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Abstract

We assess Meyer’s formalization of arithmetic in his [21], based on
the strong relevant logic R and compare this with arithmetic based
on a suitable logic of meaning containment, which was developed in
Brady [7]. We argue in favour of the latter as it better captures
the key logical concepts of meaning and truth in arithmetic. We also
contrast the two approaches to classical recapture, again favouring our
approach in [7]. We then consider our previous development of Peano
arithmetic including primitive recursive functions, finally extending
this work to that of general recursion.

1 Introduction

Bob Meyer, together with Richard Routley/Sylvan, was largely responsible
for the outstanding international reputation of Australian logic in the 1970s
right up to his untimely demise in 2009. He has been a huge influence on
the Australian logic community, having had close relationships with many
logicians including myself. It was indeed an honour to have had him as a close
friend, and to contribute to this journal issue, publishing his incomplete works
on relevant arithmetic. Although my paper is generally critical in nature, I
wish to put on record my admiration of his sheer inspiration, determination
and diligence in his carrying out the work in Meyer [21] and [22].

The most important requirement of a logic is its application, though
there is much good technical work in setting up such a logic in the first
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place. And, the application to arithmetic is one of two key testing grounds
for a logic, differing somewhat from the other testing ground, viz. set theory.
Meyer’s great effort on this in [21] takes the application of the logic R a
very long way whilst showing up the complexities of the enterprise. Further,
most logicians would expect the familiar recursive parts of arithmetic to be
simply consistent and there has always been a keenness to try and show
the consistency of arithmetic as best as is possible, despite Gödel’s second
theorem, which states that the full classical arithmetic cannot be shown to be
simply consistent by using finitary methods. Meyer, over a number of years,
had tried to prove the admissibility of Ackermann’s γ rule, A,∼A ∨B ⇒ B
for relevant arithmetic,1 from which the simple consistency of this arithmetic
would then follow, as was proved on p. 72 of Meyer [22]. This result assumes
the non-triviality of relevant arithmetic, which was proved by Meyer in [24].
Alas, Friedman provided a counter-example to this admissibility result in
Friedman and Meyer [16]. Nevertheless, we appreciate all of Meyer’s work,
making an effort in this very interesting direction.

2 The Central Role of Meaning in Logic

We start with the roles of meaning in logic and subsequently truth in logic,
though much has been said about this in Brady’s earlier works. (See Brady
[8], as a starting point.) Our brief account just serves to clarify some points
in the area, in preparation for a critique of Meyer’s approach to arithmetic.
Logical formalization has always attempted to capture the meanings of sen-
tences and the words in them, as best as it can. This is what we have taught
our students in our introductory logic classes. Meaning must play a key role
in formalization and this should naturally include the meanings of the log-
ical words: ‘and’, ‘or’, ‘not’, ‘implies’ and/or ‘entails’, ‘for all’, ‘for some’.
In particular, ‘A entails B’ would need meaning analysis in proceeding from
antecedent A to consequent B as it is used when B follows from A as a mat-
ter of necessity or certainty. ‘A implies B’, on the other hand, is commonly
used for truth-preservation, of a purely classical sort or subject to some con-
dition such as relevance, say for the logic R of relevant implication. We will
formally introduce the ‘→’ of entailment in §4 and we will consider the issue
of whether ‘implies’ should be a connective or not in §5.

1See Ackermann [1] for the first full relevant logic, which includes the γ rule as primitive.
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Before proceeding in further detail, we briefly consider some of the major
alternatives to our focus on meanings. First, relevance in the form of the
Relevance Condition (if A→ B is a theorem then A and B share a common
sentential variable) is not a suitable concept to base a logic on. It acts as a
necessary condition for a good logic, but we need both necessary and sufficient
conditions to capture a suitable concept. Taken alone, relevance is not even
transitive. It is not even a clear concept by itself, as relevant logics such
as R have to adhere to its logical rules as well as the Relevance Condition
to make a somewhat sensible logic. And, a clear logical concept is needed
in order to make accurate applications of the logic, such applications not
only conforming to concepts of the logic but also to the non-logical concepts
introduced.

The standard relevant logic R is justified in practice by its being a strong
system satisfying the Relevance Condition with a neatly presented natural
deduction system. This neatness is superficial since its intrinsic complexity is
shown up by its undecidability.2 We will have more to say on the application
of R in §6, when examining Meyer’s arithmetic. In the meantime, let us
consider the following example from Brady [4], p. 158, which is indeed due to
Meyer: m = n→ l = l, for natural numbers l, m and n. This implication is
clearly irrelevant in an extended arithmetical sense, but it can be proved using
transitivity and symmetry of ‘=’, together with axioms m = n → m′ = n′

and m′ = n′ → m = n in Meyer’s relevant arithmetic R].
Second, information has been used to motivate relevant logics by Mares

in [18] and [19]. However, information is a derivative concept, such as true
content, where content is taken to be an analytic closure of a sentence or
set of sentences, as argued for in Brady [9]. That is, information would be
dependent on both truth and meaning. However, one should point out that
Dunn does not agree with Brady on the inclusion of truth and would prefer
information to be just contents or ranges. (See Dunn [15] and, for contents
and ranges, see Brady [5].) However, both of these concepts are derivatives
of meaning.

Further, Meyer, in his later years, considered the positive basic logic B+,
based on a comparison with combinators, but this was given a technical
rather than a conceptual justification.

So, after considering the above alternatives, we are left with the key logical
concepts of meaning and truth, the latter being considered in §3 below as it

2See Urquhart [31] for the proof of the undecidability of the logic R.
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applies to a logic of meaning containment. However, we need to separate out
two central uses of meaning in logic in more detail, thus enhancing its general
use in logical formalization, as discussed above. First, we use meaning to
obtain the concept of entailment represented by the connective ‘→’ of relevant
logic. This is in the form of meaning containment, which provides the natural
necessary and sufficient condition for a good relevant logic which satisfies
transitivity, as it should. Indeed, logic is about capturing concepts rather
than an exploration of what might be technically interesting combinations
of axioms. Moreover, the concept of meaning containment enables one to
capture intensional reasoning, as opposed to extensional reasoning which is
more suited to classical logic and the use of rules of inference, the intertwining
of which can be seen in the axiomatization and development of arithmetic in
Brady [7] and in §7 below. This leads us to the next usage of meaning.

