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Abstract

This paper shows that the Hilbert system H(C+ J)−, given by del Cerro and Herzig (1996),
is semantically incomplete. This system is proposed as a proof theory for a combination of
classical and intuitionistic propositional logic, which is called C+ J. The Kripke semantics for
this combination is obtained by adding the semantic clause of classical implication directly to
the Kripke semantics for intuitionistic propositional logic. The Hilbert system H(C+ J)− does
not contain the classical modus ponens, although it contains the intuitionistic modus ponens as
a rule, which makes this system semantically incomplete. This paper gives an argument that the
system H(C+ J)− is semantically incomplete because of the absence of the classical modus
ponens. Our way to prove this is based on the logic of paradox, which is a paraconsistent logic
proposed by Priest (1979).

1 Introduction
This paper shows the semantic incompleteness of the Hilbert system H(C+ J)−, given by
del Cerro and Herzig [23]. This system was provided for a combination of classical and intu-
itionistic propositional logic, denoted by C+ J. Let us define that a logic is a combination of
classical and intuitionistic logic if it is a conservative extension of both logics. Roughly speak-
ing, there are three ways to obtain a combination of classical and intuitionistic logic. The first
one is to make use of linear logic, an approach that is taken in [27, 34, 35, 36]. The second
one is to add classical propositional variables to intuitionistic logic, an approach that is taken
in [32, 33, 34, 43, 53].1 The third one is to introduce classical and intuitionistic operators, an
approach that is taken in [13, 14, 20, 21, 22, 23, 28, 29, 37, 41, 42, 47, 48, 49, 50, 54].2 The
combination C+ J, which is studied in [22, 23, 28, 37, 54], is based on the third way and is
one of the most studied combinations of classical and intuitionistic logic.

The syntax for C+ J has two implications: an intuitionistic implication, denoted by “→i”,
and a classical implication, denoted by “→c”. Humberstone [28] proposed the semantics for
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this combination, which is obtained by adding to intuitionistic Kripke semantics the following
satisfaction relation for a formula whose main connective is “→c”:

w |=M A→c B iff w |=M A implies w |=M B,

where M = (W,R, V ) is a Kripke model for intuitionistic propositional logic and w is a possible
world in W . The notion of validity in this Kripke semantics is defined as in an ordinary modal
logic, as follows (cf. [12]): a formula A is valid if w |=M A for any Kripke model M =
(W,R, V ) and any possible world w ∈ W .

Although the notion of validity is defined as in an ordinary modal logic, how to axiomatize
the set of valid formulas in C+ J is far from trivial. Even though classical and intuitionistic
implications are introduced, a proof theory for this combination cannot be obtained by directly
combining the axioms and the rules of both logics. If the axioms and the rules of both logics are
combined directly, the formula A→i B will be derivable from A→c B, and vice versa. This
means that intuitionistic and classical implications will be collapsed into one. This problem
is called “the collapsing problem,” which was pointed out in [11, 26, 55]. Humberstone [28]
proposed a natural deduction system for C+ J, which successfully avoids the collapsing prob-
lem by imposing a restriction on the rule called (RAA¬i

). Lucio [37] employed the notion of a
“structured sequent” in order to avoid the problem and successfully proposed a single-succedent
structured sequent calculus for C+ J, denoted by FO⊃.3 In [54], a multi-succedent sequent
calculus for C+ J is proposed. This proof theory employs only an ordinary notion of a se-
quent, which is possible because of a restriction on the right rule for intuitionistic implication.
These proof theories for C+ J, which are all sound and semantically complete to the Kripke
semantics for C+ J, are explained in Section 4 in detail.

The Hilbert system H(C+ J)−, proposed by del Cerro and Herzig [23], also successfully
avoids the collapsing problem by using ideas of conditional logics. However, the Hilbert system
H(C+ J)− is semantically incomplete. The semantic completeness is one of the most funda-
mental properties of a proof theory since it, together with the soundness, ensures that both the
semantic and the proof-theoretic approaches capture the same objects, i.e., the set of theorems
is the same as the set of all valid formulas. Therefore, the failure of the semantic complete-
ness of H(C+ J)− implies that it fails to capture the set of valid formulas in C+ J, i.e., there
exists a valid formula such that it is not a theorem of H(C+ J)−. It should be noted that De
and Omori [22] provided a Hilbert system for C+ J that is slightly different from H(C+ J)−,
and this system also successfully avoids the collapsing problem. Their way to avoid the col-
lapsing problem is almost the same as that in H(C+ J)−. It should also be remarked that even
though H(C+ J)− is semantically incomplete, De and Omori’s Hilbert system is semantically
complete.

