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Abstract

In this paper we introduce a novel way of building arithmetics whose
background logic is R. The purpose of doing this is to point in the
direction of a novel family of systems that could be candidates for
being the infamous R# 1

2 that Meyer suggested we look for.

Introduction

In casual practice, we commonly allow the string “φ∧ψ ∧χ” to indicate the
same formula as the string “(φ∧ψ)∧ χ”. This observation about our casual
practices is connected in subtle and interesting ways to a point that comes
up in The Consistency of Arithmetic. The context is Meyer’s discussion of
his A13—the arithmetical axiom that ‘says’ distinct numbers have distinct
successors. Meyer finds this axiom unpleasant. His complaint is as follows:

The trouble is that this is not the sort of thing that we should
have to say ; if we think of the natural numbers as built up from
0 by applying the successor operation, it would seem that we
could take for granted that each result of applying the operation
produces a new unique number, unless a specific assumption is
made to the contrary.

What Meyer seems to be getting at is this: it is part of the nature of
basic arithmetical practice that distinct terms built up from successor and
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zero denote distinct numbers. This assumption should be in play unless it is
somehow overridden (as in modular arithmetic, for example). But the fact
that we feel the need to explicitly assert that things with identical successors
are themselves identical suggests exactly the opposite. As a result, A13 smells
like a post-hoc regimentation of practice, rather than a clear expression of a
principle internal to arithmetic.1

Meyer’s principle that distinct terms should denote distinct numbers can
be put to work in the contrapositive: terms that transparently denote the
same number should not be distinguished. In the system we build below, we
will attempt to work this idea out but a bit more thoroughly, a bit less casu-
ally, and a bit more explicitly. In particular, we will construct our syntax so
that many things that would traditionally be taken to be distinct expressions
are in fact not. We will be adopting, that is, a large number of identities at
the level of syntax.

There are two technical matters that will need settling. The first is to
figure out what ‘transparently denote the same number’ means in its occur-
rence in ‘terms that transparently denote the same number should not be
distinguished.’ We take a fairly liberal view on this matter. If e and e′ are
expressions and we can transform e into e′ using primitive recursive (hence-
forth p.r.) means (in a sense to be specified below) then e and e′ will simply
not be distinguished. Thus, in particular, if the term t1 can be transformed
into the term t2 using p.r. means, then t1 and t2 will in fact be the very
same term. In typical presentations of arithmetic, of course, if the term t1
can be transformed by p.r. means into the term t2, then the sentence t1 = t2
will be provable. That will also be the case here, but for the simple reason
that t1 = t2 will now be an instance of the trivial identity t = t. All that
to say this: we adopt in this paper the view that ‘transparently denote the
same number’ means ‘can be seen, using only p.r. means, to denote the same
number’.

The second technical matter is determining how to enforce identities at
the level of syntax. We do so in the following way. First, we define a rather
traditional sort of language. We then define a series of rewrite rules that

1A geometrical analogy might be helpful. There’s a difference between the parallel
postulate, and Hilbert’s axiom of line completeness. The former is part of traditional
geometrical practice, while the latter is something required to squeeze geometrical practice
into the formal framework of Hilbert’s Foundations of Geometry. For more on the ways in
which axioms intended to impose logical rigor can in fact distort and obscure geometrical
practice, see [16].
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(as we show) capture the force of primitive recursion. The rules give rise
in turn to an equivalence relation on the expressions of our base language.
We then define our logic not on the base language, but on a language whose
elements are the equivalence classes of expressions in the base language. Since
the equivalence relation enforces the rewrite rules which in turn capture the
force of primitive recursion, p.r. equivalent expressions in the language on
which we define our logic end up being identical.

Since this paper will be part of a volume dedicated to some of Meyer’s
work, we think it’s important to make the connections between our work
and Meyer’s as explicit as possible. One such connection is given by the
quote mentioned above and our working out the idea of identity at the level
of syntax. There’s also another, more obvious connection: we, like Meyer,
are interested in looking at arithmetic from a relevant perspective. On this
front, we also offer something novel, which we will take a moment to get clear
about.

At the end of [7], the basic problem haunting the relevant arithmetician
is broached:

Whither relevant arithmetic? This was our opening question. We
leave it open. But R# having failed and R## being infinitary, the
immediate task is to find R# 1

2 .

The failures Meyer mentions here are rather serious: earlier in the paper he
and Friedman had shown that a formula they call QRF, which is a theorem
of Peano arithmetic, is not provable in R#. On its own, the existence of a
theorem of Peano arithmetic that is not a theorem of R# seems tolerable,
provided the theorem in question be sufficiently arithmetically unimportant
(whatever that turns out to mean). But QRF is not just any old formula.
Rather, QRF expresses the claim that for any odd prime p, there is a positive
integer y that is not a quadratic residue mod p. This theorem was proved by
Gauss. It’s mentioned on the Wikipedia page for quadratic residues. It is, in
short, a paradigmatic case of a theorem that any decent theory of arithmetic
needs to capture. R# doesn’t. So R# is indecent.

R## rectifies this, and then some. In fact, R## captures all formulas
valid in the standard model of arithmetic. But this is because R## sins in a
different way: it uses an ω rule. This is again indecent—any decent formal
arithmetic, after all, ought to restrict itself to finitary reasoning.

To our knowledge there’s been relatively little progress in the nearly three
decades since Meyer made the comment above on the ‘immediate task’ of
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finding R# 1

2 . This lack of progress is (we think) largely owed to the fact
that it’s hard to know where to look—there really just aren’t many obvious
candidates for the ‘R# 1

2 -role’.
One of the things we offer in this paper is a natural way of generating

such candidates. We’ll have more to say about this as we go along, but
the basic idea is that we provide a technical apparatus that has a range
of adjustable features (I picture them as dials that can be twisted, levers
that can be pulled, buttons that can be pushed, etc.). By manipulating
this machinery, one can build theories that differ in various ways from the
theory we present. It’s clear enough which ‘settings’ define systems that
count as arithmetics. It’s also fairly clear which settings define relevant
systems. Thus, by fiddling with the controls we lay out, we’re hopeful that
the community of relevance logicians will be able to find at least a few nice-
enough members of {R#+ǫ : 0 < ǫ < 1}, and that having such systems in

hand will jumpstart the search for R# 1

2 . Unfortunately, due to constraints of
time and space, this paper underdelivers on this front, as the one system we
system we had time to in fact investigate ends up being weaker than we’d
hoped. Be that as it may, the general idea remains on the table, and those
looking for plausible candidate relevant arithmetics ought to be able to use
our machinery to at least get a nose for some interesting candidates.

The organization of the paper is as follows: the first three sections all
deal with the terms in our language. In Section 4, we turn from terms to the
full language and define our logic. Section 5 gives a (perhaps surprisingly
polemical) overview of the construction of our semantics. Section 6 lays the
foundation for our construction of the canonical model, which is completed
in Section 7. In Section 8 we give the full semantics and prove the standard
metatheoretic results. In Section 9 we determine how much arithmetic we’ve
captured and lay out directions for further research.

1 Linguistic Matters 1: Elementary Terms

We will have a stratified vocabulary. At the bottom level is what we call
the elementary vocabulary—where here we emphasize the ‘element ’ in el-
ementary. The point to be made is that the expressions in the elementary
vocabulary are elements (in the set theoretic sense) of the equivalence classes
that make up the language we define our logic on. That said, the elementary
vocabulary consists of the following:
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1. The unary function symbols ′ and z, and for each i > 0 the symbol pri;

2. The constant symbol 0; and the variables x1, x2, . . . ;

3. The separator symbol ‘|’;

4. The binary relation symbol ‘=’;

5. The connectives t, ∼, ∧, and →;

6. The quantifier ∀; and

7. Set braces (which we will typically drop) and parentheses.

Some of the expressions in this vocabulary will be regarded as elementary
terms; others as elementary function symbols. We will use these to construct
elementary atomic formulas and, from there, arbitrary elementary formulas.
Terms, function symbols, and formulas in general are then constructed as
equivalence classes of elementary terms, elementary function symbols, and
the like. But for the first three sections of the paper, we will be focused only
on terms, since that’s where all the arithmetic ends up happening.

A few terminological (no pun intended) notes are in order: If e is an
(elementary) function symbol then we say e is n-adic if, intuitively, its inputs
are n-tuples. All (elementary) function symbols in the system we give will
have arity one in the sense that their outputs are one-tuples. However, for
reasons of technical convenience, we allow terms to have any finite arity, with
higher-arity terms generated from lower-arity terms by what is essentially
just juxtaposition. Thus, what would in many contexts be thought of as a
length-n sequence of terms will, for us, be thought of as a single n-ary term.

Now to the details. We define the set of elementary function symbols and
the set of elementary terms simultaneously as follows:

• ′ and z are monadic elementary function symbols.

• 0 | ∅ is a unary elementary term.

• If x is a variable, then x | {x} is a unary elementary term.

• If σ | X is an n-ary elementary term and τ | Y is an m-ary elementary
term, then στ | X ∪ Y is an n +m-ary elementary term.
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• If f is an n-adic elementary function symbol and τ | X is an n-ary
elementary term, then f(τ) | X is a unary elementary term.

• If τ | X is an n-ary elementary term and y is a variable, then τ | X∪{y}
is an n-ary elementary term

• If σ | {x1, . . . , xm} and τ | {y1, . . . , yk} are k-ary elementary terms,
then for each 1 ≤ i ≤ k, pri[σ | X ; τ | Y ] is an m + 1-adic elementary
function symbol.

We will discuss how to interpret z-, ′-, and pr-expressions in §2. Before
turning to that, we have to discuss a few other matters.

First, if τ | X is an elementary term, then we say that τ is its untyped
part and X is its typing part. In a similar vein, if τ is a sequence of symbols
and τ | X is an n-ary elementary term for some set of variables X , then τ is
called an untyped n-ary term.

It’s also worth explicitly noting that while ′ and z are monadic elementary
function symbols, pri is not an elementary function symbol at all. If we have
to give a name to the type of thing pri is, I suppose it’s best to call it an
elementary function-symbol-building-symbol. That is, it is a symbol that can
be used to build elementary function symbols. More to the point, when given
a pair of elementary terms of the appropriate sort, pri returns an elementary
function symbol whose adicity is determined by the cardinality of the typing
part of the first elementary term we supply it.

As a convenient abbreviation, if σ | {x1, . . . , xm} and τ | {y1, . . . , yk} are
k-ary elementary terms, and η is an untyped m + 1-ary elementary term,
then

pr[σ | X ; τ | Y ](η) := pr1[σ | X ; τ | Y ](η) . . .prk[σ | X ; τ | Y ](η).

In the other direction, if σ is an untyped n-ary elementary term, and 1 ≤
i ≤ n, then by σi we will understand the ith component of σ.

It will be necessary to talk quite a bit about substitutions. For this
purpose, we introduce the following notation:

Definition 1.1.

1. if τ , σ, and η are constants or variables, then τ(σ/η) is η if τ = σ, and
otherwise τ . Read this as “replace σ with η”
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2. If σ and η are untyped n-ary terms— say σ1 . . . σn and η1 . . . ηn, respectively—
then (σ/η) abbreviates a simultaneous replacement of each σi with ηi.

3. (Now getting ahead of ourselves a bit) φ(σ/η) is the result of replacing
each free occurrence of an untyped term τ in φ by an occurrence of
τ(σ/η).

4. If X is a set of variables, then X abbreviates the sequence of those
variables taken in increasing order (by their subscript indices).

5. If X and Y are sets of variables with card(X) = card(Y ), then we call
a replacement of the form φ(Y /X) a change of variables.