The second use of meaning is in valid deductive arguments, which require
the certainty of the conclusion, given the premises. Such certainty is ensured
by meaning analysis, usually from the premises, but it can also just occur
from within the conclusion, making it an analytic truth. (There is more on
this point in §3 to follow.) Valid deductive arguments are represented by rules
of inference in an axiomatic system and so these rules also require meaning
analysis to derive their conclusions from their premises. However, this needs
to be distinguished from meaning containment, which is represented by a
connective. There are two key differences here. The obvious one is that
rules require their premises to be derivable before the rule can be activated
and the conclusion drawn. If a premise is not derived the rule cannot be
applied. There is no such requirement for a connective, which must take
into account the prospect of its antecedent being false, as well as true. So,
the meaning containment must allow for the antecedent to be either true or
false. (See the discussion regarding the axiom-form A & (A → B) → B
versus the Modus Ponens rule, A,A→ B ⇒ B in Brady [4] and [5].) The
second difference is that analytic truths can be added as extra premises to
a rule which can then enhance its deductive base, this addition being made
possible by our allowance of analytic truths to be the conclusions of valid
deductive arguments. (This is discussed further in §3 below.) This is of
particular interest for our axiomatization of arithmetic in Brady [7] and in §7
below, where analytic truths involving numerical structure need to be taken
into account. We note, by way of comparison, that analytic truths cannot
always be added as extra antecedents of entailments in relevant logics, as
their removal can induce invalidity.
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3 The Role of Truth in a Logic of Meaning

Containment

We start by briefly giving some clarification of the concepts of truth, proof,
certainty, necessary truth and analytic truth, and their inter-relations, as
applied to a logic of meaning containment. For truth, we start by referring to
the argument in Brady [10] and elsewhere that the proof-theoretic concepts of
disjunction and existential quantification are not precisely captured in truth-
theoretic semantics, which is based on formula induction. The disjunction
A∨B requires a witness A or a witness B for each world of a truth-theoretic
semantics, in order to perform the induction. However, this is not required in
the proof theory, where the induction is on proof-steps, as can especially be
seen in a Fitch-style natural deduction setting by the general shape of the ∨E
rule: if A ∨Ba, A→ Cb and B → Cb then Ca∪b, with possible conditions on
the indices a and b if needed. (See Brady [3] for Fitch-style natural deduction
systems for relevant logics.) Note that in applied settings such as arithmetic,
it is not Cut-free Gentzen systems that are used but Hilbert-style formal
deduction, with natural deduction easily worked into it. (See Mendelson
[20].) Also, note that worlds of truth-theoretic semantics mostly contain non-
theorems and thus readily correspond to sub-proofs rather than the main
proof of a natural deduction system. The similar addition of existential
witnesses is required in the canonical model of the Henkin-style completeness
proof of the classical predicate calculus. (See Henkin [17].) Further, the
logic MC of meaning containment that follows in §4 should not contain the
distribution axiom, A & (B ∨C)→ (A & B)∨ (A & C), which is needed for
the relevant logics which are given a Routley-Meyer semantics. (See Routley,
Meyer, Plumwood and Brady [28] for Routley-Meyer semantics and see Brady
and Meinander [14] for the removal of the distribution axiom.) So, our truth
cannot be the truth of this truth-theoretic semantics. However, we can and
do use the content semantics of Brady [4] and [5], which is algebraic in style
and thus relates closely to the proof theory, and it is proof theory that logic
is about. (See Brady [10] and [12] on this last point.) Content semantics
is ideal for our purposes, as it has a closer relationship to the proof theory
than other algebraic-style semantics which generally have a closer relation to
algebraic practice in mathematics.

Necessary truth is usually taken to be truth in all possible worlds but,
as argued above, worlds do not fit into our semantical framework. However,
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analytic truths do fit into the framework of content semantics, as contents are
appropriately interpreted as analytic closures in its canonical modelling. So,
we take necessary truths to be analytic and modalities can be added to our
logic to capture the various additional concepts that require a single-place
operator.

The key use of certainty in logic is the certainty of the conclusions of
valid deductive arguments, in contrast to strong inductive arguments which
have high probability. Such certainty is guaranteed by meaning analysis, as
any other analysis would fall short of certainty, given our view on the main
contender, necessity.

Truth is used in our content semantics to determine logical truths and the
validity of arguments, in the standard manner of an algebraic-style seman-
tics. Nevertheless, meaning analysis is still used in deriving conclusions of
arguments from premises, using the meanings of logical words and any non-
logical words appearing in non-logical axioms or background information.
Further, any sentence can still imply an analytic truth as meaning analysis
is used in determining such a truth. This is borne out in the arithmetic of
Brady [7], where theorem suppression is quite reasonably allowed in a set of
premises, i.e. if A, T ⇒ B then A⇒ B, where T is a theorem, this being a
deductive equivalent of A⇒ T . Note that theorem suppression is in keeping
with the definition of a valid deductive argument as discussed in §2. Note
too that this is not classical logic, where any sentence can imply a contin-
gent truth and a contingent falsehood can imply any sentence. So, whilst
every such valid derivation of a conclusion from premises (in sentential logic,
anyway) is truth-preserving, not every truth-preservation would yield a valid
argument, as meaning analysis must be used to establish a derivation from
truths to another truth. (We will see an example of such meaning analysis
in §6, viz. for the rule, s = t ⇒ s′ = t′.) As we will see in §4, all the rules
of the logic MC of meaning containment preserve truth in content semantics.
It should be noted, however, that the rule QR1 below of the quantified logic
MCQ preserves validity rather than truth.