The failure of the semantic completeness of H(C+ J)− is due to the absence of the classical
modus ponens, which may just be an unfortunate typo. We show that the formula (p ∧ (p→c

q)) →i q is valid in the Kripke semantics for C+ J, but not a theorem of H(C+ J)−, by
employing the logic of paradox, provided by Priest [51]. We make use of the fact that the set
of valid formulas of the logic of paradox is the same as that of classical logic, while the sets of
consequence relations of these two logics diverge, as noted in [51].

3To be more precise, Lucio [37] proposed a first-order expansion of C+ J, and FO⊃ is a calculus for this expansion.
However, FO⊃ contains the calculus for the propositional C+ J as a fragment, and in this paper we limit our attention
to this propositional fragment. It should also be noted that the multi-succedent sequent calculus, proposed in [54], is also
the one for the Lucio’s first-order expansion.
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This paper proceeds as follows. Section 2 introduces the syntax and the Kripke seman-
tics and explains the Hilbert system H(C+ J)−. Section 3 shows that the Hilbert system
H(C+ J)− is semantically incomplete (Theorem 1). We show this by arguing that the formula
(p∧(p→cq))→iq is valid in the Kripke semantics for C+ J but is not derivable in H(C+ J)−.
Section 4 describes how proof theories for C+ J other than H(C+ J)− avoid the collapsing
problem and how the classical modus ponens is expressed in these proof theories.

2 Syntax, Kripke Semantics, and the Hilbert System H(C+ J)−

The syntax L consists of a countably infinite set Prop of propositional variables and the fol-
lowing logical connectives: falsum ⊥, disjunction ∨, conjunction ∧, intuitionistic implication
→i, and classical implication →c. We denote by LC (the syntax for the classical logic) and
LJ (the syntax for the intuitionistic logic) the resulting syntax dropping →i and →c from L,
respectively.

The set Form of all formulas in the syntax L is defined inductively as follows:

A ::= p | ⊥ | A ∨A | A ∧A | A→i A | A→c A,

where p ∈ Prop. We denote by FormC and FormJ the set of all formulas in LC and the set of
all formulas in LJ, respectively. The sets of propositional variables in FormC and FormJ are
the same, i.e., Prop ⊆ FormC and Prop ⊆ FormJ. We define ⊤ := ⊥→i ⊥, ¬cA := A→c ⊥,
and ¬iA := A→i ⊥.

Let us move to the semantics for the syntax L. The semantic we introduce was first proposed
by Humberstone [28].

Definition 1 (Kripke Model). A Kripke model is a tuple M = (W,R, V ), where

• W is a non-empty set of possible worlds,

• R is a preorder on W , i.e., R satisfies reflexivity and transitivity,

• V : Prop → P(W ) is a valuation function satisfying the following heredity condition:
w ∈ V (p) and wRv jointly imply v ∈ V (p) for all possible worlds w, v ∈ W .

Definition 2. Given a Kripke model M = (W,R, V ), a possible world w ∈ W , and a formula
A, the satisfaction relation w |=M A is inductively defined as follows:

w |=M p iff w ∈ V (p),
w ̸|=M ⊥,
w |=M A ∧B iff w |=M A and w |=M B,
w |=M A ∨B iff w |=M A or w |=M B,
w |=M A→i B iff for all v ∈ W, (wRv and v |=M A jointly imply v |=M B),
w |=M A→c B iff w |=M A implies w |=M B.

From Definition 2, the following satisfaction relations for a formula whose main connective is
“¬c” or “¬i” is obtained:

w |=M ¬cA iff w ̸|=M A,
w |=M ¬iA iff for all v ∈ W, (wRv implies v ̸|=M A).

Definition 3 (Validity). A formula A is valid, written as |= A, if w |=M A for any Kripke
model M = (W,R, V ) and any possible world w ∈ W .
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We proceed to some arguments about the property called heredity, which is an important
property in intuitionistic logic. First of all, we define the notion of heredity.

