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Abstract

We present a new version of truthmaker semantics, where the
relation of incompatibility between states is taken as a primitive.
We discuss the advantages of the new framework over traditional
truthmaker semantics, its relations with other accounts, and conclude
by showing some interesting applications.

Introduction

This paper introduces a new logical and semantic framework, based on the
notion of a compatibility space. The key idea that inspires the framework
is to modify Fine’s truthmaker semantics by taking the notion of incompat-
ibility as primitive, and use it to define other notions. We show how this
choice has fruitful consequences. The framework allows to distinguish two
notions of incompatibility, exact and inexact incompatibility, in a way that
parallels Fine’s distinction between exact and inexact truthmaking. The
framework also allows to define key notions such as those of possible state
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and possible world, and to provide a semantics for the logic of first-degree
entailment (FDE) and Angell’s logic of analytic containment (AC).

Section 1 of the paper briefly introduces the notion of state space in the
sense of Fine and the standard truthmaker semantics based on it. In sec-
tion 2, we present compatibility spaces and the associated new truthmaker
semantics, and prove some interesting results. In section 3, we discuss
the reasons to prefer our framework over standard truthmaker semantics,
and compare our proposal with other approaches presented in the liter-
ature. In section 4, we show that using the new truthmaker semantics
we can characterize FDE logical consequence and reproduce Fine’s proofs
of soundness and completeness for AC. Section 5 shows a way in which
compatibility spaces can mirror Kripke frames.

1 State Spaces

Kit Fine’s truthmaker semantics (see [15], [12], [11]) is a systematic proce-
dure to assign to each formula in a propositional language a set of states
which count as its truthmakers and a set of states which count as its false-
makers, in such a way that the truth(false)makers of a complex formula
derive from those of its components via the structural relations among the
states in the space.

Here is an illustration of the idea that truthmaker semantics models.
The truthmakers of a sentence are those states that are responsible for the
truth of that sentence, and its falsemakers are those that are responsible for
its falsity. A standard example is that the presence of rain is responsible for
the truth of the sentence “it is raining”. A state is an exact truthmaker of a
sentence if it is “wholly relevant” for the truth of that sentence; an inexact
truthmaker of a sentenceϕ is a state that contains, among its parts, an exact
truthmaker of ϕ. The presence of rain and wind is an inexact truthmaker of
the sentence “it is raining”, because one of its parts, the presence of wind,
is not relevant for the truth of the sentence.

Truthmaker semantics makes no assumption about the nature of truth-
makers and falsemakers, just as standard possible world semantics makes
no assumptions about the nature of possible worlds. Truthmakers and
falsemakers are ‘states’, but states could be events, states of affairs, objects,
properties, etc.. In some models states are (sets of) formulas. All we know
is that the states form a set, S, and that they are partially ordered by a part-
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whole relation Ď, such that every set of states has a least upper bound, i.e.
a state that is the smallest state containing all the elements of that set. The
least upper bound of a set of states is called the fusion of those states; s\ t is
the fusion of the states s, t. In sum, a state space xS,Ďy, according to Fine’s
definition (e.g. [11]), is a complete lattice.

More formally, in what follows we use letters ϕ,ψ, γ... to denote sen-
tences and we stick to a language, call it L, consisting of propositional
variables p, q, r..., logical constants “␣,^,_” and auxiliary symbols “(,)”; a
well-formed formula in the language L is defined as:

ϕ :“ p | ␣ϕ | ϕ_ ϕ | ϕ^ ϕ

For convenience, let P indicate the set of propositional variables. A state
space is a tuple S “ xS,Ďywhere

• S non-empty set of states;

• Ď (parthood relation) is a partial order over S, such that:

– S is complete, namely every T Ď S has a least upper bound
Ů

T P S (s\ t denotes the fusion of s and t, namely
Ů

ts, tu);

– we use “0” to denote the least upper bound of the emptyset,
0 :“

Ů

H, and we call it “null element”; observe that it is such
that 0 Ď s for any s P S.

State spaces can be used to assign truth(false)makers to formulas of
a propositional language by introducing two functions that assign truth-
makers and falsemakers to the atomic formulas and then giving recursive
clauses to determine the truthmakers and falsemakers of a complex for-
mula. Hence, a state space is extended to a State Model, namely a tuple
M “ xS,Ď, |.|`, |.|´ywith:

• xS,Ďy a state space;

• |.|`, |.|´ : PÑ ℘pSq are valuation functions such that

– |p|` Ď S is the set of exact truthmakers of p;

– |p|´ Ď S is the set of exact falsemakers of p.
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Definition 1 (Exact Verification). Given a State ModelM “ xS,Ď, |.|`, |.|´y,
the conditions for a formula to be exactly verified (,) or exactly falsified (-)
by a state s P S are defined recursively:

s , p ô s P |p|`

s - p ô s P |p|´

s , ␣ϕ ô s - ϕ
s - ␣ϕ ô s , ϕ
s , ϕ^ ψ ô for some t, u pt , ϕ,u , ψ and s “ t\ uq
s - ϕ^ ψ ô s - ϕ or s - ψ
s , ϕ_ ψ ô s , ϕ or s , ψ
s - ϕ_ ψ ô for some t, u pt - ϕ, u - ψ and s “ t\ uq

Observe that, for the sake of simplifying the presentation, we have
adopted non-inclusive exact truthmaker semantics, meaning that a truth-
maker of ϕ ^ ψ (falsemaker of ϕ _ ψ) is not necessarily a truthmaker of
ϕ_ ψ (falsemaker of ϕ^ ψ). For an inclusive version of exact truthmaker
semantics see, for instance, [17]. In section 4, we will explore some con-
nections between our compatibility-based truthmaker semantics and the
inclusive version of Fine’s truthmaker semantics.

Definition 2 (Inexact Verification). Given a state modelM “ xS,Ď, |.|`, |.|´y,
for any s P S, we say that s inexactly verifies a formula ϕ if s contains an exact
verifier of ϕ; more formally s , ϕ iff for some t Ď s, t , ϕ.

Fine’s canonical state model is the one in which S is the set of sets
of literals (a literal is an atomic formula or the negation of an atomic
formula), Ď is the restriction to S of the relation of subsethood, |p|` “ ttpuu
and |p|´ “ tt␣puu. More formally: for the set of literals Literals “ tp : p P

Lu Y t␣p : p P Lu, Fine (see [12]) defines the following structure:

Definition 3. The canonical state modelMc “ xC, |.|
`
c , |.|

´
c y is a tuple where:

• C “ xSC,ĎCy is a state space such that:

– SC “ ℘pLiteralsq;

– ĎC is the subset relation on SC.

• for any p, |p|`c “ ttpuu;
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• for any p, |p|´c “ tt␣puu.

Fine shows how to extend state spaces to modalized state spaces (see
[16]). A modalized state space is a tupleM “ xS,S^,Ďywith:

• xS,Ďy a state space as before;

• S^ Ď S is a non-empty set of possible states such that for any t P S and
s P S^, t Ď s implies t P S^ (closure under parts).

In a modalized state space,M “ xS,S^,ĎyFine ([16]) gives an idea to define
a compatibility relation among states that can be formalized as follows:

Definition 4 (Compatibility). Two states s, t in S are compatible iff s\ t P S^,
i.e. their fusion is possible.

It is natural to assume that the canonical modalized state spaceMC^ “

xS,S^,Ďy is the one we obtain fromMc by letting S^ be set of all consistent
sets of literals (i.e. those sets that do not contain a propositional variable
and its negation).

Given this semantic machinery, (at least) two different notions of en-
tailment between (sets of) formulas can be defined: an entailment in terms
of exact truthmakers preservation from the premises to the conclusions,
and an entailment in terms of inexact truthmakers preservation. The first
notion can be formalized in two different ways (see [17] and [22]): let Γ
be a finite set of formulas in the language, (i) conjunctive exact entailment
(Γ , ϕ ô for all state models xS,Ď, |.|`, |.|´y and all s P S, if s ,

Ź

Γ then
s , ϕ) and (ii) distributive exact entailment (Γ , ϕ ô for all state models
xS,Ď, |.|`, |.|´y and all s P S, if s , γ for all γ P Γ, then s , ϕ). The relation
between the two notions and the corresponding logics are analyzed in [17]
and [22]. In what follows, we will mainly concerned with inexact truth-
makers preservation. This notion can be naturally formalized as: let Γ be a
set of formulas, Γ , ϕô for all state models xS,Ď, |.|`, |.|´y, for all all s P S,
if s , γ for all γ P Γ, then s , ϕ). By definition of inexact truthmaker, it is
straightforward to see that, when Γ is finite, Γ , ϕô

Ź

Γ , ϕ.

Definition 5 (Inexact Consequence). For any set of formulas Γ Y tψu of L, Γ
inexactly entails ψ (Γ , ψ) if and only if for any state modelM and any s inM,
ifM, s , γ for all γ P Γ, thenM, s , ψ.