4 The Logic MCQ of Meaning Containment

In accordance with earlier works, we set out our sentential logic MC of
meaning containment and its quantificational extension MCQ, with standard
bracketing conventions from Anderson and Belnap [2]. This is our standard
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logic for meaning containment, presented and argued for in Brady [5] in the
form of the logic DJd and then modified to MC in Brady and Meinander [14],
replacing the distribution axiom by the distribution rule through a strength-
ening of the meta-rule (see below). Note also that the logic MCQ− used in
Brady [7] for arithmetic is weaker in regard to its quantificational part, but
the sentential part remains the same.

Definition 1 (MC).

Primitives :

◦ ∼,&,∨,→.

Axioms.

1. A→ A.

2. A & B → A.

3. A & B → B.

4. (A→ B) & (A→ C)→. A→ B & C.

5. A→ A ∨B.

6. B → A ∨B.

7. (A→ C) & (B → C)→. A ∨B → C.

8. ∼∼A→ A.

9. A→ ∼B →. B → ∼A.

10. (A→ B) & (B → C)→. A→ C.

Rules.

1. A, A→ B ⇒ B.

2. A, B ⇒ A & B.

3. A→ B, C → D ⇒ B → C →. A→ D.

Meta-Rule.

1. If A,B ⇒ C then D ∨ A,D ∨B ⇒ D ∨ C.

Australasian Journal of Logic (18:5) 2021, Article no. 10



454

Note that the rule-form of distribution, A & (B ∨ C)⇒ (A & B) ∨ (A & C)
is derivable in MC, whilst its axiom-form is omitted, on account of its lack
of meaning containment. (See Brady and Meinander [14], where this point
is argued.)

The preservation of truth for the rules can be seen from the content
semantics of MC in Brady [4] and on p. 63 in Brady [5]. Note that the logic
of Brady [5] is DJd and that MC can be obtained from it by just removing
the distribution axiom, A & (B ∨ C) → (A & B) ∨ (A & C), and by
strengthening MR1 to apply to 2-premise rules, as given above, instead of
applying to 1-premise rules as for DJd.

We now add the quantifiers to yield MCQ. As in previous presentations,
we separate free and bound variables to simplify the conditions on the axioms.

Definition 2 (MCQ).

Primitives :

◦ ∀,∃.
◦ a, b, c, ... (free variables)

◦ x, y, z, ... (bound variables)

Axioms.

1. ∀xA→ Aa/x.

2. ∀x(A→ B)→. A→ ∀xB.

3. Aa/x→ ∃xA.

4. ∀x(A→ B)→. ∃xA→ B.

Rule.

1. Aa/x ⇒ ∀xA, where a does not occur in A.

Meta-Rule.
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1. If A,Ba/x ⇒ Ca/x then A, ∃xB ⇒ ∃xC, where a does not
occur in A, B, or C, and where QR1 does not generalize on
any free variable in the premises A and Ba/x in the derivation
A,Ba/x ⇒ Ca/x. The same condition then applies to the
premises A and B of the meta-rule MR1 of MC.

Note that the existential distribution rule, A & ∃xB ⇒ ∃x(A & B), is clearly
derivable, but the universal distribution rule, ∀x(A ∨ B) ⇒ A ∨ ∀xB, fails
as it does for intuitionist logic and for the same reasons. (Intuitionist logic
and MCQ differ only with respect to negation and implication/entailment.
Discussion of this point can be found in Brady [13].)

As can be seen on p. 74 in Brady [5], QMR1 preserves truth in the con-
tent semantics of MCQ, but QR1 preserves validity rather than truth. (We
make the above sentential adjustments to obtain the logic MCQ from DJdQ,
but also dropping the quantificational distribution axioms and using the 2-
premise rule in QMR1 of MCQ.) Nevertheless, we can say that QR1 preserves
metavaluational truth. As can be seen on p. 160 of Brady [5], the truth of
Aa/x for a given variable a, which then extends to that for all terms, enables
the metavaluational truth of ∀xA to be obtained.

5 Classical Recapture

There are “cut and dried” situations that do not allow for under-determination
or over-determination of concepts, which would then be just true or just false,
thus being suitable for classical logic to apply. However, these situations are
special, usually contrived to be such, and certainly do not include the whole
gamut of sentences which express everyday concepts that may indeed be
under- or over-determined in practice. More generally, these classical situa-
tions are a part of an overall logical theory containing non-classically deter-
mined sentences as well, which arise from this under- or over-determination.
(For discussion of under- and over-determination of concepts, see Brady [11]
and [13].)

The question then is: how do we best capture such classical systems or
subsystems within the context of a meaning-based logic such as MCQ? The
key classical properties which would apply to such systems or sub-systems
would appropriately be the LEM and the DS. Indeed, if a set of sentences A
are classical in that the LEM, of the form A ∨ ∼A, and the DS, of the form
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∼A,A ∨B ⇒ B, both hold for A then any formula built up from such a
set, using only ∼, &, and ∨, also satisfies the LEM and the DS (in the same
way), and are thus classical, using simple properties from a meaning-based
logic.3 So, we can build up a sentential classical system or subsystem from
such sentences. However, we do not have the universal distribution rule over
disjunction, ∀x(A ∨ B)⇒ A ∨ ∀xB, which would then prevent us from car-
rying through the argument extending the LEM to the two quantifiers, given
the LEM in the form Fa ∨ ∼Fa, for a free variable a. In applying this to
arithmetic, this will involve us in extra work, as will be indicated in §8. Nev-
ertheless, the argument for the DS does extend to the two quantifiers, given
the DS in the form ∼Fa, Fa ∨B ⇒ B, where a does not occur in B, but
as discussed below this does not matter very much as it turns out.4 Never-
theless, this does mean that any formula built using the classical connectives
and quantifiers from a set of formulae satisfying the DS will continue to do
so and also satisfy Ex Falso Quodlibet. (See note 3 for EFQ.)