Note that as we use the term ‘change of variables’, a change of vari-
ables is always monotonic: the lowest-subscripted variable in Y replaces the
lowest-subscripted variable in X , the second-lowest-subscripted variable in
Y replaces the second-lowest-subscripted variable in X , etc.

2 Linguistic Matters 2: Terms

We call the following family of three transformations the elementary rewrite
rules. They specify that certain strings of symbols may replace certain other
strings of symbols no matter where the strings occur within an expression.

(i) z(τ)⇀ 0;

(ii) pri[σ | X ; τ | Y ](η0)⇀ σi
(

X/η
)

; and

(iii) pri[σ | X ; τ | Y ](ηρ′)⇀ τi
(

Y / pr[σ | X ; τ | Y ](ηρ)
)

.

We write
∗
⇀ for the reflexive-transitive closure of ⇀, and ⇌ for the smallest

equivalence relation containing ⇀.
Before we discuss how to use the rewrite rules, we should comment on

the rules themselves. The first, we hope you’ll agree, ensures that z behaves
like the constant zero function. The second and third ensure that pr behaves
somewhat like primitive recursion. Roughly, (ii) ‘says’ that to ‘evaluate’
pri[σ | X ; τ | Y ] at the ‘argument’ (η0), what we do is evaluate σi | X at
the argument η. Similarly, (iii) says that to evaluate pri[σ | X ; τ | Y ] at
the argument ηρ′ what we do is evaluate τi | Y at the prior case; that is, at
pr[σ | X ; τ | Y ](ηρ).
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In a little more detail: Recall how primitive recursion usually works.
Given an n-adic function f and an n + 2-adic function g, we define the
function pr(f, g) by the two equations

pr(f, g)(x1, . . . , xn, 0) = f(x1, . . . xn)

pr(f, g)(x1, . . . , xn, y
′) = g(pr(f, g)(x1, . . . , xn, y), x1, . . . , xn, y)

At a glance, it might seem that our scheme is less expressive than primitive
recursion, since if we use 1-ary terms f, g in setting up the recursion, then g
is forced to be 1-adic. So, letting X = x1 . . . xn and continuing the analogy,
we get

pr1[f | X ; g | x](x1 . . . xn0)⇀ f(x1, . . . , xn)

pr1[f | X ; g | x](x1 . . . xny
′)⇀ g(pr1[f | X ; g | x](x1 . . . xny))

Which is mere iteration of g, not proper recursion.
However, by being a little more creative, we can recover the expressive

power of full primitive recursion, in spite of the apparent simplicity of our
rewrite rules. Suppose X is x1 . . . xn and Y is x1 . . . xn+2. Let f̃ | X be the
n+ 2-ary, n-adic term

f(x1, . . . , xn)x1x2x3 . . . xn0 | X

and let g̃ | Y be the n + 2-ary, n+ 2-adic term

g(x1, . . . , xn+2)x2x3 . . . xnxn+1x
′
n+2 | Y

We can then consider the n + 2 distinct n + 1-adic function symbols pri(f̃ |
X ; g̃ | X).

If 1 < i < n+ 2, we get:

pri(f̃ | X ; g̃ | Y )(x1 . . . xn0)⇀ f̃i
(

X/X
)

= xi−1

(

X/X
)

= xi−1

pri(f̃ | X ; g̃ | Y )(x1 . . . xny
′)⇀ g̃i

(

Y / pr(f̃ | X ; g̃ | Y )(x1 . . . xny)
)

= xi

(

Y / pr(f̃ | X ; g̃ | Y )(x1 . . . xny)
)

= pri(f̃ | X ; g̃ | Y )(x1 . . . xny)
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so evidently, in this case, pri(f̃ | X ; g̃ | Y )(x1 . . . xny)
∗
⇀ xi−1. Similarly,

prn+2(f̃ | X ; g̃ | Y )(x1 . . . xn0)⇀ 0

prn+2(f̃ | X ; g̃ | Y )(x1 . . . xny
′)⇀ x′n+2

(

Y / pr(f̃ | X ; g̃ | Y )(x1 . . . xny)
)

= prn+2(f̃ | X ; g̃ | Y )(x1 . . . xny)
′

so evidently if τ is a numeral, then prn+2(f̃ | X ; g̃ | Y )(x1 . . . xnτ)
∗
⇀ τ . Thus,

pr1(f̃ | X ; g̃ | Y )(x1 . . . xn0)⇀ f̃1
(

X/X
)

= f(x1, . . . , xn)

pr1(f̃ | X ; g̃ | Y )(x1 . . . xnτ
′)⇀ g

(

Y / pr(f̃ | X ; g̃ | Y )(x1 . . . xnτ)
)

= g(pr1(f̃ | X ; g̃ | Y )(x1 . . . xny), x1, . . . , xn, τ).

Of course, comparing all this to ordinary primitive recursion, one glar-
ing oddity still stands out: primitive recursion is something one does with
functions, but we’ve applied pri to terms. Our rewrite rules are ultimately
devices for defining a relation on a set of syntactic entities—our elementary
terms—and only indirectly a method of defining functions. So, while prim-
itive recursive functions are one analogue of our pr terms, a better analogy
might be to something like programs written in a very restrictive programing
language, with the reduction steps analogous to the steps of execution of the
program.2 The programming language, in fact, is sufficiently restrictive that
every program it can construct can be guaranteed to terminate.

Lemma 2.1.

1. The rewrite rules are locally confluent: if t ⇀ a and t ⇀ b then there’s
some c such that a

∗
⇀ c and b

∗
⇀ c

2. The rewrite rules are strongly normalizing: the rewrite relation is well-
founded.

2How to make sense of free variables on this analogy? One might imagine a crudely
optimizing compiler performing a bit of computation while compiling the program, so that
the program is faster at runtime. Given a program containing a term like Pr(1 | ∅;x′ |
x)(3) the compiler would optimize by replacing this term with 1′′′ = 4 once and for all,
rather than performing these reduction steps every time the program is executed. Given a
term containing a free variable, the optimization must stop since the value of that variable
would presumably be supplied at runtime.
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Proof. (1) is clear upon inspection. The rest of the proof requires a little
terminology. Say that a reduction sequence is a sequence of one or more
elementary terms, with a first item, such that each item of the sequence is
either first or is the result of applying a rewrite rule to the previous item.
So, a

∗
⇀ b if there’s a reduction sequence beginning in a and ending in b. A

term is strongly normalizing if it is not the first item of any infinite reduction
sequence, and the rules are strongly normalizing if every term is. Say that a
term is irreducible if it is not the first item of a reduction sequence of length
greater than one.

We can then reduce the proof of (ii) to something slightly simpler. First
of all, we can assume without loss of generality that we are dealing with a
unary term t. Second, we can safely assume that arguments of t (its maximal
proper subterms) are strongly normalizing. Since variables and constants
are trivially strongly normalizing, knowing that every term with strongly
normalizing arguments is strongly normalizing would give us (ii) by a simple
induction on term complexity.

So, we need only to show that every term whose arguments are strongly
normalizing is itself strongly normalizing. We note that because of (1), any

strongly normalizing term t in fact has a unique irreducible c such that t
∗
⇀ c

(by Newman’s lemma). We call this c the normal form of t.
We define the H-complexity of a unary elementary term to be the number

of pr symbols occurring in its main functional expression, so that e.g. the
H-complexity of 0′′ is zero and the H-complexity of the doubling function,
pr[0 | ∅; pr[0 | ∅; x′′ | x](x) | x] applied to any argument, is two. We
define the T -complexity of a unary elementary term be the total number
of occurrences of successor that are contained in the normal forms of its
arguments. We let the overall complexity of a term be measured by a pair
(h, t) consisting of its H and T -complexity, where overall complexities are
ordered lexically, with h lexically prior.

We argue by induction on overall complexity. For our basis case, we note
that terms of complexity (0,0) must be either 0 or a variable, both of which
are irreducible and a fortiori strongly normalizing.

So, for the induction step, suppose (call this assumption IH1) that all
the arguments to a term t are strongly normalizing, and that any term of
lesser overall complexity whose arguments are strongly normalizing is itself
strongly normalizing.

Suppose towards a reductio that there is an infinite reduction sequence
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beginning with t. Since the induced reduction sequences on the arguments
of t must be finite, at some point, we will need to stop applying rewrite
rules to subterms, and apply a rewrite rule to a complete term t′

∗
↼ t. But

because we’ve only applied rewrites to subterms so far, t′ has the same main
functional expression as t (hence the same H-complexity) and its arguments
have the same normal forms as the arguments to t (hence t′ has the same
T -complexity as t). So t′ has the same overall complexity as t. We now argue
by cases

If the rewrite t
∗
⇀ t′ is

z(τ)⇀ 0

the reduction terminates, for a contradiction. If the rewrite is

pri[σ | X ; τ | Y ](η0)⇀ σi
(

X/η
)

then we argue by structural induction that all subterms of σi
(

X/η
)

(includ-
ing the entire term) are strongly normalizing. For our basis case, we know
that the terms η replacing X are all strongly normalizing. For the induction
step, consider a (non-variable) subterm σ′ of σi

(

X/η
)

, whose arguments are

all strongly normalizing. We know that σ′ is σ′′
(

X/η
)

for some subterm σ′′

of σi. But σ
′′ must then have H-complexity lower than t. So, the same is true

of σ′. And so by the prior inductive hypothesis (IH1), σ′ strongly normalizes.
So every subterm of σi

(

X/η
)

is strongly normalizing. But this contradicts

our assumption that t
∗
⇀ t′ is part of an infinite reduction sequence.

If the rewrite is

pri[σ | X ; τ | Y ](ηρ′)⇀ τi
(

Y / pr[σ | X ; τ | Y ](ηρ)
)

Then the terms pr[σ | X ; τ | Y ](ηρ) on the right hand side are strongly nor-
malizing: each one has the same H-complexity as t, but lower T -complexity,
and has strongly normalizing arguments. Since every subterm of τi must have
a lower H-complexity than t, we can then repeat the structural induction of
the previous paragraph to establish that τi

(

Y / pr[σ | X ; τ | Y ](ηρ)
)

strongly
normalizes, for a contradiction, ending the reductio.

We say that σ | X and τ | Y are directly equivalent when either (a)X = Y
and σ ⇌ τ , or (b) σ | X = τ(Y /X) | X . We take equivalence simpliciter
to be the transitive closure of direct equivalence, and we write 〈τ | X〉 for
the equivalence class of τ | X . We will call 〈τ | X〉 a term—recall that the
members of 〈τ | X〉 are, in contrast, called elementary terms.
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Summary and Reminder

Before moving on, let’s remember what we’re up to, since it would be easy
to have lost the thread by now. Our plan was to build a system in which
p.r. equivalent terms are in fact identical. What we’ve done so far is build
a family of elementary terms and an equivalence relation that identifies ele-
mentary terms that are p.r. equivalent. The goal, eventually, is to build an
entire language in which we make similar identifications on syntactic objects
of all types. Before turning to that, however, we first pause to study the
algebraic structure of the class of terms.