In the following section, we will introduce our semantic framework
obtained by extending Fine’s states spaces via a primitive relation of in-
compatibility.
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2 Compatibility Spaces

2.1 Preliminaries

Taking incompatibility as a primitive relation is quite a popular choice in
the literature ([4], [11]). Berto [3, p. 9] nicely captures one thing to be said
in favour of this choice:

It is difficult to think of a more pervasive and basic feature of
experience, than that some things in the world rule out some
other things; or that the obtaining of this precludes the obtain-
ing of that; or that something’s being such-and-such excludes its
being so-and-so. Not only rational epistemic agents and speak-
ers of natural languages, but also animals, or sentient creatures
generally, are acquainted with (in)compatibility.

As mentioned, the main goal of this paper is to take seriously this
intuition of the fundamentality of the notion of incompatibility and apply
it to the truthmaker semantics framework. Thus, in the present section,
we will first introduce the framework that will allow us to formally treat
incompatibility as a primitive notion. Having done that, we will show
some nice features of this new approach, in particular, in linking together
the impossibility of a state and the verification of some contradictions in the
language (e.g.– the truthmakers and falsemakers of the same formula are
incompatible with each other). An extensive discussion on the motivations
to adopt our approach can be found in section 3, where we will also discuss
the relation between ours and alternative proposals in the literature.

A compatibility spaceM “ xS,Ď,Key is the result of extending a state
space xS,Ďy by adding a binary, symmetric relation on S, the incompatibil-
ity relation Ke. More precisely:

Definition 6. A compatibility space is a tupleM “ xS,Ď,Key such that:

• xS,Ďy is a state space;

• Ke Ď Sˆ S is a binary and symmetric relation on S.

The canonical compatibility model is the following adaptation of Fine’s
canonical state model:
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Definition 7 (Canonical Compatibility Model). A canonical compatibility
model is tupleMC “ xC,KeC , |.|

`

C
y where:

1. C “ xSC,ĎCy is a state space as in Definition 3

2. for any p, |p|`
C
“ ttpuu;

3. Ke is the symmetric closure of the set tptpu, t␣puq : p P Literalsu

The relationKe is meant to capture exact incompatibility. As mentioned,
Fine distinguishes between the exact truthmakers of a sentence and those
states that merely contain an exact truthmaker of a sentence, i.e. its inexact
truthmakers. We draw a parallel distinction between states that are exactly
incompatible with a given state s, on the one hand, and states that merely
contain as a part a state that is exactly incompatible with a part of s. For
example, the state of the ball being red and the state of the ball being blue
are exactly incompatible, whereas the state of the ball being oval and red
and the state of the ball being oval and blue are only inexactly incompatible,
because part of being a red oval ball is being an oval ball and that is not
incompatible with being an oval red ball. We will deepen the discussion
on the philosophical motivations behind our approach in the next section.

In what follows,Ke denotes exact incompatibility andKi denotes inexact
incompatibility, defined as follows:

s Ki t “de f Ds1Dt1ps1 Ď s & t1 Ď t & s1 Ke t1q

Notice that two exactly incompatible states are also inexactly incompatible.
When we say that two states are compatible, using the binary predicate
“C”, we mean that they are not inexactly incompatible:

sCt “de f ps Mi tq

When we say that two states are incompatible simpliciter we mean
that they are not compatible, i.e. that they are inexactly incompatible. Our
definition of compatibility as the negation of inexact incompatibility yields
the consequence that if two states are compatible with each other, each part
of the first state is compatible with each part of the second state, we call
this property Downwards.

Claim 1 (Downwards Property). For every s, t P S, if sCt then for every s1 and
t1 such that s1 Ď s and t1 Ď t, s1Ct1.
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Proof. By contraposition. Suppose there are s1, t1 P S such that s1 Ď s and
t1 Ď t and ␣ps1Ct1q, i.e. s1 Ki t1. This means that there are u,u1 P S, such that
u Ď s1 and u1 Ď t1 and u Ke u1. Given transitivity of Ď, it follows that s Ki t,
i.e. ␣psCtq. □

Compatibility spaces allow to adopt an idea familiar in the orthologic
treatment of negation ([19], [7], [8], among others): we can take the false-
makers of an atomic formula to be those states that are exactly incompatible
with all the truthmakers of that atomic formula. We no longer need a func-
tion assigning falsemakers to the atomic formulas, given that we can set
|p|´ B ts P S : @tpt P |p|` ñ s Ke tqu. The (non-inclusive) truthmaking
clauses can remain the same as before:

Definition 8. Given a compatibility state model xS,Ď,Ke, |.|`y, for s P S, we
define the relations , and ,between s and formulas in the language as follows:

s , p ô s P |p|`

s ,p ô for all t P S, if t , p then sKet
s , ␣ϕ ô s - ϕ
s - ␣ϕ ô s , ϕ
s , ϕ^ ψ ô for some t, u pt , ϕ,u , ψ and s “ t\ uq
s - ϕ^ ψ ô s - ϕ or s - ψ
s , ϕ_ ψ ô s , ϕ or s , ψ
s - ϕ_ ψ ô for some t, u pt - ϕ, u - ψ and s “ t\ uq

In other words, the notion of falsification of the atomic letters is now
reduced to the one of incompatibility. This feature puts our incompatibility
semantics in a particular position within the debate between the Australian
plan and the American plan. The two labels indicate two alternative ways
to treat negation in formal semantics:1 the latter vindicates a bilateral se-
mantics, namely the adoption of two primitive relations of verification and
falsification, exactly like in Fine’s work. The former supports the idea of
a unilateral semantics: additional structure on the framework is used to
interpret negation so as to result in a treatment of negation as a modal
operator, by means of the relation of incompatibility. The idea is that the
truth value of a negated formula depends on all the incompatible states,
and not just on the ones involved in the valuation.2

1On the debate between American and Australian plans, see Berto and Restall [4].
2Such treatment of negation originates in Vakarelov [29], but it was philosophically

supported in many works, such as Berto [3].
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Our incompatibility approach claims the philosophical motives behind
the unilateral semantics: firstly, the metaphysical and conceptual priority
of the notion of incompatibility over the notion of negation; secondly, the
necessity to link together verification and falsification, at least at the level
of atomic letters. On the other hand, the double clauses of the bilateral ap-
proach are maintained in the recursive definition of the formulas, making
our framework a hybrid way between the American and the Australian
plans.

In section 3 we will discuss in more details the relation between our
approach and the Australian/American plans, and we will analyse the
motivations for adopting our approach.

For the moment, note that assigning falsemakers to atomic formulas
in the way just described allows us to prove that the truthmakers and
falsemakers of any formula in the language are inexactly incompatible
with each other (see [23], corollary 6):

Theorem 1. For any ϕ P L, and for all s, t P S, if s , ϕ and t - ϕ, then s Ki t.

By induction.

Proof. Base case:

the result holds for atoms in virtue of our new clause for the
falsemakers for the atoms, the fact that exact incompatibil-
ity entails inexact incompatibility and the symmetry of the
incompatibility relation (exact or inexact).

Inductive step:

Let ϕ “ ␣ϕ1. Given that s , ϕ if and only if s - ϕ1 and
t - ϕ if and only if t , ϕ1, assuming s , ϕ and t - ϕ, then
t , ϕ1 and s - ϕ1, so by inductive hypothesis s Ki t. Let
ϕ “ ϕ1 ^ ϕ2. If t - ϕ then either t - ϕ1 or t - ϕ2. Without
loss of generality, suppose the former. If s , ϕ, then s has
a part s1 such that s1 , ϕ1. By inductive hypothesis s1 Ki t,
but then, by definition of inexact incompatibility, s Ki t. If
ϕ “ ϕ1 _ ϕ2 and if s , ϕ then either s , ϕ1 or s , ϕ2.
Suppose the former. t - ϕ, so it must have a part t1 such that
t1 - ϕ1. By inductive hypothesis, t1 Ki s, hence, by definition
of inexact incompatibility, t Ki s; by symmetry, s Ki t.

□
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This result, which is an immediate consequence of our falsification
clause for the atoms, is not trivial in Fine’s Modalized State Models. As
mentioned, in Fine’s framework, two states are compatible when their
fusion is possible, they are incompatible otherwise. In fact, there is no
way to exclude a priori that the fusion of s and t is possible, when s and
t verify and falsify respectively the same formula. To obtain an analogue
result, Fine needs to give a deeper characterization of S^ in relation to
the behavior of the verification and falsification relations, which brings us
directly to our next topic: possible and impossible states.

2.2 Possible States and Possible Worlds

Taking incompatibility as a primitive notion allows to dispense with the
need of a separate specification of the set of possible states. Possible states
can be defined as those that are compatible with themselves:3

Definition 9 ((Im)possible State). A possible state s, Ppsq, is defined as a self-
compatible state, i.e. Ppsq ôde f sCs. An impossible state s, Imppsq, is defined as a
state that is not possible, i.e. Imppsq ôde f non-Ppsq.

Notice that our characterization of possible states in terms of self-
compatibility is not equivalent to the one suggested by Fine. Consider,
for example, two states s and t, such that Pps \ tq, namely their fusion is
possible and therefore they are compatible in Fine’s sense. It follows by
Downwards that they are also compatible in our sense. On the other hand,
the inverse does not hold: if sCt, it does not necessarily follow that their
fusion is possible.

