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Abstract

This paper offers an elementary proof that formal arithmetic is consis-
tent. The system that will be proved consistent is a first-order theory
R
♯, based as usual on the Peano postulates and the recursion equations

for + and ×. However, the reasoning will apply to any axiomatizable
extension of R♯ got by adding classical arithmetical truths. Moreover,
it will continue to apply through a large range of variation of the un-
derlying logic of R♯, while on a simple and straightforward translation,
the classical first-order theory P

♯ of Peano arithmetic turns out to be
an exact subsystem of R

♯. Since the reasoning is elementary, it is
formalizable within R

♯ itself; i.e., we can actually demonstrate within
R
♯ (or within P

♯, if we care) a statement that, in a natural fashion,
asserts the consistency of R♯ itself.

The reader is unlikely to have missed the significance of the re-
marks just made. In plain English, this paper repeals Gödel’s famous
second theorem. (That’s the one that asserts that sufficiently strong
systems are inadequate to demonstrate their own consistency.) That
theorem (or at least the significance usually claimed for it) was a mis-

take—a subtle and understandable mistake, perhaps, but a mistake
nonetheless. Accordingly, this paper reinstates the formal program
which is often taken to have been blasted away by Gödel’s theorems—
namely, the Hilbert program of demonstrating, by methods that every-
body can recognize as effective and finitary, that intuitive mathematics
is reliable. Indeed, the present consistency proof for arithmetic will
be recognized as correct by anyone who can count to 3. (So much, in-
deed, for the claim that the reliability of arithmetic rests on transfinite
induction up to ε0, and for the incredible mythology that underlies it.)
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I

Repealing Gödel’s theorem is no small matter. That theorem, after all,
has often been taken to be the central fact of modern mathematical logic.
Recursion theory is its child; much of model theory is at least its step-child.
Moreover, if there is an error in Gödel’s arguments, or in the significance
ordinarily attributed to them, the mistake itself must be of a subtle—in fact,
almost of an excusable—sort. For no arguments in the subject have been
examined more carefully, or worked out (in a number of alternative forms)
more rigorously. I.e., a mistake, if there is one, would have to be of the kind
that we are almost programmed to overlook, or even to condone.

Moreover, if we claim to have found a mistake, we must take pains that,
in the process of correcting it, we do not ourselves stray into areas that Gödel
has correctly asserted to be off-limits. Thus, for example, the present paper
offers no correction of Gödel’s famous first theorem; to the contrary, we shall
demonstrate, as expected, that R♯ and all of its consistent axiomatizable
extensions are incomplete. Nor do we offer a technical correction of the
second theorem; that there is a formula CONSIS of P♯, which may be taken
to express the consistency of P♯ but which is unprovable in P♯, is not here in
question.

What is offered, rather, is a philosophical correction. First, we correct
the impression that P♯, or anything like it, is the system whose consistency
needs to be proved. Second, we establish the consistency of the system R♯

(and of related systems) that may be more or less adequate to the needs of
mathematics.

Let us hurry on, now, to the crux of the matter. That crux lies in the
little sign ∼. ∼, of course, is supposed to mean ‘not.’ And the real import
of the Gödel arguments, which are so often tied to such delicate matters as
numeralwise expressibility, systematic unprovability, perverse self-reference,
and the like, may in fact be summed up quite succinctly. In any serious
attempt to formalize mathematics, or even arithmetic, effectively, ∼ never
means what it is supposed to mean, within a particular system. To be sure,
we can claim to give a semantic interpretation of an effectively presented
arithmetic, and tell the world that, on this interpretation, ∼ means ‘not.’
The world will then ask how it comes about that, on some occasions on
which A is false, we cannot prove ∼A within the system. And we shall
perhaps reply that, relative to the interpretation, the system is incomplete.
But how much more accurate it would be to reply that, because of certain
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formal anomalies that arise in the technical engineering, we just cannot so
fix things up that ∼ works within the system the way that ‘not’ is to be
taken as working in English. (In view of the Liar Paradox and other natural
anomalies, however, we might more candidly admit that we don’t know how
‘not’ really works in English, either.)

We make this point clear, on Gödelian grounds, with respect to the stan-
dard first-order Peano arithmetic P♯. We suppose some standard coding
(Gödel numbering) that assigns to each formula A a unique natural number
I. (In future, we suppose that this coding is an effective bijection from the
natural numbers onto formulas and we shall use AI for the formula with
Gödel number I.) We let N be the set of all natural numbers, and, taking
our formal system abstractly, we identify natural numbers with the corre-
sponding numerals of the system. Then, as is well-known, there is an open
formula Px, with sole free variable x, which serves as a provability predicate
for P♯ in the following sense:

(1) For all natural numbers I, PI is a theorem of P♯ iff AI is a
theorem of P♯.

Moreover, taking truth with respect to the standard model N = 〈N, ′,+,×〉
in the usual Tarskian sense, we have also

(2) For all natural numbers I, PI is true iff AI is a theorem of
P♯.

Accordingly, on our semantic understanding of ∼ we have immediately from
(2),

(3) For all natural numbers I, ∼PI is true iff AI is not a theorem
of P♯.

But we do not have, on straightforward Gödelian grounds,

(4) For all natural numbers I, ∼PI is a theorem of P♯ iff AI is
not a theorem of P♯.

I.e., viewed extrinsically, as in (3), we may perhaps view ∼ to be a formal
counterpart of ‘not,’ for the context under consideration. Viewed systemati-
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cally, and given (1), what clearer demonstration could we ask than (4) of the
proposition that ∼ just doesn’t work formally in P♯ the way that ‘not’ works
intuitively, given that (4) must fail (on pain of total bankruptcy otherwise of
the standard mythology)?

We fix the considerations and notation of the previous paragraph for the
rest of the paper (including the standard Gödel numbering, which there is
no need to specify further). And we next note that these considerations
are central to an examination of the character and import of Gödel’s second
theorem. It is of little interest that we cannot prove the consistency of P♯

within itself, unless P♯ has the vocabulary to say that it is consistent (and,
moreover, that what it says in this vocabulary is in fact unprovable). And
now we note the following.

In the first place, nobody ever expected P♯ to be muttering introspec-
tively about itself at all. P♯ was constructed to say that 5 + 3 = 8, that
every number greater than 1 has a prime divisor, and the like. It was not
constructed to say that nobody ever loved it before Hilbert came along, that
it often wishes it were complete, or, for present purposes, that it is consis-
tent. Of course, after Gödel, we are all now prepared to believe that P♯

does introspect, in code. And this has made its psychoanalysis (or whatever
the equivalent process is when applied to formal systems) a regular element
in the training of mathematical logicians. And we should note that, as in
all psychoanalysis, there is a certain indistinctness in the method. When,
e.g., P♯ seems to say “Every natural number is the sum of four squares,”
we may suppose that it is bragging “Show me a sentential tautology that I
can’t prove” or perhaps complaining “I can only demonstrate Fermat’s last
theorem for regular primes.” And this should lead to a little humility on our
part; stripped of the code, P♯ is still saying, “Every natural number is the
sum of four primes.” The rest we read into what it says, and, since P♯ is
not itself a complete system, we err even in simple arithmetic if we try to
interpret what it says categorically.

Second, we must exercise unusual care, as Feferman pointed out in [1] and
as Gödel himself reflected in a recent footnote to [2], in finding a technical
form for Gödel’s second theorem. We must formalize the statement, uttered
by P♯ about itself, “I am consistent.” Here, our previous worries about
negation are going to come to the fore, in a couple of ways. First, any
statement that may be reasonably taken in P♯ to express its own consistency is
presumptively going to involve negation in an essential way. There are various
intuitively equivalent ways of asserting the consistency of P♯, in English, but
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all of them in the end are assertions like, “This is not provable” or “Nothing
of this form is provable” or “If this is provable, then that is not provable.”
Evidently, if we are worried about our capacity to express ‘not’ in P♯, and
to express ‘not provable’ in particular, we are going to have to worry about
whether we can express in P♯ a statement that says that P♯ is consistent,
even in code.

Third, accordingly, one begins to wonder what Gödel’s second theorem
adds to his first theorem. No one expects us to be able to prove what we
cannot say. And it then seems otiose to claim that any effective, finitary
proof of the consistency of formal arithmetic would yield a proof in P♯ of
a formula which, so far as P♯ is concerned, is only a dubious candidate for
the role of being the statement in the vocabulary of P♯ which expresses the
consistency of P♯.

We shall not linger over these issues. Indeed, we shall even take, below,
a rather orthodox stand with respect to them. But we do note that they are
exacerbated when we ask, “What particular form, even in English, should
the statement that P♯ (or any formal arithmetic) take?” We devote the
next section to some of these problems, again singling out the crucial role of
negation.

II

First, let us ask ourselves, “Why should we (or Hilbert) have cared whether
arithmetic is consistent?” And let us now answer the question. Mainly, we
don’t care. Put optimistically, we are so strongly convinced that arithmetic
is consistent (or at least that any part of it of which serious use is going to be
made is consistent), that demonstrating its consistency is just a game—the
game of seeing how little, or how much, is required for a formal consistency
proof. After all, it was the reliability of mathematical analysis that truly
worried Hilbert and others. And, since the ultimate effect of the great 19th
and early 20th century programs was to substitute insecurity in reasonings
about infinitesimals and series, the neck-wringing administered to these pro-
grams in 1931 have registered no gain on that main point. Indeed, they have
led, since 1931, to a certain abandonment of the main point, all hands being
needed (as Reid puts it aptly in [3]) to defend the homeland of arithmetic.

While we are playing the game, however, what we are presumably con-
cerned to show is that our intuitive arithmetic is reliable, by establishing
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that our carefully chosen formal counterparts of that arithmetic are reliable.
So long as we accept, as we do for present purposes, Gödel’s first theorem,
part of that task remains beyond us. For, according to that theorem, no
formal system (in the ordinary first-order vocabulary) that can be effectively
presented for the arithmetic of the natural numbers, or for any theory con-
taining that arithmetic, will serve as a fully acceptable formal counterpart of
the intuitive arithmetic.

So any formal arithmetic is, intuitively speaking, at best a partial arith-
metic. Being partial, however, is not the same thing as being unreliable.
And this is the point at which the usual appeals to Gödel’s second theorem
suggest that the entire situation is absolutely perverse. For it is claimed that
no bag of mathematical tricks can be demonstrated to be reliable, except on
appeal to some trick that isn’t in the bag. I.e., we are confronted with a
picture on which the reliability of any mathematical system (save such as are
inadequate for whole number arithmetic) can only be demonstrated in some
system less reliable, prima facie, than the system from which we began.

This picture, if accurate, severs mathematical logic from its chief foun-
dational purpose: Namely, making possible a rigorous reconstruction of in-
tuitive mathematics. Instead, one gets the impression that even the recon-
struction of simple arithmetic is dubious enough, and that every step on
from there becomes even more dubious. And it is accordingly no wonder
that mathematical logicians, by and large, have gone off to live in a world of
their own—a world, frankly, that has little relevance to mathematics, even
less to the philosophy of mathematics, and almost none to general philos-
ophy. For the depressing picture is that more than intuitive mathematics
must be assumed in order to reconstruct intuitive mathematics. Chauvinist
mathematicians (e.g., Poincaré), who always bridled at the suggestion that
their discipline was just pure logic, may find cause to rejoice in this picture.
But logicians must weep, for it denigrates exact thought for the sake of the
old mumbo-jumbo.

We began to talk about consistency, but we have slipped in this section
to talk about reliability. Consistency is a formal property of formal systems
(though, depending on the author, it may be any one of several properties, not
necessarily related). Reliability is an intuitive property, measuring a formal
system against the purposes for which it was designed. Let it be clear, then,
from the outset that it is reliability that is most desired; we wish, after all,
our formal systems to be adequate to their purposes. And, whatever formal
property we decide to identify with the honorific ‘consistent,’ it is of interest
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to us only insofar as possession of this property by a formal system is a guide
to, and hopefully a guarantee of, the reliability of the system in question.

With that point in mind, let us think of several things that we might wish
to mean by consistent (with, to begin with, immediate application to classical
first-order Peano arithmetic P♯, but mutatis mutandis to other systems).

(1) P♯ is consistent iff there is a formula A unprovable in P♯.

(2) P♯ is consistent iff 0 = 1 is unprovable in P♯.

(3) P♯ is consistent iff, for each pair I, J of distinct natural numbers,
I = J is unprovable in P♯.

(4) P♯ is consistent iff, for each pair T, U of distinct polynomials, T = U
is unprovable in P♯.

(5) P♯ is consistent iff 0 6= 0 is unprovable in P♯.

(6) P♯ is consistent iff, for each formula A, at least one of A,∼A is
unprovable in P♯.

(7) P♯ is consistent iff, for each formula A, if A is provable in P♯ then
A is arithmetically true.

These suggested characterizations of consistency are arranged in what, in
intuitive terms, might be taken as an ever more severe order. For, evidently,
and without regard for any deduction-theoretic structure whatsoever, if ev-
erything is provable in P♯, so is 0 = 1. If 0 = 1 is provable, so is I = J for
some distinct numbers I, J . I = J , for distinct numbers I, J , is a degenerate
case of a bad polynomial. This takes us, in increasing intuitive severity, from
(1) through (4).

(5), to some degree, is a horse of a different color, though we show below
that, on minimal deduction-theoretic assumptions, any system consistent
in sense (5) will be consistent in sense (4) and hence in the lesser senses.
Since we presume that 0 = 0 is provable, together with all good polynomial
identities, any system consistent in sense (6) will be consistent in senses (5)
and (4), and so on down.

(7), to be sure, is a semantic kind of consistency, whereas (1) through
(6) were deduction-theoretic. Moreover, it is conceptually non-constructive,
since arithmetic truth (i.e., truth in the standard model N) cannot be effec-
tively characterized. But, we suppose, to the extent that one understands
(7), one understands that, for every formula A, not both A and ∼A can be
true together, whence (7) implies (6) and so on down.
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Possession of any of these properties is a greater index of the reliability
of P♯ than is possession of the property before it. Accordingly, we should like
P♯ to have them all, and to have (7) in particular. From another viewpoint,
however, (7) is the least hopeful, since, apart from arithmetic faith, we don’t
even know what it means. And, on the other hand, if we have the faith then
it is pretty trivial that (7) holds.

Our concern in this paper, however, is with reason, not faith. Accordingly,
we shall scrap (7), save as it plays a simplifying and heuristic role in carrying
out certain arguments (which we shall not trouble ourselves to carry out
rigorously). But, for P♯ in particular, a strange thing happens with (1)
through (6). For, though we graded them intuitively on an increasing order
of severity, the deduction-theoretic character of P♯ is such that, with respect
to that system, they are all equivalent. For (1) outright implies (6), in the
sense that, if any contradiction is provable in P♯, then (by the principle of
ex falso quodlibet) absolutely everything is provable in P♯. So, without any
semantic appeals of the sort involved in (7), if P♯ is consistent in sense (1) it
is already consistent in sense (6), and hence in every intermediate sense.

It is sometimes urged that this equating of various senses of consistency
is quite reasonable, on the grounds that a system in which, for any A what-
soever, both of A, ∼A were provable would already be unacceptable. That’s
as may be; I have disagreed on this point elsewhere (e.g., in [4]), but I shall
not press the grounds of that disagreement here. Rather, what I wish to note
here is that what is at issue presently is not the fact of the consistency of P♯

(or of another formal arithmetic) but the proof of consistency: i.e., formal
demonstration of the reliability of some of our intuitive reasonings.

At this point, the ex falso quodlibet of P♯ (and, equally, of Heyting’s
formulation J♯ of first-order intuitionist arithmetic) imposes some strain upon
this project. For it is a question of which reasonings we wish to demonstrate
to be reliable. And here we must not confuse with arithmetic itself what
belongs more properly to the logical superstructure that we impose upon
arithmetic, for the purpose of carrying out our arithmetical reasonings.

Again, we revert to the role of negation in formal arithmetic. Classically,
we impose upon negation various formal properties—e.g., that the laws of
excluded middle, non-contradiction, double negation, etc., hold for it. By
no stretch of the imagination can these be considered arithmetical proper-
ties ; indeed, what is valid in the Brouwerian intuitionist critique of classical
mathematics can perhaps be seen as a denial of the claim that logical truths
like excluded middle shall count ipso facto as mathematical truths.
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However, the intuitionists quickly err, from the common perspective, in
going on to deny that logical truths shall count as truths ; and, for that matter,
to deny specifically that the law of excluded middle, say, shall be available
for our arithmetic reasoning. To this it may be objected, on good grounds,
that excluded middle is built into our very understanding of negation, and
that a purported negation (like Heyting’s) which lacks this property is not
negation at all but only an inferior simulation thereof.

In short, it makes sense to separate what is logical from what is arithmeti-
cal. And negation, in particular, must count as logical, not as arithmetical.
Arithmetic, at its most elementary level, informs us that 5+3 = 8. No logical
confusions should leave this proposition in any doubt whatsoever, however
much our heads begin to swim when we come to think about Gödel formu-
las. And it is just a defect of the received logic that, if anything is in doubt,
5 + 3 = 8 is also in doubt (in the sense, e.g., that a demonstration of the
Gödel formula leads, in a few more steps, say, to a demonstration of 5+3 = 9,
5 + 3 = 10, and so forth).

What is wrong with P♯, in short, and what has led to inflated claims
for and interpretations of Gödel’s second theorem, is that it fails to account
for relevance as a constituent in valid arithmetical argument. Accordingly,
P♯ is unable to discriminate between logical anomaly and total arithmetical
breakdown. And this is a function, in part, of the way in which P♯ is custom-
arily formulated. A more satisfactory formulation of formal arithmetic, while
not offering total safeguards against anomaly, effectively guards us against
breakdown.

Specifically, what I shall show here is that a relevantly formulated arith-
metic R♯ is trivially consistent in any of the sense (1) through (4) above.
Accordingly, with respect to what most reasonably counts as elementary
arithmetic—not any formal system, but the simple manipulations that we all
learned in school—R♯ is absolutely reliable. Accordingly, Gödelian puzzles
about the reliability of arithmetic are relegated to their rightful role—namely,
they are puzzles about the logical superstructure of arithmetic, which do not
infect the properly arithmetical, and which accordingly do not impose upon
the properly arithmetical the degree of doubt (e.g., that 0 = 1 is unprovable)
that they are customarily held to impose.

In lifting a Gödelian restriction, I looked forward above to a certain re-
assertion of Hilbert’s strongly finitistic viewpoint. I can now be more precise
about the lines of this reassertion (developing views already set out, in part, in
[6]). Hilbert wished finitistic assurance of the reliability of non-constructive
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reasoning; in such reasoning, the properties of classical negation play an
important role. In so doing, however, he overestimated the importance of
consistency in sense (6) above (which, in his framework, he was unable to
distinguish from consistency even in the most minimal sense (1)).

For let us not be misled about the importance for our general reasonings of
consistency in sense (6). It may be that, as Tarski and others suggest, English
and natural languages in general are inconsistent in sense (6), inasmuch as the
semantical paradoxes (e.g., the Liar) can be developed therein). In pursuing
our natural reasonings, as I learned from Belnap, this fact is, even if true,
only a flea bite in the pursuit of knowledge; we simply isolate the putative
contradiction and ignore it. Only the ex falso quodlibet transforms it into a
whale bite, wrecking the pursuit of knowledge.

How much more, then, should we fail to be upset, in our formal reasonings,
about the absence of an effective guarantee of consistency in sense (6). When
we impose logic on our arithmetical intuitions, what we really want is a
guarantee that this imposition does not cause those intuitions to break down.
And note that it is the arithmetical intuitions of which we seek a safeguard—
not the logical ones. Elementary arithmetic is safe; we knew that before we
began to apply logic to it. What we wish to be sure of, as Hilbert might have
put it, is that excursions through general logical laws (e.g., excluded middle),
either by way of developing a simple basis for arithmetic that builds in logic,
or of extending our arithmetical knowledge, do not render dubious what we
rightly regard as indubitable.

