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The system R♯ of first-order relevant arithmetic was introduced in [12], as the
result of adding the (first-order version of the) Peano postulates to relevant
predicate calculus RQ. The following model was exhibited to show the system
non-trivial (thus partially circumventing Gödel’s Second Theorem). We pick
as our domain D of objects the integers mod 2, with +, ·, 0 interpreted in the
obvious way; on this plan, the successor operation ′ is evidently interpreted
so that 0′ = 1 and 1′ = 0. As our collection V of truth-values we pick the set
3 = {T, N, F}, with sentential connective &, ∨, ∼, → defined on the (classical)
subset 2 = {T, F} in the usual classical way. To complete the definition of
connectives on 3, we define

& T N F ∨ T N F → T N F ∼
T T N F T T T T T T F F T F

N N N F N T N N N T N F N N

F F F F F T N F F T T T F T

People familiar with relevant logics will recognize 3 so characterized as the
3-point Sugihara matrix S3 (so-called, no doubt, because it was invented by
Sobociński, and usefully introduced into the study of relevant logics by us
and a number of other people, after which it has had a habit of appearing,
sometimes in disguise, in most papers on the subject). People unfamiliar
with relevant logics will recognize the truth-tables for &, ∨, ∼ as those of
 Lukasiewicz’s original 3-valued logic (the only intuitive way of settling these
tables when N(euter) is taken as an intermediate value between T(rue) and
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F(alse), despite all the clashing proposals made since); while → departs from
 Lukasiewicz only on the prescriptions N → N = N and T → N = N → F = F.
(Basically this means that  Lukasiewicz was still under the influence of that
classical lassitude which tends to assign statements higher truth-values than
they deserve.)

It is now easy to say what our non-trivializing model M3
2 = 〈D,V〉 for R♯

was. Modulo 2, there are only 4 atomic sentences whose truth-values we have
to settle; we settle them by setting to F the values of 0 = 1 and 1 = 0, and
to N the values of 1 = 1 and 0 = 0. Truth-functional combinations of these
sentences are then assigned values by the 3-valued tables. And interpreting
quantifiers is almost as easy. Modulo 2, ∀xAx is simply to be interpreted
as A0 & A1 (since 0 and 1 are all that there is, on the interpretation, to
quantify over), with ∃xAx interpreted dually. While we can’t say that all
the theorems of R♯ are true in this model (after all, we started 0 = 0, which
looks pretty true, off at the intermediate truth-value N), we can do almost as
well. All the axioms of R♯ are never false (i.e., never take the truth-value F

in the model), and this property is preserved under the relevant logical rules
(modus ponens for → and adjunction for &). (Since the reader may expect
some trouble to come up over induction, let us briefly ease its mind on the
point. (We assume that this paper will be published in machine-readable
form.) Induction tells us that whatever holds of 0 and all its successors holds
of all numbers. In this model, what holds of 0 and all its successors holds
of 0 and 1, and hence of “everything.” End of verification.) But 0 = 1 was
assigned F from the start. It is false, even mod 2. so, since we can only
prove in R♯ things that are never false in M3

2, we can by no means prove that
0 = 1. And the argument (which the reader is invited to check in technical
detail) is completely elementary. And so R♯ is consistent. (In at least one
standard sense of this overused term, and in fact in several.)

How did Gödel, who was reputedly pretty sharp, miss this? For all the
metaphysical garbage that his work has called forth, spinning out hierarchies
of ever more dubious systems for the purpose of demonstrating the non-
triviality of the last dubious system, anything which starts counting at 0 and
which can get as far as 1 is perfectly adequate to dismiss 0 = 1 and related
nonsense. As all of us would have thought, until we were informed that there
were deep theorems of mathematical logic to the contrary. (So if any 8-bit
machines—or, for that matter, 1-bit machines—are reading this paper, take
heart. For all the talk that you are obsolete, even you can do what Gödel is
reputed to have claimed you couldn’t.)
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But, having dwelt elsewhere at some length on Gödel’s Oversight (specif-
ically, in [10], which should sometime see the light of day), we shall be brief
about it here. Gödel erred in taking the word of Whitehead and Russell
(and manufacturers of related systems) that they had “reduced” arithmetic
to logic. (Though “erred” is too strong here, since [7] already recognizes
that systems which are different enough from the ones studied in [10] are not
necessarily subject to its limitations. Or, in the case of relevant arithmetics,
they remain subject to them, but in a way less destructive of mathemati-
cal certitude and less crippling to formal epistemology.) The classical logic
that was the target of the reduction was a cut-price brand, which conflates
many important ideas that are distinguished in ordinary mathematical and
linguistic practice. (Cf. our remarks about overloading the word “consis-
tent.”) Basically, the steps in the argument connecting the unprovability of
the Gödel sentence “17 Gen r” (which, however one looks at it, is a pretty
queer sentence, in addition to being several miles long when put into primi-
tive notation) to the unprovability of garden variety falsehoods like “0 = 1”
depend on fallacies of material implication. If, unimpressed by the classical
proclivity to upgrade to “true” putative logical principles whose actual and
intuitive truth-value is “false,” we block some of these fallacies, falling into
subtle confusions no longer produces garden variety falsehoods willy-nilly.
Let us put it this way. What if “17 Gen r” were provable? We have, after
all, no properly arithmetical grounds to rule it out, and must help ourselves
to heaps of the standard set-theoretic mythology to sustain the faith. Were
the mythology to crack and the faith to fail, what is the words thing that
could happen to us? At first glance, it is that we shall have a proof of ∼(17
Gen r) as well. But, at second glance, we may recall that, at least according
to some people, A and ∼A together imply what you please. If what you
please is “0 = 1,” we shall then have a proof of a garden variety and wholly
unsubtle falsehood in one more step.

Now it is this sort of thing that we are against, no matter how often
established logical authorities and their burgesses try to con us into the view
that materially valid inferences are always O.K. Not here they aren’t! Subtle
contradictions do creep into people’s reasoning. Nor is there any ultimate
defence against the possibility that even humdrum formal systems in “safe”
subjects like arithmetic have got caught in the confusion. Note that we said
possibility. It is for future researchers to discover if we are actually confused.
(Unfortunately, the only decisive answer that they can give us to that ques-
tion is Yes.) For the philosophically exciting, epistemologically injurious,
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and ultimately most insane conclusion drawn from Gödel’s Theorem is that
we cannot, really, be very sure about anything mathematical. By natural
extension, since simple arithmetical knowledge is generally account as secure
knowledge, we cannot, really, be very sure about anything, at all.