One might wonder whether this definition makes every state possible,
since one might assume that every state is compatible with itself. To see the
mistake in the assumption that every state must be compatible with itself,
just look at the canonical compatibility model: tp,␣pu is (inexactly) incom-
patible with itself because one of its parts, i.e. tpu, is exactly incompatible
with another one of its parts t␣pu. To take a more traditional example:
the property of being a round square is an impossible property because
a part of that property (being round) is incompatible with another part

3In what follows we use the notation Ppsq and Imppsq informally, as predicates express-
ing the property of being possible and impossible respectively.
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of that property (being square). Admittedly, instead of defining impos-
sible states as those that are self-incompatible, we could have defined a
state to be impossible whenever it contains two parts that are incompatible
with themselves. These two definitions of the set of possible states are
equivalent, given the Downwards property.

Claim 2. Ppsq iff for every u, t P S, u Ď s and t Ď s implies tCu.

Accordingly, observe that given that every set of states has a fusion, in
the canonical compatibility modelMC, there are many impossible states:
as many as the sets that contain incompatible states.

Defining impossible states as those having parts that are incompatible
with each other might suggest to reformulate the intuition that every state
is compatible with itself in these terms: there cannot be “modal monsters”
[13, p.155], i.e. atomic states that are incompatible with themselves. This im-
pression might be supported by the fact that in the canonical compatibility
model all atomic states, i.e. all singletons of literals, are indeed compatible
with themselves. We take no stance concerning the conjecture that all im-
possible states must contain proper parts that are incompatible with each
other. We remain neutral concerning this hypothesis, even though the idea
that an impossible state is always the result of combining states that are
incompatible has something to be said in its favour. The idea enjoys prima
facie plausibility, because it offers a way to account for the impossibility
of a state: that a state is impossible should not be taken as a brute fact,
but explained in terms of the incompatibility among the parts of the state.
Even an apparently atomic impossible state like the state of Hesperus be-
ing different from Phosphorus seems to be the result of putting together an
object (Hesperus) with a property that is incompatible with that object: be-
ing different from Phosphorus. If we allow the set of states, S, to have both
objects and properties as elements, we can see the state of Hesperus being
different from Phosphorus as a composite state. Given that the nature of
the elements of the state space is not specified, it might be worth exploring
the possibility of a state space containing both objects and properties as
elements. Such an approach would require an account of what it means
to fuse objects and properties in a single state. That is a non-trivial task,
but it is not obviously an insurmountable difficulty. In any case, we need
not pursue the issue here, given that we remain neutral concerning the
admissibility of modal monsters.
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Now, we turn to world-states: possible worlds can be defined as cer-
tain maximal possible states. In particular, consider the following two
definitions of maximality.

Definition 10 ( Maximality w.r.t. Compatibility). A maximal state s is defined
as that state whose parts are all those states compatible with s.

Maximalpsq “de f @upuCs ñ u Ď sq

Definition 11 (Maximality w.r.t. Parthood). A maximal state s is a state that
isn’t the proper part of any possible state.

Maximalpsq “de f @upPpuq Ñ ps Ď u ñ s “ uqq

The first definition represents the maximality of a state with respect to
the compatibility relation. Therefore, a world-state in this sense is a possi-
ble state that for every state either includes it as a part or is incompatible
with it [16, p. 561]. This intuition is closely related to the familiar condition
of convergence and of maximally informative points, often investigated in
the context of the incompatibility semantics (see for example Berto and Re-
stall [4, p. 1138]). On the other hand, definition 9 is inspired by the concept
of maximal point in a partially ordered set. Hence, a maximal state would
be a maximal point of the state space restricted to the possible states.

Claim 3. If a state s is maximal w.r.t. compatibility, then it is maximal w.r.t.
parthood.

Proof. Take an s and assume s is maximal w.r.t. compatibility. Consider
arbitrary u s.t. u is possible and s Ď u. Since u is possible, then uCs by
downwards; by def. 10, it follows that u Ď s. Since s Ď u and u Ď s, then
u “ s. □

However, the two definitions are not equivalent. Consider the follow-
ing counter-example to the inverse of the previous claim.

Let S “ xS,Ď,Key be the compatibility space with S “ ts, t, s\ t, 0u and
Ke“ tpt, tqu. The parthood relation can be represented as follows:
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s\ t

s t

0

It follows that:

• t Ke t, hence Impptq. It follows that Impps\ tq.

• it is not the case that s Ki s, because s has no exactly incompatible
parts; thus s is a possible state, i.e. sCs;

• similarly it is not the case that t Ki s, so tCs;

Moreover, the state s is maximal w.r.t. parthood because it is the only
possible state; however, s is not maximal w.r.t. compatibility, because tCs
but t Ę s.

In this work, we define a possible world in terms of the stronger notion
of maximality w.r.t. compatibility.

Definition 12 (Possible World). A possible world is a possible state that is
maximal w.r.t. compatibility.

This choice is motivated by the fact that maximality w.r.t. compatibility
is the strongest notion of maximality and the one that is commonly adopted
(see [16]). One might object that this way of defining the notion of possible
world is counterintuitive, on the ground that some possible worlds strike
us as compatible with states that they do not contain as parts. For instance,
the actual world seems compatible with the existence of unicorns, even
though the existence of unicorns is not part of it.4

However, there are reasons to maintain that the actual world is incom-
patible with the existence of unicorns. At the actual world, @, it is not true
that there are unicorns. Hence, @ must contain as part a state s that falsifies

4Thanks to a referee for raising this objection.
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the statement “there are unicorns”. It is natural to assume that s is in-
compatible with any truthmaker of “there are unicorns”(see Corollary 3 in
section 4.1): in this sense, @ is incompatible with the existence of unicorns.
In connection with this point, it is worth looking at the standard treatment
of quantified statements in exact truthmaker semantics (see [16]): a false-
maker for “there are unicorns” is taken to be the fusion of a totality fact τB

ensuing that b1, b2, . . . are all the objects that there are and states s1, s2, . . .
that falsify that b1 is a unicorn, that b2 is a unicorn, . . . . It is clear that such
a state is not compatible with any state that makes it true that there are
unicorns.

Notice, however, that the two definitions can be proven equivalent
under one additional assumption, which we call Fine’s Condition because
adopting it would make our characterization of the incompatibility relation
equivalent to Fine’s.

(Fine’s condition) If two states are compatible then their fusion is a possible
state. @s, s1psCs1 ñ Pps\ s1qq

Claim 4. Given Fine’s Condition, if a state s is maximal w.r.t. parthood, then it
is maximal w.r.t. compatibility.

Proof. Take an arbitrary s and assume s is maximal according to def. 11.
Take an arbitrary u s.t. uCs, then by Fine’s Condition Ppu \ sq. But then,
by def. 11, s “ pu\ sq, hence u Ď s. □

As mentioned, we have no desire to impose this condition on the struc-
ture and, hence, we don’t adopt an intuition on compatibility similar to
the Finean one. The main reason for not imposing Fine’s condition is its
implausibility. The fact that two states are incompatible when their fusion
is impossible entails that the empty state (i.e. the fusion of the empty set,
whose existence is guaranteed by the assumption that every set of states
has a least upper bound) is incompatible with every impossible state. How-
ever, this might sound implausible: there is nothing in the empty state that
excludes any state, hence the empty state should be compatible with every
state. 5

On the other hand, the equivalence between the two notion of maxi-
mality is admittedly appealing. In order to achieve this result, we might
consider a weaker sense of maximality with respect to compatibility:

5Thanks to an anonymous reviewer for suggesting this point.
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Definition 13 (Weak Maximality w.r.t. Compatibility). For all s P S, s is
maximal iff every possible state compatible with s is part of s.

@uppPpuq & uCsq ñ u Ď sq.

Given this weak conception of maximality, the equivalence with the
definition of maximality w.r.t. parthood depends on the weaker and plau-
sible condition that the fusion of two possible and compatible states is a
possible state. We call this condition Possible Fusion, (PF) for short:

(PF) For all s, s1ppPpsq & Pps1q & sCs1q ñ Pps\ s1qq.

Claim 5. A possible state is maximal w.r.t. parthood if and only if it is maximal
w.r.t. weak compatibility.

Proof. (ð) Analogous to claim 3. (ñ) Take s to be a possible and maximal
w.r.t. parthood state. Consider an arbitrary u s.t. Ppuq and uCs. By (PF) it
follows that Pps\ uq. Since s is maximal w.r.t. parthood, then s “ s\ u and
thus u Ď s. □

This new condition, unlike the previous one, is very reasonable and
might be imposed on the general framework. In fact, there is no intuitive
situation in which the fusion of two possible and compatible states is in
turn impossible. We might then define a possible world as a possible state
which contains as a part all the possible states that are compatible with it.

Having defined the notions of possible state and possible world, we
can now show a corollary of the fact that the falsemakers of a formula are
incompatible with its truthmakers (Theorem 1):

Corollary 1. If s , ϕ^␣ϕ, then s is an impossible state.