Definition 4 (Heredity). A formula A satisfies heredity if for any model M and w, v ∈ W ,
wRv and w |=M A jointly imply v |=M A.

In ordinary intuitionistic logic, any formula satisfies heredity, and this fact is preserved only
when the formulas in FormJ are considered.

Proposition 5. Any formula A ∈ FormJ satisfies heredity.

Proposition 5 can be shown by induction on the construction of a formula. However, if we take
a formula in FormC into consideration, there exists a formula that does not satisfy heredity.
In order to see this, let us consider the model M1 = (W,R, V ) such that W = {w, v}, R =
{(w,w), (w, v), (v, v)}, and V (p) = V (q) = {v}.

Proposition 6. A formula ¬cp does not satisfy heredity.

Proof. In the model M1, wRv and w |=M1
¬cp, but v ̸|=M1

¬cp. ■

Moreover, the following proposition also holds.

Proposition 7. Both ¬cp→c (q →i ¬cp) and ¬cp→i (q →i ¬cp) are invalid.

Proof. Let us take the model M1 again. Since wRv, v |=M1
q, and v ̸|=M1

¬cp, w ̸|=M1

q→i¬cp in the model M1. This, together with w |=M1
¬cp, implies w ̸|=M1

¬cp→c(q→i¬cp)
in the model M1. In almost the same way, it is shown that w ̸|=M1 ¬cp→i (q →i ¬cp). ■

Proposition 7 implies that an intuitionistic theorem A→i (B →i A) is no longer a theorem in
this combination.

Let us move to the Hilbert system H(C+ J)−, provided by del Cerro and Herzig [23].
Before giving the details of the axiomatization, we introduce the syntactic notion of persistent
formulas. The set of all persistent formulas in Form is defined as follows:

E ::= ⊥ | p | A→i A | E ∧ E | E ∨ E,

where p ∈ Prop and A ∈ Form. 4

Definition 8. The Hilbert system H(C+ J)− consists of axioms (CL), (CK), (ID), (CMP), and
(PER) of Table 1 and rules (MPI) and (RCN) of Table 1. The Hilbert system H(C+ J) is the
extended system of H(C+ J)− with the rule (MPC) of Table 1.

An important axiom is (PER). Recall that the formula ¬cp →i (q →i ¬cp) is not valid in the
Kripke semantics, as stated in Proposition 7. In order for this formula to be underivable, an
antecedent formula A of (PER) should be restricted to a persistent formula. It should also
be noted that this axiom enables the Hilbert systems H(C+ J)− and H(C+ J) to avoid the
collapsing problem. If this restriction did not exist, then (A →c B) →c (A →i B) would be
derivable, which implies that the intuitionistic implication and the classical implication would
collapse into one implication.

4Del Cerro and Herzig [23] did not define ⊥ as a persistent formula. However, this is not an essential point, since ⊥
is equivalent to p ∧ ¬ip, which is a persistent formula in the sense of [23]. This slight change allows us to state that all
formulas in FormJ are persistent.
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Table 1 Hilbert Systems H(C+ J)− and H(C+ J)

Hilbert System H(C+ J)−

(CL) All instances of classical tautologies
(CK) (A→i (B →c C))→c ((A→i B)→c (A→i C))
(ID) A→i A

(CMP) (A→i B)→c (A→c B)
(PER) A→c (B →i A)

† †: A is persistent.
(MPI) From A and A→i B, we may infer B
(RCN) From A, we may infer B →i A

Hilbert System H(C+ J)
All the axioms and rules of H(C+ J)−

(MPC) From A and A→c B, we may infer B

In the next section, we show the Hilbert system H(C+ J)− is semantically incomplete.
This semantic incompleteness is the result of the absence of (MPC). The system H(C+ J) may
be what del Cerro and Herzig [23] intended to provide, but (MPC) does not exist, which may be
an unfortunate typo. It is reasonable that (MPC) is necessary, because H(C+ J) is based on an
idea of an axiomatization of conditional logic, which adds axioms and rules to the conditional
on top of classical tautologies and the rule of classical modus ponens (see, e.g., [17, 18, 44]).

The following proposition ensures that the rule (MPI) can be deleted from the Hilbert
system H(C+ J).

Proposition 9. If we drop (MPI) from H(C+ J), (MPI) is derivable in the resulting system.

