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Abstract

I present two possibility results and one impossibility result about a
situation with three voters under a pairwise majoritarian aggregation
function voting on a countably infinite number of candidates. First,
from individual orders with no maximal or minimal element, it is
possible to generate an aggregate order with a maximal or minimal
element. Second, from dense individual orders, it is possible to gen-
erate a discrete aggregate order. Finally, I show that, from discrete
orders with a particular property, namely the finite-distance property,
it is not possible to generate a dense aggregate order.

Keywords: Condorcet Paradox, Preference Aggregation, Majority Rule,
Infinite Candidates

1 Introduction

This paper concerns preference aggregation according to majority rule vot-
ing.1 Majority rule is one way of generating group preferences from the
preferences of individuals. As we will discuss it here, for any two candidates,
the group preference depends on the individual preferences with respect to
those candidates. Roughly, according to majority rule, one candidate is col-
lectively preferred to another candidate when the number of individuals who

1A classic characterization of majority rule is given by Kenneth May in [19].
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prefer the former is at least as great as the number of individuals who prefer
the latter.

Consider the following example. We have three people, Ann, Bob, and
Chris, forming a group preference over vanilla, chocolate, or strawberry ice
cream using pairwise majority voting. For each pair of possibilities, each per-
son is asked whether they prefer one to the other. So, to pick one person, Ann
is asked whether she prefers vanilla to chocolate, whether she prefers vanilla
to strawberry, and whether she prefers strawberry to chocolate. Say each
of the individuals in our example is asked these questions and the answers
are that Ann and Bob prefer strawberry to vanilla, Bob and Chris prefer
chocolate to vanilla, and Ann and Chris prefer strawberry to chocolate. The
group then prefers strawberry to chocolate to vanilla.

More abstractly, let I = {a, b, c} be a set of individuals andX = {x, y, z, ...}
be a set of candidates. Each individual i ∈ I has a preference ordering, ≻i,
over X. We will treat ≻i as a complete, anti-symmetric, and transitive bi-
nary relation on X. Complete means that for any two candidates, x, y ∈ X,
either x ≻i y or y ≻i x. Anti-symmetric means that for all x, y ∈ X if x ≻i y
and y ≻i x then x = y. Transitive means that for all x, y, z ∈ X if x ≻i y
and y ≻i z, then x ≻i z. We then interpret ≻i as follows. For any x, y ∈ X,
x ≻i y means that individual i prefers x to y. Each preference ordering
is then a linear order, which we denote with subscripts, ≻a,≻b,≻c. Call a
combination of preference orderings across the individuals ≻ = (≻a,≻b,≻c)
a profile. A preference aggregation function is a function, f , that assigns to
each profile, in some domain of admissible profiles, a group preference rela-
tion ≻G = f(≻) on X. Our function is pairwise majority voting, denoted by
fM . It says that, for any profile ≻ and any x, y ∈ X, x ≻G y if and only if
at least as many individual preference orderings have x ≻i y as have y ≻i x.

At first glance, majority rule is the most intuitive way to generate group
preferences. But some important properties of the individual orders are lost
in majority rule transformation. The most famous example of this is Con-
dorcet’s paradox, and concerns the loss of transitivity.2 By slightly rearrang-
ing the preferences of the individuals, we can use our simple ice cream case

2The original formulation is in [6]. For discussion of the paradox, see [14]. While
Condorcet considers a specific voting method, namely majoritarian voting, in [2], Kenneth
Arrow famously introduced a general approach to preference aggregation that shows how a
class of possible aggregation functions fails to satisfy some plausible axioms. For discussion
of how Condorcet’s paradox relates to this and other important results about aggregation
mechanisms, see [16].
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to create an example of Condorcet’s paradox. Say Ann prefers vanilla to
strawberry, strawberry to chocolate, and vanilla to chocolate. Bob prefers
strawberry to chocolate, chocolate to vanilla, and strawberry to vanilla. And
Chris prefers chocolate to vanilla, vanilla to strawberry, and chocolate to
strawberry. Each of these preferences is transitive. When we aggregate ac-
cording to majority rule, however, the group preference is not. Two of the
three people prefer vanilla to strawberry (Ann and Chris), two of the three
people prefer strawberry to chocolate (Ann and Bob) and yet two of the three
people prefer chocolate to vanilla (Bob and Chris).