Proof. By semantic clauses we know that s “ t \ t1 and t , ϕ and t1 - ϕ.
By Theorem 1, it follows that t Ki t1 and so s Ki s, which means that s is an
impossible state. □

This result shows an interesting feature of our semantics. On the one
hand, our framework differs from standard possible world semantics in
admitting incomplete and impossible states. On the other hand, the frame-
work respect the traditional idea that no possible state could make a con-
tradiction true.
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3 Motivations and Comparison

3.1 Philosophical Motivations for our Approach

The two main motivations in favor of our account are the initial plausi-
bility of the distinction between exact and inexact incompatibility and the
dissatisfaction with Fine’s definition of incompatibility.

The former can be appreciated by an analogy with the distinction be-
tween exact and inexact truthmaking and by looking at some examples.
Let us start with showing how the distinction between exact and inex-
act incompatibility parallels Fine’s distinction between exact and inexact
truthmaking. If a state is an exact truthmaker of a sentence, then it is
wholly relevant to the truth of a sentence, whereas an inexact truthmaker
of a sentence has a part that is relevant to the truth of that sentence, but
also a part that is not relevant. Hence, exact truthmaking is not monotonic,
while inexact truthmaking is. The distinction between exact and inexact
compatibility is similar. A state s is exactly incompatible with a state t
when s is wholly relevant to the exclusion of t and vice versa; s in inexactly
incompatible with t when a part of s is exactly incompatible with a part
of t. The state of an object being red and the state of an object being blue
are exactly incompatible, whereas being a red square and being a blue
square are only inexactly incompatible, because part of being a red square
is being a square and that is not incompatible with being a red square. Fine
himself makes a similar point when discussing the notion of exclusion,
which is similar in certain respects to our notion of exact incompatibility,
but different in others (see [11, p.634]). As in the case of exact vs. inex-
act truthmaking, exact incompatibility is not monotonic, whereas inexact
incompatibility is.

In addition to the informal examples presented above, our distinction
between exact and inexact incompatibility can be illustrated by two formal
models. One is the canonical model, already presented in section 2. In
this model, tpu is exactly incompatible with t␣pu, whereas it is inexactly
incompatible with tq,␣pu. This sounds right: the reason why t␣pu is in-
compatible with tq,␣pu is that tpu is exactly incompatible with t␣pu; tqu
is a red herring. Another model will be presented in section 5, where
states are propositions, conceived as sets of possible worlds, the parts of a
propositions are its implications, i.e. its supersets, and every proposition is
exactly incompatible with its complement. Applying our definition, we get
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the result that two propositions are incompatible when, for some proposi-
tion X, one proposition entails X and the other entails the complement of
X, which is equivalent to the fact that two propositions are incompatible
when there is no world in which they are both true, and hence have empty
intersection. Again, this yields plausible results: the proposition expressed
by p is exactly incompatible only with the proposition expressed by ␣p,
whereas it is inexactly incompatible with every proposition entailing ␣p.

Besides its intrinsic plausibility, our framework allows to fix some
unattractive aspects of Fine’s characterization of the incompatibility re-
lation among states. Recall that, according to Fine’s definition, two states
are incompatible when their fusion is impossible. As we discussed on page
227, this definition of incompatibility has undesirable consequences which
our definition immediately avoids. Moreover, consider again a truthmaker
of p ^ ␣p: this is arguably an impossible state, and hence its fusion with
every state should be an impossible state; but that should not make a truth-
maker of p^␣p incompatible with a truthmaker of q: p^␣p and q are not
relevant to each other, and hence their truthmakers do not exclude each
other. Consider the state obtained by fusing the presence and the absence
of rain: this is an impossible state, with two parts exactly incompatible
to each other; but the presence and the absence of rain does not exclude
the presence of wind: the presence or absence of wind is irrelevant to the
presence or absence of rain.

Fine’s definition does not allow to distinguish (i) the case in which the
fusion of two states is impossible because the states are exactly incompati-
ble with each other; (ii) the case where the fusion of two states is impossible
because a part of one state is incompatible with a part of the other; and (iii)
the case in which the fusion of two compatible states is impossible because
one of them is impossible.

The distinction between these three cases can again be illustrated with
reference to the canonical compatibility model.

Case (i): the fusion of tpu and t␣pu is impossible because the states are
exactly incompatible. Case (ii): the fusion of tp, qu and t␣pu is impossible
because the states are inexactly incompatible. Case (iii): the fusion of
tq,␣qu and tpu is impossible, and yet tq,␣qu and tpu are compatible with
each other.

Case (iii) is particularly significant, since it highlights that in the frame-
work of compatibility spaces the fact that fusion of two states is an impos-
sible state does not entail that these states are incompatible, contrary to
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what happens if we adopt Fine’s definition.

3.2 Comparison with other Proposals

Our hybrid approach combines the framework of standard exact truth-
maker semantics, i.e. a bilateral semantics based on exact truthmaking and
falsemaking, with the idea that the truthmaking and falsemaking condi-
tions of every formula are determined by the truthmakers of the atomic
formulas and relations of incompatibility between states.

Here is one way to motivate this hybrid approach. Standard exact truth-
maker clauses for the connectives enjoy prima facie plausibility. However,
they only tell us how to assign truth(false)makers to complex formulas
based on those of simpler formulas. They do not tell us how to assign
falsemakers to an atomic formula based on its truthmakers: falsemakers
and truthmakers are assigned to atomic formulas by two completely in-
dependent functions. Moreover, the standard exact truthmaker semantics
does not deliver a desirable result: if state s makes a formula ϕ true and
state s1 makes ϕ false, s is incompatible with s1.

We can fix both problems at once by simply defining the falsemakers of
an atomic formula as those states that are exactly incompatible with every
truthmaker of that formula, and leaving the truthmaking and falsemaking
clauses for complex formulas unchanged.

Our approach has some points of contact with the treatment of nega-
tion adopted in the so-called Australian plan, which is based on a unilateral
semantics that only employs the notion of truthmaking, and where the
truthmakers of ␣ϕ are those states that are incompatible with every truth-
maker of ϕ.

In other respects, though, our approach is closer to Fine’s exact truth-
maker semantics than to the Australian plan.

The fundamental notion of verification, both in Fine’s semantics and
in our approach, is not hereditary: s , ϕ and s Ď t does not entail that
t , ϕ, even though the derived notion of inexact truthmaking is heredi-
tary. Moreover, Fine’s truthmaker semantics is bilateral: it employs two
irreducible notions, truthmaking and falsemaking, and treats negation as
an operator that inverts the assignment of truthmakers and falsemakers in
moving from a formula to its negation.

Our definition of the falsemakers of an atomic formula perfectly matches
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the definition of the truthmakers of the negation of a formula adopted in
the Australian plan. However, we are only using exact incompatibility to
define the falsemakers of atomic formulas. The set of truthmakers of␣␣p,
in our account, is simply the set of falsemakers of ␣p, i.e. the set of truth-
makers of p. According to the semantics of the Australian plan, the set of
truthmakers of ␣␣p is the set of states that are incompatible with all the
states that are incompatible with all the truthmakers of p, and there is no
way to prove that this set coincide with the set of truthmakers of p, without
imposing further constraints. We are not, in general, defining the false-
maker of an arbitrary formula as those states that are exactly incompatible
with all the truthmakers of that formula: we are still working in a bilateral
semantics.

It might be useful to mention the reasons why we do not simply define
negation in terms of incompatibility – s is an exact truthmaker for␣ϕ iff s is
incompatible with all the exact truthmakers for ϕ – and in turn falsification
in terms of negation.

There seems to be a tension between the treatment of negation adopted
by the Australian Plan and exact verification. Let ϕ ( ψ indicate that every
verifier of ϕ is a verifier of ψ. The account of negation adopted by the
Australian plan validates contraposition (ϕ ( ψ ñ ␣ψ ( ␣ϕ): if every
verifier of ϕ is a verifier of ψ, then every verifier of ␣ψ, i.e. any state
incompatible with all the truthmakers of ψ, is incompatible with all the
verifiers of ϕ and hence a verifier of ␣ϕ. However, there are cases where
every exact truthmaker of ϕ is an exact truthmaker of ψ and yet not every
exact truthmaker of ␣ψ is an exact truthmaker of ␣ϕ.6

Let ϕ be p and ψ be p_ q: if s , p, then s , p_ q. However, there might
be an s : s , ␣pp_ qqwhile s . ␣p. Suppose that s falsifies p_ q because it
is the fusion of an exact falsifier of p and and exact falsifier of q: this makes
s an exact falsifier of p_ q, but not an exact falsifier of p, because s contains
a part, the falsifier of q, that is not wholly relevant to the falsification of p.
Here is an example. The fusion of the state of a being red and b being red is
an exact falsifier of a is blue or b is blue; however, such a state is not an exact
falsifier of a is blue, because it contains a part (the state of b being blue) that

6Our account validates a restricted form of contraposition at the level of atomic for-
mulas: if every exact truthmaker of p is an exact truthmaker of q, then every exact
truthmaker of ␣q is an exact truthmaker of ␣p. The fact that p , q ñ ␣q , ␣p while
ϕ , ψ œ ␣ϕ , ␣ψ shows that, in our account, a certain meta-inference is not closed
under uniform substitution.
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is irrelevant to the falsification of a is blue.7

In connection with this issue, we can give at least two examples of un-
desired consequences of defining an exact falsifier of a formula as a state
that is incompatible with all the exact truthmakers of that formula. First,
the relevant notion of incompatibility here cannot be inexact incompati-
bility. Indeed, since inexact incompatibility is hereditary, if s is an exact
truthmaker for ␣ϕ, then every state that contains s as part would be an
exact truthmaker for ␣ϕ, which seems at odds with the intuition that an
exact truthmaker of a formula should be “wholly relevant” to the verifi-
cation of that formula. Therefore, for our purposes, the relevant notion
of incompatibility should be exact. However, also in this case we cannot
give a straightforward clause for negation. For example, consider again
the canonical compatibility model and the formula p_q. We would expect
that the state t␣p,␣qu be an exact falsifier of the disjunction p _ q. How-
ever, t␣p,␣qu is only inexactly, but not exactly, incompatible the two exact
verifiers of the disjunction, namely the states tpu and tqu. In light of this,
we might say that the hybrid approach is preferable to a straightforward
application of the unilateral semantics.