3 Linguistic Matters 3: A Category of Types

and Terms

Suppose τ | y1, . . . , yn2
is an n1-ary elementary term. Given any n2-ary

untyped term σ1 . . . σn2
, we can simultaneously substitute the σi’s for the yi’s

to construct an untyped elementary term τ(y1/σ1, . . . , yn2
/σn2

). In general,
of course, τ(y1/σ1, . . . , yn2

/σn2
) | y1, . . . , yn2

won’t be well-formed because
the σi’s may contain variables other than the yj’s. But this is easily rectified.
Rather than beginning with a heathenous untyped elementary term we should
simply help ourselves to honest-to-god and properly typed elementary term—
say σ | X . It’s then clear enough how to end up somewhere well-formed—
we just let the typing part of the term being ‘substituted in’ come along
for the ride. That is, while in general τ(y1/σ1, . . . , yn2

/σn2
) | y1, . . . , yn2

will not be well-formed, the fact that σ | X is well-formed guarantees that
τ(y1/σ1, . . . , yn2

/σn2
) | X always will be. Thus, there is a natural way to

define composition of elementary terms that we specify as follows:

Definition 3.1. If card(X) = m and σ | Y is m-ary, we define

τ | X ◦e σ | Y = τ
(

X/σ
)

| Y

In order to import this from elementary terms to terms, we need the following
fact:

Fact 3.2. If τ | Y and τ ′ | Y ′ are representatives of the same term, and σ | X
and σ′ | X ′ are also representatives of the same term then σ | X ◦e τ | Y and
σ | X ◦e τ

′ | Y ′ and σ′ | X ′ ◦e τ | Y are all, if defined, also equivalent.

Australasian Journal of Logic (18:5) 2021, Article no. 13



536

Definition 3.3. If card(X) = m and σ | Y is m-ary, we define

〈τ | X〉 ◦ 〈σ | Y 〉 = 〈τ
(

X/σ
)

| Y 〉

By inspection, one easily verifies that terms of the form
〈

X | X
〉

act
as two-sided identities for ◦. It’s also trivial but tedious to check that ◦
is associative. Altogether, then, the terms can be viewed as arrows in a
category where ◦ is the composition.

A final note: the elementary terms contained in the class of terms 〈X | X〉
all have the form Y | Y where card(Y ) = card(X). Since the identity arrows
and the objects of a category are basically the same thing, it follows that the
objects in this category can be identified with the cardinalities of the sets X .

We call the category thus defined B. We call the objects of B types and let
Tn be the type corresponding to the identity arrow 〈Xn

1 | Xn
1 〉. By inspection,

we see that the term (B-arrow) 〈τ | X〉 has as its domain the type Tcard(X)

and as its codomain the type Tlen(τ).

3.1 Examples

Before we move on, we give three examples that will hopefully serve to demon-
strate the usefulness of the machinery developed here.

Example 3.4. We will write n for the numeral 0′...′ with n primes. We claim
that 〈pr[x1 | x1; x

′
2 | x2](n m) | ∅〉 = 〈n+m | ∅〉. Thus pr[x1 | x1; x

′
2 | x2]

represents (in a sense we won’t try to get clearer on) the addition function.
Note one important consequence of this is that addition of numerals is both
commutative and associative. Also note that this is an equality at the level
of syntax, and explicitly tells us nothing about whether formulas of the form
pr[x1 | x1; x

′
2 | x2](n m) = n+m | ∅ are theorems—indeed, we have yet to

even define the class of formulas or the notion of theoremhood!3

At any rate, we prove our claim by induction in the metalanguage. For
the base case we rewrite as follows:

pr[x1 | x1; x
′
2 | x2](n 0) | ∅⇀ x1(x1/n) | ∅

⇀ n | ∅

⇀ n + 0 | ∅.

3Of course, as it turns out, all such formulas are theorems. In fact, all such formulas
are axioms, since by our syntactic rules, all such formulas are in fact of the form τ = τ | ∅.
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Which establishes that 〈pr[x1 | x1; x
′
2 | x2](n 0) | ∅〉 = 〈n+ 0 | ∅〉.

For the successor case, we rewrite as follows:

pr[x1 | x1; x
′
2 | x2](n m

′) | ∅⇀ x′2(x2/ pr[x1 | x1; x
′
2 | x2](n m)) | ∅

⇀ pr[x1 | x1; x
′
2 | x2](n m)′ | ∅

⇀ n +m′ | ∅

⇀ n +m+ 1 | ∅

Which demonstrates that 〈pr[x1 | x1; x
′
2 | x2](n m

′) | ∅〉 = 〈n+m+ 1 | ∅〉.
In light of these results, we will write plus(x, y) for pr[x1 | x1; x

′
2 | x2](xy),

in which case we can abbreviate the result above as 〈plus(n,m) | ∅〉 =
〈n+m | ∅〉.

Example 3.5. In the same way that pr[x1 | x1; x
′
2 | x2] represents the addi-

tion function, we claim that pr1[0x10 | x1; plus(x1, x2)x2x
′
3 | x1, x2, x3](n m) |

∅ represents the multiplication function. It’s useful to work through this
example in order to better understand our demonstration from the previous
section that the pr-machinery in fact captures full primitive recursion.

To that end, we first examine the pr2 and pr3 parts. Here we sometimes
perform several reductions at once, in order to save space. Also, for readabil-
ity, we will simply write pri(n m) instead of pri[0x10 | x1; plus(x1, x2)x2x

′
3 |

x1, x2, x3](n m).
For pr2, things are fairly easy. For the zero case we have pr2(n0) ⇀

x1(x1/n) = n; for the successor case we have that pr2(n m′) ⇀ pr2(n m).

Thus, inductively it’s clear that pr2(n m)
∗
⇀ n.

pr3 turns out not to matter, but we go through it anyways, since it’s good
for the soul to do so. For the zero case we have pr3(n0)⇀ 0; for the successor

case we get pr3(n m
′)⇀ pr3(n m)′

∗
⇀ m′. Thus in general pr3(n m)

∗
⇀ m.

Now we turn to pr1. The zero case is immediate: pr1(n0) ⇀ 0 = n× 0.
For the successor case, we reduce as follows:

pr1(n m
′)⇀ plus(x1, x2)(x1x2x3/ pr1(n m) pr2(n m) pr3(n m))

= plus(pr1(n m), n)
∗
⇀ plus(n×m,n)
∗
⇀ (n×m) + n

Here the step from the second line to the third follows by the inductive hy-
pothesis and the step from the third line to the fourth follows from the previ-
ous example. It follows that, as we claimed, 〈pr1[0x10 | x1; plus(x1, x2)x2x

′
3 |
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x1, x2, x3](n m) | ∅〉 represents the multiplication function in the sense that

〈pr1[0x10 | x1; plus(x1, x2)x2x
′
3 | x1, x2, x3](n m) | ∅〉 = 〈n×m | ∅〉

Note again that it follows from this that numeral multiplication has its ex-
pected properties.

Example 3.6. Another useful detail: suppose 〈σ′ | X〉 and 〈τ ′ | Y 〉 are the
same term. It follows that 〈σ | X〉 and 〈τ | Y 〉 are the same term.

This is easy to see: suppose that 〈σ | X〉 and 〈τ | Y 〉 are different
terms. Without loss of generality we can take both σ and τ to be irreducible.
Notice that any reduction that applies to σ′ applies to σ and any reduction
that applies to τ ′ similarly applies to τ . Thus σ′ and τ ′ are also irreducible.
And thus since 〈σ | X〉 and 〈τ | Y 〉 are different, 〈σ′ | X〉 and 〈τ ′ | Y 〉 are
also different.

This example has a motivationally important philosophical corollary: it
says that the system we’ve given here has the feature we took Meyer to want.
More to the point, it tells us that we do not have to say that things with
identical successors are themselves identical. Or at least, we don’t need to say
that things whose successors are identical at the level of syntax are identical
since it follows from σ and τ having successors that are identical at the level
of syntax that σ and τ are themselves identical at the level of syntax.

3.2 Important Definitions and Results

Natural numbers objects, introduced by Lawvere in his seminal [15] are de-
signed to be a ‘completely categorial’ analogue of the natural numbers that
can be defined inside any topos. It wasn’t too long after they were intro-
duced before people noticed that with mild modifications, the same essential
notion could be defined in an arbitrary category with finite products. These
mildly-modified objects came to be called parameterized natural numbers
objects (PNNOs).4

The fact that an object that (in a way that can be made concrete) ‘looks
like’ the natural numbers can be defined in an arbitrary category with finite
products suggests that such categories are a natural playground in which to
find interesting models of arithmetic. When we combine this insight with
the fact that hyperdoctrines—the core piece of categorial-logic machinery

4See e.g. [14] for a discussion.
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deployed in this paper—provide a natural playground in which to find inter-
esting models of relevant logics, it becomes clear that we ought to be able to
build semantically interesting relevant arithmetics by combining the PNNO-
ish and hyperdoctrinal constructions. The main thrust of this paper is to do
just that.

For the moment, we focus on the PNNO aspect. To that end, we adopt
the following definition from [14]:

Definition 3.7. In a category with finite products, A parameterized natural
numbers object is an object N together with maps z : 1 → N, s : N → N

such that given any objects A,X and maps f : A → X, g : X → X , there is
a unique map Φ : A× N → X making the following diagram commute:

A

f
))❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

〈IdA,z◦!〉
// A× N

Φ
��

A× N

Φ
��

IdA ×s
oo

X Xg
oo

We would love to discover that B is harboring a PNNO. If it were, the
only natural candidate for the N-role would be T1, and for s and z, 〈x′ | x〉
and 〈0 | ∅〉 respectively. Sadly, things don’t quite pan out. The difficulty is
with the uniqueness clause. Consider the following diagram:

T1

〈x|x〉
))❚❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

〈xy0|x,y〉
// T1 × T1 × T1

Φ
��

T1 × T1 × T1

Φ
��

〈xyz′|x,y,z〉
oo

T1 T1
〈x′|x〉

oo

As it turns out, there is more than one way to solve for Φ here. The standard
recursive definition of addition in our setting works out as pr[x | x, y; x′ |
x](xy). But consider how we would write x + (y + z) and (x + y) + z,
respectively:

pr[v | v, w; v′ | v](x pr[v | v, w; v′ | v](yz))

pr[v | v, w; v′ | v](pr[v | v, w; v′ | v](xy)z)

These are both in normal form; therefore neither rewrites to the other. But
if we precompose these with the untyped term xy0, then in each case we can
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rewrite:

pr[v | v, w; v′ | v](x pr[v | v, w; v′ | v](y0))⇀ pr[v | v, w; v′ | v](xy)

pr[v | v, w; v′ | v](pr[v | v, w; v′ | v](xy)0)⇀ pr[v | v, w; v′ | v](xy)

The first by rewriting the inner term, and the second by rewriting the outer.
Similarly

pr[v | v, w; v′ | v](x pr[v | v, w; v′ | v](yz′))⇀ pr[v | v, w; v′ | v](x pr[v | v, w; v′ | v](yz)′)

⇀ pr[v | v, w; v′ | v](x pr[v | v, w; v′ | v](yz))′

pr[v | v, w; v′ | v](pr[v | v, w; v′ | v](xy)z′)⇀ pr[v | v, w; v′ | v](pr[v | v, w; v′ | v](xy)z)′

So, the two distinct ways of associating a double addition each make the
diagram commute.5 It follows that there’s no PNNO to be found in B. What
B does have, though, is a weak PNNO, which (following [22]) we define as
follows:

Definition 3.8. In a category with finite products, a weak parameterized
natural number object is an object N together with maps z : 1 → N, s : N →
N such that given any objects A,X and maps f : A→ X, g : X → X , there
is a map Φ : A× N → X making the following diagram commute:

A

f
))❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

〈IdA,z◦!〉
// A× N

Φ
��

A× N

Φ
��

IdA ×s
oo

X Xg
oo

5 There’s a more theoretically satisfying explanation here, which we relegate to this
footnote, as available space and time preclude a rigorous presentation. As it stands,
equality of terms is, for us, decidable, since we can always compare normal forms. If our
rewrite system did support interpreting T1 as a PNNO, then the uniqueness clause would
entail that our notion of term equality admitted an inference analogous to Goodstein’s
induction rule for equational primitive recursive arithmetic:

F (0) = G(0) H(x, F (x)) = F (S(x)) H(x,G(x)) = G(S(x))

F (x) = G(x)

and this would render the obvious theory of term equality over our terms (essentially)
undecidable, contradicting the fact that equality of our terms is in fact decidable. See [9,
p105] for background on Goodstein’s rule.
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Theorem 3.9. The category B has finite products, a terminal object T0,

and a weak PNNO given by T1 together with the arrows T0
〈0|∅〉

//T1 and

T1
〈z′|z〉

//T1 .