This is a high philosophical price to pay for the technical success of some
sneaky self-referential tricks. (They are, to be sure, impressive tricks.) For,
in plain words, it simply does not follow from the fact that we are possibly
confused about some things that we are possibly confused about everything.
Truthfully, Hilbert’s formalist optimism is in a way to blame here. Hilbert
wished to make all of mathematics secure, all together, by demonstrating the
consistency of a suitable Super System, using methods sufficiently elementary
that everybody would have to accept them. (“Everybody” in those days in-
cluded even the mathematical intuitionists, which was felt to show sufficient
obeisance to Fogelin’s Rule—“No funny business!”[1, p. 106].) This project
failed. It’s hindsight, but it deserved to fail. Who expects, or should have ex-
pected, an ironclad guarantee that mathematicians have hitherto been right
about everything? But, fatuous optimism not having worked, there was all
too much fatuous pessimism in the conclusions drawn. (These days—and
most days, we suspect, among workaday mathematicians who take their sub-
ject as they find it—fatuous fideism is rather more in vogue. If the logicians
failed in their efforts to put mathematics on a sound basis, some can do no
better than to take Tennyson’s advice, “Believing where we cannot prove.”
Even in the whole hierarchy of ZF sets, or more. But, while we have never
wished to knock other people’s religions, a more credible line needs to be
drawn between the domain of Special Revelation and that of Reason in these
things.) To show “17 Gen r” unprovable, maybe we do have to be able to
count to ε0 (in whatever sense that is possible). But it is madness if we have
to count to ε0 to stave off a demonstration that 0 = 1. For any child would
laugh to see one. And if our formal systems cannot contain the contagion of
subtle trickery into the domain of plain facts, even potentially, then it is time
to send out for better systems. Fortunately, while not all of the technical
evidence is yet in, we appear to have such better systems for arithmetic in R♯
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and related theories.1 Meanwhile, having to count to ε0 every time we want
to show some simple arithmetic falsehood undemonstrable is like sending a
nuclear device to do the work of a flyswatter. What we can do by counting to
2—or to 6, 14, 42, or 3088—let us by all means do. We shall spare ourselves
ontological, epistemological, and other dangerous fallout.

While we have anticipated ourselves slightly, it is no less evident that
we can construct mod-whatever-you-please models on the same plan that we
used to construct our mod 2 model. (This is useful if one wants to show
2 + 2 = 2 is likewise unprovable; or ∀x∀y(2 · x = 2 · y), and so forth.) We
get a variety of further, more general consistency results this way, removing
not only primary school arithmetic but high school algebra from the range
of the Gödelian fist. We also get a number of further models that are worthy
objects of mathematical study in their own right. (See in addition to op. cit.,
[13] and [15] as well.) Dunn’s [6] is an interesting related contribution.) All
of this (and further Mortensen papers now in preparation or soon to appear,
such as [16]) belongs to the topic of Inconsistent Model Theory. (Note that
our initial model was intuitively inconsistent by making lots of sentences—for
example, 0 = 0—never false by assigning both them and their negations the
intermediate truth-value N.)

We shall use the remainder of this note to make a modest addition to the
topic of Inconsistent Model Theory, building both on what we have said above
and our work elsewhere. (Though, unless the reader is insistent on checking
axioms and the like, which we have left it to look up, this paper will be self-
contained. For the insistent, RQ was first formulated in [2]. The arithmetical
postulates to add to get R♯ are those set out in [4, p. 42]. (Caution: take
these postulates exactly in the form found in [4]; do not substitute classical
equivalents for them, which are not necessarily relevantly equivalent. And
add x = y → x′ = y′ and x = y → (z = y → x = z), which suffice with
the other postulates to give identity its expected properties, again for the
relevant context.) An essentially equivalent formulation of R♯ appears in
[12].)

1Burgess [3] argues—or rather pronounces—to the contrary, in remarks based appar-
ently on its author having got access to our unpublished work. This raises some questions
of propriety. Moreover, the actual account of R♯ given is a straightforward hatchet job,
misunderstanding some things and misrepresenting the rest. Assign most of its assertions
the truth-value F. Assign the rest N. Do not, on any account, assign T to anything in
Burgess’ paper that bears on the present subject, except perhaps for the author’s institu-
tional affiliation.
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We have formulated R♯ be adding the first-order Peano postulates to a
relevant quantificational base. But why do that? Even classically, these
postulates are known to be seriously incomplete at this level. (To be sure,
any level at which they are complete gets into what we have labelled “fatuous
fideism.”) In fact, there is an alternative R♯♯, which adds an ω-rule to R♯ (“If
for each numeral n the theorem A(n) has been demonstrated, infer ∀xA(x)”),
and which, taking the Standard Mythology for granted, contains exactly the
standard arithmetical truths in the truth-functional part of its vocabulary.
(Note that our model M3

2, and all models in the same vein, makes all theorems
of R♯♯ never false as well. For it does not, after all, involve us that deeply in
fatuous fideism if our domain of quantification is finite.) Moreover, we can
of course switch the logical base. For M3

2 and its ilk satisfy not only R but
the stronger system RM and its extensions, which give rise on the same plan
to arithmetics RM

♯, etc. (Most of our work in [13] dwelt directly with these
stronger systems.)

Still, despite its deficiencies, first-order arithmetic seems like an interest-
ing test case for application of the ideas of relevant logics. And we have seen
that the imposition of relevant distinctions does make a difference, even if our
interest in R♯ is ultimately encompassed by interest in a stronger and more
comprehensive system that contains it. And let us now turn to the specific
postulates that first-order arithmetic has traditionally been required to sat-
isfy. Taking the others as more or less straightforward and uncontroversial,
we shall concentrate on the postulate of mathematical induction. It is, after
all, by far the most complicated of the postulates; and, without second-order
quantifiers, it boils down to infinitely many separate instances. Nonethe-
less, it is also the postulate to which fingers point when the deficiencies of
first-order arithmetic are being bewailed. For while, on the usual extensional
intuitions, we want to assert mathematical induction for uncountably many
sets of natural numbers (although it can only be asserted usefully for just
one such set—namely N itself, all other sets of natural numbers either failing
to contain 0 or failing to contain the successor of some member), a count-
able language offers only countably many one-place open sentences to stand
in for sets in our formulation of the induction postulate. So, unless we are
terribly lucky (and we now know that we weren’t), it is dubious that we
have expressed enough of the induction postulate to characterize the natural
numbers as definitively as he had hoped.