The question this paper considers has a similar form, namely what prop-
erties of individual orders are changed in the group preference generated by
majority rule, but a different content. The first change in content is that in-
stead of cases with a finite number of candidates, we will look at preferences
over a countably infinite number of candidates. The second change is that in-
stead of transitivity, we will look at other properties of the individual orders,
in particular not having a minimal element, not having a maximal element,
not having a maximal and a minimal element, density, and discreteness.

Specifically, we will look at the following three questions about our ma-
jority rule aggregation function with an infinite set of candidates:

(i) From a set of individual orders with no minimal or maximal element, is
it possible to generate an order with a minimal or a maximal element?

(ii) From a set of dense orders, is it possible to generate a discrete order?

(iii) From a set of discrete orders, is it possible to generate a dense order?

Each of these questions asks, about relations over countably infinite sets,
whether there is some property of the individual orders that is not a prop-
erty of the aggregate order. Answering these questions contributes to the
literature in two complementary ways.

First, preservation results are a key component of the analysis of aggre-
gation rules in social choice theory and order theory.3 Take an early example
that discusses them in model theoretic terms. In [4], Donald Brown char-
acterizes an important aim of social choice theory as giving a “complete
characterization of all first order properties of individual preferences, which
are preserved by aggregation procedures” (p. 3-4) that meet certain basic

3Many thanks to a reviewer for this journal for helping me develop this point.
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requirements. One example of an aggregation procedure that meets all the
specified requirements is majority rule. This paper extends that general dis-
cussion of all first-order properties by considering properties of infinite orders
that have not yet been considered.

Second, philosophers and social scientists have found various uses for
these properties. Most importantly, the possibility of a maximal or minimal
element, addressed in the first question, tells us about the group’s most or
least favourite element. This property in particular is of considerable social
choice theoretic interest. When modelling political situations, we don’t just
want to know a group’s preference ordering, we want to know which alter-
native the group chooses. On many interpretations of that kind of choice, it
depends on the existence of an element such that no elements are preferred
to it in the group preference ordering. That is, it depends on the existence
of at least one maximal element (a formal definition is given below). As a
result, there is a substantial literature in social choice theory that concerns
the conditions on the presence of a maximal element.4 This paper also con-
tributes to that project. As we will see, surprisingly, it is not a condition on
having a group preference order with a maximal element that the individual
preference orderings have a maximal element.

Moreover, since we don’t always know in advance which properties are
going to be important, the better we understand how preservation results
work in general, the better off we will be when we attempt to use these prop-
erties for mathematical, logical5, philosophical, or social-scientific purposes.

4See, for example, [1] in which the authors state, “the existence theorems of maximal
elements are useful and important tools to prove the existence of non-empty choice sets”
(p. 8), or [3], which uses a measure-theoretic approach to define solution concepts using
the existence of a maximal element in the group preference relation with an infinite set of
alternatives. Other examples include [13] and [12].

5There have been several exciting developments in approaches to aggregation rules from
a logical perspective in the literature on judgment aggregation. This approach generalizes
preference aggregation to all kinds of judgments, which involve acceptances or rejections
of (multiple, logically-interconnected) propositions. Aggregating preferences is then a
special case since one way to understand preferences is that an agent prefers x to y if
and only if they judge that x is preferable to y. Indeed, many foundational results of
social choice theory have been recast in the judgment aggregation framework [8] [11]
[10]. Several important theorems answer questions with the same form as those of this
paper, namely what properties of the individual judgments are preserved under various
aggregation functions, but again with a different content. The central property of concern
for judgment aggregation is logical consistency. Informally stated, under a version of
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I address question (i) in the next section, and questions (ii) and (iii) in
the section after that.