Before going further, we note the difference between the proof-based clas-
sical system, as above, and the formal system as a whole being classical, which
is meta-theoretic in nature. The theorem-scheme LEM does not guarantee
that the whole system is negation-complete nor does the rule DS guarantee
that the whole system is simply consistent. However, with the priming prop-
erty (if A ∨ B is a theorem, then either A is a theorem or B is a theorem),
negation-completeness does follow from the LEM and, with non-triviality,
simple consistency does follow from the DS, with the help of some very sim-
ple inclusions in the logic. Nevertheless, as argued in Brady [13], a disjunction
should not be a theorem in the case where neither disjunct is provable, as
applied to theorem instances. This would mean rejecting G∨∼G, where G is
Gödel’s sentence in classical arithmetic, since G ∨ ∼G would otherwise hold
without either disjunct holding, assuming simple consistency as for Gödel’s
First Theorem. So, in the case of conceptual under-determination, which is

3The case for the DS can be shown by noting that the DS, ∼A,A ∨ C ⇒ C, and Ex
Falso Quodlibet, A,∼A⇒ C, are inter-derivable, using MR1, and that if A,∼A⇒ C and
B,∼B ⇒ C then A & B,∼(A & B)⇒ C and A ∨B,∼(A ∨B)⇒ C follow. Here, we use
the meta-rule, (A⇒ C,B ⇒ C)⇒ (A ∨B ⇒ C), established using repeated applications
of MR1.

4We prove these results for the two quantifiers as follows. Let ∼Fa, Fa ∨B ⇒ B. Then
∃x(Fx & ∼Fx)⇒ ∃xB and ∃x(∀yFy & ∼Fx)⇒ B, which then yields ∀yFy & ∃x∼Fx⇒
B and ∀xFx,∼∀xFx ⇒ B. (Note that the free x cannot occur in B.) A similar proof
can then be given for ∃xFx by switching conjuncts. Note that these results use existential
distribution over conjunction, rather than universal distribution over disjunction.
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indeed ubiquitous in practice, the LEM would be restricted in application
to those cases where one of its disjuncts has been shown. Indeed, having
the LEM as a theorem of the system is hard to justify. (See Brady [13] on
this.) Further, it is hard to achieve both negation-completeness and simple
consistency for the whole system, as can also be seen in Brady [12]. There,
it is stated that if one restricts the sentential logic to a recursive set of sen-
tential constants and restricts quantification to a finite domain then one can
achieve this whole-of-system classicality. (See Brady [6], for the proof of
this.) So, in determining a suitable classical recapture, we must distinguish
the proof-based approach from the whole-system-based approach. Moreover,
we proceed with the proof-based classical recapture, as we wish that the clas-
sicality be proved within a logical system, despite its short-comings for the
system as a whole.

To place this proof-based classicality within a logic of meaning contain-
ment such as MC, the addition of the LEM and the DS are vital in relating
the rule ‘⇒’ and the classical ‘⊃’. As can easily be shown using MR1, the
rule A ⇒ B is deductively equivalent to the theorem A ⊃ B, provided the
LEM and the DS are both provable for the formula A.5 (Also, see Brady
[7], p. 374 on this.) This result raises the question of how implication rather
than entailment can be expressed in the logic. Obviously, A ⊃ B is an impli-
cation, as it is classical and hence preserves truth with help from its Boolean
negation. When the LEM for A is not available, as it often would be, we
could reasonably extend the use of the term ‘implication’ to include the rule
A⇒ B, which is more general and available, despite ‘⇒’ not being a connec-
tive. And, it does not need to be a connective as the classical relationship
between implication and entailment, as a necessitated (or modalized) impli-
cation, has already been broken down by the arguments in §3 and §4.

This classicality can ideally be restricted to a subsystem as it allows one
to focus on particular sentences A for which the LEM and DS hold. However,
because of its relationship with non-triviality and simple consistency, the DS
is best introduced as an admissible rule for the whole system when simple
consistency is proved, hoping that this can be done. The proof of the LEM
is then best left to those instances where one of its disjuncts is provable, as
carried out in the development of arithmetic in Brady [7] and, indeed, as
occurs for constructive logics such as MC and intuitionist logic.

5Given the DS in the form ∼A,A ∨B ⇒ B then one can detour through ∼A,A ⇒ B
and A,∼A⇒ B to establish A,A ⊃ B ⇒ B, using MR1.
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6 A Critique of Meyer’s Arithmetic

We now compare our approach to arithmetic with that of Meyer’s in his
two papers [21] and [22], in the light of what we have said above. We have
two major concerns. First, Meyer uses the logic R of relevant implication,
which does have problems in its application. (See Brady [4] and [5] for some
examples of what can go wrong.) This is brought about by its not having
a concept such as meaning containment which can be used to judge each
application to see that it fits the concept. The key cases in point are the
inferential Peano axioms such as m = n → m′ = n′. The argument that
would be made by people such as Meyer is that the ‘→’ is justified on the
basis of relevance, due to the common variables m and n in both antecedent
and consequent. This would extend the use of the commonality of sentential
variables of the Relevance Condition. However, this same condition applies to
a whole raft of relevant logics, which can have quite different interpretations,
some of which could reasonably be construed as meaning containments as
opposed to a kind of truth-preservation as applies to the logic R. As stated
in §2, the variable-sharing property is not even transitive, a key property
that the ‘→’ would be expected to satisfy.