This discussion might signal a limit to all attempts to combine exact
truthmaker semantics with a treatment of negation as a modal operator
based on the notion of incompatibility.

According to our account, the assignment of falsemakers to an atomic
formulas is determined by the set of truthmakers of that formula. The sets

7This argument relies on the assumption that every verifier of A is a verifier of A _ B
and that a falsifier of A _ B is the fusion of a falsifier of A and a falsifier of B. Both
assumptions are valid regardless of whether one adopts the inclusive or non-inclusive
version of the truthmaker (TM) semantics.

In both versions of the semantics, every verifier of A and every verifier of B is a verifier
of A_B. However, every verifier of A^B is a verifier of A_B in the inclusive semantics,
but not in the non-inclusive one. To illustrate with reference to the canonical model, tp, qu
is an (exact) verifier of p_ q only if we adopt the inclusive semantics.

This difference does not affect the fact that the clause for the falsification of a disjunction
is the same in the inclusive and in the non inclusive version of the semantics: a falsifier
of a disjunction is the fusion of a falsifier of the first disjunct with a falsifier of the second
disjunct. In the canonical model, the only falsifier of p _ q, t␣p,␣qu, is the fusion of
the falsifier of p, t␣pu, with the falsifier of q, t␣qu, regardless of which version of the
semantics we adopt.

The difference between the inclusive and the non inclusive version of truthmaker
semantics, hence, does not affect our argument, since its two assumptions are valid in
both versions of the semantics.
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of truthmakers and falsemakers of atomic formulas, in turn, determines
the sets of truthmakers and falsemakers of all the formulas. Hence, there
is a sense in which in our framework the only primitive semantics facts are
(i) which states make which atomic sentences true and (ii) which states are
(exactly) incompatible with which. This marks a point of contact with the
Australian plan, and a point of departure from standard exact truthmaker
semantics.

Other ways to combine exact truthmaker semantics and the Australian
plan are possible. For instance, Fine ([11, p.634)]) defines a notion of exclu-
sionary negation that resembles the way negation is characterized in the
Australian plan. However, the semantics based on this exclusionary nega-
tion gives up many features of the standard exact truthmaking semantics,
such as the equivalence between the truthmakers and falsemakers of ϕ
and ␣␣ϕ. Moreover, the notion of exclusion that Fine uses to define his
exclusionary negation is not symmetric and it is partially hereditary (if s
excludes t, then s excludes every state t1 such that t Ď t1).

The hybrid approach presented in this paper is a simple way to retain
the standard truthmaking clauses for complex formulas while at the same
time using the notion of incompatibility to explain how the truthmakers of
atomic formulas determine the truthmaking and falsemaking conditions
of all formulas.

4 Some Applications of the Framework

In this section, we will try to explore some semantic properties of our
framework, in particular we will show that our framework, juts like Fine’s
standard truthmaker semantics, can characterize the logic FDE and provide
a semantics for Angell’s logic AC. Let’s start by noticing that our canonical
compatibility model is equivalent, with respect to exact verification, to
Fine’s canonical model presented in [12, p. 215]. For this purpose, recall
the definition of Fine’s canonical state model as in definition 3.

By looking at definitions 7 and 3, it is readily provable by induction
that:

Proposition 1. MC, s , ϕôMc, s , ϕ andMC, s ,ϕôMc, s ,ϕ; namely
a state s truthmakes (falsemakes) a formula ϕ in the canonical compatibility model
if and only if it truthmakes (falsemakes) ϕ in the Canonical State Model.
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Proof. by induction, we will prove two cases for exemplification:

Base case.

By definition, for all atomic formulas p, |p|`c “ |p|
`

C
“ ttpuu

and |p|´c “ tt␣puu; moreover, notice that t␣pu is the only
falsemaker of p inMC, since Ke “ tptpu, t␣puq : p P Literalsu.

Inductive step.

Mc, s , ϕ^ ψ iff
s “ t\ u for some t,u P SC andMc, t , ϕ andMc,u , ψ iff
s “ t\ u for some t,u P SC andMC, t , ϕ andMC,u , ψ (by IH) iff
MC, s , ϕ^ ψ.

□

We will now look at some constraints that one may want to impose on
a compatibility model.

Definition 14. A non-empty compatibility model xS,Ď, |.|`,Key is a model where
for every propositional letter p,

1. |p|` ‰ H

2. there is a t P S such that for all t P |p|`, sKet

From the above definition, it readily follows by induction that every
formula has a truthmaker and a falsemaker with respect to non-empty
compatibility models.

Proposition 2. Let |ϕ|` and |ϕ|´ indicate, respectively, the set of truthmakers
and the set of falsemakers ofϕ, and let xS,Ď, |.|`,Key be a non-empty compatibility
model, then for every formula ϕ, |ϕ|` ‰ H and |ϕ|´ ‰ H.

Notice that our semantics is still non-inclusive, in the sense that not
all the truthmakers of ϕ ^ ψ are also truthmakers of ϕ _ ψ. This is also
due to the fact that the fusion of two exact truthmakers of a formula ϕ
doesn’t necessarily deliver an exact truthmaker of ϕ. In order to retrieve
this feature, we may want to adopt more inclusive truthmaker conditions
and look at only those models satisfying an intuitive inclusivity constraint:
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Definition 15. An inclusive compatibility model xS,Ď, |.|`,Key is a state model
where the following hold:

1. for all propositional variables p, for every non-empty X Ď |p|`,
Ů

X P |p|`;

2. for a non-empty X Ď S, and s P S, let sKeX mean that s is exactly incompat-
ible with each of the members of X; then for all s P S and every non-empty
X Ď S, if sKeX then sKe

Ů

X.

Remark 1. By the above definition, we also get that in an inclusive compatibility
model xS,Ď, |.|`,Key, for all propositional letter p, the set |p|´ “ ts P S : s ,pu is
such that for every non-empty X Ď |p|´,

Ů

X P |p|´. To prove this, if |p|` “ H,
then, by semantic conditions, |p|´ “ S, and so the condition holds; also if |p|´ is
empty the condition vacuously holds. If |p|` ‰ H and |p|´ ‰ H, consider any
t P |p|`. Consider a non-empty X Ď |p|´; by semantic condition, for all s P X,
tKes; so, by the inclusivity condition, tKe

Ů

X, and since t was taken arbitrarily,
we have that for all t P |p|`, tKe

Ů

X, hence
Ů

X P |p|´.

Those two conditions correspond to the intuitive principles that (1.) if
two states s and t are wholly relevant for the truth of ϕ, then, a fortiori,
also s \ t is; and (2.) if a state s is exactly incompatible with some states
t1, t2, . . . then, a fortiori, it should also be exactly incompatible with their
fusion t1 \ t2 \ . . . . With respect to an inclusive compatibility model, the
semantic clauses can be modified by allowing every truthmaker of ϕ ^ ψ
to be also a truthmaker of ϕ_ψ, and every falsemaker of ϕ_ψ to be also a
falsemaker of ϕ ^ ψ. Hence, we can replace the standard truthmaker and
falsemaker conditions for disjunction and conjunction by the following:

s , ϕ_ ψ ô s , ϕ or s , ψ or s , ϕ^ ψ
s ,ϕ^ ψ ô s ,ϕ or s ,ψ or s ,ϕ_ ψ

In this way, with respect to inclusive models and inclusive semantic
clauses, we obtain that all the truthmakers of ϕ^ψ are also truthmakers of
ϕ_ψ and all the falsemakers ofϕ_ψ are also falsemakers ofϕ^ψ. Given a
space xS,Ďy and X Ď S, the complete closure X1 of X is the smallest subset
of S that contains X and is complete, i.e. X1 Ď S and for all non-empty
Y Ď X1,

Ů

Y P X1. Under the inclusive semantics, by a straightforward
induction, and by using remark 1, we can prove the following:
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Proposition 3. [Lemma 6 in [12]] Let xS,Ď, |.|`,Key be an inclusive model, then
for every formulaϕ, the set ts P S : s , ϕ under inclusive semantic clausesu is the
complete closure of the set ts P S : s , ϕ under non-inclusive semantic clausesu;
and the set ts P S : s ,ϕ under inclusive semantic clausesu is the complete
closure of the set ts P S : s ,ϕ under non-inclusive semantic clausesu.