Before we turn to proving this we state without proof the following easy-to-
verify but extremely useful fact:

Fact 3.10. Each term has a representative of the form τ | Xn
1 for some n.

Proof of Theorem 1. The first two parts are straightforward and left to the
reader. To see that the given data define a parameterized natural numbers
object, suppose we have the following:

Tm
〈σ|X〉

// Tk Tk
〈τ |Y 〉

oo

Also suppose without loss of generality (since we can always change repre-
sentative if needed) that z 6∈ X ∪ Y and X, z = Xz. Our task is to show
that there is a term 〈ρ | X, z〉 such that the following commutes:

Tm

〈σ|X〉
))❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

〈X0|X〉
// Tm × T1

〈ρ|X,z〉
��

Tm × T1

〈ρ|X,z〉
��

〈Xz′|X,z〉
oo

Tk Tk
〈τ |Y 〉

oo

I claim
〈

pr[σ | X ; τ | Y ](X, z) | X, z
〉

will do the job.
To verify this, we need to prove the following two identities:

〈

pr[σ | X ; τ | Y ](X, z) | X, z
〉

◦
〈

X0 | X
〉

= 〈σ | X〉 (A)
〈

pr[σ | X ; τ | Y ](X, z) | X, z
〉

◦
〈

Xz′ | X, z
〉

= (B)

〈τ | Y 〉 ◦
〈

pr[σ | X ; τ | Y ](X, z) | X, z
〉

For (A), observe that

〈

pr[σ | X ; τ | Y ](X, z) | X, z
〉

◦
〈

X0 | X
〉

=
〈

pr[σ | X ; τ | Y ](X0) | X
〉

=
〈

σ(X/X) | X
〉

= 〈σ | X〉
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For the second, observe that

〈

pr[σ | X ; τ | Y ](X, z) | X, z
〉

◦
〈

Xz′ | X, z
〉

=
〈

pr[σ | X ; τ | Y ](Xz′) | X, z
〉

=
〈

τ
(

Y / pr[σ | X ; τ | Y ](Xz)
)

| X, z
〉

= 〈τ | Y 〉 ◦
〈

pr[σ | X ; τ | Y ](X, z) | X, z
〉

3.3 Places to Fiddle 1: NNOs

We mentioned in the introduction that there would be various ways to go
about fiddling with the apparatus we presented. We’ve just seen a prime
place for such fiddling: rather than embedding a weak, parameterized NNO
into our type theory, we could instead have shoehorned in a full PNNO. We
could also move to a Cartesian closed category of types (this would roughly
correspond to adding higher-order vocabulary), and replace the PNNO with
a regular unparameterized natural numbers object, since in the Cartesian
closed context, the parameters are not needed. Further enrichments of the
underlying category of types can be expected to yield more structure at
the level of term rewriting, and deliver up more “logic-free” arithmetic and
mathematics.

Such choices should not be made lightly. One philosophically important
thing these decisions will turn on is whether we think syntax should be
decidable. It is initially hard to see how to give this up. Given two arithmetic
utterances, whether the first utterance expresses something equivalent to the
second utterance is, of course, not a matter we generally expect to be able to
settle in finite time. But whether the two utterances are in fact utterances
of the very same expression is something that it sure seems we ought to be
able to verify in finite time.

But that’s just an intuition, and sometimes there are grounds for chal-
lenging even very strongly held intuitions. We argue that in this case, a
closer look suggests that the intuition isn’t as well-grounded as it initially
seems. Here is one way to see this:

Begin with the observation we made at the very beginning of the paper:
without a doubt, our standard logical and arithmetic practices build in at
least some identities at the level of syntax. We acknowledge, of course, the
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obvious fact that whenever we do endorse the claim that utterance1 and
utterance2 are utterances of the very same expression, we determine that
this is so using only finite resources and finite time. But if this is the sole
source of the intuition that our arithmetic syntax ought to be decidable (and
we don’t know what else might be grounding such an intuition), then the
intuition strikes us as not one we ought to cling to all that tightly.

This is because we are, it seems, in the same boat in the case of arithmetic
itself. Each member of the set of arithmetic computations we ever have
performed has been performed in finite time, and we don’t expect that to
change.6 Should we conclude from this that we ought to be formalizing our
arithmetical practice in such a way that the resulting theory is decidable?
Surely not—or at least, surely not on these grounds alone. The fact of the
matter in the case of arithmetic seems to be that we muddle through using, in
the finite time available to us, a system where not everything can be decided
in finite time.

The evidence seems to be completely parallel in the two cases. In both
cases, we have the obvious fact that we engage in the practice at hand using
only finite time and finite resources. In the case of arithmetic we do not
take this evidence to conclusively determine that the correct theory should
be decidable in finite time. We thus see no reason to think the evidence is
conclusive in the case of syntax either. And, at least to us, it’s not clear
what other evidence is going to be forthcoming.

If this argument (or some more cautious working-out of it) holds water,
it would point to a philosophically reputable route to adopting much more
robust theories of identity at the level of syntax than the one we’ve given
here. Regardless, it seems clear that even going so far as including an NNO
and exponential types in our type theory is a less suspect option than is the
choice to add an omega rule to our logic—after all, one can work with an
undecidable syntax without ever actually engaging in anything requiring in-
finite resources, but one cannot ever even once deploy an omega rule without
expending infinite resources.

Overall, it seems to us that this is a good place to poke and prod the
machinery in hopes of scaring up R# 1

2 -ish theory candidates.

6For an alternative perspective see [21].
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4 Linguistic Matters 3: Languages and Logic

So far we’ve dealt only with the ‘term’y part of the language. We’ll now turn
to constructing the rest of the language, and then augment it with a logic.
Since we’re having such fun with them already, we’ll also add in another
equivalence relation to keep track of.

4.1 The Languages

The elementary language is constructed as follows:

• If σ | X and τ | X are unary elementary terms then σ = τ | X is an
(atomic) elementary formula.

• If φ | X and ψ | X are elementary formulas, then so are t | X , ∼φ | X ,
φ ∧ ψ | X , and φ → ψ | X .

• If y ∈ X and φ | X is an elementary formula, then ∀yφ | X \ {y} is an
elementary formula.

We take ∨, ↔ and ∃ to be defined in the usual ways. We define φ ⊗ ψ | X
to mean ∼(φ → ∼ψ) | X . As with elementary terms, we see elementary
formulas as having untyped parts and typing parts, and we define the notion
of an untyped elementary formula as well. If τ and σ are untyped n-ary
elementary terms, then τ = σ abbreviates the untyped elementary formula
τ1 = σ1 ⊗ · · · ⊗ τn = σn. If Y is a finite set of variables, then ∀Y will mean
∀y1∀y2 . . .∀yn, where Y = {y1, . . . , yn} and the yi’s are listed in increasing
subscript-order.

We can lift the rewrite rules we applied to terms to the new expressions
introduced here, and we will do so without comment. As with terms, we
say that the elementary formulas φ | X and ψ | Y are directly equivalent
when either (a) X = Y and φ ⇌ ψ or (b) φ | X = ψ(Y /X) | X , and we
take equivalence simpliciter to be the reflexive and transitive closure of direct
equivalence. Finally, we lift the pointy-bracket notation to this new setting
as well, and write 〈φ | X〉 for the equivalence class of φ | X . We will call
〈φ | X〉 a formula.

Australasian Journal of Logic (18:5) 2021, Article no. 13



545

4.2 The Logic

Below we give a Hilbert-style axiomatization of the logic we are interested in.
Note that the logic we define is a logic on the formulas, not on the elementary
formulas. Thus, the logic does not distinguish between different ‘versions’ of
a formula that differ only at the level of the rewrite rules. That is, formulas
that are transparently—read primitive recursively—the same are not to be
distinguished. In addition to this strong theory of identity at the level of
syntax, we’ve adopted very strong axioms governing the equality relation. In
§7.1 we will discuss why we adopt such strong axioms. But it’s worth noting
already that the identity axioms look to be another part of the control panel
where a bit of button-mashing could actually pay off.

Finally, we should note that we have adopted no arithmetical axioms.
All the arithmetic that the system is capable of ‘doing’ is done in the syntax
itself. This is another place where change seems possible.7

At any rate, our axioms are all the well-formed instances of each of the
following:

A1 〈t | X〉

A2 〈t → (α→ α) | X〉

A3 〈α→ α | X〉

A4 〈(α ∧ β) → α | X〉

A5 〈(α ∧ β) → β | X〉

A6 〈((α→ β) ∧ (α→ γ)) → (α→ (β ∧ γ)) | X〉

A7 〈(α ∧ (β ∨ γ)) → ((α ∧ β) ∨ (α ∧ γ)) | X〉

A8 〈∼∼α → α | X〉

A9 〈(α→ ∼ β) → (β → ∼α) | X〉

A10 〈(α→ β) → ((β → γ) → (α → γ)) | X〉

7It’s important to note that changes at this level are a bit more fraught than some
of the other changes we’ve highlighted. The reason, which will become clear in light of
the discussion in the remainder, is that changes at the level of the axioms will result in
changes in the sorts of algebras we have to use in the semantics, whereas changes in the
rewrite rules only result in changes in the category B that we defined above.
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A11 〈α→ ((α→ β) → β) | X〉

A12 〈(α→ (α→ β)) → (α→ β) | X〉

A13 〈∀xφ → φ(x/y) | X〉 where y is free for x in φ.

A14 〈∀x(φ → ψ) → (φ → ∀xψ) | X〉 where x is not free in φ.

A15 〈∀x(φ ∨ ψ) → (φ ∨ ∀xψ) | X〉 where x is not free in φ.

A16 〈τ = τ | X〉

A17 〈(σ = τ ⊗ φ(v/σ)) → φ(v/τ) | X〉 provided each τi, σi is free for v in φ

We close these axioms under the well-formed instances of the following rules:

R1
〈α | X〉 〈α→ β | X ∪ Y 〉

〈β | Y 〉

R2
〈α | X〉 〈β | Y 〉

〈α ∧ β | X ∪ Y 〉

R3
〈φ | X〉

〈∀xφ | X − {x}〉

When 〈φ | X〉 is a theorem, we write ⊢ 〈φ | X〉.8

A few useful lemmas are worth stating immediately:

Lemma 4.1. If v does not occur in X or in φ and ⊢ 〈φ | X, v〉 then ⊢ 〈φ | X〉.

Lemma 4.2. Antilogism ⊢ 〈(φ1 ⊗ φ2) → φ3 | X〉 iff ⊢ 〈(φ1 ⊗∼φ3) → ∼φ2 |
X〉.

Lemma 4.3. ⊢ 〈(φ1 ⊗ φ2) → ψ | X〉 iff ⊢ 〈φ1 → (φ2 → ψ) | X〉.

Definition 4.4. We say that 〈φ | X〉 and 〈ψ | X〉 are equivalent when they
are both well-formed and 〈φ↔ ψ | X〉 is a theorem, and we write [φ | X ] for
the class of formulas equivalent to 〈φ | X〉. Finally, we say [φ | X ] ≤ [ψ | X ]
when for some (and hence every) pair of members 〈φ0 | Y 〉 of [φ | X ] and
〈ψ0 | Y 〉 of [ψ | X ], φ0 → ψ0 | Y is a theorem.