One aspect, accordingly, of a familiar myth must go; namely, that Gödel
has consigned us to a winding staircase of increasing epistemological uncer-
tainty about mathematics, each level of which, though it may appear sound
from above, seems shaky when one is on it; and where one may always dread
that, climbing as we do through the dark, the next level will lead directly into
the void. For where Hilbert went wrong was in his assumption that there
was a single test, which might be expressed equivalently in any of the forms
(1) through (6), of the reliability of various counterparts of intuitive math-
ematics. No longer, I hope, will the demonstrable unprovability of 0 = 1
in a given formal arithmetic be held to be beyond the scope of the meth-
ods formalizable in that arithmetic; for this, indeed, is methodological doubt
with a vengeance, leaving one no alternative between blind faith in the ade-
quacy of one’s formal methods (given that proofs of their adequacy are open
to increasing methodological doubt), or hopeless scepticism regarding the
adequacy of any formal methods (save for very weak systems).
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In place of this aspect of the usual myth, we have instead a task: Namely,
to furnish new formal criteria to go with our intuitive fashioning of system
to purpose, and to demonstrate effectively that our systems satisfy these
criteria. Here we must become more clear about what belongs to the mathe-
matical intuitions themselves and what belongs to the logical superstructure;
while I have singled out ∼, in particular, as being associated with the su-
perstructure, the degree to which the association can be made precise is of
course dependent on definite formal results and particular formal points of
view; evidently mathematicians, no less than any of the rest of us, are enti-
tled to say ‘not’ on occasion when expressing underlying intuitions, and it is
a task in itself to attempt the separation of the logical and the mathematical
aspects of their so saying.

Beyond that, we must also move on beyond arithmetic; those intuitions,
after all, are not the ones that we are most concerned to safeguard, from an
intuitive point of view. From the present viewpoint, the task of furnishing a
non-mythological and demonstrably secure reconstruction of all mathematics
was interrupted over trivia, and it is time that these trivia were placed once
more in proper perspective. Again, I do not propose to change the logical
superstructure—only to understand it more clearly, by making explicit in a
formal way features that have belonged to our intuitive logic all along.

It may be, of course, that there are more fundamental fallacies hidden in
the usual logical superstructure, untouched by the present approach. It is
still uncomfortable, for example, that another aspect of the Gödelian stair-
case remains untouched by the present account. For, while we can guarantee
reliability of formalized mathematics in ways that Gödel is commonly held
to have prevented, we remain subject to the Gödelian restraint with respect
to the adequacy of formal to intuitive mathematics. And this is, in the end,
the more important restraint. To be sure, it is up for grabs as to what counts
as intuitive mathematics, and what is merely mathematical mythology. In
arithmetic, for example, there is certainly a sense in which, if we get the +
and × tables right, we have done intuitive mathematics, and further non-
sense involving ineffective quantification over the completed infinite domain
of natural numbers is to be reserved for tellers of tall tales. But creative
mathematics is filled with such tall tales; while it is nice, accordingly, to
be rid of the levels of increasing doubt regarding the reliability of the tales
that we have managed to spin, there will remain not only graded degrees of
reliability for particular stories but also graded degrees of adequacy to the
whole story. While it is no small feat, I claim, to have circumvented Gödel
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on a point of interpretation of his results that has led to unwarranted pes-
simism on foundational questions, giving rise to a new foundational program
of considerable interest in itself (and which one hopes will serve to check the
rampant platonistic fideism of the day), only one of Gödel’s theorems can be
here repealed. That’s a pity, but it will have to do.

III

The reader, I presume, is no longer in any doubt in what sense we are going to
prove our preferred formal arithmetic R♯ consistent. To begin with, we shall
show that it contains an unprovable formula, making it consistent in sense
(1). The unprovable formula itself will be Hilbert’s formula 0 = 1, making
R♯ consistent in sense (2). And we shall indicate how, for any distinct I, J
under (3), or T, U under (4), we can extend our consistency proof under (2)
to refute I = J or T = U , offering a certain guarantee of consistency under
these points also. There our guarantees stop, for now.

The reader who picked up this paper, and who read its opening sections, in
the hope that something truly earth-shaking was about to be demonstrated is
to be pardoned, perhaps, a certain let-down at this point. For he is certainly
not to be blamed if he took consistency, to begin with, in sense (6). If so, he
may be disappointed to discover that not only is effective consistency denied
us in this sense in R♯, but that exactly the same barriers exist in R♯ as in P♯

against the proof of such consistency.
Later, I shall outline what is needed to prove consistency in sense (6) for

R♯, noting by the way that this will also produce a new proof of consistency
for P♯ . Meanwhile, however, the reader is urged not to look lightly on
the present results. They are exactly what, in his initial ignorance, he may
have supposed them to be. For the lasting deficiency of P♯ is, as noted,
that it cannot distinguish (6)-consistency from any other sort. Indeed, the
original form of Gödel’s second theorem refers not to (6)-consistency but to
(1)-consistency as what cannot be established for P♯ in P♯ itself. And it is
this kind of thing that leads to continuing confusion between genuine doubts
about the reliability of intuitive arithmetic and mere persisting puzzles.

We now present our first-order Peano arithmetic R♯ . We get R♯ by adding
to the Peano postulates, together with the usual laws governing +, ×, =, to
the first-order logic RQ developed in [7]. RQ is a relevant logic. This makes
R♯, I suppose, a relevant arithmetic. But, frankly, I have little time for these

Australasian Journal of Logic (18:5) 2021, Article no. 5



301

pejorative or honorific adjectives, like ‘relevant,’ for it is by no means my
intention here to formulate a new kind of arithmetic, or one which presup-
poses a successful formal analysis of the notion of relevance. To the contrary,
while I think that researchers in relevant logics—in particular, Anderson and
Belnap—have succeeded in calling attention to features in the logical land-
scape that had hitherto been overlooked, and which answer in some happy
respects to our pre-theoretic intuitions involving relevance, I do not hold with
the view (which has apparently come to prevail among the “in” group) that
these are “relevance logics,” in the sense of providing a “logic of relevance.”
On that point, I don’t particularly think that we need a logic of relevance,
and I certainly don’t think we have one.

What we do need, and what have been developed, are new ways of looking
at logic in general, and of the particular theories that we use logic to build,
that eliminate some of the irrelevant anomalies (like the ex falso quodlibet)
which have hitherto plagued the subject, and which have been allowed to
persist, like the office of the Governor-General, in the erroneous belief that
they do no harm. (Hmm—Russell should have said that, and it’s a pity that
he didn’t.) Accordingly, I repeat, what is intended here is nothing new, and
nothing that belongs to some esoteric branch of philosophical logic with its
few dozen initiates. Rather, what is intended is what should have been seen
all along; namely, that it is a particular view of logic—indeed, a particular
mythology of logic—that has produced the worst of the Gödel anomalies,
and that these anomalies cannot survive even rudimentary thought-taking
as to what we are really about when we are seeking to formalize arithmetic
and other branches of mathematics.

So, near enough, it is just the old arithmetic which is being formalized
here. Or, frankly, which we are attempting to formalize here, since it is always
possible that the present formalization of R♯ itself runs into anomalies of a
sort not here foreseen. Nor need we be wedded to R♯, or to its underlying
logic RQ, in particular. There are both logical and arithmetical options,
closed in one way here, that others might wish to close differently, with quite
similar results. While, both philosophically and technically, I think that
there are significant advantages in working with R♯ as formulated here—for
one thing, RQ is understood rather more thoroughly than other logics in its
neighbourhood, while it incorporates certain classical principles of strength
that I think are right in conception and convenient for formulating concrete
mathematical theories—I do not wish to commend the familiar mistake of
looking for more precision in a uniquely preferred formalization than our
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indistinct and confused underlying intuitions will warrant.
The system R♯ is formulated straightforwardly. It is based on a first-

order language L ♯ built up as usual from the countably infinite sequence of
variables x, y, z, x0, x1, etc., the individual constant 0, the unary operation ′,
the binary operations +,×, the binary predicate =, the unary connective ∼,
the binary connectives ∧,→, and the universal quantifiers ∀x, ∀y, etc.

I prefer to view R♯, and other formal systems, as abstract in something
approaching the sense of Curry’s [8]. This means that the constituents of
L ♯ are not to be taken as pieces of language in the ordinary sense (whatever
that mixed-up ordinary sense may be), but as abstract objects and functions.
This frees the language we are using (Curry’s U-language) for its ordinary
referential sense, to which the conventions of standard (mathematical) En-
glish will apply without further comment. But the reader who is stuck in a
fallacious nominalism may easily translate everything into his own tongue,
as he is hereby encouraged to do.

We next build up the usual grammatical categories in L ♯, as inductive
classes. From the individual constant 0 and the successor operation ′ we
build up the natural numbers on the following expected definitions.

• 1 =DF 0′

• 2 =DF 1′, etc.

We shall let N be the class of all natural numbers, and we shall let ‘I,’ ‘J ,’
‘i,’ ‘j,’ etc., serve (usually) as intuitive variables ranging over N. (As noted,
since our system is abstract, we do not distinguish numbers from numerals ;
put otherwise, each numeral is the number which, on other accounts, it would
be held to designate.)

We next build up the class NT of number terms by closing N under +,
×, ′. Examples of number terms are 2 + 2, 3 × (4 + 6′)′, and so forth. And
we build up the class of T of terms by closing the union of NT and the set
of formal variables under +, ×, ′. Thus, e.g., x + 3, y × (4 + x7) are terms
but not number terms.

Let T, U be terms. Then, and only then, T = U is a member of the class
EQ of equations. If, in particular, T, U are numbers, T = U is a member
of the class NEQ of number equations ; if T, U are number terms, T = U
is a member of the class NEQQ of numerical equations. We may also refer
to equations as atomic equations or as polynomial equations or as atomic
formulas.
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Equations are member of the class FORM of formulas ; moreover, FORM

is closed under the primitive connectives →, ∧, ∼ and the quantifiers ∀x, etc.
(Set-theoretically, ∼ and the quantifiers are of course exactly 1-place oper-
ations on FORM, while →, ∧ are 2-place operations.) A formula in which
no variables occur will be called a numerical formula. A formula in which no
variables occur free will be called a sentence, and we let SENT be the class
of all sentences.

In considering L
♯, we shall be principally concerned with its set FORM

of formulas, and we shall often write that A ∈ L ♯, or the like, instead of that
A ∈ FORM. And we shall also be using ‘A,’ ‘B,’ etc., as intuitive variables
ranging over FORM, ‘X ,’ ‘Y ,’ etc., as intuitive variables ranging over the
classVAR of formal variables, and ‘T ,’ ‘U ,’ etc., as intuitive variables ranging
over the class T of terms.

In characterizing L ♯, we saved for the last some nasty matters that we
hitherto trusted the reader to take for granted: e.g., that the various gram-
matical categories of L ♯ are built up recursively, without having made ex-
plicit what, in our abstract perspective, that might involve. E.g., by defini-
tion 0′′ is the number 2. But is 1 + 1 the number 2? Scott may be taken
to have suggested, in [8], that it might not hurt too much if it were. Here,
however, we follow tradition to the extent of distinguishing, as formal ob-
jects, 1 + 1 from 2. And what this means, essentially, is that each of our
primitive operations on terms, like +, shall have an atom property, which
insures that each of our formal terms shall be built up from 0 and the formal
variables, and a generalized ordered pair property, which insures, say, that if
T + U = V + W , then T = V and U = W ; it is unnecessary, surely, to be
more explicit here, except to note that similar remarks apply to our primitive
predicate = and our primitive connectives and quantifiers. (In short, a formal
language, as here conceived, is something like a universally free algebra, or a
generalized arithmetic in Kleene’s sense, save as syntactical restrictions leave
our primitive operations undefined for certain arguments; e.g., (0 = 0) = 0,
which would count elsewhere as ill-formed, fails here to be a formal object
because its first argument is inadmissible as an argument for =, conceived
as a function from pairs of terms to formulas.)

Having made those points, we can now make some trivial ones. First,
L ♯ does not admit anything like an ill-formed formula, nor has it any use
for parentheses. (Why should it?) We, however, will need parentheses, and
other grouping conventions, as part of our informal English notation for dis-
cussing L ♯. In particular, we adopt the following conventions. First, unary
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operations and connectives shall have minimal scope (consistent with the for-
mal grammar). Second, we shall sometimes drop × for simple juxtaposition
on terms; at any rate, × will bind more strongly than +; both conventions
are arithmetically ordinary. Third, binary connectives (including those to be
defined) shall be ranked ∧, ◦, ∨, ⊃, ⊃, →, ≡, ≡, ↔ in order of increasing
scope; i.e., ∧ binds more tightly than ∨, etc. On what is a minor added
convention, we shall, however, use simple juxtaposition between formulas
sometimes in place of ◦, in which case an invisible ◦, unlike a visible, shall
bind more tightly than ∧ and, a fortiori, more tightly than other connectives
in the above list. Fourth, equal operations and connectives shall be associ-
ated to the left. Fifth, we use dots (sparingly) as parentheses in accordance
with the conventions of [8], which are also (essentially) the familiar conven-
tions of [9] and [7]. If all that fails, or just to be kind to the reader, we
use parentheses; in fact, I trust that common sense alone, without reference
to the above explicit conventions, will already suffice to resolve almost all
possible ambiguities. And common sense also will be relied upon to dissolve
conventions too tedious, or too dull, to make explicit; e.g., I trust the reader
to resolve X = Y +Z in the direction of sense rather than of nonsense. And,
especially, I trust the reader to resolve ambiguities that might otherwise turn
on confusion of bound variables; e.g., when T ≤ U is schematically defined
as ∃X(T +X = U), it is too tiresome to mention that X should be the first
variable which is free in neither T nor U , and similarly in other cases.

One sore point of possible ambiguity does require explicit mention, how-
ever. Normally, I shall use AX for a formula A in which X may occur free,
and AT , AY , etc. for the result of proper substitution of a term T , variable
Y , etc., for all free occurrences of free X in A. The persisting convention,
which essentially follows Kleene’s practice in [5], is that AX shall be chosen
first; i.e., the convention is tied visually, in general, to the particular sign
‘X .’ (It need not be tied to the particular sign ‘A,’ while exceptions, if clear
in context, may be made to the general convention.) So far as proper sub-
stitution is concerned, a substitution is proper, following the usage of [10],
if it does not involve confusion of bound variables. And, in order that AT
may be always defined when AX is given, we follow [8] in first rewriting the
bound variables of AX on a definite plan (e.g., the plan of [8]) and then
substituting T for free X when necessary to avoid confusion. E.g., let AX
be ∀y(x + y = z), and let X be x, Y be y, Z be z. Then AZ is, straight-
forwardly, ∀y(z + y = z). But AY , to avoid confusion of bound variables,
must be something like ∀x0(y + x0 = z), and similarly in other cases. (It is
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always burdensome to decide which conventions to employ in these matters;
the perspicuous ones must be carefully spelled out, lest inaccuracy result,
while the accurate ones induce notationitis. I have opted here for perspicu-
ity, supplying as much accuracy as is necessary; but the careful reader must
stick to the general convention.)

Next we enter some (schemes of) definition, for the most part familiar.

D∨. A ∨ B =DF ∼(∼A ∧ ∼B)

D∃. ∃XA =DF ∼∀X∼A

D⊃. A ⊃ B =DF ∼A ∨B

D≡. A ≡ B =DF (A ⊃ B) ∧ (B ⊃ A)

D↔. A ↔ B =DF (A → B) ∧ (B → A)

D◦. A ◦ B =DF ∼(A → ∼B)

D⊤. ⊤ =DF 0 = 0

D⊥. ⊥ =DF ∼⊤ (=DF 0 6= 0)

D≤. T ≤ U =DF ∃X(T +X = U)

D<. T < U =DF ∃X(T +X ′ = U)

D≥. T ≥ U =DF U ≤ T

D>. T > U =DF U < T

D 6=. T 6= U =DF ∼(T = U) (D ≮, D �, D �, D ≯ are similar)

D==. T = U = V =DF T = U ∧U = V (D <<,D ≤≤, etc., are similar)

D≤=. T ≤ U = V =DF T ≤ U ∧ U = V (D <=, D <≤, D ≤=, etc., are
similar)

DF. F =DF 0 = 1

DT. T =DF ∼F (=DF 0 6= 1)

We shall add more definitions later. Note, thus far, that →, ◦, ↔ are respec-
tively relevant implication, fusion, and equivalence, whereas other connec-
tives are classical. ◦, in particular, is quite an interesting connective, whose
central role for relevant logics and their algebras has been developed in quite
a number of papers; e.g., in [11]. Otherwise, our definitions are the stan-
dard ones, up to the exercise of certain options (e.g., in defining ≤, given
<). Some (D 6=, D==, etc.) are purely for convenience, which we may add
to without being so explicit about it. Otherwise, the main point of interest
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is that we have isolated 2 distinct constant truths, ⊤ and T, and 2 paired
constant falsehoods, ⊥ and F. Systematically, the pair ⊤,⊥ will prove more
interesting for our analysis of R♯; ⊤ in particular will play the role of the
constant truth t which has been of interest through the whole development
of relevant logics (cf. [7]). But F, though it is something of an absurd curios-
ity, has often been taken to express the proposition whose underivability is
sought to guarantee the reliability of formal arithmetic (cf. (2)-consistency
above). Accordingly, we pick F in particular as the number equation that we
shall show underivable in R♯.

IV

Our language L ♯ having been set up, we now characterize our first-order
Peano arithmetic R♯ in familiar axiomatic fashion. Following [5], I divide
the deductive principles into three groups, depending on whether they are
sentential (R-level), quantificational (proper RQ-level), or number-theoretic
(proper R♯-level).

As sentential axiom schemes, the following suffice for R.

A1. A → B →. B → C →. A → C

A2. A →. A → B → B

A3. A ∧ B → A

A4. A ∧ B → B

A5. (A → B) ∧ (A → C) →. A → B ∧ C

A6. A ∧ (B ∨ C) → A ∧B ∨ A ∧ C

A7. ∼∼A → A

A8. A → ∼B →. B → ∼A

A9. A → ∼A → ∼A

I formulate rules, as before, by using &,⇒ in a self-explanatory metalinguistic
way. Rules at the sentential level are

→E. A → B & A ⇒ B

∧I. A & B ⇒ A ∧ B
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The quantificational, RQ-level of R♯ is attained economically by adding the
following additional axioms scheme and rule.

A10. ∀XAX → AT

C∀I. A →. B ∨ C ⇒ A →. ∀XB ∨ C

where it is required, for C∀I, that X occur free in neither A nor C.
As specific number-theoretic axioms, we take

A11. x = y → x′ = y′

A12. x = y →. x = z → y = z

A13. x′ = y′ → x = y

A14. x′ 6= 0

A15. x+ 0 = x

A16. x+ y′ = (x+ y)′

A17. x× 0 = 0

A18. x× y′ = x× y + x

To these we add a rule of mathematical induction, namely

RMI. A0 & AX → AX ′ ⇒ AX

Note that we get an equivalent formulation of R♯ if we drop RMI and replace
it with the specific axiom scheme

AMI. A0 ∧ AX → AX ′ → AX

Normally, we shall be indifferent between these two formulations. But, where
specificity is desired, let R♯ be the original system with RMI, and R

♯
A be the

alternate system with AMI.
To compare and contrast R♯ with alternative first-order Peano arith-

metics, we consider the following further principles.

P0. ⊥ → A

J0. A →. B → A
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J∀I. A → B ⇒ A → ∀XB

RM0. A →. A → A

RM3. A ∨. A → B

We get classical first order Peano arithmetic P♯ (e.g., as developed in [5])
by adding P0, or alternatively J0, as an additional axiom scheme to the
axioms and rules for R♯ above. (Thus the classical system is a straightforward
extension of R♯.) We get intuitionist arithmetic J♯ in a more complicated
way. From the given basis for R♯, we first subtract A7 (double negation) and
replace C∀I with the intuitionistically acceptable rule J∀I. Then we add P0
(and J0) as before; moreover, since D∨, D∃ do not apply intuitionistically,
we must take ∨ and the ∃X as additional primitives, adopting axioms dual
to A3, A4, A5, A10 and a rule dual to J∀I to govern them. (We also need
to assure the J♯ provability of A →. B → C :→. A → B →. A → C, proved
in R♯ using A7, but I shall let the reader worry about that.)