After showing some basic results about exact verification, we will move,
in the next section, to the notion of inexact verification. Recall that the def-
inition of inexact verification, ,, and falsification, ,, in Fine’s framework
([16], [12]), is the following: for a state model xS,Ď, |.|`, |.|´y,

s , ϕ ô there is a t P S such that t Ď s and t , ϕ
s ,ϕ ô there is a t P S such that t Ď s and t ,ϕ

4.1 Inexact Verification

In order to state our next result, we need to slightly revise Fine’s notion of
inexact verification (,˚) and falsification (-˚). The key revision is to let a
state be an inexact falsifier of an atomic sentence whenever it is inexactly
incompatible with all the truthmakers of that sentence, i.e. whenever, for
every truthmaker of the sentence, that state contains a state that is exactly
incompatible with that truthmaker. Notice that saying that for every truth-
maker t of p there is a part of s that is exactly incompatible with t does not
mean that there is a part of s that is incompatible with every truthmaker t
of p. An inexact falsifier of p, in the sense just specified, need not contain
an exact falsifier of p. Nonetheless, a state that is inexactly incompatible
with all the truthmakers of p is a state that prevents, blocks, rules out the
truth of p and in this sense deserves to be called an (inexact) falsemaker.
The clauses are defined recursively. 8

8It is worth noticing that the following definition of inexact truthmaking can be shown
to be equivalent to the standard definition of an inexact truthmaker/falsemaker of a sen-
tence as a state that contains an exact truthmaker/falsemaker, under a certain (potentially
controversial) assumption: whenever t1, t2, t3, . . . are the truthmakers of an atomic sen-
tence p, s1 Ke t1, s2 Ke t2, s3 Ke t3 and s “ s1 \ s2 \ s3 \ . . . , then s is an exact falsemaker
of p.

The proof is a tedious but simple induction. The only non-trivial case concerns the
clause for the inexact falsemakers of an atomic sentence. If a state contains an exact
falsifier of p, then that state is inexactly incompatible with all the truthmakers of p. To
prove the converse, we need the above mentioned assumption. Suppose t1, t2, t3, . . .
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s ,˚ p ô Ds1ps1 Ď s & s1 , pq
s -˚ p ô @tpt , p ñ t Ki sq
s ,˚ ␣ϕ ô s -˚ ϕ
s -˚ ␣ϕ ô s ,˚ ϕ
s ,˚ ϕ^ ψ ô s ,˚ ϕ and s ,˚ ψ
s -˚ ϕ^ ψ ô s -˚ ϕ or s -˚ ψ
s ,˚ ϕ_ ψ ô s ,˚ ϕ or s ,˚ ψ
s -˚ ϕ_ ψ ô s -˚ ϕ and s -˚ ψ

By the above semantic clauses and the definition of a possible world, we
can prove the following:

Proposition 4. Let w be a possible world and ϕ a formula: then either w ,˚ ϕ
or w ,˚ ␣ϕ.

Proof. By induction. We prove the base case. Let p be an atomic formula,
w a possible world and t be an arbitrary truthmaker for p: if t is part of
w, then we immediately obtain w ,˚ p. If t is not part of w, then t must
be inexactly incompatible with w, in virtue of our previous result that a
possible world is incompatible with all the states that are not part of it.
Given that t was chosen arbitrarily, w must be inexactly incompatible with
all the truthmakers of p, thereby inexactly falsifying p. □

Proposition 5. Let w be a possible world and ϕ a formula: then either w ,˚ ϕ
or w ,˚ ␣ϕ, but not both.

Proof. From the previous proposition and Theorem 1, which can easily be
adapted to the case in which exact verification and falsification are replaced
with inexact verification and falsification. □

The traditional idea that possible worlds assign a unique truth value to
every formula in the language is thereby vindicated.

We conclude this section by showing some applications of the seman-
tics presented above. Let’s start by defining a natural relation of inexact

are the truthmakers of p and s is inexactly incompatible with each of them. Then s
contains as parts s1, s2, s3, . . . such that s1 Ke t1, s2 Ke t2, s3 Ke t3 . . . . If we assume that
t “ s1\ s2\ s3\ . . . is an exact falsifier of p, then s contains an exact falsifier of p, since t is
part of s. As noted, the above mentioned assumption is potentially controversial, hence
we won’t make it here.
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entailment between set of formulas, with respect to inclusive compatibility
models, as follows:

Γ ,˚ ψ ô for all inclusive compatibility models xS,Ď, |.|`,Key,
for all s P S, if s ,˚ γ for all γ P Γ, then s ,˚ ψ

Moreover, observe that states in compatibility models behave like 4-valued
valuations with respect to inexact verification, in the sense that for a state
s in a compatibility modelM, and a formula ϕ, there can be four different
ways s is related to ϕ:

p1q s ,˚ ϕ and s ,˚ ϕ
p2q s ,˚ ϕ and s /˚ ϕ
p3q s .˚ ϕ and s ,˚ ϕ
p4q s .˚ ϕ and s /˚ ϕ

More precisely, every state s in a state model induces an FDE inter-
pretation: an FDE interpretation ρ (see [26] for more details) is a relation
between propositional letters and truth values 0 and 1, ρ Ď Pˆ t0, 1u, that
extends to the complex formulas as usual:

pϕ^ ψqρ1 ô ϕρ1 and ψρ1
pϕ^ ψqρ0 ô ϕρ0 or ψρ0
pϕ_ ψqρ1 ô ϕρ1 or ψρ1
pϕ_ ψqρ0 ô ϕρ0 and ψρ0
␣ϕρ1 ô ϕρ0
␣ϕρ0 ô ϕρ1

FDE logical consequence is defined as: Γ |ùFDE ϕ iff for all FDE valuations
ρ, if γρ1 for all γ P Γ, then ϕρ1.

Hence, starting from a state s in a state model, we can define a FDE
valuation, more precisely we can prove the following lemma:

Lemma 1. Given a state model M “ xS,Ď, |.|`, |.|´y and a state s P S, define
a FDE valuation ρ as follows: for all p P P, pρ1 iff s ,˚ p, and p P P, pρ0 iff
s ,˚ p. We have that for all formulas ϕ

s ,˚ ϕô ϕρ1 and s ,
˚ ϕô ϕρ0

Proof. By induction on ϕ. □
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Conversely, given a FDE valuation, ρ, we can identify a state sC in the
canonical compatibility modelMC that behaves just ı̀ like ρ.

Lemma 2. Given a FDE valuation, ρ, consider the state sC in the canonical
compatibility modelMC such that sC “ tp : pρ1uY t␣p : pρ0u. We have that for
all formulas ϕ

sC ,˚ ϕô ϕρ1 and sC ,
˚ ϕô ϕρ0

Proof. By induction on ϕ. □

It is worth noticing that the possible worlds in the canonical compatibil-
ity modelMC behave like classical states in the sense that for every formula
ϕ, exactly one between (2) and (3) of the above list holds. Observe, more-
over, that the possible world in MC are those states that are maximally
consistent with respect to the literals, i.e. s in MC is a possible world iff
for all propositional letter p, exactly one between p and ␣p is in s. So, as
one would expect, we could prove the following characterization of FDE
logical consequence in terms of inexact entailment (see [26] and [1] for
more details on the logic FDE):

Proposition 6. Γ ,˚ ψô Γ |ùFDE ψ

Proof. Left-to-right. By contraposition, assume Γ |ùFDE ψ, namely there is a
FDE interpretation ρ such that γρ1 for all γ P Γ and ψ  ρ1. By Lemma 2,
we have that the state sC “ tp : pρ1u Y t␣p : pρ0u behaves just like ρ, and
so sC ,˚ γ for all γ P Γ and sC .˚ ψ, that is Γ .˚ ψ. Right-to-Left. We can
reason analogously to the other direction by employing Lemma 1. □

We can also provide a semantics for the logic of Analytic Containment,
AC (see [12] and [2] for more details on AC). The logic of AC is intended to
formalize the notion of analytic entailment, in the sense that, ϕ analytically
entailsψ (ϕ ą ψ) when the meaning/content ofψ is contained in thatϕ. Fine
[12] introduces an axiomatic system for the logic of analytic containment,
call it ACÑ, different from Angell’s original one (see [2]). The language for
AC, call it LAC, is obtained by expanding L with the binary connective ą
for analytic implication. Formulas of LAC are defined as follows: if ϕ,ψ
are formula of L, then ϕ ą ψ is a formula of LAC (nested occurrences of ą
are not allowed). Let us define a semantics for the language LAC: ϕ ą ψ is
true at a non-empty inclusive compatibility modelM “ xS,Ď,Ke, |.|`y iff

p1q for all s P S, if s , ϕ then there is a t P S such that t Ď s and t , ψ
p2q for all s P S, if s , ψ then there is a t P S such that s Ď t and t , ϕ
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and we say that a formula φ ą ψ is valid iff it is true at all non-empty
inclusive compatibility models. Observe that our semantics for analytic
implication is analogous to Fine’s semantics for ACÑ, hence by proposi-
tions 1, 2, and 3, we can reproduce the results in section 4 of [12] and Fine’s
soundness and completeness proof for ACÑ (in [12]) with respect to our
semantics, so that ϕ ą ψ is a theorem of ACÑ iff ϕ ą ψ is valid in our
semantics.