8Aside from the addition of identity and t, this is exactly the axiomatization of the
logic R given in [2].
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We leave to the reader the task of checking that all this is well-defined.
We extend other notions from pointy-bracket land to square-bracket land in
the expected ways; e.g. we write ⊢ [φ | X ] to mean that ⊢ 〈ψ | Y 〉 for some
(and hence every) member 〈ψ | Y 〉 of [φ | X ].

5 Preview

In the remainder of the paper we build a semantic theory that validates (as
we prove) all and only the theorems of the logic we just defined. Before we
do that, it’s worthwhile to pause to give an overview of how the construction
will proceed.

We will give an essentially algebraic semantics. Recall that at the heart
of many completeness proofs is the construction of an object often called
the canonical model. In algebraic settings, the canonical model is typically
constructed from equivalence classes of formulas, on which one defines op-
erations corresponding to the connectives and operators in the logic. As
an example, to show classical logic is complete with respect to the class of
boolean algebras, one standardly constructs what has come to be known as
the Lindenbaum algebra.

But regardless of whether they proceed via the method of canonical mod-
els or by any other means, completeness proofs typically come after soundness
proofs. It is also typical for both soundness proofs and completeness proof
to come after the semantics is introduced.

Apart from the construction of the canonical model, we will be atypical
in all respects. More to the point, our first step is to arrange the equiv-
alence classes [φ | X ] into an appropriate canonical model. Once we have
the canonical model on hand, we will then build the rest of our semantic
theory. Intuitively, one can imagine proceeding as follows: first, we ‘abstract
away’ from the particular features of the canonical model in order to arrive
at broader a family of objects we will call models. With new models in hand,
we define a notion validity. We are constrained in these tasks by the re-
quirement that the canonical model remain a model and that only theorems
be validated by the canonical model. Provided we meet these constraints,
proving completeness—that is, that only validated formulas are theorems—
is entirely trivial—any non-theorem will counterexampled by the canonical
model. But the logic being sound will be quite the surprising result. After
all, we’ll be evaluating formulas in a range of structures quite different from
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the one we started at—and which we arrived at not by reflection on truth or
meaning or anything like that, but rather by a process of abstraction guided
by heuristics and mathematical intuition. That following these guides doesn’t
lead us to models that falsify any of our theorems is downright shocking.

Philosophers of a certain bent will be crabby about this order of going
about things. They will claim that completeness proofs, when done correctly,
ought to be surprising. The view of logic espoused by such philosophers is
something like this:

We have a fairly good sense for what the world is like. Using this
sense of what the world is like, we build models. We then define
the set of formulas we’re interested in to be the valid formulas—
that is, the formulas that are true in all the models. After doing
this, we then set about trying to figure out what we’ve done—
that is, we set ourselves the task of actually gathering up all the
valid formulas. Since these are the only sentences we’re interested
in, the fact that we have a sound semantic theory is completely
unsurprising. The goal, however, isn’t to gather up just some of
the valid formulas but to in fact gather up all of them. Intu-
itively, this is a pretty hard thing to do. So we should find it
surprising that we’re actually able to do the job. Thus complete-
ness proofs—which say not only that we can do but that we in
fact have done the job—ought to be surprising.

This way of thinking about logic is familiar and friendly and, to our
minds, entirely backwards. What we have a good understanding of is what
language is like, not what the world is like. This understanding of language
tells us something about how the world-related concepts we deploy—e.g.
terms, predicates, and the like—interact. We can capture all of that in our
canonical model, which organizes all of this information in a mathematically
perspicuous framework. What we don’t (and, perhaps, can’t?) know is how
well our language maps onto whatever extra-linguistic reality there is. And
this for the simple reason that we don’t know much about said extra-linguistic
reality at all! Supposing we do know about such matters is (puzzlingly) where
the grumpy-at-us philosophers seem to start.

Be that as it may, since we don’t know how well word and world match
up, we must admit that things we’ve distinguished may turn out to be, on
interpretation into the extra-linguistic realm, not distinct. Or there might
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be more structure to the extra-linguistic world than there is in our lan-
guage. We capture these possibilities by building natural generalizations of
our canonical model.9 When it turns out that the logic we began with is
sound across all the generalizations, we should be surprised—after all, we
used hints from language, and now we’re ending up at something that tells
us how the world might be organized. In fact, based on other experiences in
which implausibly-good explanations show up, we might think this surpris-
ingness is itself evidence that we’ve hit on something deep.10

At any rate, we’ve said all this as part of a defense of why it should
be the case that, on the view we take, it’s soundness and not completeness
that is the surprising metatheoretic result. And, regardless of whether you
buy the story we’re telling, it tells you both how the remainder of the paper
will be organized and why we’ve chosen that way of organizing it. In more
detail, the next section will describe how we arrange the classes [φ | X ] into
canonical-model-shape. We will then take another section to recognize how
the first-order machinery of our logic is realized in the canonical model. After
that, we’ll generalize and provide the full semantics before we turn to the
metatheory. We will end the paper by examining how much arithmetic we
get.

6 First Steps

The basic plan for the construction of the canonical model—which we will
sometimes call the syntactic hyperdoctrine—is this: to each type Tn, we as-
sociate an algebra S(Tn) of propositional functions in n variables. To each
class of terms 〈τ | X〉, we associate a morphism of algebras S(Tlen(τ)) −→
S(Tcard(X)). Intuitively, these morphisms correspond to substitutions—they
map each propositional function [φ | Y ] in S(Tlen(τ)) to the propositional
function [φ(Y /τ) | X ] in S(Tcard(X)). The structure of the resulting system

9This ignores the possibility that the extra-linguistic reality is organized in some way
that is utterly different than what our language suggests. Being frank, we’re not sure
what to make of this worry—on the one hand, it feels like it’s certainly possible that we’re
utterly wrong about everything. On the other hand, what it would mean to say that we
are is not entirely clear. Regardless, it seems that language gives us not just our best but
also our only guess about the structure of the world, so making the assumption that it’s
at least right in regard to the gross details seems a not too-irresponsible thing to do.

10It strikes us that, pursued to its natural conclusion, this line of thought leads to a
distinctly Popperian sort of antiexceptionalism about logic.
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of algebras and morphisms then determines how we interpret all the other
elements. In particular, both quantifiers and identities ‘show up’ as adjoints
in a way to be explained below. In order to easily state the results and
definitions we require, the following analogue of Fact 3.10 is crucial:

Fact 6.1. If card(X) = n, then for some untyped formula ψ, [φ | X ] = [ψ |
Xn

1 ].

Definition 6.2. We define the algebras S(Tn) as follows:

• As a set, S(Tn) is the collection of classes of formulas of the form
[φ | Xn

1 ].

• As a lattice S(Tn) is ordered by ≤ with meet ⊓ and join ⊔ defined by
[φ | Xn

1 ]⊓[ψ | Xn
1 ] := [φ∧ψ | Xn

1 ] and [φ | Xn
1 ]⊔[ψ | Xn

1 ] := [φ∨ψ | Xn
1 ],

respectively.

• The lattice S(Tn) is equipped with a De Morgan involution we denote
by ¬, and define by ¬[φ | Xn

1 ] := [∼φ | Xn
1 ].

• Finally we define a monoidal operation ⊠ on the De Morgan lattice
S(Tn) by saying [φ | Xn

1 ]⊠ [ψ | Xn
1 ] := [φ⊗ ψ | Xn

1 ].

Fact 6.3. S(Tn), with the above operations, is a De Morgan Monoid.11

Now a confession: we said above that each class of terms 〈τ | X〉 would be
associated to the substitution morphism given by [φ | Y ] 7−→ [φ(Y /τ) | X ].
This isn’t exactly right—which is to say that we lied to you when we said
this. We promise it was for your own good, though, as the lie is a lie is for
reasons that are both uninteresting and annoying.

In short, the problem is that we need to take care of a bit of ‘free-for’
fiddliness. More to the point, we are still using elementary formulas (e.g.
φ | Y ) to stand for the formulas 〈φ | Y 〉 that represent the equivalence
classes [φ | Y ]. And, when it comes to elementary formulas, there is a worry
that we might substitute in variables that are not free for the variable they’re
replacing.

But fixing this isn’t hard, and there are many ways to do it. We choose
a particularly concrete solution, which looks a little uglier than some of the

11De Morgan monoids were introduced in [3]. Further examinations or applications of
De Morgan monoids can be found in [24], [4], [25], [19], and [20].
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alternatives. The idea is to choose the representative elementary term in
〈τ | X〉 in such a way that each τi is free for the variables that are free
in φ | Y , which we are using as our representative of our representative
of [φ | Y ]. An easy and effective way to accomplish this is to use for our
representative an elementary term σ | Z ∈ 〈τ | X〉 with no member of Z
occurring anywhere in the elementary formula φ | X . working through the
details we’re led to the following definition for our substitution function:

Definition 6.4. For each term (B-arrow) 〈τ | X〉 : Tcard(X) −→ Tlen(τ),
the morphism S〈τ |X〉 : S(Tlen(τ)) −→ S(Tcard(X)) is defined by [φ | Y ] 7−→
[φ(Y /τ(X/Z)) | Z] where Z is some set of variables no member of which
occurs anywhere in φ | Y .

Fact 6.5. S〈τ |X〉 is a well-defined De Morgan monoid homomorphism

6.1 Some Special Functors

We can summarize what we’ve seen so far as follows:

Lemma 6.6. S is a contravariant functor that maps each B-object (type) Tn
to the De Morgan Monoid S(Tn) of n-adic propositional functions and maps
each B-morphism (term) 〈τ | X〉 to the algebra homomorphism S〈τ |X〉.

For reasons that will become clear later, we will think of S as a functor
from B to the category of posets, rather than as a functor from B to the
category of De Morgan monoids. Be that as it may, certain morphisms in
B correspond to algebra homomorphisms that play an important role in the
story we’re telling. So we’ll pause to have a look at them.

The first class of special B-morphisms we will look at are the projections
Tn+m −→ Tn. A short bookkeeping exercise reveals that these correspond
to the terms 〈Xn

1 | Xn+m
1 〉. S promotes these morphisms to what might be

thought of as inclusion morphisms, including the algebra S(Tn) of proposi-
tional functions with n free variables into the algebra S(T n+m) of proposi-
tional functions with n +m free variables. For example, it’s easy to verify
by inspection that S〈Xn

1
|Xn+m

1
〉 transports [φ | Xn

1 ] to [φ | Xn+m
1 ].

Strictly for intuition, we offer some analogies. If the reader is inclined to
geometric thinking, this is quite like taking the preimage under projection of
a set defined by φ:
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π

〈x2 + y2 = 0 | x, y〉 〈x2 + y2 = 0 | x, y, z〉
S(π)

Or, if the reader prefers to think of the types of variables in a context using an
analogy with propositions (the so-called propositions-as-types perspective),
then this is rather like applying a round of weakening to the left hand side
of a sequent.12

The next class of B-morphisms we examine are the diagonal morphisms,
which we can identify with the terms 〈Xn

1X
n
1 | Xn

1 〉. Note that such mor-
phisms identify (hint hint) distinct variables in a formula—for example,
S〈xx|x〉 transports [φ(u, v) | u, v] to [φ(x, x) | x]. Again, for intuition, we
note that geometrically, S〈Xn

1
Xn

1
|Xn

1
〉 is akin to taking a preimage along the

map δ that embeds a lower-dimensional space as a diagonal in a higher di-
mensional space.

