connective in KR.

Proof. Let p ⊙ q be a formula of L with two free variables. Define an infinite
sequence of semigroup terms in one variable x by setting s1 = x and sk+1 = x·sk,
and let σi be the translation s

τ
i of the term si in KR. Since by Theorem 3.3, the

free KR-algebra A1 in a single generator is finite, it follows that in the infinite
sequence σ1, σ2, . . . , σk . . . there are distinct formulas σi and σj that take the
same value in A1. Hence, σi ↔ σj is a theorem of KR. However, the terms si
and sj correspond to distinct elements in the free semigroup in one generator,
so that the connective ⊙ is not freely associative. 2

At first sight, Theorem 4.1 appears to conflict with the undecidability ofKR,
since that result is proved by encoding a finitely presented semigroup in the logic.
However, this problem is easily resolved by observing that the undecidability
proof does not proceed by employing a free associative connective as defined
above. The encoding of the semigroup operation x·y uses two auxiliary variables
c23 and c31, so that the key definition is:

x · y = (x⊗ c23)⊗ (c31 ⊗ y),

where b⊗ d is the operation defined on a modular n-frame as in §2 of [11]. Fur-
thermore, the proof of associativity for the defined operation uses a number of
added assumptions that formalize the concept of a three-dimensional coordinate
frame.

The method used in the proof of Theorem 4.1 does not extend to R. This is
because Meyer proved in [8] that the formulas in one free variable in the infinite
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sequence p, p ◦ p, (p ◦ p) ◦ p, . . . are all mutually non-equivalent. Consequently,
the questions of the existence of a free associative connective in R and the
decidability of the one-variable fragment of R remain open.
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