2 Maximal and Minimal Elements

Let us begin with the definition of an order type. Two ordered sets, ⟨S,≤⟩
and ⟨T,≤⟩, have the same order type iff they are order isomorphic. Those
sets are order isomorphic if there is a function f : S → T , such that, for all
u, v ∈ S:

u ≤S v ⇐⇒ f(u) ≤T f(v)

Next we have the definition of minimal and maximal elements. If ≤ is a
linear order on a set S, element u is minimal if there is no element v ̸= u
such that v ≤ u. Similarly, we say that element u is maximal if there is no
v ̸= u such that u ≤ v. For convenience, we can then speak of the order
type ⟨N,≤⟩, or, for short, of type N, and order type ⟨Z,≤⟩, or type Z, where
N = {0, 1, 2...} and Z = {...,−2,−1, 0, 1, 2, ...}. The reason it is convenient
for our purposes is that N is order isomorphic to corresponding preference
orderings with a minimal element and without a maximal element, while Z
is order-isomorphic to corresponding preference orderings without a minimal
or maximal element. Finally, a profile ≻ is said to be of type A if each ≻i is
an order of type A.

With these definitions, we can translate the questions above about pref-
erence aggregation using majority rule with three voters into questions about
orders of type N and Z. Since in question (i) we are aiming to go from a
set without minimal or maximal elements to a set with minimal or maxi-
mal elements, we can formulate an initial translated version: can we find an
instance of a profile of type Z resulting in an aggregate order of type N?

majority voting, it is sometimes the case that all the individual judgments sets are logically
consistent, while the collective judgment set is not [23]. This result has been formalized
and generalized to show impossibility results about classes of aggregation rules that meet
certain conditions, and the most attractive ways of relaxing the conditions to generate
possibility results have also been discussed [17][18]. Further, while results are sometimes
formulated in classical propositional logic [20][9], extensions of this approach have been
developed for many-valued [21], predicate [15], modal [24][22], conditional, and fuzzy-
valued logics [7]. To my knowledge, questions concerning the aggregation of judgments on
infinitely many propositions have not yet been addressed.
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Theorem 1. Assume that there are three individuals. There exists a profile
≻ = (≻a,≻b,≻c) of type Z such that fM(≻) is an order of type N.

Proof. Consider the following three orderings, ≻a, ≻b, ≻c. We represent
the candidates in each using the same symbols as the natural numbers (even
though each preference ordering will be order isomorphic to the integers).
The relation between two candidates is given by their placement in the table
below. For any two elements x and y, if x is above y in the table, then x ≻i y.
We construct ≻a by putting all the symbols of the multiples of 3 below 0, and
the symbols for the rest of the natural numbers above. We construct ≻b by
putting all the symbols for natural numbers congruent with 1 mod 3 below 0
and the symbols for the rest of the natural numbers above. We construct ≻c

by putting all the symbols for natural numbers of 2 mod 3 below 0 and the
rest of the natural numbers above. The result is that all the symbols above 0
are ordered in the usual way, while all the symbols below 0 reverse the usual
order. This gives us the following table:

≻a ≻b ≻c

. . .

. . .

. . .
4 5 6
2 3 3
1 2 1
0 0 0
3 1 2
6 4 5
. . .
. . .
. . .

These three preference orderings have no maximal or minimal element
and are order isomorphic to Z. So, ≻ = (≻a,≻b,≻c) is of type Z. Also,
fM(≻) = ≻G, gives us:
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≻G

.

.

.
3
2
1
0

This order is simply ⟨N,≤⟩, if we treat the symbols as representing what
they usually do, and so is clearly order isomorphic to N, according to our
shorthand. For a brief explanation why, consider the profiles. In the profile,
when comparing ‘1’ and ‘0’, there are two votes for ‘1’ and one vote for ‘0’.
When comparing ‘2’ and ‘1’, there are two votes for ‘2’ and one vote for
‘1’. When comparing ‘3’ and ‘2’, there are two votes for ‘3’ and one vote for
‘2’, and so on. In general this pattern results because, when asked questions
about pairs of candidates, none of the individuals agree on any of the symbols
below 0 in the order and for each symbol n two individuals agree that the
symbol for n + 1 is preferable. We therefore have three individuals with
preference orderings with no minimal elements and an aggregate order with
a minimal element.

To answer whether we can do the same thing with a maximal element,
it will be convenient to define N∗ as N upside down. That is, N∗ has all the
same elements as N, but in reverse order, so that 0 is the maximal element.

Corollary 1. Assume that there are three individuals. There exists a profile
≻ = (≻a,≻b,≻c) of type Z such that fM(≻) is an order of type N∗.