Such is a bit of the conventional wisdom (or at least of the conventional
alibi for what went wrong). But what motivated people to pick mathematical
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induction as a postulate on the natural numbers in the first place? One
reason, we cannot help but think, is that this principle and its close relatives
are so enmeshed in the ordinary proof procedures applied in number theory
that nobody ever thought seriously of not having it. But, at least according
to Wang in [20], there was considerably more to it historically than that. One
of the reasons, which is frequently pointed out, why mathematical induction
is such a natural proof procedure is that it takes seriously how the natural
numbers are constructed, being built up from 0 by adding 1’s. From this
viewpoint, the principle is nothing but the assertion that if a predicate holds
of the number we start with, and if its holding is preserved when we construct
each number from the last, then most certainly this predicate will hold of
the whole lot.

But what if, despite our good intentions on the matter, some impostor
manages to masquerade as a number, without having been got from 0 from
adding 1’s? That effective formal systems are unable to unmask such im-
postors is at once their shame and glory, motivating the title of this paper,
and much else. but they have at least made the effort. The effort is called
“mathematical induction,” and its place among the arithmetical postulates
is the chief product of the axiomatic approach to number theory initiated by
Grassmann in [8] and given its modern form in the work of Dedekind (which,
scholarship having been up to its usual standards, has caused us ever since
to identify the governing principles of arithmetic as the Peano postulates).

But let us hear Dedekind himself on the subject of unmasking impostors
(“Letter to Keferstein,” translated in [19, p. 100]). “What then must we
add... in order to cleanse our system S of such alien intruders as disturb
every vestige of order and to restrict it to N? This was one of the most
difficult points of my analysis and its mastery required lengthy reflection.”

It is a chilling prospect that, among the integers that God made, there
might be smuggled in some little green numbers of other ancestry. Could it
be that, when these integers stand up to be counted, there is an E.T. among
them, which manages sufficiently to resemble its fellows that even the most
distinguished (mathematical) scientists are deceived? Might it even be that
there is a whole host of these invaders, whose cover is that they appear to
satisfy the Dedekind-Peano postulates for the natural numbers but which no
effective specification of these numbers can unmask as phonies?

Well, yes. These things can be. And are, despite the confident quotation
just cited. The idea was that mathematical induction (or one of its equiv-
alents) so constrained what was to count as a number, in a model of the
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postulates, that no little green numbers would get in. For the logistic idea
had been to put elementary arithmetic on an indisputable basis by laying
down postulates from which all and only the arithmetical truths follow. For
a while, there was considerable confidence that this had been done success-
fully. Then Gödel struck, and things have never been the same again. (To
be sure, the affinity of our century for wars, revolutions, recessions, famines,
and the threat of atomic extinction might also depress some people. But
we are speaking here of mathematical depression, which we take to be of a
higher intellectual order.) Granted, the logistically faithful can still hold that
Dedekind got it just right; and that, essentially, his postulates have only one
model, which is the collection N of honest natural numbers. (Dedekind did
have a categoricity proof, after all.)

But the original logistic idea was struck down by the inadequacy of the
accompanying deductive apparatus, a point that we have been dwelling on
above. The semantic reflection of this blow, dealt by Skolem in [17] (even
before [7]) lies in the existence of non-standard models for N (and much
else). On the Standard Mythology (that is, taking the “honest” natural
numbers 0, 1, 2, etc., for granted, where you are supposed to know what
is meant by “etc.”), these non-standard models differ from N exactly by
admitting alien intruders—hordes and hordes of them, each of them “infinite”
from the viewpoint of N. (For each little green number is bigger than 0,
bigger than 1, und so weiter.) Then, for the faithful, the question becomes,
“How do we formulate the Standard Mythology so that its non-numeric
objects (for example, sets to whose existence we appeal in reconstructing
Dedekind’s categoricity proof for N) are themselves shielded from perverse
reinterpretation?” Answer—for pessimists—“It isn’t possible.” For the germ
of the Dedekind-Peano idea is that N is the intersection of the successor-
closed sets containing 0. (That’s what mathematical induction was doing, at
least in intent.) If the Honest Natural Numbers are among the sets whose
intersection is being taken, this set will surely be a subset of all the others;
whence the idea does produce the standard N. But what if the Honest
Natural Numbers do not constitute a set at all, at least from the viewpoint
of some particular model? Then the procedure does not secure its intended
effect. The N produced is bogus, at least in the sense of containing alien
intruders. Only given a preferred model of set theory (or other foundational
apparatus) can we insist that N is, near enough, what we wanted it to be.
And it is truly and not just formally perverse if, to believe the Standard
Number-Theoretic Mythology (which does come naturally to most of us—or
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seems to, since we were all drilled in it for years) we must believe first in
some Set-Theoretic Mythology, or other Tall Tale, which has got to be more
problematic, not less.

So, all in all, if one wants to Keep the Faith in these matters, the least
committal course would seem to be simply to believe in N, and be done iwth
it. (For the remainder of this note, we shall at least talk as if we did. But the
reader is to draw from that no further conclusions about our (mathematical)
religion than we have drawn about its.) We shall take N as the standard
model of arithmetic. (Everybody else does.) Other models (whatever formal
theories they may be associated with, including set theories and classical
and non-classical arithmetics) we call non-standard. The standard model
of arithmetic being pretty boring—almost everybody thinks that he or she
knows what it is supposed to be, and is only annoyed at not being able to
characterize it—it is non-standard model theory that has boomed over the
last decade or two. So, little green numbers being in style, let us see whether
we can crowd more of them into a model of R♯ than the competition can
offer.

Let us return to M3
2. It is simple enough, and constitutes a paradigm

for the kinds of unexpected models that satisfy systems of relevant arith-
metic. To put the reader’s mind to rest, all the expected models are there
also, both standard and non-standard. For there are two components of a
relevant model; a domain of objects, and a domain of truth-values, both with
operations appropriate to their category (e.g., + for objects, and & for truth-
values) defined upon them. Nothing prevents us from taking the standard
{T, F} as our truth-value domain, with operations defined classically. If we
do, the models for R♯ under this restriction will be exactly the ones for the
corresponding classical first-order Peano arithmetic P. So we do not lose any
models.