We now move on to the relationship between m = n and m′ = n′. m = n
would hold because m and n represent the same natural number and similarly
with m′ and n′. How can we then move from m = n to m′ = n′? We have
just added 1 to both sides. However, this introduces new numbers and so the
relevance (and meaning) is lost in that we are dealing with different numbers.
These different numbers would be represented by two disjoint sets of sets, i.e.
the set of sets of m objects has no overlap with the set of sets of m′ objects.
More specifically, a 4-membered set is not a 5-membered set, though they
may nevertheless have common members themselves. Moreover, the two
numbers m and m′ can be pushed further apart by repeated application of
the above “axiom” together with transitivity. So, in moving from m = n to
m′ = n′ is to say that m′ = n′ holds because m = n does. That is, it is a
recursive move, which generates one theorem from another, expanding the
set of theorems of arithmetic. As argued above, there is a loss of meaning
containment between m = n and m′ = n′. However, this inference is not just
a truth-preservation as there has been meaning analysis used in yielding the
truth of m′ = n′ from the truth of m = n, as required for a valid deductive
argument. This meaning analysis depends not just on the identity m = n
as it would if it was a meaning containment but also on the structure of the
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numerical system which takes one from a number to its unique successor.
Hence, this meaning analysis uses an additional analytic truth concerning
the uniqueness of successors. Such an additional analytic truth can be used
as part of the justification for a rule, but not for an entailment, as discussed
in §2 and §3 above. Thus, the inference from m = n to m′ = n′ would be
represented by a rule ‘⇒’ rather than a meaning containment ‘→’. Indeed,
this type of justification applies to all the numerical Peano inferences that
are represented as rules in the axiomatization of arithmetic in Brady [7].

Our second major concern is Meyer’s classical recapture. The logic R
of his arithmetic R] has, of course, the LEM as a theorem, leaving the main
focus on the DS to achieve classicality. Meyer does this by trying to prove the
admissibility of Ackermann’s γ rule, A,∼A ∨B ⇒ B, which is deductively
equivalent to the DS. Unlike Ackermann, who included γ as a primitive rule
of his logic in [1], Anderson and Belnap in [2] decided to exclude it on the
grounds that the Deduction Theorem ought to be maintained as best as
possible and, of course, the ‘→’ form of γ, A & (∼A ∨B) → B is not a
theorem of R as A & ∼A→ B would follow. (See p. 13 of Meyer [21], where
a reference is made to Belnap’s requirement “that the primitive rules for a
system should correspond to theses of the system”.) It is a more recent idea
that γ should be left unproven to maintain paraconsistency. The proof of
admissibility of γ would then serve as a consistency proof, given the non-
triviality of relevant arithmetic, which was subsequently proved by Meyer in
[24]. (See also Meyer and Mortensen [25] on this.) Alas, this was not to be
for Meyer’s relevant arithmetic, as Friedman found a counter-example to the
admissibility of γ in their paper [16].

The overall difficulty we would see here in Meyer’s approach is that his
(proof-based) classicality would be established for the whole system and there
is no mechanism to apply it to a proper subsystem such as the one advocated
above. This is because the LEM is part of the logic R whilst its partial failure
would provide a better mechanism, with the DS or γ better established for
the whole system through their admissibility or through simple consistency,
given the non-triviality of R]. In any case, the LEM is not justified as a
theorem of arithmetic, given the failure of the priming property for theorem
instances, as we argued in Brady [13]. For, as mentioned in §5 above, neither
the Gödel sentence G nor its negation are provable in classical arithmetic,
given its consistency, and this would extend to relevant arithmetic (with
G ∨ ∼G), and also to a logic of meaning containment (without G ∨ ∼G),
both being weaker logics than classical logic. Thus, we can see here the
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failure of the priming property for a theorem instance of R]: if G∨∼G then
G or ∼G. As argued in Brady [13], such a case of the priming property ought
to hold for theorem instances such as G ∨ ∼G.

The same general argument can be given for other approaches that add
or incorporate classical logic into the relevant logic R, as occurs in Meyer and
Routley’s classical relevant logics CR and CR∗ in [26] and [27], respectively,
and Meyer and Abraham’s superclassical system KR to be found in Routley,
Meyer, Plumwood and Brady [28], pp. 378–9.

Further, Meyer, on p. 127 of [21], proved that there is an exact translation
of the theorems of classical arithmetic C] to R∗, which is R] restricted to the
language of classical formulae, this result assuming the admissibility of γ for
R]. Note that Meyer’s idiot’s translation and his direct translation are the
same here, this being the simple identity translation. Thus, the theorems
of C] and R∗ are identical, providing a classical recapture for the classical
subformulae of R], assuming that the γ rule (and the DS) are admissible for
R]. This would provide a restricted classical recapture for R], with the LEM
as a theorem of R], but with admissibility of the DS just applying to the
classical formulae of C], this being in contrast to our restriction of the LEM
but with the DS holding overall. However, this still leaves open the question
of the admissibility of γ or the full relevant arithmetic R], which would then
provide a full classical recapture. To this end, Meyer has attempted to prove
the admissibility of γ for R]. However, had he succeeded with a finitary
proof of this, given its non-triviality, Meyer would have proved the simple
consistency of R], as can be seen on p. 72 of his [22]. Given the above
translation, the simple consistency of C] would then follow, contradicting
Gödel’s Second Theorem.

7 The Consistency of Arithmetic

We follow the procedure in Brady [7], by first setting up our arithmetic
MC] and then proving its simple consistency by using metavaluations. We
leave till §8 the formal development of MC] with its focus on recursion, both
primitive and general. As on pp. 357–8 of [7], we set up the logic MCQ− as
follows: [The sentential logic MC is set up as in §4.]

Definition 3 (MCQ−).

Quantificational Primitives :
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◦ ∀ (universal quantifier)

◦ a, b, c, ... (free individual variables)

◦ x, y, z, ... (bound individual variables)

◦ f, g, h, ... (predicate variables)

◦ [k, l,m, n... (individual constant schemes)]

◦ [r, s, t... (schemes for terms, which are variable or constant)]

Definition.

◦ ∃xA =df ∼∀x∼A.

Quantificational Axioms.

1. ∀xA→ At/x, for any term t.

2′. A→ ∀xA. [Note that x cannot occur in A.]

Quantificational Rule.

1. Aa/x⇒ ∀xA, where a does not occur in A.

Quantificational Meta-Rule.