We start with the three orders from above, ≻a,≻b,≻c, and take their
inverses, ≻−1

a ,≻−1
b ,≻−1

c . For each order and for any two elements in that
order, x and y, if x ≻i y, then y ≻−1

i x. To illustrate, this is ≻−1
a :
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≻−1
a

.

.

.
6
3
0
1
2
4
.
.

As before, this is an order of type Z, as are ≻−1
b ,≻−1

c . So, ≻−1= (≻−1
a

,≻−1
b ,≻−1

c ) is of type Z. Clearly, fM(≻−1) =≻−1
g is an order of type N∗, since

all the relations in the profile are simply reversed. That is, in the profile,
when comparing ‘0’ and ‘1’, there are two votes for ‘0’ and one vote for ‘1’.
When comparing ‘1’ and ‘2’, there are two votes for ‘1’ and one vote for ‘2’.
When comparing ‘2’ and ‘3’, there are two votes for ‘2’ and one vote for ‘3’,
and so on. So, ‘0’ is the maximal element in ≻−1

G and there is no minimal
element. Therefore, it is possible, using a majority rule aggregation function
with three voters, to generate an aggregate order with a maximal element
from individual orders with no maximal or minimal element.

We can extend this point further by combining these two results and
considering what happens when each individual votes over two copies of Z.
In general, if A and B are linear orders, then A+B is the linear order resulting
from putting a copy of A below a copy of B, so that everything in the A copy
is below every element in the B copy, but with each copy the same as before.
Note that Z+ Z, like Z, has neither a maximal nor a minimal element. In
this case, we can start from individual orderings such that none of them have
either a maximal element or a minimal element, and generate an aggregate
order that has both.

Corollary 2. Assume that there are three individuals. There exists a pro-
file ≻ = (≻a,≻b,≻c) of type (Z+ Z) such that fM(≻) is an order of type
(N+ N∗).
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Proof. Suppose that individuals a, b, and c have preferences over two
copies Zj+Zk. Over Zj they have the same pairwise relations as ≻i, and over
Zk they have the pairwise relations as ≻−1

i , again represented in the table
below. I’ll denote the composite preference orders with the corresponding
uppercase letter (≻A,≻B,≻C). We can denote the individual objects in Zj

using j with a subscript for the symbol corresponding to a natural number
and the individual objects over Zk using k with a subscript for the symbols
corresponding to a natural number. We can then represent the order as
follows:

≻A ≻B ≻C

. . .

. . .

. . .
k6 k4 k5
k3 k1 k2
k0 k0 k0
k1 k2 k1
k2 k3 k3
. . .
. . .
. . .
j2 j3 j3
j1 j2 j1
j0 j0 j0
j3 j1 j2
j6 j4 j5
. . .
. . .
. . .

Since ≻A,≻B,≻C are all order isomorphic to Z+ Z, the profile ≻I= (≻A

,≻B,≻C) is too. f
M(≻I) =≻G, gives us:
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≻G

k0
k1
k2
.
.
.
j2
j1
j0

This results because the aggregate results over Zj are the same as in
Theorem 1, and the aggregate results over Zk are the same as in Corollary
1. And ≻G is order isomorphic to N+ N∗, since it has a minimal element,
a maximal element, and countably infinite elements. So, from individual
orders with neither a minimal nor maximal element it is possible to generate
an order with both a minimal and maximal element.

A few remarks about these results are in order before we move on to the
next section. First, they do not hold for all orders of the types in question.
Clearly, there are also cases of individuals orders of type Z that aggregate
to an order of type Z, as does, for example, the profile consisting of three
instances of ≻a from Theorem 1. And this is the case for both corollaries
as well. Second, although my concern, in keeping with the simplicity of
Condorcet’s paradox, is only with cases of three voters, these three results
are extendable to any number n ∈ N of voters using the same set of devices.
To do so, construct the individual orders corresponding to Theorem 1 by
putting the the symbols for the multiples of n below 0 for the first order,
1 mod n, for the second, 2 mod n for the third, and so on, until (n−1) mod n.
Then, taking the inverses gives the result corresponding to Corollary 1 and
copying them gives the result corresponding to Corollary 2. Finally, a
question I leave open for further research is the following: what are the
conditions on the individual orders such that these results arise, that is when
can individuals without favourite or least favourite candidates converge to a
group favourite?
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3 Density and Discreteness