But we do gain some. Indeed, it is pleasant to find the most natural
models of the integers—the ones that one finds in the first few pages of any
text on abstract algebra, namely the integers mod n for finite n—among the
models for R♯. For note that, whatever we do with truth-values, our collec-
tion of objects and associated operations in a model may be characterized
independently as whatever sort of abstract algebra it is. For M3

2, this domain
D is a very pleasant algebraic object indeed; for the integers mod 2 consti-
tute a ring under the operations · and +; and, for that matter, a field. This
may be an inconsistent model. But it is a nice one. And, while perhaps we
should have learned by now to expect no better, one of the more annoying
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things about non-standard models of P is that they are not nice. (Still, there
are those who have learned to love them.) Except that these models of P are
collections of authentic numbers and little green numbers that have set up
housekeeping together—ordering themselves on the aforementioned plan that
all the authentic members of N come first (well, it’s nice that they have some
priority), in their natural order, with infinitely many copies of the integers
following in slab after slab, the slabs themselves being as densely packed as
if they were rational numbers. (The jargon is that these models have order
type ω + (∗ω +ω) · η, which is not an order type that you would like to bring
home to Mother, unless she has cooked an exceptionally large meal.)

Well, there is something perverse going on if the logician can counte-
nance structures of the latter kind as modelling arithmetic, while ruling out
the more natural and familiar mod models as models of the natural num-
bers. What’s perverse about it? It is only by extensional courtesy (which
the category theorists may be in the process of withdrawing) that we think of
the natural numbers and their associated operations and relations as collec-
tions of objects at all. What they are, more fundamentally, are rule-governed
structures. If, for whatever reason, we want tot think about models of a the-
ory other than the intended one(s), it is the rules that go into the stipulation
of the intended structure that we most want to preserve, in as simple, clear,
and natural a way as possible. While we may get some other sorts of models
anyway—just because our original stipulation was incomplete,2 and perhaps
ineluctably so—they are in some sense accidental models.

There is another path, which as [6] points out is more familiar to the
algebraist. Instead of getting extra models by underloading a theory–i.e.,
having a theory satisfy fewer constraints than we really want, because it is
incomplete—we can also get interesting models by overloading that theory—
intuitively, making it inconsistent by identifying things that, really, we take
to be distinct. This is the effect of the algebraist’s morphism, if we think
about it. There is a function h from the natural numbers to the integers mod
2, which takes the even integers onto 0 and the odd ones onto 1, preserving
meanwhile the chief algebraic operations on integers. From the viewpoint of
N, this is a confused picture. N wants to distinguish 6 from 16, though they
are not distinguished mod 2. But the picture is not a completely confused

2Negation-incompleteness, to be sure, is only part of the story, though it yields by the
completeness theorem for 1st-order logic that systems like P will have unintended models.
But there is also the point that formal methods are incomplete. So, by Skolem, even
negation-complete theories may have such models.
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one. Indeed, since the computers that run the world these days do their own
integer arithmetic mod 2-to-the-power-of-something, one can get a great deal
done in this confused picture. And there is no reason in the world why a
model that results from fruitful confusion (because it corresponds to intuitive
inconsistency) is less interesting or worthy of study than one which results
from fruitful ignorance (corresponding similarly to incompleteness).

So Dunn’s view of these things in [6] is, we think, very nicely put. More-
over, being algebraically familiar, it belongs in the logician’s bag of tricks.
But there is a realm, to which we now turn, where we can make use of what
goes with incompleteness and what goes with inconsistency together. It is
the realm of inconsistent non-standard odels of arithmetic. For just as we
have shown that the standard model N of classical Peano arithmetic P can be
collapsed mod n, for finite n, to make the integers mod n a model of R♯, just
so we can collapse an arbitrary non-standard model M of P mod an “infinite
integer” n to make these “integers mod n a model of the relevant Peano
arithmetic R♯.3 Note the interplay of inconsistency and incompleteness here.
Because P is incomplete, it has non-standard models. But no homomorphic
image of one of these models is a model of P, because 0 becomes a successor.
When eyeball-to-eyeball with inconsistency P blinks. But R♯, we shall see,
does not blink. Its models preserve the distinctions that homomorphic im-
ages preserve, while still being models of all the first-order Peano postulates.
Moreover, some of these inconsistent non-standard models are intrinsically
quite interesting, as we shall see. Here’s how to form them. (Now follows the
part of the paper which readers more interested in impressions than technical
details may wish to skip.)

Let M be an arbitrary model of P. While M is not quite a ring, it is near
enough that the usual methods of forming homomorphic images will work.
We shall continue, by courtesy, to refer to the elements of M as “integers.”
(At least the ordinary natural numbers are among these integers, as we have
seen, together with whatever alien intruders have sneaked in.) And we shall
also continue to use “M” to refer indifferently to its base set; to the resulting
structure in the algebraic sense, with appropriate operations +, ·, ′ defined on
it; and finally to the model in the semantic sense, which makes each sentence
of P either true or false. As for the homomorphic images that we investigate,
we shall consider only those induced by a principal ideal (nearly), determined

3Thanks to Dr. Gordon Monro for having suggested in conversation several years ago
that this fact might prove useful from a Relevant viewpoint.
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by a particular element n of M.
Specifically, given n in M, we define the structure Mn as follows: we

define a relation ≡ on M on the rubric a ≡ b iff, for some x in M, either
a + x · n = b or a = b + x · n. It is elementary that ≡ is a congruence on M

with respect to the chose operations (using fundamental properties of +, ·, 0,
′ and the fact that M is a model of P), whence we shall say that two elements
a, b of M are congruent mod n provided that a ≡ b. We may now pass, in
the usual algebraic way, to congruence classes, forming the structure Mn of
integers mod n. Since ≡ is a congruence, the elements 0 and the operations
+, ·, ′ are well-defined on Mn. And Mn is a natural homomorphic image
of M, on the morphism h which takes each element a of M to the set of
elements congruent to it. We shall normally refer to the elements of the
quotient algebra by their representatives, noting that for each congruence
class there is exactly one member b of N such that b < n in M and which
belongs to this class. (There cannot be two such representatives, since if
a and b are congruent they must differ by a multiple of n, whence one of
them will be no less than n. And, by the least number principle, the set of
elements congruent to each b must have a least member a, which will serve
as a representative; for, if a were not less than n, we could subtract n and get
a smaller representative. As usual, the “kernel” of the homomorphism—the
set of elements congruent to 0—consists exactly of the “integers” divisible
by n.)