1. If A,Bm/x⇒ Cm/x then A,∃xB ⇒ ∃xC, where m does not
occur in A, B, or C, and QR1 does not generalize on any free
variable in A or in Bm/x in the derivation A,Bm/x⇒ Cm/x.
The same condition applies to the premises A and B of the
meta-rule MR1 of MC.

As explained on p. 358 of [7], we need to reduce the logic MCQ to MCQ−

because the method of proof of consistency uses metavaluations which cannot
sufficiently distinguish the rule ∀x(A → B) ⇒ A → ∀xB from the rule
∀x(A ∨B)⇒ A ∨ ∀xB, and since this latter one must be excluded, so must
the former. This is then replaced by the considerably weaker A→ ∀xA. And,
∃xA needs to be defined in terms of ∀xA as its corresponding equivalence
is proved using ∀x(A → B) ⇒ A → ∀xB and ∀x(A → B) ⇒ ∃xA → B,
neither of which are available. Nevertheless, this weakening does not impact
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much on the development of arithmetic, because we will be focussing on
recapturing as much of the classical arithmetic as possible.

Based on MCQ−, we set up the numerical axioms and rules below to yield
what we call MC]. As discussed in §6, we will replace the ‘→’s by ‘⇒’s in
each of the inferential Peano axioms.

Definition 4 (MC]).

Identity Axioms.

1. a = a.

2. a = b→ b = a.

3. a = b & b = c→ a = c.

Identity Rule.

1. s = t, A(s) ⇒ A(t), where t is substituted for s in a single
argument place.

Note that the rule s = t⇒ A(s)→ A(t) is derivable.

Number-Theoretic Axioms.

1. ∼a′ = 0.

2. a+ 0 = a.

3. a+ b′ = (a+ b)′.

4. a× 0 = 0.

5. a× b′ = (a× b) + a

Number-Theoretic Rules.

1. s = t⇒ s′ = t′.

2. s′ = t′ ⇒ s = t.

3. ∼s = t⇒ ∼s′ = t′.

4. ∼s′ = t′ ⇒ ∼s = t.

Number-Theoretic Meta-Rule.
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1. If A(m) ⇒ A(m′) then A(0) ⇒ A(t), where t is an arbitrary
numerical constant or variable. [Mathematical Induction.]

Note that the more familiar form with conclusion ∀xA(x) is then derivable.

Classicality Axiom.

1. a = b ∨ ∼a = b. [The LEM for identities.]

Note that the Classicality Rule (CR1), ∼m = n,m = n ∨B ⇒ B, is not
added here, but we wait until simple consistency is proved and then add it
as an admissible rule to the system. Moreover, CR1 cannot be added at this
point as inconsistent arithmetic is used to show that 0 = m′ is unprovable in
MC], for any numerical constantm. Such classicality of the numerical identity
statements holds as there is no room for under- or over-determination of the
concept of identity in this context. Moreover, CR1 is used to kick-start the
proofs of the LEM in the development of arithmetic.

To prove the simple consistency of MC] we introduce the following metaval-
uations v and v∗ for the formulae of MC], bearing in mind that exactly one of
the values T and F are assigned by v and v∗: (For background on metaval-
uations, see Meyer [23], Slaney [29] and [30].)

(i). ◦ v(s = t) = T iff s = t is a theorem of MC], for constant terms
s and t.

◦ v∗(s = t) = v(s = t), for constant terms s and t.

Let A and B be sentences.

(ii). ◦ v(A & B) = T iff v(A) = T and v(B) = T.

◦ v∗(A & B) = T iff v∗(A) = T and v∗(B) = T.

(iii). ◦ v(A ∨B) = T iff v(A) = T or v(B) = T.

◦ v∗(A ∨B) = T iff v∗(A) = T or v∗(B) = T.

(iv). ◦ v(∼A) = T iff v∗(A) = F.

◦ v∗(∼A) = T iff v(A) = F.

(v). ◦ v(A → B) = T iff A → B is a theorem of MC], if v(A) = T
then v(B) = T, and if v∗(A) = T then v∗(B) = T.
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◦ v∗(A→ B) = T (This is for an M1-metavaluation. See Slaney
[30] for this.)

(vi). ◦ v(∀xA) = T iff v(An/x) = T, for all numerical constants n,
recursively generated.

◦ v∗(∀xA) = T iff v∗(An/x) = T, for some numerical constant
n, finitely determined.

To take into account free variables, we add the following:

(vii).◦ v(A) = T iff v(Ai) = T, for all constant instances Ai of A,
recursively generated.

◦ v∗(A) = F iff v∗(Ai) = F, for all constant instances Ai of A,
recursively generated.

As explained on p. 366 of Brady [7], the above recursive generation for
numerical constants n in v(An/x) = T is the conjunction: v(A0/x) = T
and, for all m, if v(Am/x) = T then v(Am′

/x) = T. (The other two re-
cursive generations are similar.) Given the metacompleteness result below,
this means that that all universal statements are provable using mathemat-
ical induction. Further, finite determination for v∗ in (vi) is existential and
just requires a finite process to find a witness for such an existential. It is
finite in that our logic is both disjunctively and existentially constructive
and so such a numerical constant n in v∗(An/x) = F is predetermined due
to ∼An/x being provable prior to that of ∼∀xA in this inductive metavalua-
tional proof process. (See the metacompleteness result for MC] below, which
relates metavaluations to proof. Also, see metavaluations (iii) and (vi) above
for the disjunctive and existential constructivity.) Note that we have replaced
the ‘recursive determination’ of (vi) in Brady [7], pp. 365–6, by ‘finite deter-
mination’, since recursion, as a concept that applies to an infinite set, is not
needed in a finite setting and, of course, finiteness is preferable to recursion
when it is appropriate.