Proof. Suppose that A and A →i B are theorems in the resulting system. By (CMP) and
(MPC), A →c B is obtained from A →i B . By applying (MPC) to A and A →c B, B is
obtained, as is desired. ■

Thus, in order to obtain H(C+ J) from H(C+ J)−, replacing (MPI) with (MPC) is sufficient.

3 Semantic Incompleteness of the Hilbert System H(C+ J)−

In this section, we show that the Hilbert system H(C+ J)− is semantically incomplete. We
provide a formula C such that C is valid in the semantics described in Definitions 1 and 2 but
C is not a theorem of H(C+ J)−. Our candidate for C is (p ∧ (p→c q))→i q. The following
proposition is easy to establish.

Proposition 10. The formula (p ∧ (p →c q)) →i q is valid in Kripke semantics defined in
Definitions 1 and 2.

Thus, we need to show that (p ∧ (p →c q)) →i q is not a theorem of H(C+ J)−. For this
purpose, we need to find a non-standard semantics to which H(C+ J)− is sound but in which
the formula (p ∧ (p→c q))→i q is not valid.

For our purpose, we utilize the three-valued semantics for a paraconsistent logic provided
by Priest (cf. [52]), i.e., the logic of paradox [51], which allows the third truth value of “both
true and false” { 0, 1 }, in addition to the values { 0 } (“false only”) and { 1 } (“true only”).

Australasian Journal of Logic (20:3) 2023, Article no. 2



402

Definition 11. A valuation v is a mapping from Prop to {{0}, {0, 1}, {1}}. A valuation v is
uniquely extended to a function v from the set Form of all formulas to {{0}, {0, 1}, {1}}, as
follows:

1 ∈ v(⊥) Never,
0 ∈ v(⊥) Always,

1 ∈ v(A ∧B) iff 1 ∈ v(A) and 1 ∈ v(B),
0 ∈ v(A ∧B) iff 0 ∈ v(A) or 0 ∈ v(B),
1 ∈ v(A ∨B) iff 1 ∈ v(A) or 1 ∈ v(B),
0 ∈ v(A ∨B) iff 0 ∈ v(A) and 0 ∈ v(B),

1 ∈ v(A→c B) iff 0 ∈ v(A) or 1 ∈ v(B),
0 ∈ v(A→c B) iff 1 ∈ v(A) and 0 ∈ v(B),
1 ∈ v(A→i B) iff 1 /∈ v(A) or 1 ∈ v(B),
0 ∈ v(A→i B) iff 1 ∈ v(A) and 0 ∈ v(B).

A consequence relation Σ |=3 A is defined as follows: if 1 ∈ v(B) holds for all B ∈ Σ, then
1 ∈ v(A). We say that a formula A is 3-valid if |=3 A holds.

Proposition 12. For every valuation v : Prop → {{ 1 }, { 0, 1 }, { 0 } } and every A ∈ Form,
1 ∈ v(A) or 0 ∈ v(A).

Proof. Fix any valuation v : Prop → {{ 1 }, { 0, 1 }, { 0 } }. By induction on A, we can obtain
the desired statement. ■

Remark 13. Let us denote {1}, {0, 1}, {0} by t,b, f , respectively. Then, the semantics de-
scribed above provides the three-valued truth table, described in Table 2, where the values t
and b are defined as “designated values.”

Table 2 Three-Valued Truth Tables

∧ t b f

t t b f

b b b f

f f f f

∨ t b f

t t t t

b t b b

f t b f

→c t b f

t t b f

b t b b

f t t t

→i t b f

t t b f

b t b f

f t t t

⊥
t f

b f

f f

By recalling that ¬cA := A →c ⊥ and ¬iA := A →i ⊥, we can also obtain the following
satisfaction relations for a formula whose main connective is a negation:

1 ∈ v(¬cA) iff 0 ∈ v(A),
0 ∈ v(¬cA) iff 1 ∈ v(A),
1 ∈ v(¬iA) iff 1 /∈ v(A),
0 ∈ v(¬iA) iff 1 ∈ v(A).

The satisfaction relations for a formula whose main connective is “¬c” ensures that ¬c is De
Morgan negation.5 We can also get the truth table for ¬c and ¬i, described in Table 3.