There are a couple of more or less silly choices of n, though we permit
them for completeness. (Though, should we be careless in our statement
of some theorem, we trust the reader to exclude the silly choices.) Setting
1 = 0′ as usual, we note that M1 is the trivial 1-element algebra. And M0,
which identifies a and b just in case they differ by a multiple of 0—i.e., not
at all—is, for all practical purposes, just M itself. Except in this last case,
Mn is a ring, even though M is not. Indeed, Mn is a commutative ring
with unit. For its non-zero elements certainly form a commutative monoid
under multiplication, with identity 1. Equally certainly, Mn is an additive
commutative monoid, with identity 0. (In the other silly case M1, we have
0 = 1.) Moreover, · distributes over +. So we need only show that there
exists an additive inverse − b for each b in Mn. Since the system P compels
each non-zero element to have a predecessor, n in particular has a predecessor
(if n 6= 0), which we might as well call − 1. It is then apparent that − 1 · b
will have the right group-theoretic properties to be the inverse − b of b for
each b in Mn.
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The reader who was going to accept our invitation to skip the hard stuff
but who decided to read on a bit must, by now, be feeling pretty superior.
It has hit nothing yet that it could not easily have looked up or worked out
in its CPU, in nanoseconds. Meanwhile, let us spell out what Mn does, as
a semantic structure. (When we are thinking of it, we may refer to it as
M2

n, to indicate that it has 2 = {T, F} as its set of truth-values.) Let L ♯

be our arithmetical first-order language, which we think of as extended to a
language L

♯
n by adjoining each member of M as a new individual constant

(to be used as its own name). There is a natural interpretation function. I2n
associated with M2

n, whose arguments are all the closed terms and formulas
of L ♯

n (and a fortiori of L ♯), with values in Mn for closed terms and in
{T, F} for closed formulas, constructed on the usual recursive specifications.
We may extend I2n to all formulas, if we wish, by letting its value on an open
formula be that of any universal closure of this formula. And M2

n is then a
model of any formula A such that I2n(A) = T; it is a model of a set of formulas
iff it is a model of each formula in S. (Similar definitional remarks apply of
course to M itself, whose associated interpretation function and extended
language we shall call I2

M
and L

♯
M

respectively.)
We chose M as a model of P. And Mn, we know, is not a model of P. But

it is not far from one. Indeed, let P+ be the system formulated like P, but
without the axiom ∀x∼(x′ = 0) forbidding 0 from being a successor. Then

Observation 1. M2
n is a model of P+.

We are indebted to Paris and Wilkie for pointing out in conversation that
the observation is obvious. Indeed, that most of the first-order Peano axioms
hold in M2

n is immediate from the fact that it is a homomorphic image of M.
The only tricky one is mathematical induction. But this is not tricky either
when we realize that congruence mod n is already definable in the language
L ♯

n itself, by

D≡. t ≡ u =DF ∃x(t = u + x · n ∨ t + x · n = u)

taken schematically for all terms t and u. (Evidently we could define congru-
ence mod an arbitrary term w by putting w for n in the definiens. But since
it is congruence mod this particular n that we have most in mind, we shall
stick to the special case where n is a constant of our extended language.)
Having fixed n and used it to define ≡ contextually, let A be any formula
of L ♯

n and let A≡ be the result of systematically replacing all occurrences of
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“=” in A (in primitive notation) with the defined “≡.” It is quickly observed
that A is valid in M2

n iff A≡ is valid in M, in the usual classical sense. In
particular, if A is an instance of the scheme of mathematical induction, A≡

is also an instance of mathematical induction. This is valid in M, because it
is a model of P. Accordingly, A is valid in M2

n, by the correspondence just
noted. Everything else being straightforward, it is then obvious that M2

n is
a model of P+. This is the content of our observation, ending our sketch of
its verification.

We now use the following recipe to turn a “mod” model M2
n of P+ into a

“relevant” model M6 of all of R♯ of all of R♯. (Basically, it is an application of
the technique used in [14] to show R♯ a conservative extension of its negation-
free mate R

♯
+.) First of all, consider the following Hasse diagram, of a lattice

we henceforth call just 6.

I

− F

− T

T

F

0

While our nomenclature for 6 differs from our usual policy (we generally
reserve “F” for the bottom element and “T” for the top element of a DeMorgan
monoid, as 6 will turn out to be), and have labelled things as we have to to
make classical connections. As usual, & will be interpreted as lattice meet,
and ∨ as lattice join (in this case, just min and max in the displayed order).
∼ is order-reversing, subject to ∼0 = I, ∼F = − F, ∼T = − T, etc. The
truth-table for → is given as follows:
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→ 0 F T − T − F I

0 I I I I I I

F 0 T T − F − F I

T 0 F T − T − F I

− T 0 0 0 T T I

− F 0 0 0 F T I

I 0 0 0 0 0 I

What 6 is, really, is the result of taking truth-tables (viewed as a Dunn
monoid) into a DeMorgan monoid, conservatively adding “DeMorgan nega-
tion” on the plan first set out in [9]. To make that point, we are using F and
T to stand for (classical) false and true. (But T may also be identified with
the intuitive “least truth” t required by DeMorgan monoid theory. But its
mate, the “greatest falsehood” f , is in fact − T. As “designated elements” of
6, count everything in the principal filter determined by T: i.e., all of T, − T,
− F, and I.)

It is readily verified that 6 satisfied the postulates on a DeMorgan monoid
laid down by Dunn in [5]. (The lazy need merely note that it turns up among
the structures generated by the program TOPSY—so named by Slaney be-
cause it “just growed”—explained in [18].) Since DeMorgan monoids stand
to R as Heyting lattices stand to intuitionism, this means that 6 will look
after the relevant verification of all quantifier-free logical postulates; and,
being finite (and hence a complete lattice) it will also look after the verifica-
tion of relevant logical postulates containing quantifiers, with ∀ interpreted
as a generalized meet and ∃ as a generalized join (which, in a simply ordered
case like 6, means just that ∀xAx will get the “falsest” value of any of its
instances At, while ∃xAx will get the “truest.”)