More interesting than covering such old ground is the question of for-
mulating first-order arithmetics that are based on other relevant logics and
semi-relevant logics. In particular, I propose a system RM

♯, got by adding
the characteristic sentential axiom RM0 above of the Dunn-McCall system
RM to the above basis for R♯; and a further system RM3

♯, got by adding RM3
also to RM

♯. RM♯, in particular, may prove to be an interesting formal arith-
metic, for reasons related to those on which RM itself is found interesting in
[7]. RM3

♯, on the other hand, must be viewed as a curiosity; its interest lies
in the fact that, sententially, it is a 3-valued logic, and is accordingly easy
to deal with (despite the deficiencies pointed out in this and other finitiza-
tions of RM, at the sentential level, by Dunn in [14]). Moreover, the basic
consistency argument here will apply to RM3

♯ also, despite the considerable
strengthening that this involves of R♯.

It would also be interesting—though I just haven’t thought about it,
much—to weaken R♯. One line of weakening is quite obvious. Instead of
grafting the arithmetical axioms onto RQ, what about grafting them onto
the system EQ of [7], or even onto a system based on the minimal relevant
logic B of [15]? On past experience, any interesting results that one gets
using the strong and natural logic R hold, mutatis mutandis, for its weaker
cousins; it would be quite surprising if a system E♯, for example, turned out
significantly weaker, in its arithmetical part, than R♯. But I simply leave
such questions open, for now, noting that considerable formal drudgery is
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involved in making contributions to them.
There are, however, other lines on which R♯ can be weakened, along with

other formal arithmetics. Of particular interest are the axioms A13, A14,
and the rule RMI, each of which corresponds rather directly to one of the
Peano postulates, and each of which raises its own special problems. Let us
look at these problems (or some of them, anyway) in turn.

A13 “says” that no 2 numbers have the same successor. More accurately,
it says that the successor function, on natural numbers, is 1–1. The trouble
is that this is not the sort of thing that we should have to say ; if we think of
the natural numbers as built up from 0 by applying the successor operation,
it would seem that we could take for granted that each result of applying
the operation produces a new unique number, unless a specific assumption is
made to the contrary. And this feeling that there is something out of order
about A13 is confirmed by its specific form; it seems a little silly that we
should demonstrate 2 + 1 = 3 by first demonstrating that 2 + 1 + 1 = 4 and
then subtracting. To be sure, we should certainly expect A13 to hold as a
material implication—as a fact, so to speak, about natural numbers. But if
we think of occurrences of → in arithmetical postulates as reflecting, at least
in part, an order of generation of natural numbers in the inferences that,
strictly speaking, we can in the first instance make about natural numbers,
then A13 deserves further thought. In some form, we shall not wish to do
without it. But we note that, in the present context, A13 has a certain
collapsing effect on the structure of arithmetic propositions, as viewed from
an R♯ perspective. This collapsing effect can be defended, on the grounds
that, on structural considerations, arithmetic propositions are tightly wound
together anyway. And, technically, it is to be welcomed, since it simplifies
a number of formal arguments. But alternative forms of A13, or perhaps a
perspective on which it is no longer primitive, should also be explored.

A14 “says” that 0 is not the successor of any number. Given that we can
put A13 in a positive form, it is our only negative axiom. As such, given the
remarks about ∼ above, the reader will readily grasp that I already consider
A14 suspicious. This is not to say that I consider rejecting it; indeed, if one
thinks of negative axioms as embodying counteraxioms, in the sense of [8],
then, given A13, the counteraxiom scheme T ′ = 0 is not unreasonably the
only such scheme that arithmetic has need of.

However, it requires very little thought to see that the P♯ or J♯ form of
A14 endows our suggested counteraxioms with surprising properties. For
any theorem ∼A of these systems can equivalently be expressed as A → ⊥.
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Given the transitivity of provable implication and the ex falso quodlibet in
the form P0, this means that ∼A is a theorem iff, for every formula B, we
have A → B as a theorem. In short, A14, as a classical or intuitionist axiom,
does not simply deny, say, that 4 is 0; we would all join, after all, in this
simple denial. Rather, A14 affirms that, if 4 is 0, or if X ′ is equated with 0
for some variable X , then all hell breaks loose, when A14 is taken as a P♯ or
J♯ axiom.

In short, what an axiom asserts cannot be separated from the systematic
context in which the asserting is done. And note that R♯, while it buys
the Peano postulate, does not buy the logical context conferred upon that
postulate by P♯. I.e., R♯ agrees that it is false that 0 is the successor of some
number, but not that it is absurd. And only, in fact, that kind of theory
of negation which holds that all falsehoods are absurd could provide general
grounds for interpreting the Peano postulate A14 in the P♯ way.

The last point is not to be pushed too far. For we might have specific
grounds (e.g., cancellation laws) for preferring the stronger J♯ and P♯ inter-
pretation of A14. Here, these specific grounds are not accepted. We accept,
indeed X ′ = 0 ⊃ 1 = 0 as an arithmetical fact, signalled by the material ⊃.
But we do not accept it as an arithmetical law, that might be signalled by
an →.

Let us get clear on this point. I am not concerned with the practical
inferences which a number theorist will permit himself. So far as practical
inferences are concerned, he will no doubt assume that he is working with
facts in a numerical universe of discourse, and reason accordingly. Rather,
we are concerned here with the logical framework from which we build up the
natural numbers. (It is not ruled out that there are alternative frameworks,
good for different purposes.) We are told that there are certain principles—
enunciated by Dedekind and made famous by Peano—on which the natural
numbers turn out to be, intuitively and near enough, what we first held them
to be. Now certainly this is not the case on first principles alone; unless there
are deductive connections between certain number-theoretic statements and
others, we shall never get beyond first principles. But we cannot take these
deductive connections themselves as part of the discipline that we are formal-
izing, lest the entire enterprise of providing that discipline with a foundation
become viciously circular. (More accurately, we can only take them so in
part, trying to find a sense, say, in which RMI becomes properly arithmeti-
cal, while →E, perhaps, remains firmly logical.)

We take the study of deductive connections, by and large, to belong to
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logic. But a funny thing happens when we try to find hard and fast grounds
to prefer some purported general deductive connections to others. For these
grounds tend to refer back to the theories themselves that we use our logic to
build (some of them reified, in traditional Leibnizian mythology, as “possible
worlds”). Now it stands to reason that all the theories constructed on some
particular logical framework will respect that logic (the “soundness” half of
traditional completeness proofs), and even perhaps that the sum of inferential
principles that are respected by all theories (or perhaps all theories that are
in some further way preferred) constructed out of a given logical framework
are in fact correct inferential principles according to that given logic (the
“completeness” half of completeness proofs). But this just isn’t a hard and
fast justification of the logic itself; far less is it a justification for our choice
of such-and-such a logic for building theories. Rather, this kind of (familiar)
justification becomes outright circular; if we impose a certain logic upon
arithmetic, we cannot justify this imposition on the ground that arithmetic
(among other things) respects this logic.

That our choice among alternative proferred formal logics is severely in-
determinate is a proposition that I no longer have any serious grounds to
doubt. All rational ways out of the indeterminacy are viciously circular,
while it is Quinaciously silly to substitute sociological grounds (e.g., certain
systems are “entrenched”) for rational ones. But we can still find evidence
for and against particular formal points of view; e.g., the kind of mystical
insecurity enshrined in customary interpretation of Gödel’s second theorem
must certainly count as evidence against the thesis that the kinds of deduc-
tive connections on which it depends constitute a rational approach to the
formalization of arithmetic.

We return to the point at issue. We have detected an illicit appeal to logic
in justifying the P♯ theoremhood of, say, 4 = 0 → 1 = 0, as a consequence of
A14. However, we have noted the objection that this is not a logical but an
arithmetical inference. After all, assuming that 4 × 1 = 4 = 0 = 4 × 0, we
can just cancel to get 1 = 0. For it is surely the case, for positive I, that if
I × J = I ×K, then J = K.

To this one must respond, more forcefully that in the discussion of A13,
that laws and facts must be kept straight. In the natural order of things, it
makes sense to hold that I ′×J = I ′×K because J = K, not vice versa. I.e.,
in the generation of the natural numbers, we expect to get to J = K before
we get to I ′ × J = I ′ ×K. If the road to B leads through A, we expect of
someone who shows up in B that he may have been at A; it is unnecessary
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to walk backwards from B to A to prove the point.
So, I think, T ′ = 0 → 1 = 0 is not even arithmetically justified, as a

law. And it is quite different from the indubitable arithmetical fact noted
above, that T ′ = 0 materially implies 1 = 0, which is an immediate and
trivial consequence of A14. On the sum total of arithmetical facts, it would
be surprising if R♯ did not agree with P ♯; the question, rather, is one of
providing an acceptable and reliable logical framework for such facts.

Intuitive arithmetic, at least at its elementary levels, we took to be pre-
logically given. When, however, we come to reconstruct that arithmetic
from first principles, and to formalize it, we need to attend to the way in
which our arithmetic is given, after analysis. For the latter purpose, we
assume constructively generated natural numbers and certain fundamental
laws concerning them. As we spin out the deductive consequences of these
laws, we find ourselves with an ever widening realm of arithmetical facts. We
create a mythology concerning these facts—indeed, as facts, they are only
mythological facts—and we allow ourselves more and more to reason and to
talk about numbers as we do about chairs and tables.

There is always danger in this procedure, quite apart from formal consis-
tency proofs and the like. The danger is almost a theological one; namely,
that we shall take too seriously what we have ourselves fashioned, and begin
to ascribe to the creatures of our own imagination an independence and a
reality which is not to be conferred upon them. Here, paradoxical results
are positively salutary; like the strange things that go on in our dreams,
they help us to preserve the distinction between what we fancy and what
there is. So, though the law-fact distinction on which we are depending is at
best heuristic anyway, we must beware of thinking of our generating laws as
merely describing arithmetical facts; as the story goes, they must be taken
moreover to constitute the facts. Sometimes, to be sure, this kind of con-
structive attitude leads to proposals to diminish the class of mathematical
facts, eschewing those that cannot be “constructively” proved. However,
such proposals would be out of place here; classical mathematics remains, so
far as we are concerned, the only game in town, while assuring its reliability
by cutting down on its supply of facts seems to me no more hopeful than
seeking to assure the reliability of our dreams by dropping certain characters
from them. Our dream is the usual dream; if we dream it a little differently,
so be it.

A little more light, incidentally, is now thrown on how we intend to inter-
pret the relevant implication → of R♯. We intend to interpret it, not unnat-
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urally, as ‘implies.’ We do not intend to interpret it as ‘relevantly implies,’
which would be redundant. We do not intend to interpret it as ‘logically
entails’; for, having added proper arithmetical axioms, we have theorems
A → B which belong not to logic but to formal arithmetic proper.

But, in so interpreting →, I shall not supply any “formal semantics” for
this evidently non-truth-functional connective. For that matter, no formal
semantics is supplied, save in our passing references to the standard model,
even for presumptively truth-functional connectives and quantifiers, like ∧,
∼, ⊃. To be sure, a formal semantics, of a familiar extensional sort, can
be supplied for relevant theories. But supplying it, at this stage, would be
to miss the point; we are doing honest arithmetic now, which has suffered
enough from extensional reduction, and the only semantics intended is the
intuitive one; not only shall → be taken as ‘implies,’ but ∼ shall be taken
as ‘not,’ ∀ shall be taken as ‘for all (natural numbers),’ and so forth. Since
even for P♯ this intuitive semantics is at best rough and ready (we already
saw in I that ∼ means ‘not’ only by mythological courtesy, which P♯ cannot
itself systematically support), the best that we can do for R♯ (or any other
serious formal system) is to relate it loosely to intuitive sense-making; for
it is intuitive sense-making, after all, that we are eventually about, with or
without the useful but presently overrated mediation of “formal semantics.”

However, relating → in particular to intuitive sense-making requires some
further comments; in English, ‘implies’ is certainly less regimented than ‘and,’
and perhaps ‘not,’ whence all the fuss about finding a formal counterpart for
it. In fact, among presently overrated pursuits, the utility of natural usage
as a guide to logical analysis must also be accorded high place. It is a
guide, for sure, to which we should look for clues as to how to construct our
formal systems; but formal systems, in general, serve as crude and inadequate
models of natural language, while natural language only vaguely and partially
reveals the connections of ideas which it is the business of formal systems to
lay bare.

This, to be sure, is just logical common sense; in fact, one of the diffi-
culties involved in rejecting the reading ‘implies,’ ‘if-then,’ or the like for ⊃
(without some adverbial qualification like ‘materially implies’) is that one
has to explain patiently that one understands all the common sense points
that are urged in defence of this odd reading of ⊃, without understanding
any better why people are so attached to it. For English usage enters into
the rejection only heuristically; ‘materially implies,’ I suppose, is now part
of English, and one understands it fairly well; and one becomes accustomed,
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though he may wince a bit, to speakers in whose peculiar idiolect ‘materially’
gets left out.

The central point, rather, is not the loss of an adverb but the loss of a
notion: namely, that some connection of ideas is required for authentic infer-
ence. Relative to this point, incidentally, far too much stress has been placed
on authentic logical inference, as though the only inferential connections that
we care about belong to deductive logic. Many of them do, of course, and
we sought above to give them their due. But we were also concerned above
with authentic arithmetical inference, signalled by our proper arithmetical
axioms (especially those of the form A → B). (Such matters became es-
pecially confused, in years gone by, by the lumping together of logical and
mathematical truths as jointly analytic, suggesting that mathematical in-
ference (in a properly mathematical form) is just a cousin-under-the-skin of
logical inference anyway. The result, practically, was that mathematical im-
plication simply got left out of everybody’s formal considerations (save those
of the intuitionists, who had, however, other axes to grind). For some people
fixed up their vocabulary so that they asserted that A implies that B when
they took A ⊃ B to be true; others, when they took A ⊃ B to be logically
valid. But the former is too weak a relation to stand in for mathematical
implication, in any generally usable sense; and the latter, whatever its other
defects, is in certain respects too strong ; we do not look to logic alone to
separate the authentic mathematical inferences from the unauthentic ones.)

There is not much that I have to say about authentic mathematical in-
ference. But, when we are building up mathematics from first principles, it
seemed to me above that there is a direction of inference which is quite inde-
pendent of truth-values, but which corresponds rather to an intuitive order
in the way that theorems are built up from axioms. This is not to deny that
we may allow ourselves practical inferences that do not respect this order;
moreover, since there is an interplay between guiding intuition and formal
derivation—the latter directs the former at least as often as it is directed
thereby—formal treatments may differ in seeking such a direction. Nor have
I sought it to the exclusion of other considerations here, as the discussion of
A13, A14 makes clear.

This point can perhaps be made clearer with reference to Gentzen-style
consecution calculi, and particularly with respect to their operational rules.
As these rules work, they follow the order of generation of formal objects by
building up theorems containing more complex constituents from theorems
whose are simpler. And it is a certain measure of a system’s normality that
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it may be Gentzenized in this fashion, without operational rules (e.g., cut)
which violate this principle that the more simple shall precede the more
complex.

The example cannot be pushed too far, since an order of generation of
formal objects is not necessarily reflected in a natural fashion in an order of
generation of theorems into which these objects enter as constituents. And
we have, of course, further problems when we turn to subjects like analysis,
where the formal objects in which we are primarily interested (i.e., the real
numbers) cannot be constructively generated at all. But the example at least
encourages us to think, while we are formulating our formal systems, about
the relation between how we formulate them and Gödel’s second theorem.
And when we congeal at least some of our rules into the indicative, as impli-
cations A → B, rather than as mere statements of purported fact A ⊃ B, it
is likewise presumptively not indifferent which of these implications we take
as first principles for a discipline in question. Nor is an implication A → B to
be lightly reversed to B → A, even when the presumptive truth-conditions
are “right.”

Besides A13, A14, the other primitive number-theoretic principle of R♯

reflecting a Peano postulate is of course the mathematical induction rule
RMI. The idea, of course, is that we wish to assure that every property A of
natural numbers which holds of 0 and which is passed on from every number
to its successor holds of all natural numbers; because of the countable vocab-
ulary of L ♯, and the uncountable number of number-theoretic properties, we
cannot say this in L ♯ (as the standard story goes); but we can say it of every
property A which can be expressed in the vocabulary of L ♯ by some open
formula AX with sole free variable X . Hence we approximate, at least in
P♯, Peano’s inductive characterization of the class of natural numbers, while
the deficiency in vocabulary causes us to fall short of that full characteri-
zation and hence to get an incomplete system, instead of the full system of
arithmetic truth for which the genuine Peano postulates are categorical.

I am not sure whether I believe the standard story or not; until a better
one comes along, I suppose that, mythologically at least, I do. But I am at
least uneasy about the direction in which it is taken for granted; namely, that
while there may be arithmetic properties expressed by no formula of L

♯, at
least every formula AX of L ♯ does express some property P . The effect
of this assumption is to build a naive comprehension axiom into P♯, carried
above into R♯: namely, that every open formula determines some property.

This suggests that, in second-order relevant arithmetic, we may adopt
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without restriction the comprehension scheme

(1) ∃F∀X(FX ↔ A)

whenever F is not free in A. But there are two reasons to think (1) dubious.
The first is just general, and probably unwarranted, suspicion. Unrestricted
comprehension axioms cause trouble. To this it may be retorted, naturally,
that there are quite elementary proofs of the consistency of second order P♯,
which naturally will make second order R♯ also consistent. The reply, citing
Gödel on our side, is that these proofs cannot be as elementary as one might
wish. Indeed, if the fighting chance that P♯ itself is inconsistent turns out
correct, one may take it as certain that (1), as it is reflected in RMI, will be
the cause. While it would be pretty sneaky if this happened, and the cause of
great consternation throughout mathematical logic, one way that any dream
can end is with a rude awakening.

Second, there may be other reasons to impose restrictions on (1) in the
particular framework of R♯. For, just as one expects some connection between
A and B if A → B is to be justified as a theorem, so one might expect some
connection between each individual ι and the proposition that ι has property
P in order to count P as a genuine property of individuals. (I.e., considered
as a reified function from individuals to propositions, P depends upon its
argument, to borrow a phrase from Belnap.)

So put, the point has a metaphysical flavor with which some readers (and
I, for that matter) will feel uncomfortable. But it can be given direct syntac-
tical sense. In relevant second-order logic, formulated with an unrestricted
comprehension scheme (1), some apparent fallacies of relevance become prov-
able. We shall find that R♯ itself admits some first-order versions of these
apparent fallacies—e.g., X = Y → Z = Z—though it is an open question
whether they shall be counted as fallacious in this context, or whether we
should instead appeal to strong relations of mutual relevance between arith-
metic propositions. One feels, frankly, a strong pull in each direction; one
takes it that the natural numbers are tightly organized, structurally, permit-
ting say, the following argument from 3 = 5 to 7 = 7. Assume 3 = 5. By
symmetry of identity, 5 = 3. By transitivity, 5 = 5. Adding 2 to each side
7 = 7. End of valid argument. However, we were also suspicious above of
seeking specific arithmetic grounds for principles, like the ex falso quodlibet,
that are not supported here on general logical grounds.