12This is a bit clearer if one adopts the suggestive and more standard notation x :: X ⊢ φ
for what we would write as φ | x. In this case, an application of S(π), where π : X×Y → X
moves x :: X ⊢ φ to x :: X, y :: Y ⊢ φ. We should note that just because adding variables
to a context is interestingly analogous to the structural rule of weakening, that does not
mean that this framework automatically validates the actual structural rule of weakening.
If it did automatically validate that rule, that would of course be problematic from the
perspective of relevance.
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〈1 < x < 2 ∧ 1 < x < 2 | x〉

δ

〈1 < x < 2 ∧ 1 < y < 2 | x, y〉
S(δ)

Or, again, if the reader prefers to employ the propositions-as-types perspec-
tive, then this is rather like applying a round of contraction to the left-hand
side of a sequent, in that one replaces a requirement of two variables of the
same type (two proofs of a certain proposition) with the requirement of one
variable of that type.

7 First-Order Structure

Now we turn to the first-order structure of the canonical model. This struc-
ture arises via adjoints to the special functors identified in §6.1. The induced
structure has two main parts: quantifiers and identities. They are intimately
connected, as we will see.

Lemma 7.1. Our implications support a version of Lawvere’s rule for equal-
ity. If 〈τ | X〉 is a unary term and v is a variable not in τ | X or φ | X we
have

⊢ [(τ = v ⊗ φ) → ψ | X, v] iff ⊢ [φ→ ψ(v/τ) | X ]

Proof. Without loss of generality, assume nothing in X is bound in φ or in
ψ.

For left to right, notice that if ⊢ [(τ = v ⊗ φ) → ψ | X, v], then ⊢
[∀v((τ = v ⊗ φ) → ψ) | X ]. Thus ⊢ [(τ = τ ⊗ φ(v/τ)) → ψ(v/τ) | X ]. But
v does not occur in φ, so ⊢ [(τ = τ ⊗ φ) → ψ(v/τ) | X ]. So by Lemma 4.3,
⊢ [τ = τ → (φ→ ψ(v/τ)) | X ]. So ⊢ [φ → ψ(v/τ) | X ].

For right to left, suppose ⊢ [φ → ψ(v/τ) | X ]. Then ⊢ [∼ψ(v/τ) →
∼φ | X ]. Thus we also have that ⊢ [∼ψ(v/τ) → ∼φ | X, v]. Also by A17,
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⊢ [(τ = v⊗∼ψ) → ∼ψ(v/τ) | X, v]. So ⊢ [(τ = v⊗∼ψ) → ∼φ | X, v], and
thus by Lemma 4.2, ⊢ [(τ = v ⊗ φ) → ψ | X, v].

We implicitly generalize this lemma to the case where 〈τ | X〉 is an n-ary
term for n > 1 in the obvious way.

Definition 7.2. Let 〈τ | Xn
1 〉 be an m-ary term, 〈φ | Xn

1 〉 be a formula, and
Y be a set of n variables that do not occur in φ | Xn

1 . Then

• Π〈τ |Xn
1
〉 names the order-preserving function given by

[φ | Xn
1 ] 7−→ [∀Y (τ(Xn

1 /Y ) = Xm
1 → φ(Xn

1 /Y )) | X
m
1 ];

• Σ〈τ |Xn
1
〉 names the order-preserving function given by

[φ | Xn
1 ] 7−→ [∃Y (τ(Xn

1 /Y ) = Xm
1 ⊗ φ(Xn

1 /Y )) | Xm
1 ].

Note that neither Π〈τ |Xn
1
〉 nor Σ〈τ |Xn

1
〉 is an algebra homomorphism. Thus,

in order to admit them into the structure of the canonical model in any way,
we must (as mentioned above) view the functor S as mapping from B to the
category of posets. This seems like an inconvenience, until we prove the next
two theorems

Theorem 7.3. Π〈τ |Xn
1
〉 is right adjoint to S〈τ |Xn

1
〉.
13

Proof. Let len(τ) = m. It suffices to show that S〈τ |Xn
1
〉[φ | Xm

1 ] ≤ [ψ | Xn
1 ] iff

[φ | Xm
1 ] ≤ Π〈τ |Xn

1
〉[ψ | Xn

1 ]. Let card(Y ) = n and suppose no member of Y
occurs anywhere in sight.

We reason as follows:

S〈τ |Xn

1
〉[φ | Xm

1 ] ≤ [ψ | Xn

1 ] iff [φ(Xm
1 /τ(X

n
1 /Y )) | Y ] ≤ [ψ(Xn

1 /Y ) | Y ]

iff [∼ψ(Xn

1 /Y ) | Y ] ≤ [∼φ(Xm

1 /τ(X
n

1 /Y )) | Y ]

iff [τ(Xn
1 /Y ) = Xm

1 ⊗∼ψ(Xn
1 /Y ) | Xm

1 , Y ] ≤ [∼φ | Xm

1 , Y ]

iff [τ(Xn

1 /Y ) = Xm

1 ⊗ φ | Xm

1 , Y ] ≤ [ψ(Xn

1 /Y ) | Xm

1 , Y ]

iff [φ | Xm

1 , Y ] ≤ [τ(Xn

1 /Y ) = Xm

1 → ψ(Xn

1 /Y ) | Xm

1 , Y ]

iff [φ | Xm

1 ] ≤ [∀Y (τ(Xn
1 /Y ) = Xm

1 → ψ(Xn
1 /Y )) | Xm

1 ]

iff [φ | Xm

1 ] ≤ [Π〈τ |Xn

1
〉(ψ | Xn

1 )]

13It’s worth pointing out that there’s an important difference between the behavior of
Π and the behavior of S that our notation obscures: Π is ‘covariant’ in its subscript where
S is ‘contravariant’ in its subscript. What we mean by this is that where 〈τ | X〉 maps
from Tcard(X) to Tlen(τ), Π〈τ |Xn

1
〉 maps from S(Tcard(X)) to S(Tlen(τ)), but S〈τ |X〉 maps

from S(Tlen(τ)) to S(Tcard(X)).
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Theorem 7.4. Σ〈τ |Xn
1
〉 is left adjoint to S〈τ |Xn

1
〉

Proof. Let len(τ) = m. It suffices to show that Σ〈τ |Xn
1
〉[φ | Xn

1 ] ≤ [ψ | Xm
1 ]

iff [φ | Xn
1 ] ≤ S〈τ |Xn

1
〉[ψ | Xm

1 ]. Let card(Y ) = n and suppose no member of
Y occurs anywhere in sight. We use the previous result, the definitions of
the existential and of ⊗, and the fact that S〈τ |Xn

1
〉 is a homomorphism. The

reasoning is as follows:

Σ〈τ |Xn

1
〉[φ | Xn

1 ] ≤ [ψ | Xm

1 ] iff [∃Y (τ(Xn
1 /Y ) = Xm

1 ⊗ φ(Xn
1 /Y )) | Xm

1 ] ≤ [ψ | Xm

1 ]

iff [∼∀Y (τ(Xn

1 /Y ) = Xm

1 → ∼φ(Xn

1 /Y )) | Xm

1 ] ≤ [ψ | Xm

1 ]

iff [∼ψ | Xm

1 ] ≤ [∀Y (τ(Xn
1 /Y ) = Xm

1 → ∼φ(Xn
1 /Y )) | Xm

1 ]

iff [∼ψ | Xm

1 ] ≤ [Π〈τ |Xn

1
〉(∼φ | Xm

1 )]

iff S〈τ |Xn

1
〉[∼ψ | Xm

1 ] ≤ [∼φ | Xm

1 ]

iff ¬S〈τ |Xn

1
〉[ψ | Xm

1 ] ≤ ¬[φ | Xm

1 ]

iff [φ | Xm

1 ] ≤ S〈τ |Xn

1
〉[ψ | Xm

1 ]

As an important special case consider a projection T2 → T1; e.g. 〈x | x, y〉.
We then observe that Π〈x|x,y〉 is the map given by

[φ(x, y) | x, y] 7−→ [∀v∀w(v = x → φ(v, w)) | x] = [∀yφ(x, y) | x]

and Σ〈x|x,y〉 is the map given by

[φ(x, y) | x, y] 7−→ [∃v∃w(v = x⊗ φ(v, w)) | x] = [∃yφ(x, y) | x]

In words, (universal/existential) quantification along the jth variable is
(right/left) adjoint to projection onto all but the jth component.

As a second example of an important class of special cases, consider a
diagonal T1 → T2; e.g. 〈xx | x〉. Note that Σ〈xx|x〉 is the map

[φ(x) | x] 7−→ [∃v(x = v ⊗ y = v ⊗ φ(v)) | x, y].

If we examine in particular the action of Σ〈xx|x〉 on the class [t | x], we see
that

[t | x] 7−→ [∃v(x = v ⊗ y = v ⊗ t) | x, y]
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It’s not immediately obvious this is at all interesting. To see that it is, first
notice that it’s not hard to show that [∃v(x = v⊗y = v⊗ t) | x, y] ≤ [x = y |
x, y]. This is neat, but is made much more neat by the fact that the converse
inequality also holds!

To see this, first do a bit of fiddling on a napkin and verify that (i)
⊢ 〈(x = x⊗ x = y) → (x = x ⊗ y = x) | x, y〉. Then, by the following path,
observe that (ii) ⊢ 〈x = y → (x = x⊗ x = y) | x, y〉:

• First, by A12, ⊢ 〈x = x→ ((x = x→ ¬x = y) → ¬x = y) | x, y〉.

• Next, by A16, ⊢ 〈x = x | x, y〉.

• So ⊢ 〈(x = x→ ¬x = y) → ¬x = y | x, y〉, and thus, via fiddling,

• ⊢ 〈x = y → (x = x⊗ x = y) | x, y〉, which is what we were after.

With (i) and (ii) on hand, it’s smooth sailing: just combine them to get
⊢ 〈x = y → (x = x ⊗ y = x) | x, y〉, then return to the trusty old napkin to
verify that ⊢ 〈(x = x ⊗ y = x) → ∃v(x = v ⊗ y = v) | x, y〉 as well, from
which a bit of elbow grease finishes the job.

Thus identity claims are exactly what we get by evaluating the adjoint to
the diagonal at t. So both of the distinguished functors we identified above
have adjoints that correspond to distinguished logical concepts: quantifica-
tion in the case of projections and identity in the case of the diagonal.

7.1 A Brief Discussion of Identity

As we mentioned, the theory of identity we adopted is quite strong. Following
the discussion in [5], we can see reasons to worry the theory is too strong
by making the following observations. First, recall that formulas of the form
P → (Q → P ) are, in Dunn’s words ‘dread relevance destroyers’. Now
observe that we can quite easily prove something of roughly this very form
in a few simple steps from our A17:

• Begin with the axiom 〈(x = y ⊗ u = v) → u = v | x, y, u, v〉.

• Notice that by the definition of ⊗ and axiom A9 (contraposition), ⊗ is
commutative.

• So ⊢ 〈(u = v ⊗ x = y) → u = v | x, y, u, v〉.
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• But then by Lemma 4, ⊢ 〈u = v → (x = y → u = v) | x, y, u, v〉 as we
feared.

In addition to Dunn’s work, the two most detailed philosophical examinations
of identity in quantified relevance logics that we are aware of are undertaken
by Ed Mares (see [17]) and Philip Kremer (see [10], [11], [12], and [13].)
Both Mares and Dunn aggressively restrict the identity axioms we’ve given.
Whatever its merits, we won’t pursue this approach here as it would destroy
the adjointness features we’ve just identified.