What is nicest about 6, for our immediate purposes, is that it offers a
convenient way to turn classical theories, and their accompanying models,
into relevant ones, while still preserving relevant distinctions. Many of these
distinctions have to do with negation. The DeMorgan ∼A denies A. But it
does not, like its Boolean cousin, confuse the denial of A with the assertion
that A implies anything whatsoever. (Boolean negation is nonetheless an
interesting and valuable connective of relevant logics, unjustly pilloried by
authors of whom we otherwise speak well. But there is not time to go into
all that here.) Thus from one viewpoint—there are others, consistent with
relevant insight—classical logic simply lacks negation. Or rather it confuses
negation with A → F, where the distinguishing feature of F is that it im-
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plies everything (classically) in sight. As is well-known, 0 = 1 will do as
such an F arithmetically. So we might rethink classical theories as positive
theories, whose logical particles are just &, ∨, →, ∀, ∃, and which introduce
(what passes for) negation via some sentence silly enough to imply absolutely
everything.

While we are not necessarily recommending this view of classical nega-
tion, let’s try it out. We would then view classical logic as a positive logic,
consisting of all the classical tautologies in the positive particles just listed.
A classical theory would then be any theory T which contained all those tau-
tologies and which was closed under →E. If a classical theory does contain
an F that implies everything, according to this theory, then it is moreover
classical in the usual sense, defining (classical) not-A as A → F. Let us call
such a theory a classical F-theory. Provided F is not itself a theorem of the
theory (which would rather spoil things), any classical F-theory will have the
usual models. It is time for a theorem.

Model Transformation Theorem. Let M2 be any model of a classical
F-theory, in the usual sense. We may extend M2 to a model M6, in the
DeMorgan monoid 6, with the following properties.

(1) All theorems of the first-order relevant logic RQ are valid in M6

(2) The class of valid sentences is closed under the rule →E (modus
ponens for →) and the rule &I of RQ

(3) Every sentence true in M2 takes the value T in M6 (and is hence a
“good guy,” by the lights of M6)

(4) Every sentence false in M2 takes the value F in M6 (and is hence a
“bad guy,” by those same lights)

(5) Let A be any positive sentence; then ∼A takes a designated value in
M6

(Accordingly, adding any class of such sentences as new relevant axioms
produces a conservative extension of the classical theory corresponding to
the truths in M2, and a fortiori produces a conservative extension of the
original classical F-theory, understood now as a relevant theory.)

Explanation 1. Before proving this theorem, we wish to remind the reader
what it means. We are thinking of our F-theory as lacking ∼ in its forma-
tion apparatus, while containing all positive particles, including →, which the
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theory in question treats as material implication. From this viewpoint, ex-
tending M2 to M6 is introducing negation, taken as a new primitive particle
∼, and subject to all usual negation laws (double negation, excluded middle,
non-contradiction, etc.) except paradoxical ones. It then turns out, in line
with previous results, that we can be quite free about adding axioms of the
form ∼A, or their relevant equivalents, when A is in the old, positive vocab-
ulary. (These things are essentially known, from [11]. What is striking is
that, if we start from a classical theory, they can be put very simply.)

Proof. On well-known syntactical maneuvers, we may assume that only sen-
tences (i.e., formulas without free variables) enter into our stipulations of
logics and theories. We also assume, in specifying the modelling conditions,
that the language of a theory is enriched to include names for all elements
of the model, as above. Assuming that M2 has been given, with an asso-
ciated interpretation function I2 defined on all closed terms and sentences
of our (positive) enriched language with values in {F, T} for sentences, we
characterize M6 and its associated interpretation function I6 as follows.

(i) The domain D of objects of M6 shall coincide with the objects of M2,
and I6 shall coincide with I2 on all closed terms.

(ii) The domain of truth-values of M6 shall be the lattice 6 displayed
above.

(iii) I2 and I6 shall coincide on atomic formulas, identifying classical T, F
with the T, F of 6.

(iv) On propositional connectives, I6 shall be homomorphic; i.e.,
I6(∼A) = ∼I6(A), I6(A → B) = I6(A) → I6(B), etc.

(v) I6(∀xAx) = I6(At), where this value is least under I6 for any sentence
of the form At, where t ranges over the closed terms of the extended
language.

(vi) I6(∃xAx) = I6(At), for the greatest such value of an At under I6.

(vii) A sentence is verified in M6 iff it takes a value ≥ T under I6 in the
lattice ordering of 6. I.e., A is verified if I6(A) ∈ {T,− T,− F, I}.)

While that was somewhat long-winded, how the specification operates is
clear. I6 extends I2 by looking after formulas not in the original positive
vocabulary; in particular, those containing DeMorgan ∼. M6 has extra
truth-values to look after that extension. The particular assertions of the
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theorem are now straightforward. Because 6 is a finite DeMorgan monoid,
any interpretation I therein is going to verify first-order relevant axioms and
rules; this disposes of (1) and (2). Since I2 and I6 coincide on all positive
sentences, (3) and (4) are also immediate. As for (5), a positive sentence must
take one of the values T, F; so its negation must take one of − T, − F, either
of which suffices to verify it in M6. Moreover, since the class of sentences
verified in M6 contains all relevant tautologies, all sentences in our F-theory,
all negations of positive sentences and is closed under relevant rules, it is
evidently a regular relevant theory which extends the F-theory we started
with; but, since every non-theorem of this theory is refutable in some M2,
and hence in a corresponding M6, any relevant denials of positive formulas
may be added conservatively, in accordance with our parenthetical remarks.
This completes the proof of the model transformation theorem.

Having the model transformation theorem in hand, we can now return to our
previous considerations. Here is a corollary to look after them.

Corollary 1. Let M be any model of classical first-order Peano arithmetic P.
Let n 6= 0 be an element of M, and let M2

n be the classical model of P+ “mod-
ulo n,” with interpretation function I2n. Then M6

n, univocally determined by
M2

n by the recipe of the theorem, is a model of R♯, which verifies exactly
the same positive sentences that M2

n makes classically true; moreover, the
“integers” of M6

n are just those of M2
n.