4.2 The Routley Star

In the Australian plan, there are two ways of treating negation in an in-
exact semantics.9 The first way by adopting an incompatibility relation to
semantically model the negation, which is the central idea of the present
work; the second one is to model the negation by means of the so called
Routley star.

The idea behind Routley’s star semantics is to extend a poset xS,Ďy,
with an operation ˚:

Definition 16. A star frame is a tuple R “ xS,Ď,˚ y, where xS,Ďy is a poset and
˚ is an antitone function, i.e. s Ď t iff t˚ Ď s˚ for all states s,t P S. A star model
is a tuple xS,Ď,˚ ,Vy, where xS,Ď,˚ y is a star frame and V : Var Ñ PpSq is an
assignment satisfying the hereditary condition, i.e. if s P Vppq and t Ď s, then
t P Vppq.

In a star model xS,Ď,˚ ,Vywe say that a state s P S:

s |ù ␣ϕ if and only if s˚ |ù ϕ

On the other hand, incompatibility semantics extend a poset xS,Ďywith
a binary relation K on S. Let us call this frames “Perp Frames”, in order
to distinguish them clearly from the structures and the semantics we have
introduced in this work:

Definition 17. A perp frame is a structure xS,Ď,Ky, where xS,Ďy is a poset and
K is an isotone relation on S, namely:

1. x Ď y and z K x, then z K y;

9Recall, indeed, that the verification relation adopted in the Australian plan is heredi-
tary, as we discussed in section 3.
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2. x Ď y and x K z, y K z.

A perp model is a tuple xS,Ď,K,Vy, where xS,Ď,Ky is a perp frame and
V : Var Ñ PpSq is an assignment satisfying the hereditary condition.

Thus, we say that for every state s P S:

s |ù ␣ϕ if and only if, for all t |ù ϕ, s K t

The relation between these two approaches has been extensively inves-
tigated, e.g. in [7, 9], also more philosophically in Restall [28]. Hence,
the two semantics have been proven equivalent. To say it with Berto and
Restall:

[..] But the star semantics is not just another modal account
with respect to the compatibility semantics. [...] the star se-
mantics is but the compatibility semantics for negation – once
the appropriate conditions have been added to the latter. (Berto
and Restall [4, p. 1138])

It is then natural to ask how our compatibility spaces relate with the
Routley star and the more traditional incompatibility semantics. In order
to answer to this question, we will directly refer to the studies on the se-
mantic treatment of negation by Dunn [7], where the negation is (initially)
considered in isolation from other connectives. Following this tradition,
we will also restrict our language to negation and we will show that our
incompatibility spaces represents a specific case of a perp frames and our
hybrid inexact semantics is equivalent to the semantics of negation deter-
mined by the perp approach. From this results, the relation with the star
semantics will immediately became apparent. Let us consider a specific
case of a perp frame:

Definition 18. A star-crossed perp frame xS,Ď,Ky is a perp frame such that for
all s P S, Cs “ tt P S | tCsu has a greatest element.

Now, given a perp frame, we can define a corresponding star frame by
letting s˚ be the greatest element of Cs. On the other hand, given a star
frame, we can define an incompatibility relation in terms of the Routley
star, by letting s K t iff t Ď s˚. These constructions allow us to show that
these two semantics are equivalent: every star-crossed frame induces a
star frame which verifies the same formulas, and vice versa.
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If we impose further conditions on both the incompatibility relation
and the star function, we can recover different properties on the negation.

Consider the class of star-crossed perp frames where C :“ s M t is
symmetric, serial and convergent. To be more precise, compatibility is
serial when every state is compatible with some state. We also say that
the compatibility relation is convergent, if for every state, if a state s is
compatible with anything, then there will be a maximally informative
point compatible with it – for all s, if DtpsCtq, then DtpsCt&@upsCu ñ u Ď

tqq. A star-crossed frame, where C a symmetric, serial and convergent is
equivalent to the class of star frames where s˚˚ “ s. The two semantics,
then, are sound and complete with respect to the De Morgan negation, i.e.
␣␣ϕ |ù ϕ and ϕ |ù ␣␣ϕ.10

It is interesting to observe that our compatibility spaces, with some
suitable modifications, encode a star-crossed perp frame. Indeed, consider
a compatibility space xS,Ď,Key; it is readily verifiable that Ki is symmet-
ric and isotone. Furthermore, consider the compatibility relation C; it is
symmetric by definition, since Ki is. However, it is not guaranteed that it
is serial nor convergent. In order to gain seriality, one could impose, for
instance, that the null state is compatible with every state; to get the conver-
gence of the compatibility relation, one could impose a stronger condition,
namely that CS is closed under fusion, i.e. for all the states s, Cs is such
that for all X Ď Cs,

Ů

X P Cs. Observe that this last condition would imply
seriality and convergence of the compatibility relation, and also that the
null state is compatible with every state. Hence, under suitable conditions,
our compatibility spaces encode a star-crossed frame.

Now, let’s restrict to a language L␣ where formulas are defined as
follows:

ϕ :“ p | ␣ϕ

and let’s restrict the relation of inexact verification ,˚ and falsification in
a compatibility spaces to L␣ so that given a compatibility model xS,Ď
,Ke, |.|`ywe have

10Strictly speaking, we usually call a negation ”De Morgan” if it satisfies, not only
Double Negation Elimination and Introduction, but also the De Morgan Laws. However,
in this paragraph we are considering negation in isolation to the other connectives. We still
call this negation ”De Morgan”, following the nomenclature of Dunn’s kite of negation
in [10], which is the main reference of the work of comparison of the present paragraph.

Australasian Journal of Logic (19:5) 2022, Article no. 4



244

s ,˚ p ô Ds1ps1 Ď s and s1 , pq
s ,˚ p ô @tpt , p ñ t Ki sq
s ,˚ ␣ϕ ô s -˚ ϕ
s ,˚ ␣ϕ ô s ,˚ ϕ

and

s ( p ô s P |p|`

s ( ␣ϕ ô for all t : t ( ϕ, then tKis

We can now prove the following: for all compatibility models xS,Ď
,Ke, |.|`ywhere C is serial, symmetric and convergent, we have that for all
ϕ P L␣,

xS,Ď,Ke, |.|
`
y, s ,˚ ϕô xS,Ď,Ke, |.|

`
y, s ( ϕ

xS,Ď,Ke, |.|
`
y, s ,

˚ ϕô xS,Ď,Ke, |.|
`
y, s ( ␣ϕ

Proof. First, notice that since C is serial, symmetric, and convergent, we
have ψ |ù|ù ␣␣ψ. We now proceed by induction.

Base case.

s ,˚ p iff there is a t Ď s such that t , p. Notice that t , p iff
t P |p|` iff t ( p. For the falsemaking case, s ,˚ p iff for all
t : t ( ϕ, then tKis iff s ( ␣p

Inductive step. Let ϕ :“ ␣ψ :

s ,˚ ␣ψ iff
s ,˚ ψ iff
s ( ␣ψ (by induction hypothesis)

s ,˚ ␣ψ iff
s ,˚ ψ iff
s ( ψ (by induction hypothesis) iff
s ( ␣␣ψ psince ψ |ù|ù ␣␣ψq

□
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5 From Kripke Frames to Compatibility Frames

We conclude by discussing some connections between the framework pre-
sented in this paper and standard Kripke semantics. This application is
interesting in its own right, but it will also serve as an illustration of how
the definitions of several key notions (exact incompatibility, inexact in-
compatibility, and possible world) introduced so far can be put to work.
Moreover, this application will show that the notion of compatibility model
is very general and flexible by presenting Kripke frames as a special case
of compatibility models. Kripke frames are a standard semantic tool, so
we take it as a point in favour of compatibility models that Kripke frames
can be considered as a special kind of compatibility models.

Compatibility spaces allow us to formulate inexact truthmaking clauses
for formulas of a modal language that are equivalent to the truth conditions
assigned to modal sentences in standard possible world semantics. More
precisely, in this section we introduce the notion of a modal compatibility
frame (F c) and modal compatibility model (Mc) and show that for every
Kripke model M, there is a modal compatibility model Mc such that for
every world w and every formula ϕ, M,w |ù ϕ if and only ifMc,w ,˚ ϕ.