Since we don’t pursue this strategy, we owe a defense of our theory of
identity. The defense comes in three parts. The first part of our defense
draws on Philip Kremer’s examination of Dunn’s theory in [12]. It’s worth
our while to quote from this paper at length:

[Dunn’s central move] is the rejection of p → (x = c → p) based
on its similarity to p → (q → p). The appropriateness of this re-
jection depends on the intended interpretation of identity, though
Dunn’s motivation does not explicitly rely on any particular in-
terpretation. Rather, it relies on our typographical intuitions.

Typographical intuitions are useful and underlie much of the mo-
tivation for relevance logic. But these intuitions are defeasible.
Consider the atomic propositional constant, t, which is often
added to relevance logics. t is standardly interpreted as the con-
junction of all theorems. Despite the typographical similarity of
p→ (t → p), to p→ (q → p) the former is accepted as a theorem
of the relevance logic R: we rely in the end on the interpretation
of the new logical vocabulary.

Like ‘t’, ‘=’ is a piece of logical vocabulary, open to interpre-
tation. . . The moral to be drawn is that Dunn’s notion of rele-
vant predication implicitly relies on some weaker interpretation
of identity.[12, pp.40ff]

There are two points being made here that are worth sussing apart. The
first is roughly the following: Dunn has observed that our choice of identity
axiom commits us to something that is typographically quite like something
we don’t like. In particular, u = v → (x = y → u = v) | x, y, u, v is quite
like P → (Q → P ). Since we fear the latter we should fear the former. But
notice that reason to fear and reason to back down are different things. So
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we might take Dunn’s observation as gesturing in the direction of a need for
caution without taking it to be a reason to stop altogether.

The second point we take Kremer to be making is a complaint about the
theory of relevant predication itself. What Kremer seems to be pointing to
is something roughly circular in Dunn’s reasoning. In particular, Dunn is
attempting to work out a theory of relevant predication. Relevant predica-
tion, for Dunn, seems to have something to do with, as Kremer puts it ‘what
follows relevantly from claims of the form x = y’.14 But in order to keep rel-
evant and ordinary predication from collapsing into one another, Dunn has
to interpret ‘=’ in a nonstandard way. And the only motivation available for
such a move is that it’s what relevant predication requires. Thus relevant
predication is grounded in some way on features of relevant identity which
is itself grounded in some way on relevant predication again. Working the
details out here will reveal whether there is something genuinely circular or
not. We take it, however, that this leaves us with reason to be concerned
about relevant predication.

However, at the end of the day, Kremer comes down on the side of Dunn’s
theory of relevant predication. So we’d best not hang our whole defense on
Kremer’s worries, since Kremer, at least, thinks Kremer’s worries can in fact
be addressed. So we move on to other proposals.

The most straightforward of these is this: there is more than just identity
at play in our derivation of a problematic formula using our strong theory of
identity. In particular, the derivation also relied on ⊗ being commutative.
Thus, were we to reject this commutativity, we could perhaps be safe.

We had to qualify the final sentence here with ‘perhaps’ because there is
a worry to be had: the theory of identity we want is one in which identity
arises, as it does here, from the evaluation at t of an adjoint to the diagonal.
Whether we can accomplish this at all or with a theory such as ours once
we reject commutativity for ⊗ is something we have not investigated.15 But
it seems to us that if evaluation at t of an adjoint to the diagonal gives us,
in R, an unacceptably strong theory of identity, perhaps we should lay the
blame not on using the thing we get by evaluation at t of an adjoint to the
diagonal, but on R.

All of this, of course, depends for its plausibility on some reason for taking

14[12, p.38]
15The results in [18] seem to suggest that things can be worked out. But this at best

takes us from the realm of complete guesses to the realm of educated guesses.

Australasian Journal of Logic (18:5) 2021, Article no. 13



559

seriously evaluation at t of an adjoint to the diagonal as giving us the right
account of identity. So our final defense of our theory of identity is a defense
of this account itself. We offer two considerations in favor.

First: regarding identity as arising from an adjoint functor in this way
gives a simple unification of the standard properties of identity. Because
Σ〈xx|x〉 is a left adjoint to S〈xx|x〉, reflexivity arises as the unit natural trans-
formation e1 ≤ S〈xx|x〉Σ〈xx|x〉(e1), corresponding to the implication

〈t → x = x | x〉

Similarly, Leibniz’s law, in the formulation “If x is equal to something with
the property φ, then x has φ” arises as the counit natural transformation
Σ〈x|x〉S〈x|x〉([φ | x]) ≤ [φ | x], corresponding to the implication

〈∃v(x = v ⊗ φ(x/v)) → φ | x〉

So, both the standard introduction and elimination properties of identity are
encapsulated by the adjoint functor presentation. This is certainly striking.
More concretely, we can point out that it gives a simple and unified expla-
nation of the behavior of the notion of identity, and that that explanation
dovetails perfectly with a larger body of theory (namely category theory).
So, there are strong abductive considerations in favor of this approach to
identity.

Second: regarding identity as arising from an adjoint functor in this way
clarifies the status of identity as a purely logical notion. It does so in a number
of ways. But we will mention only one: unit/counit symmetry. The point
here is that the adjoint functor presentation exhibits a profound symmetry
between identification and quantification that would be quite difficult to see
in any other way. Identity emerges from the left adjoint to the substitution
induced by our diagonal map, 〈xx | x〉. Existential quantification emerges
from the left adjoint to substitution induced by projection, for example 〈x |
x, y〉. However, projection and the diagonal are, from the right perspective,
symmetrical operations.

Recall that the product on a category C with finite products, regarded
as a bifunctor P : C × C → C, is the right adjoint to the diagonal functor
D : C → C × C, mapping each object X in C to a pair 〈X,X〉 in C × C. So
we have a unit natural transformation η• : I → PD, where I is the identity
functor, and a counit ε• : DP → I. Concretely, these work out to ηX : X →
X × X and ε〈X,Y 〉 : 〈X × Y,X × Y 〉 → 〈X, Y 〉. Inspecting carefully, you
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will find that the components of the counit ε〈X,Y 〉 are the projections π1, π2
associated with the product, and the unit ηX is the diagonal map δ.16

So, the argument would be this: existential quantification is a purely
logical notion. But existential quantification is nothing but the left adjoint
to substitution along a component of the counit of the adjunction D ⊣ P.
Similarly, identification is nothing but the left adjoint to substitution along
the unit of the adjunction D ⊣ P. So identification should also be admitted
as purely logical—to do otherwise would be to draw the logical/non-logical
boundary capriciously.

8 Semantics, Generally

We have our canonical model—the syntactic hyperdoctrine S—in hand. We
now turn to building the rest of our semantic theory. Recall that our plan was
to do this by ‘abstracting away’ from the particular features of the canonical
model. We begin the process as follows:

Definition 8.1. A De Morgan monoid pseudohyperdoctrine is a contravari-
ant functor H : B −→ Pos such that17

1. The image of H is in the category of De Morgan monoids, in the sense
that for each type Tn, H(Tn) is a De Morgan monoid and for each term
〈τ | X〉, H〈τ |X〉 is a De Morgan monoid homomorphism;

2. Each H〈τ |X〉 has a right adjoint Π〈τ |X〉.

We leave it to the reader to verify the following fact:

Fact 8.2. In any De Morgan monoid pseudohyperdoctrine, the map Σ〈τ |Xn
1
〉

defined by H(Tn) ∋ hn 7−→ ¬Π〈τ |X〉(¬hn) is left adjoint to H〈τ |X〉.

For full hyperdoctrines, we will require two more features that seem im-
portant to the proper functioning of the syntactic hyperdoctrine, but which

16This has the nice consequence that properties like π1 ◦ δ = Id emerge simply from
standard results on adjunctions (in this case, by the unit-counit equations).

17We take a fairly liberal view about who, exactly, Pos is. In particular we suppose
that different De Morgan monoids—even those with the same underlying posets—occur as
different objects in Pos. If you are scandalized by our libertinism, please feel free to view
each pseudohyperdoctrine as coming equipped with a section of the appropriate forgetful
functor, and to make the appropriate adjustments to what follows.
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are easy to overlook. The first two are analogues of our axioms A14 and A15.
Let hn ∈ H(Tn) and hlen(τ) ∈ Hlen(τ). Then

3. Π〈τ |Xn
1
〉

(

H〈τ |Xn
1
〉(hlen(τ)) ⊔ (hn)

)

≤ (hlen(τ)) ⊔ Π〈τ |X〉(hn)

4. Π〈τ |Xn
1
〉

(

H〈τ |Xn
1
〉(hlen(τ))⊠ (hn)

)

≤ (hlen(τ))⊠ Π〈τ |X〉(hn)

Next, (5), we suppose that whenever all of it makes sense, the following
diagram commutes:18

H(Tm+1)

Π
〈Xm

1
|Xm+1

1 〉
//

H
〈τxn+1|X

n+1
1 〉

��

H(Tm)

H
〈τ |Xn

1 〉
��

H(Tn+1) Π
〈Xn

1
|Xn+1

1 〉
// H(Tn)

Roughly, this says that substitutions commute with quantification. Con-
cretely, note that if [φ | Xm+1

1 ] ∈ H(Tm+1), then Π〈Xm
1
|Xm+1

1 〉[φ | Xm+1
1 ] =

[∀xm+1φ | Xm
1 ], and thus by the top path, we end up at [∀xm+1φ(X

m
1 /τ) |

Xn
1 ]. When we follow the other path, we first compute H〈τxn+1|X

n+1

1 〉[φ |

Xm+1
1 ] = [φ(Xm

1 /τ)(xm+1/xn+1) | Xn+1
1 ]. Composing this with ΠXn

1
|Xn+1

1

gives [∀xn+1φ(X
m
1 /τ)(xm+1/xn+1) | X

n
1 ]. Comparing these two results (with

a few added parentheses as below) makes clear that they are in fact the same:

[(∀xm+1φ) (X
m
1 /τ) | X

n
1 ] = [∀xn+1

(

φ(Xm
1 /τ)(xm+1/xn+1)

)

| Xn
1 ]

Finally, (6) we need a ‘Frobenius Reciprocity’ condition:

Σ〈τ |Xn
1
〉

(

H〈τ |Xn
1
〉(hlen(τ))⊠ hn

)

= hlen(τ) ⊠ Σ〈τ |Xn
1
〉(hn)

Note that this is essentially nothing more than a strengthened, existential
version of the confinement axiom A14.

Definition 8.3. A De Morgan monoid hyperdoctrine is a De Morgan pseu-
dohyperdoctrine that satisfies (3)-(6)

18There is a more general version of this that is typically included in this sort of semantic
theory under the name of the Beck-Chevalley condition. We include only the following
limited form, for the simple reason that it’s all we need and it’s easier to grasp than is the
more general option.

Australasian Journal of Logic (18:5) 2021, Article no. 13



562

Every De Morgan monoid hyperdoctrine ‘comes equipped’ with a full
interpretation of the vocabulary of our language. More to the point, for each
De Morgan monoid hyperdoctrine, there is a corresponding function that
maps formulas 〈φ | X〉 to semantic values J〈φ | X〉K. Since pairing double
brackets with pointy brackets is terribly ugly we will tend to drop the pointy
brackets in the remainder. But the reader is encouraged to periodically
meditate on the fact that they’re implicitly present. At any rate, if H is a
De Morgan monoid hyperdoctrine and en is the identity element in H(Tn),
then J−K is determined as follows:

• Jτ = σ | XK = H〈τσ|X〉(Σ〈xx|x〉(e1)).

• Jt | XK = ecard(X).

• J∼φ | XK = ¬Jφ | XK

• Jφ ∧ ψ | XK = Jφ | XK ⊓ Jψ | XK

• Jφ ∨ ψ | XK = Jφ | XK ⊔ Jψ | XK

• Jφ→ ψ | XK = ¬ (Jφ | XK ⊠ ¬Jψ | XK)

• J∀xn+1φ | Xn
1 K = Π〈Xn

1
|Xn+1

1
〉Jφ | Xn+1

1 K

Definition 8.4. We say that 〈φ | X〉 is valid in H when ecard(X) ≤ Jφ | XK
and is valid simpliciter when it is valid in H for every H .