5Following [52], we define a negation, denoted by “∼”, as a De Morgan negation if it satisfies all the following three
conditions here: (1) ∼ (A ∧ B) and ∼ A∨ ∼ B have the same truth value, (2) ∼ (A ∨ B) and ∼ A∧ ∼ B have the
same truth value, and (3) ∼∼ A and A have the same truth value. The satisfaction relation for a formula whose main
connective is “¬c” ensures that this negation satisfies all the three conditions described above.
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Table 3 Truth Table for Negations

A ¬cA

t f

b b

f t

A ¬iA

t f

b f

f t

The set of the primitive connectives of the propositional part of the logic of paradox [51, 52]
is {∧,∨,¬c }. The truth tables for these connectives, described in Table 2, are the same as
those in the semantics of the logic of paradox. The truth table for “→c”, described in Table 2,
is the same as the one provided by Asenjo [4]. Since the truth value of A →c B is the same
as that of ¬cA ∨ B, the connective “→c” can be defined in the original syntax of the logic of
paradox. It is remarked, however, that ⊥ cannot be defined in terms of {∧,∨,¬c } (since B
would return the value b for a valuation sending all propositional variables to b, if a formula
B defined ⊥, it would be a contradiction). Therefore, in terms of the three-valued semantics
above, {∧,∨,→c,⊥}, i.e., the syntax of LC is stronger than {∧,∨,¬c }, i.e, the syntax for
the logic of paradox. The truth table for “→i” is the same as that of an implication introduced
by da Costa [19]. In [6], this connective is called “internal implication.” This connective is also
studied in [1, 2, 3, 5, 7, 8, 9, 10, 15, 16, 24, 39, 45, 46].

Lemma 14. p, p→c q ̸|=3 q

Proof. Take a valuation v such that v(p) = { 0, 1 } and v(q) = { 0 }. Then, v(p→c q) = { 0, 1 }.
But, 1 /∈ v(q). Therefore, p, p→c q ̸|=3 q. ■

While the logic of paradox [51, 52] has a different consequence relation from that of clas-
sical logic (as shown in Lemma 14), it is well known that the logic of paradox has the same
theorems as those of classical logic (see, e.g., [52, p.310]). We may also extend this fact to
{∧,∨,→c,⊥}, i.e., the syntax of LC, as follows.

Proposition 15. Let A ∈ FormC. Then, A is a tautology in classical logic iff A is 3-valid.

Proof. The proof from right to left is trivial, since v : Prop → { 0, 1 } is regarded as a three-
valued valuation by regarding 0 and 1 with { 0 } and { 1 }, respectively. Conversely, assume that
A is a tautology in classical logic and fix any valuation v : Prop → {{0}, {0, 1}, {1}}. Our
goal is to show that 1 ∈ v(A). Define a valuation v1 from v by changing all outputs {0, 1} of v
to {1}. We regard v1 as a two-valued valuation function by regarding { 0 } and { 1 } with 0 and
1, respectively. It is easy to see that v1(p) ⊆ v(p) for all p ∈ Prop. We also have v1(B) ⊆ v(B)
for all B ∈ FormC by Definition 11 (recall that C →c D is equivalent to ¬cC ∨D). Since A is
a classical tautology, then 1 ∈ v1(A). By v1(A) ⊆ v(A), we conclude that 1 ∈ v(A). ■

Definition 16. Given a function σ : Prop → Form and A ∈ FormC, the resulting formula
σ̃(A), substituting all occurrences of each propositional variable p in A uniformly by σ(p), is
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inductively defined as follows:

σ̃(p) := σ(p),
σ̃(⊥) := ⊥,
σ̃(B ∧ C) := σ̃(B) ∧ σ̃(C),
σ̃(B ∨ C) := σ̃(B) ∨ σ̃(C),
σ̃(B →c C) := σ̃(B)→c σ̃(C),
σ̃(B →i C) := σ̃(B)→i σ̃(C).

When no confusion arises, we simply say that σ : Prop → Form is a uniform substitution.

Lemma 17. Let A ∈ FormC. If |=3 A, then |=3 σ̃(A) for all uniform substitutions σ : Prop →
Form.