Proof. Everything follows immediately from the theorem, except the state-
ment that M6

n is a model of R♯. Remember that, classically speaking, M2
n

failed to verify the postulate which says that 0 is a non-successor. But
that means, under our “positive translation” of P+, ∃x(x′ = 0) → 0 = 1
(near enough). Clearly this deserves to be a non-theorem of P+, since it is
truth-functionally refuted mod 2 It is a different matter, relevantly, to assert
∀x(∼x′ = 0) (which, of course, is completely equivalent to ∼∃(x′ = 0)). As
a Peano postulate, and hence as an axiom of R♯, it has to be verified in any
model of R♯. This may surprise the reade who skimmed our earlier remarks,
but who has remembered that, in M2

n, 0 is a successor; specifically, it is the
successor of what we playfully called − 1 above. But recall Dunn’s inter-
pretation of our policy in such matters; we are dealing with a “confused”
homomorphic picture of an M in which 0 was not a successor. This sug-
gests, as before, that both ∃x(x′ = 0) and its negation should be verified
in M6

n. And this is in fact what happens; since − 1′ = 0 according to M6
n,
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(∃x(x′ = 0)) = T; but then its negation takes the value − T, also a “good
guy,” (Indeed, according to our theorem, we could add the negation of any
positive formula, or a relevant equivalent, conservatively as a new axiom.)
So the non-successor postulate, as an axiom of R♯, is verified after all.

Otherwise, there is almost nothing to the verification M6
n is a model of R♯.

The logical axioms and rules, and all positive proper axioms, are looked after
by the theorem. This covers everything but mathematical induction. For this
principle is schematic, of the form A0 & ∀x(Ax → Ax′) → ∀xAx. Evidently,
if Ax is a positive formula, the corresponding instance of mathematical in-
duction will be verified in accordance with the model transformation theorem
in M6

n, given that we have already observed that it is true in M2
n. But Ax

may contain DeMorgan negation, which is not covered directly by the the-
orem. So it is necessary, as in [14], to dig a little deeper. We observe first
that, where Ax is any formula in which at most x occurs free, M6

n constrains
the interpretative possibilities as follows:

(a) For all closed terms t, I6n(At) ∈ {T, F}. Or

(b) for all closed terms t, I6n(At) ∈ {− T,− F}. Or

(c) for all closed terms t, I6n(At) = 0. Or

(d) for all closed terms t, I6n(At) = I.

Proof is by induction on the complexity of Ax. (a) holds if Ax is atomic.
The other cases are settled by straightforward inductive argument, which we
leave to the reader. It is then evident that, in cases (c) and (d), the induction
axiom must take the value I, verifying it. We next wish to show that, in case
(a), we have Ax equivalent in the model M6

n to a positive formula, in the
sense that there exists a negation-free formula Bx such that ∀x(Ax ↔ Bx)
is valid in the model; and that, in case (b), we have Ax equivalent in the
model to the negation of a positive formula. Again we argue by induction on
the length of Ax, the atomic case being immediate. Again leaving details to
the reader, this settles case (a), replacing equivalents and noting once more
that induction holds for Ax positive, by construction. But it also settles
case (b); for, in this case, ∀xAx must be one of − T, − F on interpretation;
while ∀x(Ax → Ax′) must be one of T, F, which will force the conjunction
in the antecedent of the induction scheme to precede the value given to the
consequent in the ordering of 6 under interpretation. This completes the
verification of the induction postulate in M6

n, and with it the proof of the
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corollary from the preceding theorem.

After all this, we may exhibit a model of R♯ with alien intruders aplenty.

Alien Intruder Theorem. Every rational number is a non-negative inte-
ger. That is, there is a model M of R♯ such that the following obtain, in a
straightforward sense.

(a) Every rational number is an element of M.

(b) The ordinary laws of rational arithmetic hold, for addition, multipli-
cation, subtraction, division.

(c) The Peano postulates are satisfied by M, including mathematical
induction.

Proof. Add a new constant n to the vocabulary of P. Define ≡ as above
as congruence mod n. Form an extension T of P by adding as new axioms
∀x(x ≡ 0 ∨ ∃y(x · y ≡ 1)); and, for each numeral m corresponding to a
“standard” natural number, ∼m ≡ n. T must be a consistent theory. For,
if it is inconsistent, some finite conjunction of these added axioms must be
inconsistent; however, there is then a standard number p such that (i) p is
prime and (ii) all numbers named in the inconsistent finite conjunction of
added axioms are less than p. But, interpreting n as p, we have a model
for the finite subset of axioms alleged to be inconsistent (for no number
smaller than p is congruent to p mod p; while since the integers mod a prime
number constitute a field, the axiom asserting the existence of a multiplicative
inverse for each element not congruent to 0 mod p will also hold.) So, by
compactness, T has a model, which we may call M∗. Forming congruence
classes mod n, we get a model M∗

n of P+, which is then transformed into
a model M6

n of R♯ in accordance with the preceding corollary. This is our
desired M, in which the Peano postulates hold (in their first-order relevant
version) by the corollary. We must now show that all rational numbers are
admitted by M.

In the first place, since no standard natural number was congruent to n
in M∗, every standard number is an element of the quotient algebra M∗

n (and
hence of M, which has the same objects in its domain). Using − 1 as before
to denote the element whose successor is 0, for each standard positive integer
m in M there will be a corresponding standard negative integer −m =
(− 1) · m; moreover, since M is in the natural way a ring, these standard
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integers constitute a sub-ring of M, as expected. But, for each non-zero
integer m, our added postulate guarantees a reciprocal 1/m. (The notation
is justified, since multiplicative inverses must be unique. For suppose, to
contrary, that there are distinct i and j such that m · i = m · j = 1. But then
j = 1 · j = i ·m · j = i · 1 = i, whence i and j are not distinct after all.) We
may then form the arbitrary rational fraction k/m as k · (1/m), for m 6= 0,
in M. For k, m rational standard integers, these fractions may be reduced
to lowest terms in the usual way; the usual laws of rational arithmetic will
thereupon hold, ending the proof of the theorem.