Theorem 8.5. If 〈φ | X〉 is valid, then ⊢ 〈φ | X〉.

Proof. Notice that ⊢ 〈φ | X〉 iff [t | X ] ≤ [φ | X ]. Thus if 6⊢ 〈φ | X〉, then
〈φ | X〉 is not valid in the canonical model, and thus not valid. Contraposing
gives the result.

Finally, before proving soundness we state the following lemma:

Lemma 8.6. For any De Morgan monoid hyperdoctrine H, whenever it all
makes sense, H〈τ |X〉Jφ | Y K = JS〈τ |X〉〈φ | Y 〉K.

Theorem 8.7. If ⊢ 〈φ | X〉, then 〈φ | X〉 is valid.
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Proof. By induction on the length of the proof witnessing ⊢ 〈φ | X〉. We
examine only A13, A16, and A17. The reader interested in working out the
details for the other axioms and rules may want to consult [18] or [23] for
hints.

[A13] To start, do a bit of fiddling to see that
ecard(X) ≤ J∀xn+1φ → φ(xn+1/y) | X

n
1 K iff H〈Xn

1
,y|Xn

1
〉J∀xn+1φ | Xn+1

1 K ≤

H〈Xn
1
,y|Xn

1
〉Jφ | Xn+1

1 K. Next, notice that by adjointness,

H〈Xn
1
|Xn+1

1
〉Π〈Xn

1
|Xn+1

1
〉Jφ | Xn+1

1 K ≤ Jφ | Xn+1
1 K. On the other hand we also

have that

H〈Xn
1
|Xn+1

1
〉Π〈Xn

1
|Xn+1

1
〉Jφ | Xn+1

1 K = H〈Xn
1
|Xn+1

1
〉J∀xn+1φ | Xn

1 K

= J∀xn+1φ | Xn+1
1 K

And from here we simply have to apply H〈Xn
1
,y|Xn

1
〉 to both sides to get what

we want.

[A16] Notice that 〈ττ | Xn
1 〉 = 〈x1x1 | x1〉 ◦ 〈τ | Xn

1 〉. Thus we can compute
as follows:

Jτ = τ | Xn
1 K = H〈ττ |Xn

1
〉(Σ〈x1x1|x1〉(e1))

= H〈τ |Xn
1
〉(H〈x1x1|x1〉(Σ〈x1x1|x1〉(e1)))

Thus en ≤ Jτ = τ | Xn
1 K since (a) Σ〈x1x1|x1〉 is left adjoint to H〈x1x1|x1〉 and (b)

H〈τ |Xn
1
〉 is a De Morgan monoid homomorphism.

While we’re here, it’s worth noting that the converse inequality holds
as well. To see this, note that since e1 ≤ H〈x1x1|x1〉(e2), adjointness gives
Σ〈x1x1|x1〉(e1) ≤ e2. Adjointness also gives that

Σ〈ττ |Xn
1
〉(H〈ττ |Xn

1
〉(Σ〈x1x1|x1〉(e1))) ≤ Σ〈x1x1|x1〉(e1).

Thus we have Σ〈ττ |Xn
1
〉(H〈ττ |Xn

1
〉(Σ〈x1x1|x1〉(e1))) ≤ e2, which is to say that

Σ〈ττ |Xn
1
〉Jτ = τ | Xn

1 K ≤ e2. One last application of adjointness then gives
Jτ = τ | Xn

1 K ≤ H〈ττ |Xn
1
〉(e2) = en. Together with the previous result we thus

have that Jτ = τ | Xn
1 K = en, which we will need in the sequel.

[A17] To begin, note that for any hn ∈ H(Tn), we have

H
〈X2n

n+1
|X2n

1
〉
(hn)⊠ Σ〈Xn

1
Xn

1
|Xn

1
〉(en) = Σ〈Xn

1
Xn

1
|Xn

1
〉(H〈Xn

1
Xn

1
|Xn

1
〉(H〈X2n

n+1
|X2n

1
〉
(hn))⊠ en)

= Σ〈Xn

1
Xn

1
|Xn

1
〉(hn)

= Σ〈Xn

1
Xn

1
|Xn

1
〉(H〈Xn

1
Xn

1
|Xn

1
〉(H〈Xn

1
|X2n

1
〉(hn)))

≤ H〈Xn

1
|X2n

1
〉(hn)
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Where the first equality follows from Frobenius reciprocity and the inequality
comes from adjointness. After commuting the first term in the resulting
inequality, we continue the computation as follows:

Σ〈Xn
1
Xn

1
|Xn

1
〉(en)⊠H

〈X2n
n+1

|X2n
1

〉
(hn) ≤ H〈Xn

1
|X2n

1
〉(hn)

so

H〈σXn
2
τXn

2
|Xn

1
〉(Σ〈Xn

1
Xn

1
|Xn

1
〉(en))⊠H〈σXn

2
τXn

2
|Xn

1
〉(H〈X2n

n+1
|X2n

1
〉
(hn)) ≤

H〈σXn
2
τXn

2
|Xn

1
〉(H〈Xn

1
|X2n

1
〉(hn))

so

H〈σXn
2
τXn

2
|Xn

1
〉(Σ〈Xn

1
Xn

1
|Xn

1
〉(en))⊠H〈τXn

2
|Xn

1
〉(hn) ≤ H〈σXn

2
|Xn

1
〉(hn)

From here, observe first that

Σ〈Xn
1
Xn

1
|Xn

1
〉(en) = Σ〈Xn

1
Xn

1
|Xn

1
〉Jt | X

n
1 K

= JXn
1 = X2n

n+1 | X
2n
1 K

With the second equality following by an argument similar to the one imme-
diately before §7.1. Thus we have that

H〈σXn
2
τXn

2
|Xn

1
〉(Σ〈Xn

1
Xn

1
|Xn

1
〉(en)) = H〈σXn

2
τXn

2
|Xn

1
〉(JX

n
1 = X2n

n+1 | X
2n
1 K)

= JσXn
2 = τXn

2 | Xn
1 K

= Jσ = τ ⊗ x2 = x2 ⊗ · · · ⊗ xn = xn | Xn
1 K

= Jσ = τ | Xn
1 K

With the second equality following from Lemma 8.6 and the fourth from the
just-verified fact that Jxi = xi | X

n
1 K = en. So for any hn ∈ H(Tn) we have

that
Jσ = τ | Xn

1 K ⊠H〈τXn
2
|Xn

1
〉(hn) ≤ H〈σXn

2
|Xn

1
〉(hn)

Thus, in particular, if φ | Xn
1 is well formed, then we have

Jσ = τ | Xn
1 K ⊠H〈τXn

2
|Xn

1
〉Jφ | Xn

1 K ≤ H〈σXn
2
|Xn

1
〉Jφ | Xn

1 K

From which it follows that en ≤ J(σ = τ ⊗ φ(x1/τ)) → φ(x1/σ) | X
n
1 K.19

19If you squint at this proof, you will see that the system we’ve defined ‘wants’, in some
sense, for the induced notion of identity at the type Tn to be a notion of identity for
n-ary terms. We think this is an interesting-enough-for-a-footnote observation, hence this
footnote.
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9 Arithmetic

What we have, at the end of the day, is a minimal theory of arithmetic for rel-
evance logic, with a semantics smoothly generalizing the algebraic semantics,
via De Morgan monoids, for propositional relevance logic. How minimal is
minimal? Let’s take a moment to consider this question. We won’t attempt
to be maximally precise here, but only to give a general sense of how things
stand.

Our theory makes no effort to capture standard features of the successor,
such as 0 6= 1. Indeed, one can construct a relevant hyperdoctrine using the
Boolean algebras induced by a classical one-element model of our vocabulary
to witness that 〈0 6= 1 | ∅〉 is not valid. So, we don’t build in even some of
the basic axioms of Robinson arithmetic.

On the other hand, given a unary term σ | X , we can have the formula
〈(σ = y⊗σ = z) → y = z | X, y, z〉 as an instance of A17 (setting φ to v = z).
It follows fairly directly that equations where a pr term flanks a free variable
define provably total functions; since for each primitive recursive function f
we have a pr term such that

⊢ 〈pr1[σ | X ; τ | Y ](n0, . . . , ni) = m〉 if and only if f(n0, . . . , ni) = m

there is a sense in which our theory has more provably total functions than
Robinson arithmetic—it has at least as many as IΣ0

1. However, we clearly
fall short of IΣ0

1 in other ways. In particular, we do not have any meaningful
induction. For example,

〈∀x∀y∀z((x + y) + z = x+ (y + z)) | x, y, z〉

(with the + given by the appropriate pr term) is not valid in the syntactic
hyperdoctrine, although the analogous statement is provable even in I∆0

0.
So, “minimal” is apparently, morally speaking, subtly incommensurable

with Robinson’s arithmetic but below IΣ0
1. Our theory’s nearest relative

might be something like the system PRE (“primitive recursive equations”)
described in Friedman’s [6]. PRE represents primitive recursion via terms,
as we do, although the background logic is classical and the representation
takes recursion equations as axioms rather than using a rewrite system.

This analogy suggests a conjecture. Friedman proves that PRE + 0 6=
1 + x 6= 0 → ∃y(S(y) = x), when closed under an induction rule of the form
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F (0) = G(0) F (x) = G(x) → F (S(x)) = G(S(x))

F (x) = G(x)

has the strength of full PRA (that is, one recovers induction for open quantifier-
free formulas). A very slight weakening of Friedman’s induction rule is Good-
stein’s induction rule:

F (0) = G(0) H(x, F (x)) = F (S(x)) H(x,G(x)) = G(S(x))

F (x) = G(x)

and, Goodstein’s rule figures prominently in the axiomatization of equational
PRA (see [9] for details). But as noted above (see footnote 5), adjusting our
type theory to make T1 a full PNNO, rather than a weak PNNO (with cor-
responding modifications to our rewrite rules) would underwrite a version of
Goodstein’s rule. So the conjecture is this: adjusting our theory to incorpo-
rate a full PNNO at the level of types will result in the validity of an axiom
of (quantifier free) induction.

A more ambitious conjecture might even go as follows. Tweaking our the-
ory so that the category of types and terms is Cartesian closed and contains
a natural numbers object would yield a term rewriting system closely analo-
gous to Gödel’s system T .20 Given the close relationship between system T
and arithmetic at the level of PA and HA, we might hope in this context to
recover full arithmetical induction. Continued exploration in this direction,
with richer and richer categories of types and terms in the background, is the
program that we sketched in the introduction of this essay, leading us from
the present R

1

2
# to something that could play the role of a genuine R# 1

2 .
The extremely broad picture here is something like this. One can imagine

a whole program of non-classical arithmetic, built on two pillars. The first
pillar would be a conception of consequence—no matter how non-classical—
as a matter of the structure of fibers in a hyperdoctrine. The second pillar
would be a conception of arithmetical computation as properly represented
by rewrite rules at the level of syntax, with various levels of arithmetical
strength (including perhaps various forms of induction) given by the vari-
ous possible levels of structure in an underlying syntactic category of types
and terms. Such a program would cleanly factorize the contributions to
our overall arithmetic of our logical principles, on the one hand, and of our
computational resources, on the other.

In the above we’ve found one illustration (inspired by Meyer’s remarks) of
how such a program might be carried out. We hope more will be forthcoming.

20For details, see [1]. For the original presentation, see [8].
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