Proof. Assume that |=3 A. Fix any valuation v : Prop → {{1}, {0, 1}, {0}} and any uniform
substitution σ : Prop → Form. The goal is to show that 1 ∈ v(σ̃(A)). Define v′ : Prop →
{{1}, {0, 1}, {0}} as follows:

1 ∈ v′(p) iff 1 ∈ v(σ(p)),
0 ∈ v′(p) iff 0 ∈ v(σ(p)),

for all p ∈ Prop. By the assumption, we have 1 ∈ v′(A). By induction on a formula B, we can
establish:

1 ∈ v′(B) iff 1 ∈ v(σ̃(B)),
0 ∈ v′(B) iff 0 ∈ v(σ̃(B)).

Here, we deal only with the case in which B is of the form C →i D:

1 ∈ v′(C →i D) iff 1 /∈ v′(C) or 1 ∈ v′(D),
iff 1 /∈ v(σ̃(C)) or 1 ∈ v(σ̃(D)), by induction hypothesis,
iff 1 ∈ v(σ̃(C)→i σ̃(D)),
iff 1 ∈ v(σ̃(C →i D)).

0 ∈ v′(C →i D) iff 1 ∈ v′(C) and 0 ∈ v′(D),
iff 1 ∈ v(σ̃(C)) and 0 ∈ v(σ̃(D)), by induction hypothesis,
iff 0 ∈ v(σ̃(C)→i σ̃(D)),
iff 0 ∈ v(σ̃(C →i D)).

Since we have 1 ∈ v′(A), we conclude that 1 ∈ v(σ̃(A)), as required. ■

Lemma 18. Let A ∈ Form. If A is a theorem of H(C+ J)−, then A is 3-valid.

Proof. It suffices to show tha each axiom of H(C+ J)
− is 3-valid and that each rule of the

system preserves 3-validity.

• (CL) Let A be an instance of a classical tautology, i.e., A is of the form σ̃(A′), where
A′ ∈ FormC is a classical tautology and σ : Prop → Form is a uniform substitution.
Recall that Form is the set of all formulas of the syntax for H(C+ J)−. Our goal is to
show that |=3 σ̃(A′). By Lemma 17, it suffices to show that |=3 A′. Since A′ ∈ FormC,
Proposition 15 tells us that we need to establish that A′ is a classical tautology. But, this
is our assumption.

• (ID) This is trivial, since 1 ∈ v(A → B) iff 1 ∈ v(A) implies 1 ∈ v(B).
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• (CK)We show that |=3 (A→i(B→cC))→c((A→iB)→c(A→iC)). Fix any valuation
v : Prop → {{ 1 }, { 0, 1 }, { 0 } }. Our goal is to show that 1 ∈ v((A→i (B→c C))→c

((A→i B)→c (A→i C))). It suffices to show that 0 /∈ v(A→i (B→c C)) implies that
1 ∈ v((A→iB)→c (A→iC)). Suppose that 0 /∈ v(A→i (B→cC)). This implies that
1 /∈ v(A) or 0 /∈ v(B→cC). For each case, we establish that 1 ∈ v((A→iB)→c (A→c

B)), i.e., 0 ∈ v(A→i B) or 1 ∈ v(A→c C). If 1 /∈ v(A) holds, then 1 ∈ v(A→i C)
holds; hence, 1 ∈ v((A→i B)→c (A→i C)). If 0 /∈ v(B →c C) holds, then 1 /∈ v(B)
or 0 /∈ v(C) holds. Without loss of generality, we can also assume that 1 ∈ v(A). If
1 /∈ v(B) holds, we derive from Proposition 12 that 0 ∈ v(B). With 1 ∈ v(A), it implies
that 0 ∈ v(A →i B). Therefore, we can obtain 1 ∈ v((A →i B) →c (A →i C)). If
0 /∈ v(C) holds, then we deduce from Proposition 12 that 1 ∈ v(C). By this, we can
obtain that 1 ∈ v(A →i C). Therefore, 1 ∈ v((A →i B) →c (A →i C)) holds. This
finishes our argument by cases.