The simple consistency proof can now proceed as in pp. 364–371 of Brady
[7]. We start by first showing metacompleteness for MC], i.e. v(A) = T iff
A is provable in MC] and also v∗(A) = F iff ∼A is provable in MC]. Given
metacompleteness, the simple consistency of MC] can then be stated as: if
v(A) = T then v∗(A) = T, which is easily shown by induction on formulae
in a finitary process. As in [7], we can then go on to show that CR1 and the
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DS are admissible rules of MC]. On this basis, we add the DS to the rules
of MC], but we realize that it would need to be checked in any extension of
the system. Further, we can add Ex Falso Quodlibet, A,∼A⇒ B, and both
this rule and the DS are used in developing arithmetic in §8 below.

8 Formal Development of Arithmetic with

Primitive and General Recursion

As in Brady [7], pp. 374–380, following Mendelson [20], classical arithmetic
can be largely rebuilt. The LEM plays a key role here as it can convert
any rule-form A ⇒ B to the material implication form A ⊃ B, by applying
MR1. This material form then allows us to insert it, as a formula, into the
Mathematical Induction Scheme, NTMR1, which applies to formulae, but
not to rules. So, the proofs of the LEM for formulae built up from the
identities a = b are vital to this process. Note that the bar ·̄ over a natural
number constant scheme is introduced to indicate a numerical constant.

We start with the Peano axioms and rules, including those for + and ×,
and add definitions for the familiar arithmetic relations: < (less than), >
(greater than), ≤ (less than or equal to), ≥ (greater than or equal to), and
| (divides). These additional definitions are all defined using an existential
quantifier together with positive and negative identities. The LEM holds for
the identities and negated identities, but does not immediately extend to the
existential quantifier, as indicated in §5 above. Nevertheless, as in pp. 376–
8 of Brady [7], this can be circumvented by proving the LEM for t < s,
i.e. ∃w(∼w = 0 & t + w = s), by applying rule-forms of some ⊃-theorems
in Mendelson [20] and using the LEM for some identity statements. The
detailed proof of the LEM for t|s, i.e. ∃z(s = t × z), is given in pp. 379–80
of Brady [7], and again the existential quantifier is circumvented.6 The LEM
for any further definitions involving quantification, existential or universal,
would need to be proved on an individual basis. (See note 6 on this.) The
functions ! (factorial) and ab (power) are recursively introduced, these just
expanding the range of terms representing natural numbers, and thus the

6Nevertheless, there are inductive definitions for these existentially defined concepts.
t < s can be inductively introduced as follows with base case t < t′ and inductive step,
t < s ⇒ t < s′, whilst t|s can be introduced with base case t|t and induction step, t|s ⇒
t|s× n′. This, we believe, provides a process for dealing with the problem of classically
defined existential concepts.
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LEM is unaffected. Similarly, any further primitive recursive definitions can
be easily dealt with.

There is some complexity required for general recursion, however. On
pp. 380–1 of Brady [7], there was some doubt expressed about whether gen-
eral recursion could be accommodated in MC]. This was because the LEM
was proved for each formula at a time and the process was not able to deal
with formula schemes such as A. There was also a problem with the classical
Least Number Principle, A(x) ⊃ ∃y(A(y) & ∀z(z < y ⊃ ∼A(z)), in that it
did not seem to be provable, except in its contraposed rule-form. We will
put these concerns aside and we will proceed to deal with general recursion
using rules, in what turns out to be a relatively straightforward manner.

Here, the term µxA(x) is introduced representing the least x such that
A(x) and added to the numerical terms that can be included in the usual
inductive process. The introduction of this term depends on the existence of
a number x such that A(x) holds, i.e. on ∃xA(x). We first raise the question
of whether A(x) needs to be classical or not. Given the inclusion of the DS in
MC], this comes down to whether A(x) satisfies the LEM or not, i.e. whether
∀x(A(x) ∨ ∼A(x)) is provable in MC] or not. At this level of generality, it
can only be assumed to be classical, if indeed it should for a particular A(x),
because our processes of proof of the LEM in MC] are based on particular
formulae rather than schemes such as A(x).

We next set out the general axiomatic principles for the introduction of
µxA(x), in a way that is appropriate for the system MC] and in accordance
with the above arguments. Thus, we set out the following principles for the
formula A to follow:

Definition 5 (Least Number Principles).

1. A(a) ∨ ∼A(a).

2. ∃xA(x)⇒ A(µxA(x)).

3. ∃xA(x),m < µxA(x)⇒ ∼A(m).

To justify these principles, we start with the following argument as to why
the LEM for such A(a) should be assumed to be the case, as in LNP1.
Nevertheless, we have to assume ∃xA(x) in any case, as in LNP2 and LNP3.
Going back to its metavaluation, v(∃xA(x)) = T iff v(∼∀x∼A(x)) = T
iff v∗(∀x∼A(x)) = F iff v∗(∼A(n)) = F for some numerical constant n,
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finitely determined. [Recall that A is provable in MC] iff v(A) = T and
∼A is provable iff v∗(A) = F.] Such finite determination is a proof-theoretic
process leading to the witness n, done by examining the proof of ∃xA(x)
for a prior proof of A(n), this being due to the constructivity of ∃xA(x) in
the metavaluational proof process. We then need to look for the finite set,
A(0), A(1), ..., A(n), to find the least such number, µxA(x). But, where do
we look for these?