Definition 19 (Modal Compatibility Frame). A modal compatibility frame is
a structure F c “ xS,Ď,Ke, f y where

• S “ ℘pXq, for some set X;

• Ď“Ě is the set-theoretic superset relation restricted to S;

• Ke:“ tps, s1q | s is the complement of s1 w.r.t. Xu;

• f : S Ñ S is a function;

Notice that a compatibility frame is a compatibility state such that
S “ ℘pXq for some set X, Ď is the relation of being a superset restricted to
℘pXq, and Ke is the relation of being the complement of, relative to X. This
entails that s Ki t if and only if s X t “ H. A modal compatibility frame
contains also a function f that maps each state to its core.The simplest way
to think about the core of s is in term of the information possessed by
an agent at s. Just recall the standard characterization of knowledge as a
modal operator: a sentenceϕ is epistemically necessary at a possible world
w if and only if it is true in every possible world epistemically accessible

Australasian Journal of Logic (19:5) 2022, Article no. 4



246

from w, i.e. “. . . if, and only if, ϕ is true in every world w1 compatible with
what a knows at w.”[27]

More generally, we can think of the core of s as the laws of s, or the
essence of s. We can, then, define an accessibility relation among states in
these terms: a state is accessible from another state just in case the core of
the first state is compatible with the second state.11

Using the function f , we can define the accessibility relation R as fol-
lows:

R :“ tps, s1q P Sˆ S | f psqCs1u

Here is how modal compatibility frames offer a nice illustration of the
notions previously introduced (parthood, exact, and inexact incompatibil-
ity). Take the elements of X to be classical Kripkean possible worlds.The
states, i.e. the elements of S, are propositions, where a proposition is iden-
tified with the set of possible worlds at which it is true.12

11There might be some interesting connection with our notion of the core of a state and
Fine’s work on the notion of essence: see [14]. Here we lack the space to investigate this
connection. One anonymous referee asked: if f psq is supposed to be, e.g, the information
available to an agent at state s, why should f psq be a state? If f psq is meant to be the
information available to an agent, one answer is suggested by Lewis ([24, p.533]): we can
identify the information available to an agent (in a state) with its memory and perceptual
experience, and this combination of memory and experience might be regarded as a
(mental?) state. Another option, as the referee themselves pointed out, is to conceive the
information possessed by an agent as a proposition, i.e. a set of possible worlds: after all,
in certain state models states are sets of possible worlds (see the rest of this section).

12One reviewer asked whether taking propositions as truthmakers is in tension with
Fine’s idea [16] that truthmakers should be worldly entities. First, note that in Fine’s
canonical model sets of literals play the role of truthmakers: if sets of literals count as
worldly entities, why shouldn’t set of worlds? After all, worlds are worldly entities par
excellence and one might think that if propositions are sets of worlds, they are sets of
worldly entities and hence should be somewhat worldly as well. Moreover, propositions
as sets of possible worlds are not linguistic items, since there might be sets of possible
worlds that are not expressed by any sentence in a given language. Perhaps the most
important thing is that the idea that truthmakers be worldly entities should be taken as
little more than an informal suggestion to give us some sort of intuitive grasp on the
notion of truthmaking. Fine insists that a state space can contain any sort of entities as
long as it has the right sort of formal structure, and modal compatibility models satisfy all
the formal requirements on state spaces: “It should be noted that our approach to states is
highly general and abstract. We have formed no particular conception of what they are”
([16, p. 561]), “It is also important in applying the semantics to appreciate that the term
‘state’ is a mere term of art and need not be a state in any intuitive sense of the term.”([16,
p. 560]) (see also [30, p.57]. In any case, note that truthmakers are states and within a
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Two propositions are exactly incompatible when one is the negation
of the other (one contains all and only the possible worlds excluded by
the other): this sounds like a natural notion of exact incompatibility. Two
propositions are inexactly incompatible, or incompatible simpliciter, when
there is no possible world at which they are both true.The parts of a proposi-
tion are its implications13. Just as in our characterization of the connection
between exact and inexact incompatibility, a proposition is inexactly in-
compatible (i.e. has empty intersection) with another just in case there is
a part (i.e. a consequence) of one proposition that is exactly incompatible
with (i.e. the negation of) a part of the other proposition. Maximal, pos-
sible (i.e. non-empty) propositions are singletons of possible worlds, i.e.
propositions that contain all the information about a possible world and
can therefore be identified with it.

Here is how to simulate the standard truth conditions for modal state-
ments in a compatibility frame.

Definition 20. A modal compatibility modelMc “ xS Ď,Ke, f , |.|`y is a tuple
where:

• M “ xS,Ď, f ,Key is a modal compatibility frame;

• |.|` is a valuation function as before.

In a modal compatibility model M “ xS,Ď, f , |.|`,Key, we restrict the
inexact truthmaker conditions for modal formulas to possible world-states,
while the other clauses remain as defined in section 4.1. Let W Ď S be the
set of all possible worlds-states and w P W, then the additional clauses are
defined as follows:

w ,˚ l ϕ ô @v P WpwRv ñ v ,˚ ϕq
w ,˚ ^ ϕ ô Dv P WpwRv^ v ,˚ ϕq

possible world semantics, set of possible worlds are the best way to simulate states:“That
states of some sort can be made out of worlds is not in question; just take the set of worlds
where the state supposedly obtains” ([31, p. 1497]. This does not mean that one should
in general construct states out of possible worlds: not all states can be obtained in this
way. The point is that some states can be identified with sets of possible worlds: hence, as
far as states can be regarded as worldly entities, a case can be made for regarding sets of
possible worlds as worldly entities.

13The implications of a proposition, i.e. the the sets of possible worlds that are supersets
of a certain set of possible worlds, correspond to what Fine ([16]) calls the disjunctive parts
of a proposition (in his sense). These should be distinguished from the conjunctive parts
of a proposition. See also Yablo [30], ch.1, for a similar distinction.
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Given a Kripke modelM “ xW,R, vy, we can define a compatibility model
M

c “ xS,Ď, f , |.|`,Key that mirrors it by setting: S “ ℘pWq, imposing that
@w P Wp f twu “ tw1 P W : Rww1u and that for every atom p, |p|` “ ttw P

W : vwppq “ 1uu. It follows by an easy induction that for every formula ϕ
in a standard modal propositional language L˝ and every w P W:

Theorem 2. M,w |ù ϕôMc, twu ,˚ ϕ

It is also interesting to observe some connections between our incom-
patibility frames and the orthoframe introduced by Dalla Chiara in [6].

Definition 21. Orthoframe is a Kripke frame F “ xI,R,K y where:

• I is a non-empty set of worlds;

• R Ď I ˆ I is symmetric and reflexive;

• K : ℘pIq Ñ ℘pIq such that XK “ ti P I | @ jp j P X ñ ␣p jRiqqu, i.e. XK is
the set of all worlds that are inaccessible to all the elements of X.

and for X Ď I and i P I, iRX (␣iRj) means i R XK (i P XK). For an Orthoframe
F “ xI,R,K y, X Ď I is a proposition iff @ipi P X ô @ jpiRj Ñ j R XKqq, i.e.
a proposition is a set of worlds which contains all and only those worlds whose
accessible worlds are not inaccessible to X.

Now, consider a compatibility frame F c “ xS,Ď,Ke, f y and consider
S1 “ SzH; observe that the relation of compatibility (sCs1 :“ ␣psKis1q) is a
symmetric and reflexive relation on S1. Hence the structure O “ xS1,C,K y
is clearly an orthoframe, more precisely:

Remark 2. A compatibility frame F c “ xS,Ď,Ke, f y induces an orthoframe
O “ xS1,C,K y where:

• the relation of compatibility (sCs1 :“ ␣psKis1q) is a symmetric and reflexive
relation on S1 “ SztHu. Recall that Ke in a compatibility frame is defined
in terms of complement set (see definition 19).

• K : ℘pS1q Ñ ℘pS1q is defined as:

for W Ď S1, WK “ ts P S1 | @tpt P W ñ tKisqu
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• a proposition in O “ xS1,C,K y is defined as:

W Ď S1 is a proposition iff @sps P W ô @tpsCt Ñ t R WKqq

Observe that the notion of proposition (as in remark 2 and definition 21) is
equivalent to the following characterization of a proposition ([6, p.433]):

W is a proposition ô @ipi R W ô D jpiCj and j P WK
qq

It follows that the set Π of propositions in the orthoframe O “ xS1,C,K y
induced by a compatibility frame F c “ xS,Ď,Ke, f y are downsets on the
poset xS1,Ďy (a downset on xS1,Ďy is a subset X Ď S1 such that for all s, t P S1,
if s P X and t Ď s, then t P X):

Remark 3. Given an incompatibility frame F c “ xS,Ď,Ke, f y, consider its
induced orthoframe O “ xS1,C,K y. We have that:

every proposition in O is a downset on the poset xS1,Ďy

Proof. Assume that W is a proposition. Assume for reductio that W is not
a downset, then for some s P W, there is a t Ď s such that t R W. Then, by
the characterization of propositions mentioned above, we have that there
must be a k such that tCk and k P WK. Since t Ď s and tCk, then kCs, so
k R WK. Contradiction. □

Conclusions

We have presented a framework that modifies Finean state spaces introduc-
ing a primitive incompatibility relation between states. The framework has
many interesting applications, which we reviewed in the paper. In light of
this, we conclude that this alternative to standard truth-maker semantics
deserves to be taken into consideration.
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