In the case of RMI, as in the A13 case above, we have resolved open ques-
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tions in the direction of strength and tradition. Partly, this is just a matter
of formal efficiency; it is easiest to re-think formal proofs (which is a tedious
enough job anyway) when one changes only what must be changed to get on
with the task in an altered perspective. And it was, of course, enticing merely
to change the sentential base of formal arithmetic to an R-valid form, leav-
ing the properly quantificational and number-theoretic postulates essentially
as one found them (e.g., in [5]). As Routley warns, this may be the wrong
course; perhaps further insights that would result from a more thoroughgoing
application of other investigations into relevant logics are being sacrificed. (If
so, the reader at least has substantial hints about how to find some of them,
and he is welcome to mention my name if he does so.) Indeed, perhaps,
as Routley moreover suggests, the entire project, as undertaken here, is too
conservative; perhaps classical logic undermines classical mathematics more
thoroughly than I have undertaken here to believe except in noting open pos-
sibilities, and that the aim of producing an essentially classical mathematics
from the standpoint of relevant logics is itself misguided. Only time, and
further research, can resolve such issues; given that alternative philosophical
views may underlie different decisions on the questions raised above, it is
to be doubted that such research itself will resolve them fully. Meanwhile,
let us continue with our “minimum mutilation” of the orthodox standpoint,
endeavoring to show that it involves no real mutilation at all.

V

Now let us do some arithmetic. We shall busy ourselves, mainly, with noting
that R♯ has, roughly, the same substantive theorems as anybody’s arithmetic.
In doing so, we have [5] particularly in mind, and we note that Kleene’s proofs
of elementary theorems of arithmetic in P♯ and J♯ can be straightforwardly
adapted to R♯ in many cases. (Full proofs can be found in [18], of which
this paper is essentially a summary. Also developed in [18] are new natural
deduction techniques for relevant theories, which are rather helpful in the
actual construction of derivations from axioms and rules above.)

Two cautions, however, must be added to the reader who, with [5] in hand,
wishes to try out some of the formal theorems below as exercises. First, de-
spite the claim that nobody really reasons from contradictions to arbitrary
formulas, [5] in fact does so quite often, within derivations. Such fallacious
arguments cannot be incorporated here. Second, a reasonable amount of at-
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tention must be paid to the exact form both of the formulas to be proved
and to the deductive machinery that is available to prove them. In applying
RMI, for example, one must prove a premiss of the form AX → AX ′. It
does not suffice to prove AX ⊃ AX ′ in its place. (Thus, given the intentions
behind the relevant →, the conclusion of the induction step of an induc-
tive argument must depend upon the hypothesis of the induction. Prima
facie, this would seem to impose a nasty restriction on the applicability of
mathematical induction. Practically, it does no such thing, in demonstrating
elementary theorems of the sort listed below. For, as we shall see in part
below, many arguments that, strictly speaking, are relevantly invalid can be
replaced with valid arguments that yield the same conclusion. The underly-
ing thought, in the RMI case, is that the property A which we are going to
demonstrate for all natural numbers (in the sense that every number has A)
must be passed on according to law for the inductive stage of the argument
to go through. If it is not passed on in this law-respecting sense, we are back
in mythology, not demonstration. Now it well may be that we cannot show
this, in the sense that AX → AX ′ is a theorem of R♯, for a formula AX that
we take to express A; i.e., A itself may not, in a direct sense, be passed on
according to law. However, it often happens that there is another property B
expressed by a formula BX , such that having B is a sufficient condition for
having A. E.g., AX ∧ CX , for any formula CX in which at most X occurs
free, would do for such a BX . In this case, we simply carry out the inductive
argument on BX , by proving B0 and BX → BX ′, after which we may infer
AX trivially from the conclusion of the induction. And this is, in fact, a
very frequent case; actual inductive arguments are often enthymematic, in
the sense of [19], which just means that some (in general, true) premisses of
the inductive stage of the argument have been suppressed. By supplying the
premisses explicitly (or, as is more convenient, finding some formal stand-in
for the conjunction of all demonstrable truths), we may restore the explicit,
and explicitly valid, form of such enthymematic arguments.)

Similar remarks apply to the temptation to use a rule ⊃E (like→E except
that its major premiss is A ⊃ B) in carrying out arguments by modus ponens.
(This rule ⊃E, otherwise known as γ, is perhaps the singly most discussed
topic, and the most thoroughly studied technically, in all of relevant metathe-
ory. We shall run into it again here, too.) As a matter of practical inference,
succumbing to this temptation may not be too bad. But it must be avoided
in strictly correct formal derivations in R♯. Again, ⊃E is a factual inference
scheme, not a law-based one. While useful, perhaps, in the mythological and
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dream-theoretic aspects of our formal arithmetic, it does not belong in build-
ing up effective foundations for the subject. (We might have felt explicitly
and sufficiently warned on this subject from opening considerations, since the
definition of ⊃ itself involves ∼ in an essential way; while, of course, one can
avoid this formally by taking ⊃ as primitive and equipping it with suitable
axioms, there is no way to avoid it conceptually. And here we must make
our formal philosophy regarding negation quite clear; our ∼ is classical (more
accurately, it is as classical as it can be, after Gödel, for R♯ and related sys-
tems); and it is, here, to be taken as classically as possible (and not, e.g., in
the permuted classical sense of [16]). This means, as above, that we endorse
in its entirety the formal classical story about negation, as it is reflected, e.g.,
in double negation, excluded middle, and sentential and predicate tautolo-
gies in general, in the classical vocabulary. But it is only when we suspend
disbelief to operate within the classical mythology that we endorse the in-
formal classical story. But using ⊃E as an inference rule—either primitive
or derivable on strictly finitary grounds—builds our suspended disbelief into
the very structure of our formal system itself. Especially when it is taken,
as it often is, as the principal or even the sole primitive inference rule, the
effect of ⊃E is to assure that derivations in general are dependent on the
reliability of our intuitions about the erratic connective ∼. And this renders
impossible one very important goal of Hilbert-style enterprises: namely, to
show that basic intuitions are not upset by proof-theoretical detours through
areas governed by less secure intuitions. It is notable, accordingly, that some
of the most important results concerning these enterprises—e.g., Gentzen’s
consistency proof for arithmetic—are achieved exactly by limiting detours
through ⊃E. But, unlike Gentzen, who hints that his elimination of ⊃E is
something of a tour de force, we view the rule (save, again, as a practical
inference scheme) as positively unwanted, and as involving a fact-law con-
fusion. For, in familiar presentations of classical mathematical theories, ⊃
is saddled with too many responsibilities; it has a primary responsibility to
express certain putative mathematical facts, but a secondary responsibility
to congeal into the indicative inference schemes on which these facts are spun
out of first principles. That’s one too many responsibilities, and, by reserving
→ for the second, and letting it carry the deductive responsibilities via →E,
we can begin to structure arithmetic propositions in a way that reflects our
proof-theoretic grounds for holding them. Since, moreover, we can locate
the place of particular propositions in the structure—e.g., that 0 = 1—we
can dispose simply and effectively of the worst offenders against arithmetic
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sense, without placing the entire enterprise in jeopardy because parts of the
entire structure are not effectively vouchsafed. Meanwhile, our powers of
classical expression are not in the least reduced; nor need it be the case that
we must do without classical theorems, classically expressed; for ⊃ remains,
freed along with other classical particles for their full and ordinary duties.)

In stating theorems of R♯, we note that it is trivially indifferent whether
we state them with particular variables x, y, z; as schemes for schematic
variables X , Y , Z; or as schemes for schematic terms T , U , V . Ordinarily
we choose the second. And, to begin with, identity has its fundamental
properties.

B1. X = X

B2. X = Y ∧ Y = Z → X = Z

B3. X = Y → Y = X

So do + and ×, 0 and 1.

B4. 0 +X = X

B5. X + 1 = X ′; X + 2 = X ′′; etc.

B6. (X + Y ) + Z = X + (Y + Z)

B7. X + Y = Y +X

B8. X = Y → X + Z = Y + Z

B9. X = Y → Z +X = Z + Y

B10. X + Z = Y + Z → X = Y

B11. 0×X = 0

B12. X × 1 = X ; X × 2 = X +X ; etc.

B13. (X × Y )× Z = X × (Y × Z)

B14. X × Y = Y ×X

B15. X = Y → X × Z = Y × Z

B16. X = Y → Z ×X = Z × Y

B17. X × (Y + Z) = X × Y + X × Z

So far as logical properties of R♯ are concerned, they include, of course, all
those inherited sententially and quantificationally from the underlying sys-
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tems R and RQ, as established in [7] and elsewhere; moreover, many proper-
ties not directly inherited are easily demonstrated for R♯ by mutatis mutandis
arguments. Thus, for example, as admissible rules of R♯ we have ordinary
principles like universal generalization, replacement in theorems of provable
R♯ equivalents, rewriting bound variables, many classical confinement laws,
and the like. Truth-functional connectives and quantifiers have their ordi-
nary elementary properties, in the sense (e.g.) that double negation, De-
Morgan laws, associativity, commutativity, and idempotence of ∧ and ∨, the
usual distributive laws for ∧ and ∨, and the usual quantifier analogues (e.g.,
quantifier interchange) of these principles hold in the form of provable equiv-
alences. A particularly useful metatheorem, incidentally, is the following
familiar strengthened form of the replacement theorem: Let A → B and C
be theorems of R♯, and let C⋆ result from C by replacing positive occurrences
of A with B or negative occurrences of B with A. Then C⋆ is a theorem of
R♯.

More interesting is the fact that identity in R♯ fully classical, in ways not
necessarily to be expected from general relevant principles. The key to this
classical character of R♯ identity lies in the following four theorems.

B18. X = Y → Z = Z

B19. X = Y → ⊤

B20. ⊤ →. A → A

B21. A ↔ ⊤ → A

We have already noted that B18 is slightly surprising, so some indication of
its proof is in order. By symmetry and transitivity of identity, X = Y →
X = X . X = X → 0 + X = 0 + X , by B9. 0 + X = 0 + X → 0 = 0,
by the subtraction principle B10. By transitivity of provable implication
and definition of ⊤, we already have B19; i.e., X = Y → 0 = 0. But
0 = 0 → Z + 0 = Z + 0 by B8, whence ⊤ → Z = Z applying A15 and
elementary properties of identity. Putting the last together with B19, we get
B18. Crucial to the demonstration, incidentally, is A13, which enters via the
inductive proof of key principle B10.

B20, on the other hand, does not depend on A13; it is proved by induction
on the complexity of A, the key atomic case being covered by ⊤ → Z = Z
and application of the identity axiom A12. Given B20, we get B21 from left
to right by permuting antecedents; from right to left, by detaching ⊤ from
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A2.
B21, incidentally, is the thesis needed to show that ⊤ will have for R♯ the

properties of a least theorem t, mentioned above in motivating D⊤. In fact,
a number of alternative definitions might have been considered; ∀x(x = x),
for one. But 0 = 0 has, perhaps, a peculiar arithmetic appropriateness to
serve as a representative theorem of R♯ which implies all the other theorems;
it is, we might hold, the fundamental arithmetic truth. Moreover, it will
continue to so serve on significant weakening of the present system.

We return now to the substitution properties of identity. We let TX , AX
be an arbitrary term and an arbitrary formula of L ♯ in which X may occur
free, and we extend above conventions by letting TY , TZ as well as ZY , AZ
stand temporarily for the indicated proper substitution of Y ,Z respectively
for X . Then we have the following theorem schemes for R♯.

B22. Y = Z → TY = TZ

B23. Y = Z →. AY ↔ AZ

Proof of these theorems is by induction on the complexity of TX , AX re-
spectively. Of particular interest in both arguments is the sub-case of the
base case in which no replacements are made (e.g., when AX is 0 = 4 in
B23). In this sub-case under B22, apply B18; under B23, apply B19, B20.
For the inductive argument under B22, apply A11, B8, B9, B15, B16. All
else is straightforward.

B22, B23, of course, license the corresponding replacement rules in R♯;
i.e., we can freely replace provably equal terms in theorems. This means, in
particular, that we can revert to customary arithmetic looseness in our nota-
tion for terms and formulas, applying commutative, associative, distributive
laws, etc., tacitly as required. However, although we have the corresponding
admissible rules also for provable equivalents in R♯, we do not have them in
strong forms like B23, as theorems. For example, although we can prove, as
an instance of B23, the scheme

B24. Y = Z →. A ↔ A

there are, in R♯, unprovable instances of the analogous scheme

(1) B ↔ C .→. A ↔ A
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On the not unreasonable assumption that equals are equals, and should be-
have analogously, in any grammatical category, and that moreover ↔ serves
as formula equality in the same sense that = serves as term equality, proposals
have been made to formulate a first-order predicate logic RQ= without B24,
and hence without B23 in the unrestricted form above. The most promising
of these proposals, in my view, comes from Urquhart, and it consists in tak-
ing the AX that enters into B23 as an atomic formula in which X actually
occurs free; when B23 is taken as an axiom only for these cases, the ordinary
deductive rules produce what seem to be the appropriate instances of B23 as
theorems. (This question, as noted earlier, is not unrelated to the question
of formulating acceptable comprehension axioms for second-order relevant
theories. It is likely that there will be considerable leeway in answering such
questions, even after the present somewhat unsatisfactory semantical state of
relevant quantification theories has been further clarified. No harm is done,
it should be noted, to underlying sentential insights even if B22, B23 are
taken generally at full strength; conversely, it has been proposed that B23
be weakened even further than by Urquhart.)

Let these matters be as they may, however; B22, B23, B24 are struc-
turally grounded in R♯, as (1) is not. And they are grounded on what, for the
moment, seem reasonable forms of the Peano postulates, despite our flirta-
tion above with various alternative possibilities. (One further point, however,
is in our form A12 of the transitivity axiom, which, on general principles, is
strictly stronger than the conjunction of B2 and B3. But A12 satisfies the
minimal Urquhart criterion, and its modification is an unnecessary last re-
sort.)

Enough has been said, now, to form the notion of a correct equation and
to show that R♯ is adequate to this notion in one direction. Specifically, a
correct number equation is one of the form I = I, where I ∈ N. All other
number equations I = J are incorrect. Evidently, among number equations,
an equation is correct iff it is intuitively true; incorrect, iff it is intuitively
false.

It is similarly clear which are to be taken as the correct numerical equa-
tions. For, by the rules of computation which we learned in third grade,
each number term K (e.g., (2 × 2)′ + 3) may be reduced to a number I; we
take this reduction process as familiar to all, and we shall write r(K) for
the unique number I that results from its application to the number term
K. Then, where K, L are number terms, K = L is a correct numerical
equation iff r(K) = r(L); otherwise, K = L is incorrect. Note that ‘correct’
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and ‘intuitively true’ still correspond, as do ‘incorrect’ and ‘intuitively false.’
Trivially,

Theorem 1. Let K = L be a numerical equation. Then if K = L is correct,
it is a theorem of R♯

Proof. By intuitive induction on r(K), using B1, B22, and the recursion
axioms A15–A18 on +,×, as usual.

Theorem 1 is trivial and effective; indeed, its proof requires no appeal
to the proper Peano postulates incorporated in R♯, namely A13, A14, RMI.
Rather it is its converse that causes all the trouble; while it is nice to know
that we can prove 2+2 = 4, it isn’t much help if we can also prove 2+2 = 5.
I.e., we wish to know not only that true numerical equations are provable,
but that false ones are unprovable. To do so, we must assure ourselves
that there is no (possibly intricate and involved) proof of, e.g., 2 + 2 =
5. And this raises exactly the reliability questions examined at the outset;
arithmetic faith, which takes it as given that P♯ (and hence R♯) is already
consistent in the semantic sense (7) of II, disposes immediately of the converse
of Theorem 1. But arithmetic reason, we are told, is stymied; for this would
involve consistency at least in sense (3) above; and, in view of Gödel’s second
theorem, of such consistency we putatively lack any immediately effective
guarantee, at least for P♯.

The immediate converse of Theorem 1 is as just stated; false equations are
unprovable. But there is a sort of converse that is equally trivial, and which
may also be proved here as usual. Where T = U is an equation, let T 6= U
be the corresponding unequation. Mutatis mutandis, we speak of number
unequations, numerical unequations, as above. For the latter, correctness
can be defined in the same third grade manner, still coinciding with intuitive
truths. So,

Theorem 2. Let K 6= L be a numerical unequation. Then if it is correct
(i.e., if K = L is incorrect), then K 6= L is a theorem of R♯.

Proof. By Theorem 1, there are distinct numbers (distinct because K = L
is incorrect) I, J such that we can prove K = I and L = J . One of I, J ,
is the greater, and we may suppose it is J . So, for some natural number
M , we can prove I +M ′ = J , in R♯. Putting in equals for equals, we prove
K = L → I = I+M ′. By B10, K = L → M ′ = 0, whence by A14 andmodus
tollens (for →), K 6= L is a theorem of R♯, which was to be proved.
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Theorem 2, unlike Theorem 1, depends on some proper Peano postulates,
namely A13, A14. (As proved, it depends on RMI, but this is inessential.)
It can be generalized further, along with Theorem 1, by introducing the
notion of a correct numerical formula, in the obvious fashion. (I.e., starting
with the correct and incorrect numerical equation, we lay it down that A ∧
B is correct iff A is correct and B is correct, while ∼A is correct iff A
is incorrect. Incorrectness is defined dually, which takes care of all truth-
functional compounding of numerical equations. We shall not worry here
about extending these notions immediately to numerical formulas A → B,
while quantified formulas are excluded by definition of numerical formula.)
Correctness still goes with truth, and incorrectness with falsehood. Then

Theorem 3. Let A be a numerical formula in which → does not occur. Then
if A is correct, A is a theorem of R♯; while if A is incorrect, ∼A is a theorem
of R♯. Moreover, R♯ is complete on the set of these numerical formulas, in
the sense that at least one of A, ∼A is a theorem of R♯ for each A satisfying
the first condition of the theorem.

Proof. By induction on the complexity of A. Theorems 1 and 2 provide the
base cases, while the inductive cases are immediate on elementary properties
of the truth-functions.

Theorems 2 and 3 generalize Theorem 1 in one direction. To general-
ize in another direction, we admit free variables into the class of equations
that we are considering. And we promote the reader from third grade to
eighth grade, by letting him mingle a little elementary algebra in with his
arithmetic. To begin with, we introduce standard exponential notation (for
number exponents) via the definitions

DEX. T 1 =DF T ; T I′ =DF T I × T

for all terms T and positive numbers I. (DEX , of course, does not introduce
an exponential function into the system R♯ itself; rather it simply provides
an alternate notation for given formal objects, into whose construction an
explicit exponentiation operator does not enter.)

Next, we set aside certain terms as product terms and as standard poly-
nomial terms. Roughly, a product term (in variables X1, ..., XN) shall be
anything of the form IXJ1

1 ...XJN
N , where I, J1, ..., JN are positive numbers

and X1, ..., XN are variables (in increasing order in the original enumeration
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of variables). Every natural number shall also count as a product term (in
no variables). Every product term shall be a standard polynomial term; oth-
erwise, standard polynomial terms shall be of the form T0 + ... + TN , where
each of T0, ..., TN is a product term distinct from the number 0. Moreover,
in order to insure non-redundancy, no two distinct terms in such a sum shall
both be natural numbers, nor shall they differ only by a number coefficient
(in the sense, e.g., that 2x3y5 and 7x3y5 differ only by a coefficient). Finally,
we shall not admit distinct polynomial terms as both standard if they differ
only by commuting summands; e.g., in a standard enumeration of terms,
only the first among otherwise standard polynomials that so differ shall in
fact count as standard.

By hook and crook, we have fixed things so that each ordinary polyno-
mial, in non-negative integral coefficients, may be identified with exactly one
standard polynomial term. Simply by applying commutative, associative,
and distributive laws, together with the ordinary laws of arithmetic, we may
reduce, by eighth grade methods, every term T to its associated standard
polynomial term r(T ). Where T , U are standard polynomial terms, T = U
is a standard polynomial equation. For each standard polynomial term T ,
T = T is correct. Otherwise, for standard polynomial terms T , U , we have
T = U as incorrect. And for an arbitrary equation T = U , we say that
T = U is correct just in case the associated standard polynomial terms r(T ),
r(U) are identically the same. The wanted generalization of Theorem 1, in
the present direction, is now clear.

Theorem 4. Let T = U be an equation. Then if T = U is correct, then
T = U is a theorem of R♯.