All of this is, to say the least, most startling and wonderful. Bereft
of the paradoxical properties of classical negation, it is possible to satisfy
the Peano postulates in a domain (indeed, in many domains, since every
non-standard model M∗ of P may be transformed into a model M of R♯

in this fashion) that contains all the rationals, among the alien intruders.
The price of this, to be sure, is inconsistency; in the model-theoretic sense,
because M verifies both A and ∼A for some choices of A; and in the syntactic
sense, taking the class of sentences verified in M as a relevant theory that
extends R♯ (as it is) but which contains explicit contradictions of the form
A & ∼A. For those addicted to the “foolish hobgoblin of little minds,”
there is little that we can say at this point; for those who take consistency
to be the hallmark and only criterion for mathematical existence, there is
even less. But, to be honest, there was never much to be said for this
criterion. In whatever shadowy sense mathematical entities may be said
to exist, their interest lies in the beauty and richness of the structures to
which they give rise, and to the possibility of applying these structures to
the real as opposed to the mathematical world. No one will deny that rational
numbers are applicable to the world; if, in applying them, we unmask them
as just another sort of integer, we can view that as just another beautiful
and interesting fact about them. And the trouble with inconsistency, as
fatal to mathematical existence, lies not with the inconsistent as such; but
in the fact that, if negation is allowed its horrendous paradoxical classical
properties, the presence of a single inconsistency calls the mathematical game
off, allowing everything to be proved. If the game can still go on—indeed,
even perhaps become more interesting—if we adopt relevant and not merely
truth-functional canons of inference, then there is no reason in principle not
to do so. As a recipe for reconstructing mathematical reason, there always
was a good deal wrong with classical logic—if only because intuitive reason is
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subject to those relevant constraints that its truth-functional regimentation
ignores. If we attend to those constraints in our reconstruction of logic, and
do not elevate ignoring them to the level of unreasoned dogma, there are
mathematical worlds undreamed of yet to conquer.

Meanwhile, it is interesting to see how far we can go along the lines just
laid out. Can we, for example, construct a model of R♯ on the above plan
whose elements are exactly the standard set Q of rational numbers? The
answer is “No.” For, among the theorems of P, there are assertions like,
“Every natural number is the sum of four squares.” These assertions are
preserved on the Mn style passages to homomorphic images, and on to the
resulting “inconsistent” models of R♯. In these homomorphic images, − 1 is
a number. Accordingly, − 1 is the sum of four squares. Evidently, when all
rational numbers are elements of our model, − 1 cannot be the sum of four
squares of rationals. So any model of this sort which includes the rationals
must include other elements, not to be identified with any rational number.
(As, on a little reflection about the subject, is perfectly clear anyway.)

But the method which produced the Alien Intruder Theorem will go a
lot further. Perhaps, for example, one would like to have the imaginary
number i among the integers, without identifying it with any standard integer
(recalling, e.g., that 42 = − 1 mod 17, whence 4 = i from that viewpoint;
to be sure, so is 13, which is a little disturbing). Well, we can pull the
same trick. Add ∃x(x2 + 1 ≡ 0), while denying for each numeral m that
m2 + 1 ≡ 0. The result, by compactness, is a consistent extension of P,
which must have a model containing an element i such that i2 = − 1, where
i is distinct from all rational numbers when we collapse mod the appropriate
congruence. Question: can we view all real numbers as integers? Answer:
we don’t know.

But, the reader may protest, what you have done is extremely silly. Above
all, the natural numbers are characterized by induction. How can, say, 3/2
count seriously as an admissible alien intruder? Could anybody give as a
serious reason for 3/2 possessing a certain property (i) that having that
property P is preserved under adding 1’s and (ii) 0 has P ? We can, to be
sure, conclude on that basis that 0 has P , 1 has P , 2 has P , etc. But, in the
process, we seem to have skipped 3/2 on our way from 1 to 2. Would it not
be magical if 3/2 had the property P as well?

We should like to respond, first, that it is magical that induction should
hold anywhere except in the standard model. We do not get to ordinary non-
standard integers either from 0 by adding 1’s; yet, in any non-standard model
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of P, these greatly outnumber the standard integers. But, second, the idea
actually sounds less silly with respect to the rational numbers—which after
all are elements of a well-known and rather intuitive structure—than it does
of the usual “non-standard integers.” If our arithmetical intuitions start with
natural numbers, on what basis do we intersperse or tack on extra elements to
a well-known number sequence? There are, after all, all kinds of structures in
which the natural numbers can be embedded. Some of these embeddings have
themselves come to be thought “natural”—into the integers, the rationals,
the reals; and, more recently, into the ordinals and cardinals. Non-standard
models of the usual sort, from this viewpoint, were just more of the same.

All of these embeddings are characterized not merely by the fact that
the natural numbers can be located in the resulting structure, but also by
the fact that certain laws governing the natural numbers are preserved (and
extended) as we enrich the number system. But, from this viewpoint, we must
ask, “Which laws are to be preserved? And why do we believe those laws in
the first place?” This leads us not merely to mathematical induction, but to
something resembling scientific induction. A facetious answer to the question,
“Why should 3/2 have property P if 0 has property P and successors of P
have P ?” might be “Well, if all those guys have P , any scientist would
believe that 3/2 has P also, in the absence of specific reason to believe the
contrary!”

Behind this facetious answer there is a point. What sorts of laws do
we have an interest in preserving? Typically, ones like “x + y = y + x,”
“x · (y + z) = (x · y) + (x · z).” (To be sure, we aren’t forced to preserve
them; e.g., on generalization to ordinals, commutativity of + fails; but such
failures tend to result because there is something else that we have an interest
in preserving—in the case of ordinals, that every non-empty set of them
has a least element.) But why should we have believed that addition was
commutative in the first place? Presumptively, mathematical induction gives
a reason. And if we then wish to hold “(3/2)+y = y+(3/2),” is there nothing
to the thought that, since mathematical induction has conferred this property
on the natural numbers, we want it to hold of the rationals also? And since we
have long thought of integers as special sorts of rational numbers, perhaps
it is time to return the favour; alien intruders they may be; but, by our
theorem, rational numbers are conversely special sorts of integers.

It will not do, to be sure, to push these sorts of speculation too far. But
they do raise food for thought, as well as interesting directions for research.
Another view of a mathematical structure never hurts. For, if all else fails,
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it might help us to prove a theorem that has hitherto escaped us. Or give us
some further insight into what we wish to prove. And why.
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