Questions (ii) and (iii) deal with a different kind of order type. One feature
that distinguishes this order type from order types isomorphic to the natural
numbers and the integers with the greater-than-or-equal-to relation is that
it is dense, rather than discrete. A dense strict linear order is one for which,
for any two elements, x and y and relation <, whenever x < y, there is
an element z such that x < z < y. We can contrast this with the discrete
linear orders we have been dealing with, for which whenever x < y, there
is a z with x < z and no elements between x and z, and also an element
w with w < y and no elements between w and y. One instance of a dense
order type is the rational numbers, ⟨Q, <⟩, which I’ll refer to as order type
Q for short. One important feature of Q, proved by Cantor, is that every
countable, dense linear order without endpoints is isomorphic to Q.6 This
makes it convenient to use in what follows. Our translated questions then
become, under our majority rule aggregation function, (ii) can we move from
a profile of type Q to a aggregate order of type N, and (iii) can we move from
a profile of type N to an aggregate order of type Q?

Theorem 2. Assume that there are three individuals. There exists a profile
≻ = (≻a,≻b,≻c) of type Q such that fM(≻) is an order of type N.

Proof. We are aiming at a group preference order, ≻g, which is order
isomorphic to N. Again we can represent this using the symbols of the
natural numbers and a table in which, for any two elements x and y, if x is
above y in the table, then x ≻g y:

≻g

.

.

.
3
2
1
0

One way to achieve that aim is to develop a procedure that generates in-
dividual orders that result in this aggregate order. The intuitive idea behind

6See [5].
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one such procedure is the following. Our profile is ≻ = (≻a,≻b,≻c). In ≻,
when each number symbol is compared to the number symbol below it in
the aggregate order, it needs only two votes to be above that lower number
symbol. So, in two individual orders, it must also be above the symbol it is
above in the aggregate order. This leaves the instance in the other individual
order “free”, in the sense that, wherever it is in that individual order it will
have the place it does in the aggregate order, since it will still have two votes
in the profile. We can then put this symbol in between any other symbols in
the individual order in question to ensure density.

Here is one way of executing of that procedure. Start with number sym-
bols ‘0’ and ‘1’:

≻a ≻b ≻c

1 1 1
0 0 0

Put number symbols between the ‘0’ row and the ‘1’ row. For example,
put ‘2’ above ‘1’ for ≻a and ≻b, ensuring its place in ≻g, and between ‘0’ and
‘1’ for ≻c

≻a ≻b ≻c

2 2 1
1 1 2
0 0 0

Put ‘3’ above ‘2’ for ≻b and ‘1’ for ≻c and between ‘0’ and ‘1’ for ≻a.

≻a ≻b ≻c

2 3 3
1 2 1
3 1 2
0 0 0

To complete the process of putting symbols between all the ‘0’s and ‘1’s
with which we started, put ‘4’ above ‘2’ for ≻a and ‘3’ for ≻c and between
‘0’ and ‘1’ for ≻b.

≻a ≻b ≻c

4 3 4
2 2 3
1 1 1
3 4 2
0 0 0
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But since Q is also endless, we need to make sure the individual orders
continue downwards without a minimal element. We can do so with the next
three symbols, ‘5’, ‘6’, and ‘7’. Using the same process as above gives us:

≻a ≻b ≻c

7 6 7
5 5 6
4 3 4
2 2 3
1 1 2
3 4 1
0 0 0
6 7 5

Since there are a countably infinite number of symbols corresponding to
all n in N we can continue this process, ensuring that each new symbol is
introduced in such a way that all the current rows end up with a number
in between, that the current highest row ends up with a row on top, and
that the current lowest row ends up with a row below it. The resulting table
representing the individual orders is then (with a single ‘ . ’ representing
infinite elements):

≻a ≻b ≻c

. . .
7 6 7
. . .
5 5 6
. . .
4 3 4
. . .
2 2 3
. . .
1 1 2
. . .
3 4 1
. . .
0 0 0
. . .
6 7 5
. . .
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Each of ≻a, ≻b, ≻c is a dense linear order without endpoints, that is, of
type Q. So, ≻= (≻a,≻b,≻c) is of type Q. And, fM(≻) =≻g, gives us our
desired order:

≻g

.