Proof. It suffices to note that the transformations which take us into standard
polynomial form are justified by theorems of R♯ already proved, whence B1
does the rest.

Since non-numerical equations are by definition open formulas, correct-
ness for equations in general has ceased to coincide with intuitive truth, save
in a secondary sense; i.e., an equation is correct iff it is intuitively satisfied
by all numerical values of its free variables. (While this is trivial from left
to right, it requires a modicum of proof from right to left, which I leave it
to the reader to supply [or look up].) This means that, although we do not
wish to extend Theorem 2 by proving T 6= U whenever T = U is incorrect,
we do wish the following generalization.
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Theorem 5. Let T = U be an equation, with free variables X1, ..., XN . Then
if T = U is incorrect, ∃X1, ..., ∃XN (T 6= U) is a theorem of R♯. More-
over, there are natural numbers I1, ..., IN , whose respective substitution for
X1, ..., XN in T, U produces number terms T ⋆, U⋆, such that T ⋆ 6= U⋆ is a
theorem of R♯.

Proof. Suppose T = U is incorrect. By what was observed in the last para-
graph, there are numbers I1, ..., IN which, if substituted forX1, ..., XN respec-
tively in T, U , produce T ⋆, U⋆ such that T ⋆ = U⋆ is incorrect. By Theorem
2, T ⋆ 6= U⋆ is a theorem of R♯, proving the final statement of the theorem.
The preceding statement then follows by formal existential generalization,
ending the proof of Theorem 5.

We left out the hard part of the proof of Theorem 5 (which is buried in
the task parenthetically left to the reader above), but enough has now been
observed to show that R♯ is adequate, in at least a rudimentary way, to the
demands of elementary number theory. Indeed, the main business of this
section has been to note that the transition from P♯ to R♯ has produced no
weakening of the most basic and essential insights; otherwise, all is thoroughly
familiar, and would no doubt be accepted by the reader without even the
small amount of proof that has been here provided, as being demonstrable
in a totally effective way.

While we have been showing that R♯ is as adequate as P♯ in essential
respects, it is fit to note that it shares some of its inadequacies also. For
example, we cannot extend our effective characterization of correctness even
to unequations in general, far less to formulas compounded truth-functionally
from arbitrary equations. Let us appeal, instead, to the standard mythology,
calling an unequation T 6= U valid just in case it is true (or correct) for all
numerical values of its free variables. Then

Theorem 6. Assume the standard mythology. Then there is a valid un-
equation T 6= U which is unprovable in R♯. Moreover, there is no recursively
axiomatizable extension S♯ of R♯, with the same rules as R♯, in which all valid
unequations are provable, and which is consistent in sense (6).

Proof. Matiásévič has proved in [21] that Hilbert’s 10th problem is recur-
sively unsolvable. We may take that problem, here, in the form: Find a
decision procedure for truth (in the standard model N) for sentences of L ♯

of the form ∃X1, ..., ∃XN (T = U). Suppose that such a sentence is true; then
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it is certainly provable in R♯, by Theorem 1 and existential generalization.
Let M be the set of true sentences of the given form, and let V be the set
of all sentences of this form. Then M is certainly recursively enumerable.
If V rM is also recursively enumerable, then M is recursive, contradicting
[21].

Suppose now that every arithmetically valid unequation T 6= U is a the-
orem of R♯, for reductio. Then every universal closure of a valid unequation
is a theorem of R♯; i.e., every true sentence of the form ∀X1, ..., ∀XN(T 6= U)
is a theorem of R♯. So, by quantifier interchange, for all A ∈ V rM, ∼A is
a theorem of R♯. Suppose also that whenever ∼A is a theorem of R♯ we have
A ∈ VrM. Then, since again we can recursively enumerate theorems of R♯,
we can enumerate VrM, which has already been observed to be impossible.
So, for some theorem ∼A of R♯, A ∈ M. Whence, by the last paragraph, A
is also a theorem of R♯. I.e., R♯ is inconsistent with respect to negation. But,
on the standard mythology being assumed, all theorems of P♯, and a fortiori
of R♯, are true in the standard model N, whence R♯ cannot be inconsistent.
This refutes our initial reductio assumption in the present paragraph, and so
establishes the claim of the theorem that some valid unequation T 6= U is
unprovable in R♯.

This proves the second statement of the theorem. For the final statement,
let S♯ be some recursively axiomatizable extension of R♯ in which all valid
unequations are provable. (Note that it is not required that all statements
of S♯ be arithmetically true.) Reason as in the last paragraph to show S♯

inconsistent in sense (6). This suffices to complete the proof of Theorem
6.

So R♯, like P♯, begins to become inadequate where negation is concerned,
even on very simple formulas. Moreover, there is no reliable way to make
it adequate, even though the class of recursively axiomatizable extensions of
R♯ is much richer than the corresponding class for P♯. (Exercise: In what
sense?) On previous remarks, this is hardly surprising; indeed, the argument
just gone through might be repeated word for word to get the corresponding
(well-known) result for P♯. And the upshot is that we seem to be succeeding
in one of our principal purposes; we aimed for a classical theory of negation,
and, so far as we can tell, we got one, warts and all. What needs now
to be shown is that R♯ is not at the mercy of its theory of negation; and
accordingly that, in general, formal arithmetic shall no longer be held to
ransom over every jot and tilde of its fashionable formulation.
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In particular, having set out certain adequacy theorems above, we shall
wish to turn below to corresponding reliability theorems. For each of our
successive characterizations of correctness raises the corresponding problem
of avoiding incorrectness. E.g., just as we wished to round off Theorem 1 with
an equally effective guarantee that only correct numerical theorems shall be
provable in R♯, so we wish to round off its generalization to Theorem 4 with
an effective guarantee that no incorrect equations at all will be theorems of
R♯. This would, of course, be an effective guarantee that no inconsistency
can arise in R♯ in sense (4) of II, and hence in senses (1), (2), and (3) as well.

It would be nice, also, to round off Theorems 2, 3, and 5 with correspond-
ing reliability results. But this is less hopeful, in the present perspective, save
by relaxing our criteria of reliability. For it is characteristic even of Theo-
rem 2, and hence of its generalizations to Theorems 3 and 5, that it involves
formal negation in an essential way. But this, as it is seen here, is exactly
where the most striking and fundamental trouble lies. I.e., as it is seen here,
there is nothing wrong with seeking strong guarantees, even within formal-
ized mathematics itself, of the reliability of mathematical intuitions. There
is something wrong with seeking mathematical guarantees of the logical ap-
paratus that we bring to bear on these intuitions. For who would expect, by
taking sums, to demonstrate thereby that he avoids the Liar Paradox? ‘Not,’
it is generally conceded, is a logical particle; it ought also to be conceded that
it is, by and large, a logical problem, and that it is not part of the enter-
prise to provide ironclad guarantees against logic running amuck. And so
we shall show, in fact, that none but the usual non-constructive guarantees
are available in defence of reliability criteria to match the adequacy criteria
of Theorems 2, 3, and 5, save in special cases. And this is reasonable; if
negation is, in Hilbertian terms, an ideal element, which we reason through
and do not reason to, the guarantee that is wanted is not that we shall get
all the negative facts straight (even on the somewhat generous philosophical
assumption that there are any negative facts at all). It is rather that our
reasonings through putative negative facts shall not impede our pursuit of,
nor our confidence in, fundamental positive facts. None of this impedes us
from appealing to, and buying as much of, the standard mythology as we
want to; in our ordinary and everyday tone of voice, we shall probably buy
it all. But let us not suppose, either that arithmetic totters if it totters.
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VI

In this section, we develop some further properties of relevant arithmetic,
not all of them necessarily expected. To begin with, we define

D⊃. A ⊃ B =DF A ∧ ⊤ → B

D≡. A ≡ B =DF (A ⊃ B) ∧ (B ⊃ A)

D¬. ¬A =DF A ⊃ F

⊃, ≡, ¬ have many of the properties of an intuitionist implication, equiva-
lence, and negation respectively; in particular, they are to be sharply distin-
guished from their truth-functional counterparts ⊃, ≡, ∼ introduced above.
(For comparison in the latter case, note the following theorem scheme of R♯.)

QD∼. ∼A ↔ A → ⊥

QD∼ serves as a quasi-definition, in the sense of [8], of ∼ in R♯, and it illus-
trates nicely the distinction between an inferential analysis of intuitionist and
ordinary negation. For the former is characterized by a loose (enthymematic)
implication of an absurd proposition, namely 0 = 1; the latter by a tight
(relevant) implication of a standard (but not necessarily absurd) falsehood;
while we have chosen 0 6= 0 for that purpose here, we might, of course, have
introduced ⊥ as a direct primitive, using QD∼ then as a definition.

Negation has been, in one way or another, a constant concern in this pa-
per, and so it is important to set out with utmost clarity our formal attitude
toward it. This attitude is guided by two purposes. The first is that our
underlying negation should be capable of an inferential reduction, with ref-
erence to our underlying implication; QD∼ accomplishes this purpose. The
second is that the properties of this negation should be, so far as possible,
compatible with the standard mythology. One or the other of these purposes
is often preferred, and it is variously argued that relevant logics should pre-
fer one of them—e.g., that they should favor a classical semantical negation
in the sense of [22], or else that they should drop some classical principles
(especially double negation or excluded middle). (Urquhart can be quoted in
defence of both preferences; his intentions are classical semantical in [23], and
constructive inferential in [24]; and the second approach has been pursued in
depth by Pottinger; e.g., in his contribution to [24].)
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However, interesting as these alternate approaches are in themselves (the
former in particular having been pursued at length in [22] and related pa-
pers), they do not seem adequate to a philosophically interesting approach to
the role and utility of negation in classical mathematics. Some reconciliation
between them is needed (of the sort that accompanies the traditional treat-
ment of ∼ in relevant logics, and which is being pursued here). To assume
the standard mythology outright is to build one’s mathematical house upon
sand; in fact, it is to suggest that that mythology is less secure and reliable
than in fact it is, just because the mythology itself gets deeply tangled up in
the reliability proofs. But not to give the standard mythology its inferential
due, in the way that we actually set out formal systems, is to deprive mathe-
matics of some of its central inferential principles. In short, I opt here neither
for a classical semantical nor for a constructive inferential approach to formal
negation, but rather for what I have called elsewhere the classical inferential
approach to formal negation—classical because its semantic intentions are
classical but inferential because I hold that the formal treatment of negation
belongs not to mythology but to logic—i.e., to the theory of inference, and
not to semantical fairy tales as to how that theory is grounded.

To return to our “intuitionist” connectives ⊃ and ¬, we can spell out
rather precisely the sense in which they are intuitionist in R♯. First, let us
characterize an intuitionist sublanguage L

◦ of L
♯ in the obvious fashion; the

set of formulas of L ◦ shall be got by closing the set of atomic formulas of L ♯

under the (primitive and R♯-defined) connectives ⊃, ∧, ∨, and quantifiers ∀X ,
∃X . Note that L ◦ is automatically closed, by definitions, under ¬, ≡ also.
To save further proliferation of notation, we may also sometimes consider
L ◦ as a language in its own right, with the same atomic formulas, but with
⊃, ∧, ∨, ∀X , ∃X primitive and D¬ and D≡ in force. When J♯ is formulated
in this language (as suggested above and made explicit in [5]), we shall call
it J◦. Similarly, we shall let R◦ be the system based on L

◦ whose set of
theorems consists exactly (on the obvious transformation) of those theorems
of R♯ which belong to the intuitionist sublanguage L ◦ of L ♯.

There are now two interesting questions about the relationship between
R♯ and J♯. First, there is a question of the relationship between R◦ and J◦;
i.e., among those formulas of L

♯ which can be expressed in what (from the
viewpoint of R♯) is the intuitionist sublanguage L ◦, which are the relevantly
valid and which are the intuitionistically valid? Second, there is the question
of the relationship between R♯ as a whole and that part of it, namely R◦, that
can be directly related to intuitionist insight; e.g., what is the relationship
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in R♯ between its own implication → and the defined “intuitionist” ⊃? Or
between ∼ and ¬? Moreover, to what extent can intuitionistically valid lines
of reasoning be applied in R♯, and how can they be applied?

Formulating general answers to these questions is not easy, despite the
simple and evident relations that obtain between J♯ and R♯ at the sentential
level, and which may be gleaned from [7] and [13]. For, first, these rela-
tions are not quite so evident at the proper quantificational level (though,
as [7] notes, they continue to be of interest). More important, at the proper
number-theoretic level, we run into problems like those surveyed earlier with
regard to A14. As we are setting down the axioms for R♯, we could always
include ¬(x′ = 0), or something that relevantly implies it, among them; there
are, as we have seen, some plausible reasons to do so. The problem is that,
relevantly, this can no longer be considered an honest formal counterpart
of a Peano postulate; either, then, it is another necessary postulate which
Peano overlooked, or else it is just false. And this illustrates very neatly the
logical relativity of formalized mathematics, and the folly of supposing that
entrenched custom will offer us preferred logics. For even the form of our for-
mal mathematical axioms may be affected by our presuppositions regarding
the logic that we are using. In this situation, it does little good to assert
that we are employing the same inferential principles that all right-thinking
people have always used (or would have used, if only they had been clear
enough). For the inferential principles that we are using themselves con-
tribute to the sense that is to be made of the very assertions to which they
are to be applied in the drawing of inferences. E.g., from an R♯ viewpoint
the inferential behavior of ¬ disqualifies it as a formal counterpart of ‘not’;
i.e., statements of the form ¬A do not mean that it is not the case that A,
quite apart from the question whether they are true or false and even from
our general worries about formal negation.

These questions have been thought about too simplistically, and too little.
For having (or lacking) a principle is too easily confused with having (or
lacking) such-and-such a formal theorem. To end the confusion, one must
also know that the formal theorem (or non-theorem) expresses the principle
in question. And this is exactly the point which is most insecure. The sense in
which R♯ contains (or fails to contain) intuitionist arithmetics must be related
to the sense that R♯ makes of these arithmetics, and not necessarily to the
sense that it makes of the intuitive principles that are supposed to underlie
them. And what we find, in fact, are certain convergences, and certain
divergences as well, in underlying insight. Oversimplified, insights converge

Australasian Journal of Logic (18:5) 2021, Article no. 5



333

in that R♯ takes intuitionist deduction as a special case in the general theory
of relevant deduction; thus, as D⊃ suggests, intuitionist implication may be
viewed as a special kind of relevant implication. But insights diverge on
negation and the quantifiers; from the R♯ viewpoint, J♯ accepts enough of the
standard mythology on such matters that J♯ is no more credible than P♯; while
the points on which J♯ rejects the standard mythology render it less useful
and interesting than P♯. For R♯, on the other hand, the standard mythology
is there to be used mythologically ; thus, on non-mythological assertions, R♯

is credible in ways that neither P♯ nor J♯ is credible; while R♯ still retains (we
hope) the full mythological interest and utility of P♯.

We now provide partial answers to the questions raised above about the
relationship of J♯ and R♯; to provide these answers, we consider J♯ in its
completely equivalent form J◦, based on the intuitionist sublanguage L

◦.
Note, to begin with, that the following rule of modus ponens for ⊃ (unlike
the corresponding rule for material ⊃) is verified without difficulty in R♯, for
all formulas A, B of L ♯.

⊃E. A ⊃ B & A ⇒ B

And we note that ⊃ can be related in R♯ to standard notions of deducibility.
Specifically, where S is a set of formulas and A is a formula, there is a stan-
dard deduction of A from S (symbolically S ⊢ A) in R♯ just in case there is
a sequence of formulas A1, ..., AN of L ♯ such that (i) AN is A, and (ii) each
of the AI is either a member of S, a theorem of R♯, or the consequence of
the predecessors by one of →E, ∧I. (It is convenient, but not necessary, to
restrict the rules that may be employed in standard deduction to the prim-
itive sentential rules of R♯. For we can throw in use of the quantificational
rule C∀I, or the induction rule RMI, simply by keeping track in familiar
ways (e.g., as in [5]) of the variables concerning which S makes no special
assumptions, and hence which are fit to be used as variables of generalization
under C∀I or as induction variables under RMI; alternatively, and without
loss of generality, we can limit S to sentences, again allowing ourselves free
use of generalization and induction rules. Finally, we might trade in →E,
∧I for the single rule ⊃E under (ii) of our characterization above. But these
suggestions, except possibly the last, are to be taken as unnecessary com-
plications, slightly affecting the form, but not the content, of the deduction
theorem to be noted.)

We write, in Gentzenish fashion, S ∪ {A} as S, A in context.
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The Standard Deduction Theorem for R♯. For all subsets S of L ♯, and
formulas A, B of L ♯, we have

(1) S, A ⊢ B iff S ⊢ A ⊃ B

Proof. The methods of [13] suffice.

To this principle we may add a number of others, which suffice to guar-
antee standard deductive behavior for ∧, ∨, ∀X , ∃X .

(2) S ⊢ A ∧ B iff S ⊢ A and S ⊢ B

(3) S, A ∨ B ⊢ C iff S, A ⊢ C and S, B ⊢ C

(4) S ⊢ A iff S ⊢ ∀XA, provided that X does not occur free in any member
of S

(5) S, A ⊢ B iff S, ∃XA ⊢ B, provided that X does not occur free in any
member of S or in B

(6) S ⊢ A and S, A ⊢ B yield S ⊢ B

(7) If S ⊆ T and S ⊢ A then T ⊢ A

(8) If A ∈ S then S ⊢ A

(9) If A ∈ R♯ then ∅ ⊢ A

Again, verifications are straightforward. And the import of (1)–(9) lies in a
partial answer to our second question above; namely, we can, at least where
intuitionist negation is not involved, apply intuitionistically valid principles of
reasoning quite generally in R♯, and not simply to that part R◦ of R♯ which is,
so to speak, in the intuitionist vocabulary L ◦. Reasoning via mathematical
induction counts too.

(10) If S ⊢ A0 and S, AX ⊢ AX ′, then S ⊢ AX , provided that X does not
occur free in S.

Verification of (10) rests on the following admissible rule and theorem of R♯.
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RMJ. A0 & AX ⊃ AX ′ ⇒ AX

AMJ. A0 ∧ ∀X(AX ⊃ AX ′) ⊃ AX

RMJ may be got easily by taking ⊤∧AX as the induction formula in an ap-
plication of the primitive rule RMI, whence the scheme AMJ (corresponding
to AMI) follows quickly as a theorem scheme of R♯. (This point is looked
into in some detail in [18]; suffice it to note here that it is often convenient in
carrying out arguments by mathematical induction formally in R♯ to appeal
to RMJ , AMJ rather than RMI directly.)

At this point, the reader must be cautioned against taking too seriously
the standard deduction theorem for R♯ and its various concomitants. For
the standard sense of deduction is not the preferred sense of deduction in
R♯, for reasons set out in [7] and elsewhere. However, R♯ accommodates
standard deduction in the ways set out above, which is germane to the J♯

connection presently being investigated. (This kind of accommodation holds
quite generally for systems based on RQ, being specialized here to R♯ simply
because that is the system presently being investigated.)

The first systematic conclusion to be drawn for R♯ from (1)–(10) is the
following.

Theorem 7. Let A be any negation-free theorem of first-order intuitionist
quantification theory JQ. Then every substitution instance of A in the lan-
guage L ♯ is a theorem of R♯.

Proof. The negation-free theorems of JQ may be axiomatized using the
negation-free axioms and rules of [5]. Use (1)–(9) to show that all sub-
stitution instances of these axioms hold in R♯, and that R♯ theoremhood is
preserved on application of JQ rules, ending the proof of the theorem. (Ex-
amples of verification:

(i) Of axiom A ⊃. B ⊃ A. By (8), A,B ⊢ A in R♯ for arbitrary A,B ∈ L ♯.
By (1), A ⊢ B ⊃ A. By (1) again, ∅ ⊢ A ⊃. B ⊃ A. By the converse of (9),
A ⊃. B ⊃ A is accordingly a (schematic) theorem of R♯.