• (CMP) We show that |=3 (A →i B) →c (A →c B). Fix any valuation v : Prop →
{{ 1 }, { 0, 1 }, { 0 } }. Our goal is to show that 1 ∈ v((A→iB)→c(A→cB)). It suffices
to show that 0 /∈ v(A→i B) implies that 1 ∈ v(A→c B). Suppose that 0 /∈ v(A→i B).
This implies that 1 /∈ v(A) or 0 /∈ v(B). If 1 /∈ v(A) holds, then, by Proposition 12,
0 ∈ v(A) holds; hence, 1 ∈ v(A→c B). If 0 /∈ v(B), then we deduce from Proposition
12 that 1 ∈ v(B); hence, 1 ∈ v(A →c B). For both cases, we have established that
1 ∈ v(A→c B).

• (PER) For this validity, we do not have to impose any restriction on A. We show that
|=3 A →c (B →i A). Fix any valuation v : Prop → {{ 1 }, { 0, 1 }, { 0 } }. Our goal
is to show that 1 ∈ v(A →c (B →i A)). It suffices to show that 0 /∈ v(A) implies that
1 ∈ v(B →i A). Suppose that 0 /∈ v(A). By Proposition 12, we get 1 ∈ v(A); hence,
1 ∈ v(B →i A), as required.

• (MPI) We show that |=3 A and |=3 A →i B imply that |=3 B. Suppose that |=3 A
and |=3 A →i B. Our goal is to show that |=3 B. Fix any valuation v : Prop →
{{ 1 }, { 0, 1 }, { 0 } }. We show that 1 ∈ v(B). By the supposition, we have 1 ∈ v(A)
and 1 ∈ v(A→i B). Since 1 ∈ v(A) and 1 /∈ v(A) are not compatible, we can deduce
from 1 ∈ v(A→i B) that 1 ∈ v(B), as desired.

• (RCN) We show that |=3 A implies that |=3 B →i A. Suppose that |=3 A. Our goal
is to show that |=3 B →i A. Fix any valuation v : Prop → {{ 1 }, { 0, 1 }, { 0 } }. We
show that 1 ∈ v(B→iA). By the supposition, 1 ∈ v(A) holds. Therefore, we can obtain
1 ∈ v(B →i A) straightforwardly by Definition 11. ■

Lemma 19. |=3 (p ∧ (p→c q))→i q iff p, p→c q |=3 q.

Proof. This follows from the following equivalence: 1 ∈ v(A →i B) iff 1 ∈ v(A) implies
1 ∈ v(B). ■

Theorem 1. The formula (p ∧ (p→c q))→i q is not a theorem in H(C+ J)−.

Proof. Suppose that (p ∧ (p →c q)) →i q is a theorem in H(C+ J)−. By Lemma 18, (p ∧
(p→c q))→i q is 3-valid. By Lemma 19, p, p→c q |=3 q should hold. This contradicts Lemma
14. ■

Corollary 1. The Hilbert system H(C+ J)− is not semantically complete, i.e., there exists a
formula C such that C is not a theorem of H(C+ J)− but C is valid in the Kripke semantics
in Definition 2.
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Proof. By Proposition 10 and Theorem 1. ■

The argument described above implies, in order to obtain the completeness theorem, that the
rule (MPC) is necessary. If (MPC) is added, Theorem 1 will no longer hold. This is because
Lemma 18 does not hold for H(C+ J) (H(C+ J)− plus the classical modus ponens (MPC)),
since (MPC) does not preserve 3-validity, which is a well-known feature of the logic of paradox,
as noted in [51].

4 Related Work
This section reviews proof theories for C+ J that are different from H(C+ J)− and explains
how the collapsing problem is avoided and how the classical modus ponens, whose absence is
a source of the semantic incompleteness of H(C+ J)−, is expressed in these proof theories.

Humberstone [28] proposed a natural deduction system for C+ J. Instead of classical
and intuitionistic implications, Humberstone’s syntax has classical and intuitionistic negations,
denoted by “¬c” and “¬i,” respectively, as primitive connectives. As a proof theory, he provided
a natural deduction system for this logic, which contains the following two rules:

Γ,A ⊢ B ∧ ¬cB

Γ ⊢ ¬cA
(RAA¬c

)
Γ,A ⊢ B ∧ ¬iB

Γ ⊢ ¬iA
(RAA¬i

)†
,

where † means that all occurrences of “¬c” in some formulas in Γ are in the scope of “¬i.”
In this natural deduction system, A→c B ⊢ A→i B does not hold because of the restriction
imposed on (RAA¬i

). Moreover, this natural deduction system has an ordinary elimination
rule for disjunction, and the classical modus ponens is derived as a rule from this elimination
rule, together with (RAA¬c

). Humberstone [28] showed that this natural deduction system is
sound and complete to the Kripke semantics for C+ J.