The following question first needs to be asked: what happens to A(m)
between A(0) and A(µxA(x))? Here, for 0 ≤ m < µxA(x), A(m) must fail
to hold, as µxA(x) is the least number for which A(m) holds. The issue
now is: Is A(m) unprovable or is ∼A(m) provable, over this range? If A(m)
is unprovable, this is a metatheoretic result depending on proof within the
whole system, this taking us outside the proof system of MC]. This would not
be in accordance with what a finitary process is, especially in the absence
of a decidability result for MC], and a proof-theoretic finitary process is
preferable to one that takes one outside the proof system of MC]. Thus,
∼A(m) would need to be provable for each such m, and this is accordance
with the standard classical requirement for the introduction of µxA(x), as
for LNP3. Hence the LEM, A(m) ∨∼A(m), would be provable through one
of its disjuncts, for 0 ≤ m < µxA(x), and indeed for m = µxA(x), as for
LNP2. The LEM may well apply further, not only for m ≤ n, where n
is the witness for the existential ∃xA(x), but also for all natural numbers,
since the proof of the LEM normally focusses on the structure of the formula
A and its application over all natural numbers, rather than applying just
to some specific natural numbers. This has certainly been the case so far
in the Hilbert-style development of arithmetic and it is also in accordance
with a finitary metavaluational proof process for the general LEM. Thus,
we would prove A(a) ∨ ∼A(a), as for LNP1. Since the logic is disjunctively
constructive, there must be prior proofs of A(m) or ∼A(m), applying to each
of the natural numbers m, introduced as part of a mathematical induction up
to m. So, all one needs to do is to examine the proof of the LEM, for natural
numbers m such that 0 ≤ m ≤ n, to find µxA(x) such that A(µxA(x)) and
∼A(m) for each m < µxA(x). This is the advantage of proving the LEM
generally for all numbers, as it gives a finite piece of proof to look for the
finite set A(0), ..., A(n), from which µxA(x) can be determined on a par with
other numerical constants. So, µxA(x) can take its place in general recursive
procedures along with primitive recursion, once these conditions for its use
are satisfied. So, the consistency of arithmetic of §7 would continue to apply
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to general recursion, subject to the proof of the above three principles for
such formulae A occurring in µxA(x), given ∃xA(x).

Lastly, we raise the further question of the uniqueness for µxA(x). Nor-
mally, one assumes there are two such terms µ1xA(x) and µ2xA(x) and goes
on to prove their identity. The problem here is that there is nothing in LNP2
and LNP3 which says anything about whether either of A(m) or ∼A(m) is
provable, for m > µxA(x). What this means is that the identity of µ1xA(x)
and µ2xA(x) has to be established by examining each A(m) in the respective
ranges 0 ≤ m ≤ µ1xA(x) and 0 ≤ m ≤ µ2xA(x). But, since exactly one of
A(m) and ∼A(m) is provable for each m, given consistency, there can be no
variation over the respective ranges, both ending at the same point. Thus,
the identity is clear, in which case there is a unique least number µxA(x) such
that LNP1 and LNP2 hold, with respect to the only formula that matters,
viz. A, and over the only range that matters, 0 ≤ m ≤ µxA(x).

9 In Conclusion

We have critiqued Meyer’s account of relevant arithmetic on two counts.
First, we argued against his use of the relevant logic R on its lack of a clear
inferential concept. Second, we argued against his approach to classical re-
capture, which relies on the inclusion of the LEM in the logic R and the proof
of the admissibility of the DS, shown to be impossible. Indeed, these are the
key differences between Meyer’s arithmetic and our own in Brady [7], where
we use the logic of meaning containment MC, which better captures the key
concept of meaning in logic and subsequently truth as it relates to MC. As
for classical recapture, MC does not include the LEM, and we instead prove
the simple consistency of the arithmetic MC] and, as a result, show that the
DS is admissible and finally add it to the logic. This leaves us to prove the
LEM for each formula, as required, through one of its disjuncts in a con-
structive fashion, re-creating classical arithmetic up to primitive and general
recursion, as we go along.

The second aim was to extend our simple consistency result from the
primitive recursion established in Brady [7] to include general recursion.
Whilst the primitive recursion itself was straightforward, it was pointed out
that there was a need to circumvent the existential definitions for ‘<’ and
‘|’, in order to prove that the LEM holds for t < s and t|s. There was con-
cern about the difficulty of including general recursion, expressed in Brady
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[7]. However, we captured the classical least number principle for the least
number µxA(x) by rephrasing it as two rules, without quantifiers. In the
end, it was quite clear that it could be done once the LEM was assumed
for the formula A(a). This produces a finite procedure for determining the
least number µxA(x) by examining a finite piece of constructive proof within
that of A(a) ∨ ∼A(a). Given ∃xA(x), the constructive determination of a
natural number n satisfying A(n) provides an upper bound on the natural
numbers to be considered in this process. This then gives us a very sensible
result that arithmetic, set up using the above metavaluational proof process
and incorporating primitive and general recursion, is simply consistent. This
proof is finitary, but that does not mean that Gödel’s Second Theorem is
contradicted, as the classical component of the logic is restricted by not in-
cluding the rule, ∀x(A ∨B)⇒ A ∨ ∀xB, which then prevents the LEM from
automatically extending to the two quantifiers. However, there is quite some
prospect that existential definitions can be replaced by inductive definitions
using rules without quantifiers. (On this, see note 6.)

Further, there is no usage of ‘→’ in the development of arithmetic occur-
ring in Brady [7] as we used rules rather than ‘→’s for inferences, followed
by proofs of the LEM for the antecedents of the rules, which then allowed
us to replace the rule ‘⇒’ by the classical ‘⊃’, creating a formula that can
then fit into the mathematical induction scheme. This then allowed us to
prove (almost all) the theorems of classical arithmetic from Mendelson [20],
including primitive recursion and now general recursion. So, the metavalua-
tional proof process that is used for this arithmetic need not include proofs of
formulae with ‘→’. This simplifies the proof process to a formula-inductive
one involving just ∼, &, ∨, ∀, ∃, based on the atomic arithmetic identities
and non-identities. The key difference between this formula-induction and
that of classical arithmetic is the metavaluation for the universal quantifier
∀, this ensuring that each universal must be established by mathematical
induction. This enables the proof of consistency to be finitary, removing the
need for the infinitary rule: A(0), A(1), A(2), ..., A(n), ... ⇒ ∀xA(x), which
can be used to complete classical arithmetic. It is this constructivity of the
metavaluational process that causes the rule ∀x(A ∨B) ⇒ A ∨ ∀xB to be
rejected, as with intuitionist logic.7

7Interestingly, the rule A ∨ ∼A,∀x(A ∨B)⇒ A ∨ ∀xB does hold in MCQ, but this does
not help in the process of proving the LEM for the existential and universal quantifiers
from their unquantified forms.
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