(ii) Of rule A ⊃ B ⇒ ∃XA ⊃ B, where X is not free in B. Suppose, for
arbitrary formulas A, B of L

♯, that A ⊃ B is a theorem of R♯ and that X
is not free in B. By (9), (1), A ⊢ B in R♯. By (5), ∃XA ⊢ B in R♯. By (1),
∅ ⊢ ∃XA ⊃ B in R♯, completing the verification.)
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Theorem 7 does not involve negation, but it holds in the strong schematic
sense explained in the previous footnote. By sticking to the intuitionist
sublanguage L ◦ of L ♯, we get a stronger result.

Theorem 8. Let A be any theorem of intuitionist quantification theory JQ,
in the language L ◦. Then A is a theorem of R◦, and hence of R♯.

Before proving Theorem 8, we note that R♯ admits the following form of
the ex falso quodlibet. First, let the positive sublanguage of L ♯, which we call
L +, contain all atomic formulas of L ♯ and be closed under ∧, ∨, →, ∃X ,
∀X ; i.e., L + contains negation ∼ only insofar as it may be eliminated by one
of the definitions D∨, D∃. Note also that, by attending to the appropriate
definitions, L + also contains ⊤, F, ⊃, ¬, etc., and so it has the entire
intuitionist sublanguage L ◦ as its proper part. We shall use R♯+ for the set
of theorems of R♯ in the positive sublanguage L

+. Now for the EFQ.

EFQ Lemma for R♯+. For all formulas A of L +, we have F → A as a
theorem of R♯+.

Proof. By induction on the length of A. In the atomic case, it suffices to
show 0 = 1 → X = Y , for distinct variables X, Y , using RMI. Where
A is compound, it is of one of the forms B ∧ C, B ∨ C, B → C, ∀XB,
∃XB, where we may assume on inductive hypothesis that 0 = 1 → B,
0 = 1 → C are theorems of R♯+. Every case except that in which A is of
the form B → C may be settled on elementary properties of classical logic
particles. We borrow from below the result that, since B is a formula of
L +, B → ⊤ is a theorem of R♯. Then on inductive hypothesis and B21,
we have F →. ⊤ → C as a theorem of R♯; whence by the borrowed result
and the strengthened replacement theorem for R♯, we have F →. B → C as
a theorem of R♯, completing the inductive argument and establishing the ex
falso quodlibet for R♯+ in the form just set out.

So we may add to our list of interesting R♯ theorems

B25. F → A, where A ∈ L +

B26. F ⊃ A, where A ∈ L
+

For that matter, we might as well record, as an R♯ theorem scheme
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B27. B → C →. B ⊃ C

whence the passage from B25 to B26 is clear. And we may now add to our
principles of standard deduction that are R♯ valid

(11) If S ⊢ F then S ⊢ A, for each set S of formulas of L ♯ and each formula
A in L +.

Then, resuming our interrupted business,
Proof of Theorem 8. Suppose that B is a theorem of JQ, in the language
L ◦. We may suppose that JQ is formulated in F-formulation, as in [8],
with F ⊃ A as the sole special axiom scheme governing F and with negation
introduced by a quasi-definition ¬A ≡ A ⊃ F, taken also as an axiom scheme.
The negation-free axioms of JQ may be taken as before, and the rules as well.
Then, since our language is L ◦ to begin with, we simply show that every
step in a JQ proof of B, in that language, is a theorem of R♯+. All steps
except those that come by axioms F ⊃ A may be handled as before (taking
care of the quasi-definition by our outright definition D¬), whereas F ⊃ A
holds directly by B26 for all formulas A in L ◦, thus completing the proof of
Theorem 8.

The reader may well have wondered why we bothered to state Theorem 7
as a separate result, inasmuch as Theorem 8 seems more satisfying; he may
also wonder why we are so stuck on JQ theorems, since except in the passing
observation (10) we have not yet attended to such theorems of J♯ as involve
the proper number-theoretic axioms. Again, our concern for negation—both
the intuitionistic negation ¬ of J◦ and the ordinary negation ∼ of R♯—is the
cause. For, while we have defined ¬ on all formulas of L ♯, it only has the
intuitionist EFQ property on positive formulas. So the distinction between
Theorem 7 and Theorem 8 is important; A ⊃. B ⊃ A, and every other
negation-free theorem scheme of JQ, remains a theorem scheme in R♯; that
is the burden of Theorem 7. But F ⊃ A, and like schemes, is only a partial
theorem scheme of R♯; e.g., it holds for all formulas A of L ♯ which translate
directly corresponding formulas of L

◦, but it does not necessarily hold on
formulas A that are not admitted into L ◦ at all; such formulas, needless to
say, involve the negation ∼ of R♯ in an essential way.

In fact, by altering our definition of F in L ♯, we can get a translation of
J◦ into R♯ to which Theorem 7 can be extended directly, without the cautions
attached to Theorem 8. For let us define
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DF∗. F∗ =DF 0 6= 1 → 0 = 1 (i.e., T → F)

D¬∗. ¬∗A =DF A ⊃ F∗

We now have, in F∗, a formula that relevantly implies all formulas of L ♯ in
the system R♯.

EFQ Lemma for F∗. For all formulas A of L ♯, we have F∗ → A as a
theorem of R♯.

Proof. We show, by induction on the length of A, that both F∗ → A and
A → ∼F∗ are theorems of R♯. It is clear from the reductio axiom A9 and
double negation that F∗ → F is a theorem of R♯, whence by the previous
EFQ Lemma we have F∗ → A for all A ∈ L +, including in particular atomic
A. Of course we have ∼F∗, and so ⊤ → F∗ by B21; whence, for atomic A,
we have A → ∼F∗ applying B19. This establishes our induction proposition
for the case where A is atomic; we must consider in addition the case where
A is of one of the forms B ∧ C, ∼B, ∀XB, B → C, where on inductive
hypothesis we have F∗ → B, F∗ → C, B → ∼F∗, C → ∼F∗ as theorems of
R♯, and where we must show F∗ → A, A → ∼F∗. Using contraposition, the
case where A is ∼B is already built into the inductive hypothesis (appealing
also to double negation), while the B ∧C, ∀XB cases remain easy to verify;
similarly, using the fact that B → C → ∼(B ∧ ∼C) is relevantly valid, the
inductive hypothesis quickly delivers B → C → ∼F∗ as a theorem. So the
interesting case is still F∗ →. B → C; this cannot be handled as before, since
we are no longer assured that B ∈ L +. However, it will suffice for the latter
(by the strengthened replacement theorem for R♯ and inductive hypothesis)
that we can show F∗ →. ∼F∗ → F∗ to be a theorem of R♯. For this we
establish theorems of R♯ as follows:

• (T → F) ◦ T → F

• (T → F) ◦ T → ⊤

• (T → F) ◦ T →. T → F

• T → F →. T →. T → F

• T → F →. T →. T →. T → F

• T → F →. T →. ∼(T → F) → F

• T → F →. ∼(T → F) →. T → F,
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leaving the reader to fill in details. The final formula is what is to be shown,
and it completes the EFQ Lemma for F∗.

The above lemma suffices for the extension of Theorem 7 to all of JQ on
the suggested translation.

Theorem 7∗. Let A be any theorem of first-order intuitionist quantification
theory JQ. Then every substitution instance of A in the language L ♯ is a
theorem of R♯, on straightforward translation into L ♯ of intuitionist ∧, ∨,
∀X , ∃X and using D⊃, D¬∗, DF∗ for intuitionist implication, negation, and
an intuitionistically absurd proposition, respectively.

Proof. As of Theorem 7, using the EFQ Lemma for F∗ to complete the proof
on axioms F ⊃ A of JQ.

In our particular J♯ context, however, it may be doubted that Theorem
7∗, despite its increased generality, really improves Theorem 8. For F was de-
fined so as to correspond naturally to an arithmetically absurd proposition,
namely 0 = 1. As such, F is firmly within an intuitionistically acceptable
vocabulary to begin with. On the other hand, our F∗ is defined using the
intuitionistically unacceptable connective ∼. It adds nothing to the sound-
ness of the translation of the intuitionistically acceptable sentences of L ◦

themselves. And it subtracts from the adequacy of the translation by forcing
upon us, at the logical level, some notoriously objectionable theses (to intu-
itionists). E.g., as in [13], we have ¬∗A ∨ ¬∗¬∗A as a theorem scheme of R♯,
as it certainly is not in JQ (or even in J♯, if J♯ is consistent).

We have, of course, no particular brief here either for intuitionist affir-
mations or for intuitionist denials, in themselves. R♯ already diverges from
J♯ on some points; while one can decrease, or perhaps even eliminate, key
divergences by fiddling with one system or the other, there is no particu-
lar reason to do so here. But the delicacy of these matters of translation
is again apparent; for intuitionist and relevant insight more nearly coincide
when we translate the intuitionist absurdity F by a formula which, relevantly
speaking, is not absurd. And this is reasonable; from the R♯ viewpoint, the
intuitionist theory of implication is generally acceptable, when understood
correctly. But the intuitionist theory of negation is not generally acceptable;
as a theory about absurd propositions, it is acceptable, more or less, but only
subject to the constraint that such propositions, like 0 = 1 in the arithmetic
case, be absurd (i.e., imply everything) not in the whole relevant vocabulary,
but only in that part of it which directly reflects intuitionist concerns.
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So, in thinking generally about the relation between J and R, here is
my position. At the sentential level, J-insights are exactly contained in R-
insights, in the way spelled out formally in [13]. And this is not merely, I
think, a matter of owning an exact translation from J to R, at this level,
but also a matter of coincidence of insight reflected by the translation; the
intuitionist treatment of ¬, while it is relevantly strange and must be ap-
proached with the caution just noted, does not upset this coincidence. At
the quantificational level, there appears, on the other hand, to be an impor-
tant divergence between JQ and RQ over the status of the confinement law
that allows distribution of ∀X over ∨. I doubt that this divergence can be
reconciled without serious motivational impact on each system; the less seri-
ous impact, I think, comes in adding it to JQ; under certain circumstances,
an intuitionist can perhaps accept this confinement law, though he must be
presumed to reject it in general. On the other hand, it is hard to see how
a relevant viewpoint can do without this confinement law, while preserving
its classical inferential theory of negation. (Without that, it would be easy,
though the whole character of the project changes thereupon.)

Finally, whether we have brought them quantificationally into coincidence
or not, let us think about the relation between J and R as a vehicle for the
development of particular theories. What is to be expected here, I think,
is a core of coincidence, with increasing divergence on the periphery. The
coincidental core again reflects points of agreement in the underlying theory
of deduction; but divergence is to be expected, in the A14 case (for exam-
ple), in how non-logical assumptions are spelled out. A nice result would
lie in the isolation of sub-theories with respect to which J-formulations and
R-formulations agree exactly, in the sense of having exactly the same the-
orems in these sub-theories. Such results might yield information from the
R-viewpoint (e.g., that a constructive proof of ∃XAX is available by a demon-
stration of AT for some term T , for certain choices of ∃XAX), while confer-
ring relevant reliability on the J-viewpoint. (For a large class of theories, such
isolation is trivial by the methods of [6], but it will not prove so in general.
As an example here of an isolated sub-theory on which J♯ and R♯ agree, we
can take the class of numerical equations, presumably, a result perhaps to be
improved by isolating a somewhat larger and less trivial theory.)

Let us now take up this last point with particular reference to the relations
between J♯ and R♯. First, it requires nothing more than B27 to verify all the
number-theoretic axioms of J◦ except A14 on direct R♯ translation. (This
includes mathematical induction, given AMJ above.) So we may improve

Australasian Journal of Logic (18:5) 2021, Article no. 5



341

Theorem 8 as follows.

Theorem 9. Let A be any theorem of J◦ provable (e.g., in the system of [5])
without using the intuitionist form of A14. Then A is a theorem of R◦, and
so of R♯.

Proof. If A is a theorem of J◦, then there is a proof of it in J◦. On the proof
of Theorem 8 and the observation just above, if A14 is not used in this proof
then all axioms used in the proof are theorems of R♯, while the rules used
in the proof are admissible in R♯ translation, thus completing the proof of
Theorem 9.

Theorem 9 is a handy vehicle for verifying particular number-theoretic
principles in R♯, including many of those set out above. For example, general
algebraic laws, of the sort reflected in Theorem 4, do not sensibly depend on
the fact that the natural numbers start with 0, but that in counting them we
never return to 0. Indeed, if we did return to 0, as in the natural numbers
modulo some natural number, these algebraic laws would still hold. So it is
quite unnecessary to prove such laws retail—e.g., that addition is associative,
and the like—since we get them wholesale from Theorem 9. Of course, in
particular cases we must back up our formal intuitions by actual J◦ proofs,
before applying Theorem 9; usually, however, the intuitions will do, while
the proofs may be taken from [5] and elsewhere.

The intuitionist form of A14 is unprovable in R♯, nor is the slack necessar-
ily taken up by its relevantly valid counterpart. So there are some theorems
of J◦ that are not theorems of R◦. However, as a simple corollary of Theorem
9, we have

Theorem 10. Suppose that A is a theorem of J◦. Then ∀x¬x′ = 0 ⊃ A is a
theorem of R◦, and hence of R♯.

Proof. Evidently A is a theorem of J◦ iff ∀x¬x′ = 0 ⊃ A is a theorem of J◦,
by the standard deduction theorem for J◦, and the J◦ form of A14. Moreover,
∀x¬x′ = 0 ⊃ A, since it has A14 in its antecedent, intuitionistically speaking,
never requires A14 for its proof, whence the theorem follows immediately
from Theorem 9, ending its proof.

Theorems 9 and 10 show that J◦ is contained, in a well-defined way, in R◦.
The containment, though not completely straightforward, would become so if
we were to add (as we have contemplated but rejected) the intuitionist form
of A14 as a new R♯ axiom. For reasons set out above, this is worth thinking
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about, as a cancellation principle if not as a negation principle. And it may
be that, for reasons of stability, we shall have to have this principle, in which
case we shall (grudgingly) add it; but our story is that we do not need it,
despite appearances to the contrary, for we have its effect in any case, in the
sense already explained above.

We may now ask the converse question. To what extent is R◦ contained in
J◦? Had we chosen the alternative translation into R♯, based onDF∗, D¬∗, we
could have immediately exhibited instances ¬∗A∨¬∗¬∗A of excluded middle
that are intuitionistically unprovable but theorems of R♯. (E.g., choose a
Gödel formula of the form ¬A for J◦. By the intuitionist disjunction property,
if we could prove ¬A∨¬¬A in J◦ then we can prove one of ¬A, ¬¬A, rendering
J◦ inconsistent by Gödel’s theorem. But ¬∗A ∨ ¬∗¬∗A is a theorem scheme
of R♯, whence, if J◦ is consistent, then some non-theorems of J◦ are taken into
theorems of R♯ on the translation based on ¬∗.)

However, we have rejected the translation based on ¬∗ and have preferred
the one based on D¬. And at this point the relation between R◦ and J◦ be-
comes interesting. Forgetting about our reflections on A14, to what extent
do the strong classical negation and quantificational principles of R♯ render
provable theorems of first-order Peano arithmetic to which an intuitionist
would object? Again, we are not concerned with theorems containing the
classical negation ∼ to which an intuitionist might object; for he does not
even recognize that connective. Rather, we are concerned with the impact
of classical deductive methods on the theorems in what an intuitionist might
concede to be, more or less, his vocabulary. While we are not particularly
concerned with observing intuitionist strictures, it is not unlikely that, to
some extent, we may observe them anyway, insofar as there are alternative
constructive proofs of theorems more easily obtained using the classical prin-
ciples recognized by R♯. It would be surprising if this always happened. But
it must happen sometimes, and, having in R♯ a vocabulary which can be
taken to comprehend both the intuitionist and the classical vocabulary, we
can compare and contrast the proof procedures which R♯ makes available in
each vocabulary.

VII

In the last section, we investigated some connections between intuitionist and
relevant arithmetic. In this section, we do the same for connections between
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classical and relevant arithmetic. We again begin with some convenient def-
initions.

D▽. ▽A =DF A ∧ ⊤

D△. △A =DF A ∨ ⊥

These definitions are trivial, but useful. (Mnemonic: ▽ points down, like ⊤.)
One thing that makes them useful is that ▽ has some of the properties asso-
ciated with a modal necessity operator, while △ is similarly linked to modal
possibility. Let us also, while we are at it, add an intensional disjunction
which will be dual to ◦ as ∨ is dual to ∧.

D+. A+B =DF ∼A → B

+ does not enter often, while context serves to distinguish it from our arith-
metic operation +. (But, for the record, note that our F∗ above was just
F+ F.) Now let us note some rather trivial theorem schemes and admissible
rules of R♯ for our newly defined operations ▽, △.

B28. ▽A → A

B29. A ⇒ ▽A

B30. A → △A

B31. ▽A ⊃ B ↔ ▽A → B

B32. ▽A ◦ ▽B ↔ ▽A ∧ ▽B

B33. △A+ △B ↔ △A ∨ △B

B34. △(A ∧ B) ↔ △A ∧ △B

B35. ▽(A ∨ B) ↔ ▽A ∨ ▽B

B36. ▽(A ∧ B) ↔ ▽A ∧ B, etc.

B37. △(A ∨ B) ↔ △A ∨ B, etc.

B38. ▽▽A ↔ ▽A

B39. △△A ↔ △A

B40. ∼▽A ↔ △∼A, etc.

B41. ▽∀XA ↔ ∀X▽A; ▽∃XA ↔ ∃X▽A

B42. △∀XA ↔ ∀X△A; △∃XA ↔ ∃X△A

B43. ▽△A → △▽A
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B44. △▽△A ↔ △▽A; ▽△▽A ↔ ▽△A

B45. A → B ⇒ ▽A → ▽B; A → B ⇒ △A → △B

B46. △A ∧ △(A ⊃ B) → △B

B47. ▽A → △B ↔ ▽A ⊃ △B

B48. A ⊃ △B ↔ A ⊃ △B

B49. ▽B → ⊤

B50. ⊥ → △B

As a modal structure, it must be confessed that our ▽, △ do not supply any-
thing terribly interesting; for example, the non-equivalent proper modalities
are just ▽, △, ▽△, △▽. Moreover, together with reasonable modal proper-
ties like B28, B29, B30, B34, B35, B38, B39, B40, we have strange ones
like B36, B37. Indeed, we might note, for example, that all of △(A ⊃ B),
A ⊃ △B, ▽A ⊃ B, ▽A ⊃ △B, A ⊃ △B, and ▽A → △B are provable
R♯ equivalents, using B37, B47, B48 and trivial properties of the truth-
functional connectives. Since our modalities arise in a truth-functional way
this is not surprising; while that the structure is at all interesting rests on
the relevant denial of the classical equivalences

P1. A ↔ ▽A

P2. A ↔ △A

In fact, P2 is just the ex falso quodlibet in another form, while P1 is its dual.
Although P1 and P2 do not hold in R♯, they offer an interesting way of

classifying formulas. For we note, in the first place, that we do have in R♯

the theorem scheme

B51. T = U ↔ ▽(T = U)

in virtue of B19 of Section V, D▽, and elementary properties of conjunction.
I.e., P1 holds for all atomic formulas of R♯. Immediately, by B40, P2 holds
for all negations of atomic formulas; i.e.,

B52. T 6= U ↔ △(T 6= U)
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is another theorem scheme of R♯.
The atomic formulas of R♯ are just the equations. P1, of course, is a

theorem of R♯ for some formulas A which are not equations. Accordingly, let
us call any formula A for which P1 is a theorem of R♯ a secondary equation.
Similarly, inasmuch as P2 holds for all unequations, let us call any A for
which it holds in R♯ a secondary unequation. It is evident and trivial that
A is a secondary equation iff A → ⊤ is a theorem of R♯; similarly, A is a
secondary unequation iff ⊥ → A is a theorem of R♯.

Can any formula be both a secondary equation and a secondary unequa-
tion?