Lucio [37] proposed a cut-free single-succedent calculus called FO⊃ for C+ J. This calcu-
lus handles a “structured sequent,” which has the following form: ∆ ⇒ A, where ∆ is a finite
sequence of finite sets of formulas and A is a formula. In the following, we use Γ , probably
with subscripts or superscripts, to denote a finite set of formulas and ∆, ∆′, and ∆′′ to denote
a finite sequence of finite sets of formulas. The semicolon sign is used to split a finite sequence
of finite sets of formulas into its component finite sets of formulas, and the comma sign is used
to split the sets of formulas into its elements. For example, ∆;B,Γ ;∆′ ⇒ A is a structured
sequent, and its antecedent is the finite sequence beginning with the finite sequence ∆ of finite
sets of formulas, followed by the finite set {B} ∪ Γ of formulas, and ending with the finite
sequence ∆′ of finite sets of formulas. The calculus FO⊃ has the following left and right rules
for classical and intuitionistic implications:

∆;Γ,A ⇒ B

∆;Γ ⇒ A→c B
(⇒ →c)

∆;Γ ⇒ A ∆;Γ,B;∆′ ⇒ C

∆;Γ,A→c B;∆′ ⇒ C
(→c ⇒)

∆; {A} ⇒ B

∆ ⇒ A→i B
(⇒ →i)

∆;Γ ;∆′;Γ ′ ⇒ A ∆;Γ ;∆′;Γ ′, B;∆′′ ⇒ C

∆;Γ,A→i B;∆′;Γ ′;∆′′ ⇒ C
(→i ⇒)

.

The collapsing problem is avoided by making use of the notion of a structured sequent. The
rules for intuitionistic and classical implications can be distinguished since the antecedent of a
sequent has a structure. This prevents the structured sequent {A→cB} ⇒ A→iB from being
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derivable in FO⊃. The classical modus ponens is expressed as (⇒ →c) in this calculus, as is in
LK, which is the ordinary sequent calculus for classical logic.

The notion of validity of a single-succedent structured sequent is defined as follows: a
single-succedent structured sequent Γ0;Γ1; . . . ;Γn ⇒ A is valid if for all Kripke models M =
(W,R, V ) and for all sequences of possible worlds w0, w1, . . . , wn ∈ W such that wi−1Rwi

for any 1 ≤ i ≤ n, if wi |=M C for any C ∈ Γi and any 0 ≤ i ≤ n, then wn |=M A. Based
on this notion, Lucio showed that the cut-free single-succedent sequent calculus FO⊃ is sound
and complete to the Kripke semantics for C+ J.

De and Omori [22] provided a Hilbert system that is slightly different from H(C+ J)−

by expanding subintuitionistic logic with classical negation. This Hilbert system contains an
axiom that is essentially the same as the axiom (PER) in H(C+ J)−, which prevents us from
deriving (A→c B)→c (A→i B). Moreover, this system has the following axiom and rule:

(DNE) ¬c¬cA→i A
(D-Antilogism) From ((A ∧B)→i ¬cC) ∨D,

we may infer ((A ∧ C)→i ¬cB) ∨D.

The classical modus ponens is derivable as a rule in this system by using (DNE) and (D-Antilogism),
as noted in [22, Proposition 4.9].

In [54], a multi-succedent sequent calculus is proposed as a proof theory for C+ J. This
calculus uses an ordinary notion of sequent, in which the antecedent and succedent of a se-
quent are multisets. This calculus is obtained by adding the following left and right rules for
intuitionistic implications to the classical sequent calculus LK:

Γ ⇒ ∆,A B,Σ ⇒ Π

A→i B,Γ,Σ ⇒ ∆,Π
(→i ⇒)

A,C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ B

C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ A→i B
(⇒ →i),

where pk(1 ≤ k ≤ n) is a propositional variable. By the restriction on (⇒ →i), the sequent
A →c B ⇒ A →i B is not derivable in this sequent calculus. The classical modus ponens is
expressed as the right rule for classical implication, as in FO⊃. This calculus is cut-free and
sound and complete to the Kripke semantics for C+ J.
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