.

.
3
2
1
0

For no number symbol are there two instances below ‘0’, and for each
symbol corresponding to an n ∈ N starting with ‘1’ there are two individual
orders in which it is higher than the symbol corresponding to n − 1. Thus,
from a profile of type Q, we generate an aggregate order of type N. In other
words, from dense individual orders, we generate a discrete group order.

So far, the questions have been answered in the affirmative. In the case
of (iii), we get an impossibility result. It turns out that there is no set of
individual preference orders that satisfy the conditions.

The proof will make use of the finite-distance property. A linear order,
l, is finite-distant iff ∀x, y ∈ l {z | x <l z <l y} is finite. That is, any two
elements have only finitely many elements between them. Notice that ⟨N,≤⟩,
⟨N∗,≤⟩, and ⟨Z,≤⟩, as well as finite orders, all have this property, but ⟨Q,≤⟩
does not. As an aside, the orders dealt with in the proof for Corollary 2 also
do not have this property because there are infinitely many elements between
the copies. A profile ≻ is said to be finite-distant if each ≻i is finite-distant.

Theorem 3. Assume that there are three individuals. There is no profile ≻
= (≻a,≻b,≻c) of type N such that fM(≻) is an order of type Q.

Proof. The first step is to show that a group order aggregated from three
individual orders with the finite-distance property by majority rule also has
the finite distance property.

Lemma 3.1. Assume that there are three individuals. If ≻ = (≻1,≻2,≻3)
is finite-distant, then fM(≻) = ≻g is finite-distant.
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Proof. The claim is that ≻g is finite-distant. To see this, assume that,
for two elements x and y, x ≻g y. If x ≻g z ≻g y, then two voters think
that x ≻i z and two voters think that z ≻i y. So, at least one voter thinks
that x ≻i z ≻i y. This means that z is from {u | x ≻1 u ≻1 y} ∪ {u | x ≻2

u ≻2 y} ∪ {u | x ≻3 u ≻3 y}. Since we have specified that all the individual
orders are finite-distant, we know that {u | x ≻1 u ≻1 y}, {u | x ≻2 u ≻2 y},
and {u | x ≻3 u ≻3 y} are all finite, and so their union is finite. Therefore,
there is a finite distance between x ≻g y.

We can now finish the proof. Assume that ≻g has order type Q. Q is
dense, so it is not finite distant. That is, for any two elements, x and y there
will be another element z between them, and another element w between z
and y and so on. So, the distance between x and y is infinite. But, according
to lemma 3.1, if ≻ = (≻1,≻2,≻3) is finite-distant, and we are assuming that
it is, so is ≻g. This is a contradiction. So, it is not possible to move from
a profile of type N to an aggregate order of type Q using a majority rule
aggregation function with three individuals.

4 Conclusion

In answer to our questions then, we can say that for majoritarian rule pref-
erence aggregation functions with three voters, whose preferences range over
a countably infinite number of candidates:

(ia) There is a set of individual orders with no minimal element that aggre-
gates to an order with a minimal element.

(ib) There is a set of individual orders with no maximal element that ag-
gregates to an order with a maximal element.

(ic) There is a set of individual orders with no maximal or minimal ele-
ment that aggregates to an order with both a maximal and a minimal
element.

(ii) There is a set of dense orders that aggregates to a discrete order.

(iii) There is no set of discrete orders with the finite distance property that
aggregates to a dense order.
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Not only does majority rule not preserve transitivity, as Condorcet’s para-
dox shows, it does not preserve the properties of not having a minimal ele-
ment, not having a maximal element, not having a maximal and a minimal
element, and density. But, for finite-distant orders, it does preserve discrete-
ness.

These results reveal two striking features of majority rule. First, individ-
uals who do not have a favourite candidate can converge on a group winner,
and vice versa. If we’re in a situation in which what matters is only what the
group most prefers, perhaps because we’re deciding on a course of action or
leader, none of us need have a most preferred option in order for the group
to make a decision. Second, in an intuitive sense, simplicity is maintained or
induced. We can induce endpoints on orders without them, or finite distances
between elements on orders with infinite distances between elements, but we
can’t generate infinite distances between elements from orders without them.
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