Observation. Some formula A is both a secondary equation and a secondary
unequation iff ⊥ → ⊤ is a theorem of R♯.

Verification. If ⊥ → ⊤ is a theorem of R♯, ⊤ is both an equation and a
secondary unequation. Conversely, if both ⊥ → A, A → ⊤ are theorems
of R♯, so by transitivity of provable implication is ⊥ → ⊤, completing the
verification.

We shall observe below that ⊥ → ⊤ is not a theorem of R♯, whence the
classes of secondary equations and secondary unequations are disjoint. Let
us call the union of these classes the class of secondary formulas. Further
question: is every formula a secondary formula?

Second Observation. Suppose that A, B are secondary equations, and that
C is any formula. Then each of A ∧C, A∨B, A ◦ B, A+B, ∀XA, ∃XA is
a secondary equation; moreover, ∼A, A ⊃ C are secondary unequations.

Verification. By definition, the secondary equations A, B are equivalent
respectively to ▽A, ▽B. Use B36, B35, B32, B41, B40 in the verification.
For the + case, we have A → ⊤, B → ⊤. A+B → ⊤+⊤ follows; moreover,
by the reductio axiom and D+, ⊤+⊤ → ⊤ is a theorem of R♯. Other details
are left to the reader.

Third Observation. Suppose that A,B are secondary unequations, and
that C is any formula. Then each of A ∧ B, A ∨ C, A ◦ B, A + B, ∀XA,
∃XA, C ⊃ A is a secondary unequation; so is C ⊃ A, while ∼A is a secondary
equation.

Verification. By definition, A ↔ △A, B ↔ △B are theorems of R♯, whence
particular verifications are dual to those in the last observation.
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Fourth Observation. Suppose that A,B are secondary formulas. Then so
are ∼A, A ∧B, A ∨ B, A ⊃ B, A ≡ B, ∀XA, ∃XA.

Verification. Straightforward from previous observations.
Our observations, it will be noted, do not serve to answer the question that

we asked earlier. But they answer it in part. Since the atomic formulas are
secondary formulas, and since by our final observation the class of secondary
formulas is closed under the truth-functions and quantifiers, it is clear that
every formula which, from the viewpoint of R♯, is a classical formula is also
a secondary formula.

Let us, to spell this out, characterize now the classical sublanguage L ∗ of
L ♯ as we previously characterized the intuitionist sublanguage L ◦. Specif-
ically, L ∗ is got from L ♯ by dropping → and all its works; i.e., L ∗ is the
result of closing the set of atomic formulas under the connectives ∼, ∧, and
the quantifiers ∀X and with such definitions as are applicable from these
primitives remaining in force. P∗ will be like P♯ in this vocabulary, and may
be formulated by changing → to ⊃ everywhere among the axioms and rules
set out for P♯ above; in particular, on this formulation, P∗ is equipped with
a primitive rule ⊃E. And R∗, as before, shall be the fragment of R♯ in the
classical sublanguage; i.e., insofar as we may identify systems with the sets of
their theorems and languages with the sets of their formulas, R∗ = L ∗ ∩ R♯.
(We shall find fault with that identification below, but it is convenient for
the present.)

P∗, clearly, is just like P♯, in two respects. First, its set of theorems is
exactly the set of arrow-free theorems of P♯. Second, simply by trading in
primitive → for defined ⊃, the two systems are definitionally equivalent. On
the other hand, R∗ is merely the classical fragment of R♯, in what R♯ considers
the classical vocabulary. And, as in the last section, we are faced with the
question, “How classical is R∗?” And, we might add, “To what extent do
classical properties of R∗ rub off on the surrounding system R♯?”

In one direction, the rubbing off is obvious.

Theorem 11. Suppose that A is a theorem of R∗. Then A is a theorem of
P∗. I.e., all theorems of R♯ in the classical vocabulary are theorems of P♯.

Proof. Trivial. We get P♯ from R♯ by adding an axiom. So theorems of
R♯ are automatically theorems of P♯; the same holds for fragments R∗, P∗,
ending the proof.
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It would be nice to establish the converse of Theorem 11, by showing that
all theorems of P∗ are already theorems of R∗; i.e., to show that R♯ contains,
as an exact subsystem in the classical sublanguage, classical first-order Peano
arithmetic. It would be even nicer to find some good reason why this is not
the case; e.g., that 0 = 1 is provable in P♯, though not in R♯. However, we
content ourselves here with another sort of exact translation from P∗ to R∗,
which will serve some though not all of the purposes of a demonstration that
R∗ and P∗ coincide in the set of their theorems.

Theorem 12. The following conditions are equivalent, for A ∈ L ∗.

(i) A is a theorem of P♯

(ii) △A is a theorem of R♯

(iii) △A is a theorem of P♯

(iv) △▽A is a theorem of P♯

(v) △▽A is a theorem of R♯

(vi) ▽△A is a theorem of P♯

(vii) ▽△A is a theorem of R♯

Before proving Theorem 12, let us comment upon it. Its import is that, for
every formula A which R♯ recognizes as classical, A is a theorem of classical
first-order Peano arithmetic iff A ∨ ⊥ is a theorem of R♯. From the R♯ view-
point, this involves a hedge; so to speak, whenever P♯ asserts A, R♯ asserts,
on the translation set out in (ii), either that A or else ⊥—i.e., or else P♯ is
inconsistent with respect to negation. However, it may be that we can show
also that

(viii) A is a theorem of R♯

is also equivalent, for all formulas A built out of the classical connectives and
quantifiers, to each of (i)–(vii). If so we shall not, on a segment of the con-
ventional wisdom not under present challenge, be able to demonstrate this
equivalence, in general, by strictly finitary means. For, as we shall see, to
be able to do so would be to provide a strictly finitary demonstration of the
consistency of P♯ itself. (Caution: this last remark may seem incompatible
with opening remarks; it is not, however, since Gödel’s second theorem is
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under attack here not with respect to its technical content for P♯ and related
systems, but with respect to its purported philosophical significance. Put
otherwise—there are deficiencies in the way that P♯ is formulated and con-
ceived which lead to serious and unnecessary inflation of the philosophical
claims that are associated with the Gödel result. The most important of
these deficiencies lies in the confusion of a guarantee of negation-consistency
with a guarantee of mathematical reliability. Opponents of Hilbert’s pro-
gram argued from the outset that the former guarantee was not sufficient for
the latter guarantee. What is argued here is that it is not necessary ; or, to
put it otherwise, that there are various sorts of mathematical reliability, and
various accompanying guarantees thereof. Gödel’s result does rule out one
kind of guarantee, for R♯ no less than for P♯, so far as I have been able to
think the matter through. But it is sheer confusion to suppose that the guar-
antee ruled out is, in itself, all that important, or that guarantees of more
fundamental sorts of reliability go down with the ship. To be sure, one may
have these fundamental guarantees by simply omitting all but the most rudi-
mentary logical machinery, or by translating them into far-fetched Formalese
counterparts. (Cf. [1] on the latter point, even for negation-consistency.)
The innovation here is the combination of strong, classically oriented log-
ical machinery, straightforward Formalese translations of the fundamental
guarantees, and finitary demonstration that these guarantees in fact hold.)

The important equivalence in Theorem 12 is between (i) and (ii); this is
what enables us to isolate P♯ as a well-defined subsystem of R♯, and accord-
ingly to apply to R♯ many well-known metamathematical results that have
been obtained for P♯. But (iii)–(vii), though rather trivial, should not be
overlooked either. For their import is that R∗ and P∗ do indeed coincide on
formulas of the form △A, ▽△A, △▽A, or on formulas equivalent in R♯ to a
formula of one of these forms. Thus, for example, what we have called sec-
ondary unequations, including in particular all formulas of the form T 6= U ,
which are expressible in the classical sublanguage L ∗ are theorems of R♯ iff
they are theorems of P♯. In fact, we noted above that R♯, like P♯, was deficient
with respect to the unequations themselves, in that there are some formulas
T 6= U that, on the standard mythology, are arithmetically valid, but which
are unprovable in R♯. Given Theorem 12, we see now that R♯ is exactly as
satisfactory, and exactly as deficient, in this respect as is P♯; for exactly the
same unequations are theorems of both systems. We now turn to the actual
proof of Theorem 12, which is by straightforward verification.
Proof of Theorem 12. By P1, P2, all of (i), (iii), (iv), (vi) are immediate
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equivalents. By B29, (ii) implies (v); by B43, (v) implies (vii). By Theorem
11, (vii) implies (vi). So we may complete the proof of the theorem by
showing that (i) implies (ii).

Suppose, then, that A is in the classical vocabulary L ∗, and that A
is a theorem of P♯. Then A is a theorem of P∗, which we may take as
formulated with all classical predicate tautologies in the language L ∗, and
with the classical counterparts (with ⊃ for→) of our number-theoretic axioms
A11–A18. As rules, we may take just ⊃E, a simple rule A ⇒ ∀XA of
universal generalization, and RMI in the form A0 & AX ⊃ AX ′ ⇒ AX .
(This is an alternate formulation of P∗, designed to simplify the proof; its
ineffective character is inessential, but, if the reader objects to it, he may
easily transform the proof so that it applies to P∗ as originally formulated
above.)

We now show, by induction on the length of proof of A in P∗, that △A
is a theorem of R∗, and so of R♯. Suppose, first, that A is a logical axiom;
Anderson and Belnap show in [7] that all classical predicate tautologies are
theorems of RQ, so that A is a fortiori a theorem of R♯; so then is △A, by
B30. Similarly, since B → C →. B ⊃ C is a theorem of R♯, it is immediately
verified that the P∗ forms of A11–A18 are theorems of R♯, since they are
either the same as, or follow trivially from, their R♯ counterparts.

Suppose, then, that A comes in P∗ by predecessors by application of
one of the rules ⊃E, universal generalization, RMI, where we may suppose
on inductive hypothesis that, for each premiss B of this application of the
appropriate rule, △B is a theorem of R♯. There are three rules, so there are
three cases.

Case 1. A comes by ⊃E. On inductive hypothesis, there is a formula B of
L ∗ such that △(B ⊃ A), △B are theorems of R♯. By ∧I, B46 in R♯, △A is
a theorem of R♯, as desired.

Case 2. A comes by universal generalization. Then A is of the form ∀XB,
where by inductive hypothesis △B is a theorem of R♯. Universal generaliza-
tion is admissible for R♯ also, whence ∀X△B is a theorem of R♯. By B42,
△∀XB, which is △A, is a theorem of R♯, as desired.

Case 3. A comes by the P∗ form of RMI. Then A is of the form AX ,
where, on inductive hypothesis, △A0 and △(AX ⊃ AX ′) are theorems of
R♯. In the paragraph following B28–B50, we noted the equivalence of the
latter to AX ⊃ △AX ′ in R♯, where a useful intuitionist-style ⊃ has replaced
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material ⊃. Since ⊥ ⊃ △AX ′ by B50, B27, we may use Theorem 8 to
reason intuitionistically to AX ∨ ⊥ ⊃ △AX ′; i.e., △AX ⊃ △AX ′. With
△A0, this sets up our relevantly valid intuitionist form RMJ of the rule of
mathematical induction, whence we conclude △AX therefrom—i.e., △A, as
desired.

This completes the inductive argument, the proof that (i) implies (ii), and
hence the proof of Theorem 12.

Theorem 12 completes the proof that, in one satisfying sense, R♯ exactly
contains the classical first-order Peano arithmetic P♯. But, as we have seen,
this sense could be made more satisfying, by adding (viii) above to our col-
lection (i)–(vii) of equivalent statements relating P∗ theoremhood and R∗

theoremhood. Can we add (viii)? Half the time, at least, to make official
what was observed informally above.

Theorem 13. Suppose that A is a secondary unequation in the language
L ∗. Then A is a theorem of P♯ iff A is a theorem of R♯.

Proof. Immediate from the equivalence of (i), (ii) of Theorem 12, and the
definition of a secondary unequation.

What makes Theorem 13 interesting is Observation 4; every formula of
L ∗ is either a secondary equation or a secondary unequation. Moreover, by
the preceding observations, negation takes us from one of these classes to the
other, making sense of the claim just preceding the theorem. And it turns
out that a rather large number of formulas in which we are interested turn
out to be secondary unequations, and so immediately are relevantly provable
iff they are classically provable. Some examples are

B53. X ≤ Y ∧ Y ≤ X ⊃ X = Y

B54. X 6= 0 ⊃. XY = XZ ⊃ Y = Z

B55. X ′ = 0 ⊃ 1 = 0

B56. X + Y = 0 ⊃ X = 0 ∧ Y = 0

B57. XY = 0 ⊃ X = 0 ∨ Y = 0

B58. XY + Z = XU + V ∧ Z < X ∧ V < X ⊃ Y = U ∧ Z = V

B59. ∀Y (∀Z(Z < Y ⊃ AZ) ⊃ AY ) ⊃ AX

B60. AX ⊃ ∃Y (AY ∧ ∀Z(Z < Y ⊃ ∼AZ))
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(To make it a consequence of Theorem 13, we must of course choose AX
in the classical vocabulary in B59, B60.) I leave it to the reader to verify
that each of B53–B60 is in fact both a secondary unequation and a theorem
of P♯ (for the latter task, he may look it up in [5], as I did), whence R♯

theoremhood is immediate from P♯ theoremhood by Theorem 13.
The particular formulas chosen have independent interest. They are

paradigm cases for the claim that we can distinguish materially true from
lawlike generalizations in arithmetic. I.e., that, starting from a narrow class
of arithmetic laws that reflect rather directly the building up of the natural
numbers from 0 under successor, we may establish anyway a wide class of
arithmetic facts, which need not themselves be taken as laws (even though
we may establish some other laws also). We have already discussed the can-
cellation principle B54, and in particular its specialization to B55, under this
concern. So the failure of cancellation is redeemed after all; while B55 does
not hold in R♯ in the form of a relevant, or even of an intuitionist, implica-
tion, it is materially true; so is the more general principle B54 to which one
might appeal for its justification. Note also that only in the material sense
does B55 have anything to do with negation, or with implying an absurdity,
or the like.

Similar remarks can be made about the other principles listed. For ex-
ample, B58 asserts the uniqueness of quotients and remainders, while B60 is
the least number principle. It would be disturbing if such arithmetical facts
could not be established, as we wend our way from generating considerations
deeper and deeper into the standard mythology. But it does not seem to be
so disturbing to do without some of the corresponding relevant implications;
e.g., while 2 is in fact the least prime, it seems a bit superfluous to insist that
one must be able to infer this fact, or even that there exists a least prime,
from the primeness of 17.

Still, these are delicate questions. We can get a great deal of classical
arithmetic relevantly. But Theorem 13 is still half a loaf, and we have only
partial results concerning the other half—e.g., under Theorems 1, 3, and 4.
We now outline three strategies for improving these results, both by making
more efficient use of what we already know and by seeking new results not
presently in hand.

First, in an algebraically familiar sense, the class of secondary formulas
divides into the ideal of secondary equations and the filter of secondary
unequations; let us call these, respectively, the ⊤-ideal and the ⊥-filter. By
definition, the ⊤-ideal consists exactly of those formulas of L ♯ that provably
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imply ⊤ in R♯, while the ⊥-filter consists exactly of those formulas that
⊥ implies. (For comparison, note that we are normally more interested in
the opposite notions: the ⊤-filter, consisting of exactly the things that ⊤
provably implies, namely the theorems of R♯; and the ⊥-ideal, consisting of
just those formulas that provably imply ⊥, namely the formally refutable
formulas.) A snapshot is perhaps in order.

⊤⊥

⊤ ∧ ⊥

⊤ ∨ ⊥

L ♯

b

b b

b

For purposes of the snapshot, let us suppose that provably equivalent
formulas have indeed been identified (so that, e.g., the point marked ‘⊤’
may stand indifferently for all the formulas provably equivalent to ⊤: 0 = 0,
1 = 1, and so forth.) Put otherwise, we may suppose that our snapshot is not
a snapshot of formulas but of arithmetic propositions, on the identification of
formulas that (according to R♯) have the same arithmetic content. Then, in
particular, the ⊥-filter is marked by the solid horizontal lines; these indicate
the secondary unequations; and the ⊤-ideal is marked by the dotted hori-
zontal lines, indicating the secondary equations. Similarly, the theorems in
the ⊤-filter are indicated by solid vertical lines, while the formally refutable
propositions in the ⊥-ideal are indicated by dotted vertical lines.

Built into our snapshot are 2 assumptions: (1) that ⊥ does not imply
⊤, which is easy to show; (2) that ⊤ does not imply ⊥, which embodies the
faith that R♯ is negation-consistent; if this faith is wrong, ⊥ gets identified
with ⊤ ∨ ⊥, and ⊤ with ⊤ ∧ ⊥, but otherwise the snapshot remains as is.
(The corresponding P♯ snapshot has ⊥ at the bottom, ⊤ at the top, and
everything in both the ⊤-ideal and the ⊥-filter, while both the ⊤-filter and
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the ⊥-ideal collapse to the single points ⊤ and ⊥ respectively.)
Let us now specialize our snapshot to formulas of L ∗. These are the clas-

sical formulas and, by Observation 4, all of the associated propositions, being
expressed by secondary formulas, are in the part of the snapshot marked by
solid or dotted horizontal lines. I.e., specialized to classical propositions, the
snapshot looks like this.

⊤⊥

⊤ ∧ ⊥

⊤ ∨ ⊥

L ∗

b

b b

b

Note that, although there are no more vertical lines unaccompanied by cor-
responding horizontal lines, there remain horizontal lines unaccompanied by
vertical ones. And this is, exactly, the Gödelian incompleteness of formal
arithmetic; i.e., there are formulas (or propositions, if one prefers) that be-
long neither to the ⊤-filter nor to the ⊥-ideal. Note moreover that, if a
classical formula is a theorem of R♯, then either it is provably equivalent to
⊤, or else it belongs in the ⊤ ∨ ⊥-filter; i.e., it’s a theorem of R∗ also. And
this leaves as an open question whether, and to what extent, theorems of P∗

that are in the ⊤-ideal are also theorems of R∗; note that such theorems of
P∗, to be theorems of R∗, must be provably equivalent to ⊤ in R♯.

Some special interest attaches to formulas of the form △▽A, ▽△A. Let
us call any formula equivalent to one of the former a △▽-formula; to one
of the latter, a ▽△-formula. And, if a formula is either a △▽-formula or a
▽△-formula, it will be a strong secondary formula. Note that, on the same
considerations (and faith) as before, no formula is both a △▽-formula and a
▽△-formula.

Let us think briefly about ▽△-formulas. Expanding definitions, these are
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of the form ⊤∧ (A∨⊥). Evidently, ⊤∧⊥ is a least bound for ▽△-formulas,
provably implying them all; moreover, since ⊤ ∧ ⊥ is equivalent to ▽△⊥, it
is itself a ▽△-formula. It is also clear that ⊤ is a greatest bound for ▽△-
formulas, being provably implied by them all in view of B49. Moreover, ⊤
is also a ▽△-formula, being provably equivalent to ▽△⊤ by lattice proper-
ties. So, on our snapshots above of L ♯ and L ∗, all ▽△-formulas fall in the
section of the snapshot bounded below by ⊤∧⊥, and bounded above by ⊤,
inclusive. (However, it must not be assumed that ▽△-formulas are linearly
ordered by the relation of provable implication in R♯, as the diagram perhaps
misleadingly suggests.)

We note the following additional theorem schemes of R♯.

B61. △▽⊤ ↔ ⊥ ∨⊤

B62. △▽⊥ ↔ ⊥

B63. ▽△⊤ ↔ ⊤

B64. ▽△⊥ ↔ ⊥ ∧⊤

B65. △▽A ∧ △▽B ↔ △▽(A ∧B); △▽A ∨ △▽B ↔ △▽(A ∨ B)

B66. △▽A ∧ ▽△B ↔ ▽△(A ∧B); △▽A ∨ ▽△B ↔ △▽(A ∨ B)

B67. ▽△A ∧ ▽△B ↔ ▽△(A ∧B); ▽△A ∨ ▽△B ↔ ▽△(A ∨ B)

B68. ∼△▽A ↔ ▽△∼A; ∼▽△A ↔ △▽∼A

B69. ∀X△▽A ↔ △▽∀XA; ∃X△▽A ↔ △▽∃XA

B70. ∀X▽△A ↔ ▽△∀XA; ∃X▽△A ↔ ▽△∃XA

It is clear, then, that the class of strong secondary formulas is closed under
the truth-functional connectives and quantifiers. Moreover, given B61, B62,
B68, we can make exactly dual remarks about the △▽-formulas to those
made above about the ▽△-formulas; i.e., all △▽-formulas fall in the sections
of our snapshots bounded below by ⊥ and above by ⊥ ∨ ⊤, inclusive. Note
that these observations enforce strict limits upon the propositions expressed
by strong secondary formulas that are theorems of R♯; for the ▽△-theorems,
being anyway secondary equations, must be provably equivalent to ⊤, while
the △▽-theorems, being bounded above by ⊥∨⊤, must in fact be equivalent
to ⊥ ∨ ⊤. Dual remarks apply to the formally refutable strong secondary
formulas; so if a strong secondary formula is formally decidable in R♯, its
associated proposition must lie at one of the endpoints of the admissible
intervals; i.e., at one of ⊥, ⊤, ⊥ ∨ ⊤, ⊥ ∧ ⊤. And the formally undecidable
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propositions, which Gödel assures us that we must have, on pain of negation-
inconsistency, go between these endpoints when they are secondary formulas,
of the strong sort.

Let us return, now, to our questions about the relative strength of R∗ and
P∗. Our main problem is, “Are there secondary equations that are theorems
of P∗ but not of R∗?” We now see that we shall answer this question in the
negative if we can show that every secondary equation which is a theorem of
P∗ is also, according to R♯, a strong secondary formula—specifically, a ▽△-
formula. We know that this is the case for all equations, by Theorem 4; but
we do not yet know whether it is the case for all secondary equations.

Meanwhile, let us note that our ruminations about strong secondary for-
mulas give us another translation of P∗ into R∗, on which P∗ is an exact
subsystem of R♯. We may define this translation φ recursively as follows, on
all formulas A of L ∗.

(i) If A is an equation Aφ is △A

(ii) (A ∧B)φ is Aφ ∧Bφ

(iii) (∼A)φ is ∼Aφ

(iv) (∀XA)φ is ∀XAφ

I.e., given a classical formula A, we get Aφ simply by putting in △(T = U)
for each atomic component T = U in the formula A.

Theorem 14. Let the translation φ be defined as above on L ∗. Then the
following conditions are equivalent, for each formula A in L

∗.

(i) A is a theorem of P♯

(ii) Aφ is a theorem of P♯

(iii) Aφ is a theorem of R♯

Proof. In view of P2, it is again trivial that (i) and (ii) are equivalent
statements, for any A in L ∗. We shall finish the proof by establishing the
equivalence of (ii) and (iii). First, it is clear that Aφ must be a strong
secondary formula. For, if A is atomic, Aφ is of the form △(T = U), which
is provably equivalent in R♯ to △▽(T = U) by B51. So in this case Aφ is
a strong secondary formula. Otherwise, by definition of φ, Aφ is of one of
the forms ∼B, B ∧ C, ∀XB, where we may assume on a suitable inductive
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hypothesis that each of B, C is a strong secondary formula, whence by B65–
B70 we may conclude that Aφ is a strong secondary formula.

Now, however, we are through. For, by clauses (iv), (v), (vi), and (vii)
of Theorem 12, strong secondary formulas of L ∗ are theorems of R♯ iff they
are theorems of P♯. This establishes the equivalence of (ii) and (iii) of the
theorem, and ends its proof.

Theorem 14 is in one sense an improvement on Theorem 12, in that,
unlike the translations directly suggested by that theorem, our translation
φ is a homomorphism from the algebra of formulas of L ∗ into itself, pre-
serving both theoremhood and non-theoremhood in P∗ on translation into
R∗. Accordingly, it is convenient for direct application of some of the Gödel
arguments and results to R♯, as we shall see in the next section. And it is
particularly useful in that it is an effective containment of P∗ in R♯; for even
if, as we hope, P∗ and R∗ coincide in their theorems, we shall give reasons be-
low to suspect that any purported demonstration thereof is likely to contain
objectionable fideistic elements. But Theorem 12 remains in other respects
our best result, since it localizes all possible differences between P∗ and R∗

in a mere disjoined ⊥, otherwise leaving the internal structure of formulas to
be compared alone.

Let us return now to the consideration of secondary formulas in general;
on analogy with the above, it will be convenient to identify the secondary
equations in the ⊤-ideal as ▽-formulas, and the secondary unequations in
the ⊥-filter as △-formulas. We now lay down a simple test that will enable
us to distinguish ▽-formulas from △-formulas in concrete cases.

Specifically, we define a canonical assignment α, which will be a partial
function from the set of formulas of L ♯ to the set {+1,−1}, using ∧ for arith-
metic minimum, ∨ for arithmetic maximum, and − for arithmetic inverse,
as follows:

(i) α(A) = −1, if A is an atomic formula T = U

(ii) α(A ∧B) = α(A) ∧ α(B)

(iii) α(∼A) = −α(A)

(iv) α(A ∨B) = α(A) ∨ α(B)

(v) α(A ⊃ B) = −α(A) ∨ α(B)

(vi) α(∀XA) = α(A)

(vii) α(∃XA) = α(A)
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(viii) α(A ◦ B) = α(A), if α(A) = α(B)

(ix) α(A+B) = α(A), if α(A) = α(B)

(x) α(A → B) = α(B), if α(A) 6= α(B)

Strictly speaking, the reader should regard these specifications as holding
only where primitive connectives are involved, but he can quickly check that
they work out as indicated on defined connectives also. Where α is not
defined by the above specifications, e.g., on A → B when α(A) = α(B), it
is to be regarded as undefined (subject to some further refinements that we
shall note below). Note, however that α is defined on all formulas of L

∗, and
that it works truth-tabularly on these formulas (on, so to speak, an initial
“false” assignment to the atomic formulas). We use, however, ‘+1’ instead
of ‘t,’ and ‘−1’ instead of ‘f ,’ since otherwise the fact that α(⊤) is −1 and
α(⊥) is +1 would be confusing. The utility of the canonical assignment α
lies in the following theorem.

Theorem 15. Let A be any formula of L ♯, and let α be the canonical as-
signment. Then

(i) if α(A) = −1, then A is a ▽-formula

(ii) if α(A) = +1, then A is a △-formula

Suppose moreover that A is a formula of L ∗. Then α(A) is defined. More-
over,

(iii) α(A) = −1 iff A is a ▽-formula

(iv) α(A) = +1 iff A is a △-formula

(v) if α(A) = +1, then A is a theorem of P♯ iff A is a theorem of R♯

Proof. We prove first (i) and (ii), by induction on the complexity of A. Note
that α is defined on A only if α is defined on all subformulas of A. If A is
atomic, (i) holds trivially by definition of α and B51. Suppose now that (i)
and (ii) hold for B, C, on inductive hypothesis, and that A is of one of the
forms B ∧ C, ∼B, ∀XB, B → C. Then we may rely on the definition of
α and the second and third observations preceding Theorem 11 to establish
that (i) and (ii) hold for A also, thus completing the inductive proof of (i)
and (ii).
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On the further supposition of the theorem, A is a (classical) formula of
L ∗. By clauses (i), (ii), (iii), (vi) in the definition of α, α(A) is defined. Then
(iii), (iv) follow from (i), (ii), and our promise to prove that no △-formula is
a ▽-formula, which accompanied the initial observation of this section. And
(v) then follows immediately from (iv) and Theorem 13, ending the proof of
Theorem 15.

So, we have a simple truth-tabular check, on formulas of L ∗ in particular,
that will enable us to decide immediately, for a given classical formula A,
whether or not it is a △-formula. This is a great aid in applying Theorem 13.
Let us borrow again from [5] to illustrate the method, which the reader may
then apply to our previous borrowings. While we are at it, let us introduce
the defined relation divides by

D|. T |U =DF ∃X(TX = U)

And we may note that T |U , like T ≤ U , T < U , etc., is a secondary equation,
getting the value −1 on the canonical assignment α. Here are two of Kleene’s
theorems involving |.

B71. X > 1 ⊃ ∼(X|Y ∧X|Y ′)

B72. Y 6= 0 ⊃ (X|Y ⊃ 0 < X ≤ Y )

If Kleene can prove them, so can we. E.g.,

α(X > 1 ⊃ ∼(X|Y ∧X|Y ′)) = α(X > 1) ⊃ −α(X|Y ∧X|Y ′)

= −1 ⊃ +1

= +1

α(Y 6= 0 ⊃ (X|Y ⊃ 0 < X ≤ Y )) = α(Y 6= 0) ⊃. α(X|Y ) ⊃ α(0 < X ≤ Y )

= +1 ⊃. −1 ⊃ −1

= +1 ⊃ +1

= +1

So, since B71, B72 are formulas of L
∗ and theorems of P♯, they are theorems

of R♯ by (v) of Theorem 15.
This concludes discussion of our first strategy for making better use of
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the results in Theorems 12 and 13—namely, attending with care to the prop-
erties in R♯ of our “modalities” △, ▽, △▽, ▽△. While, pursuing this strategy,
we have found an efficient translation of P∗ into R♯, and efficient proof pro-
cedures in R♯ for many of the theorems of P∗, the strategy must be deepened
considerably before we may hope to prove, if we can prove, that the theorems
of R∗ and P∗ coincide. Let us look briefly at two other strategies that may
yield these results.

One way to show that R∗ and P∗ coincide is to find some formulation of
P∗ all of whose axioms are theorems of R♯ and whose rules are admissible in
R♯. Essentially, this is the strategy by which Anderson and Belnap showed,
as reported in [7], that the theorems of first-order relevant logics such as RQ,
in the truth-functional connectives and quantifiers, are exactly the predicate
tautologies of the first-order classical logic PQ. A Gentzen consecution calcu-
lus formulation of PQ, for example, works very nicely for this purpose. E.g.,
consider Gentzen’s system LK, as set out in [8]. When interpreted in RQ, the
axioms of this system become theorems A ⊃ A of RQ, while the structural
and operational rules of LK do become admissible rules of RQ. Accordingly,
since all predicate tautologies are theorems of LK, simply by mimicking their
Gentzen-style normal form proofs in RQ, we can prove them in this system as
well. (Indeed, such considerations are already part of Ackermann’s seminal
[25], which may be taken to have created relevant logic.)

The nice thing about choosing a Gentzen formulation of PQ is that it
avoids difficulties about cut, since this rule may be proved to be admissible
in LK without having been taken as primitive. This is important, because the
cut problems show up in RQ as problems about the admissibility of γ—i.e.,
of modus ponens for material implication. In fact, the problem of γ for RQ
was not solved until [26], long after the proof strategy just summarized had
disposed of the question whether RQ exactly contained PQ.

The alluring possibility is that this kind of normal-form strategy will also
work to show that P∗ is exactly contained in R♯. However, a formulation of
P∗ which is cut-free in the necessary sense is hard to come by. For Gentzen-
style work on formal arithmetic, in particular, has most often been fashioned
to the task of proving that formal arithmetics are contradiction-free, and
only in a subsidiary sense to the task of normalizing proof procedures. For
the former purpose, a simple strategy (employed, in effect, by Schütte in
[27]) is to apply normalized proof procedures to some non-finitary system
P∗∗ that contains P∗; one then argues, in a partially effective way, that P∗∗

is consistent, from which it follows that its subsystem P∗ is consistent.
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Obviously, however, that sort of result isn’t going to help us here. To the
extent that we believe any sort of non-finitary argument that establishes that
P♯ is free of contradiction, we shall automatically believe that R♯ is free of
contradiction, by Theorem 11. But a central reason for our interest in R♯ is
that we can establish its reliability in ways that are not only strictly finitary
but which are comprehensible to any diligent third-grader. If, accordingly,
we are going to attend to non-finitary arguments after all, we shall do so
only for the purpose of showing that R∗ is as strong as P∗. In short, as
Dunn observes, we need appeal to classical faith for rather more restricted
purposes in the R∗ framework than in the P∗ framework. P♯, without classical
faith, is utterly useless and unreliable. R♯, without classical faith, is ordinary
basic arithmetic, with perhaps some logical anomalies that do not infect
fundamental arithmetic insights; with classical faith, it lacks, we hope, the
anomalies, too; but that must be proved.

The third strategy to be considered is quite simple; we can just prove
γ. In fact, we can express γ for R♯ in either of the following two equivalent
forms:

⊃E. A ⊃ B & A ⇒ B

△E. △A ⇒ A

The equivalence between ⊃E and △E, in the sense that one of these rules is
admissible in R♯ iff the other one is, is quickly established. In the first place,
suppose that △E is admissible, and that A ⊃ B, A are both theorems of R♯.
By B30, B46, so is △B. By △E, B is then a theorem. So if △E is admissible
so is ⊃E. Conversely, suppose ⊃E admissible. Let △B be a theorem of
R♯. By definitions, this is almost immediately equivalent to ⊤ ⊃ B. But
⊤ is a theorem, whence B by ⊃E. This completes the argument that ⊃E
and △E march together; henceforth, we indifferently refer to either as γ, in
conformity to an old Ackermann tradition.

Theorem 16. Suppose that γ is an admissible rule of R♯. Then

(i) Classical arithmetic P∗ is exactly contained in R♯ on the direct trans-
formation.

(ii) For no formula A are both A and ∼A provable in R♯; i.e., R♯ is
negation-consistent.

(iii) Classical arithmetic P∗ is negation-consistent.
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Proof. (i) is immediate from Theorem 12; for if A is a theorem of P∗ then
△A is a theorem of R♯; given △E, then A is a theorem of R♯. The converse
being trivial by Theorem 11, if γ holds for R♯ then P∗ and R∗ have the same
theorems.

(ii) requires our proof below that something, say F, is a non-theorem of R♯;
that, as we have repeatedly noted, is trivial. Suppose nevertheless that, for
some A, each of A, ∼A is a theorem of R♯. But, since R♯ contains classical
sentential logic, A ∧ ∼A ⊃ F is a theorem of R♯, whence so by γ is F, which
is impossible. So, given γ, R♯ is negation-consistent.

(iii) is immediate from (i) and (ii), ending the proof of Theorem 16.
In principle, Theorem 16 has been known ever since [28], at least. Indeed,

it has even been known, thanks to Dunn, that if one added a sentential vari-
able p to the vocabulary of R♯, p would remain unprovable in the system thus
extended. The innovation here, accordingly, is the discovery in the arithmetic
vocabulary itself of a statement, e.g., 0 = 1, that is surely unprovable, thus
permitting proof of (ii) for R♯ itself, together with a concrete formulation and
study of R♯ that makes it at least plausible that γ should hold. But it must
not be thought that proving γ, and hence finding a new approach to an old
classical arithmetic, is the chief aim of this study. While I conjecture that
γ holds for R♯, I should not be all that shocked, and might even be pleased,
if it fails; all would depend on how it fails. For our main thesis, after all,
is that classical Peano arithmetic is misleadingly formulated, in a way that
gives rise to pseudo-problems, and that the assumption of γ, which confuses
the myths that we are creating and the laws that we use to create them, is
from the outset at the heart of the resulting philosophical mess.

In certain respects, the technical claims that are being made, or conjec-
tured, here are by no means new. Kreisel, for example, notes in [29] that
the demonstration of the cut-rule for the kinds of Gentzen-style formula-
tions of type theory introduced by Takeuti means that these systems, whose
negation-consistency is elementary, are exempt in one sense from the pur-
ported Gödel restrictions against internal proofs of their own consistency.
And Kreisel draws also the correct conclusion that what cannot then be el-
ementary for these systems is the proof of the admissibility of the cut-rule
itself.

However, there is this difference between the approach being taken here
and what one may take to be the standard story about Gentzen-style conse-
cution calculi. As noted, Gentzen-style concerns for Cut show up as relevant
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concerns for γ. But, though some of Gentzen’s own remarks tend to the
conclusion that Cut is philosophically superfluous, one does not take this as
the common opinion. Indeed, Gentzen introduces Cut in [31] as a primitive
rule that is clearly justified on his intended interpretation of his calculi, but
which, almost miraculously, one can do without in actually formulating some
of these calculi.

On this point, the relevant logics have been distinctive almost from the
beginning: ever since, in fact, Anderson and Belnap reformulated Acker-
mann’s Π′ by dropping γ to get the system E of entailment, for reasons set
out in [7] and [32]. For γ, it must be seen, is positively unwanted as a first
principle—not, indeed, on the superficial ground that it leads to paradoxes
of implication (in fact, in Ackermann’s system, it does not lead to such para-
doxes), but because it creates a philosophical mishmash, which makes almost
inevitable the replacement of reason with mythology in, say, discussion of the
foundations of mathematics. And here we must refute also another platitudi-
nous lie; namely, that the paradoxes of implication only infect inconsistent
systems, in which we are anyway uninterested. For it is not, so far as we
know, actual inconsistency that raises Gödelian problems for P♯ and related
systems, but the threat of inconsistency. On account of γ, there is no way
in P♯ to localize this threat; accordingly, when formalized in the P♯ way,
all of arithmetic stands under the same threat. When given a metaphysi-
cal cast, the result is either an unwarranted scepticism or an unwarranted
fideism; either all of mathematics stands in epistemological peril, or else it is
all to be taken on speculative trust, grounded perhaps on insights, intuitions,
perceptions, and the like that are not further reducible to rational analysis.

The choice is false, because the dichotomy is false. In mathematics, as
elsewhere, some propositions are more certain than others. And it was just
wrong to suppose that mathematics was given analytically, as a domain of
human inquiry somehow exempt from those considerations that govern ra-
tional men and women in their other pursuits. Rather, as elsewhere, of the
more certain propositions of mathematics we can be more certain, and that
certainty is unaffected by the confusions into which we might fall as we seek
to explore the mathematical Universe ever more widely. We know that in-
tuitively; indeed, we know that we can prove, say, that 2 + 2 is 4 in systems
much weaker than P♯, whose consistency is not in doubt even if P♯ turns out
to be inconsistent. But it is just silly that we don’t know it formally; to
that degree, P♯ is a pretty bad formalization of the intuitive situation, for it
suggests that we entertain doubts that we do not in fact entertain; and it
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makes these suggestions, not ineluctably, but out of defects in its own logical
machinery.

We spoke, at the outset, of repealing Gödel’s theorem. But that last dis-
cussion was pretty Gödelian, in that we allowed (as a consequence of Gödel’s
first theorem) that not all of mathematics was equally certain. In object-
ing, however, to the customary interpretation of Gödel’s second theorem,
we are merely drawing the obvious corollary of the first theorem: not all
of mathematics is equally dubious. But the exact effect of the customary
interpretation—for any particular formal system (e.g., P♯) is in fact to make
all of the mathematics formalized therein equally dubious; it is as though,
when we begin to do analysis, we can no longer trust arithmetic. And the
whole burden of the present argument will be recognized when it is seen that
extension of previous insight ought no more, systematically, to put previous
insights in peril by stuffing the universe with theorems incompatible with
those insights than it should put these insights in peril by failing to preserve
the old theorems that express them. E.g., everybody recognizes that, when
we move up to analysis, we are still going to be able to prove that 2 + 2 is
4; how silly, though, to suppose that there will be a new threat, which we
cannot effectively guard against, that we shall prove also 2 + 2 = 5. That’s
analytic number theory, with a vengeance.

So, while many of the claims that have been made here could already
have been made, on technical grounds, for known systems, it has not been
the custom to make them. For it is rather difficult to suppose that γ is a bad
rule when the material ⊃ is the only stand-in for implication that one’s sys-
tem offers. And so, e.g., cut-free systems that lack γ get viewed, in effect, as
aberrations, which escape Gödelian constraint (in one direction) only because
they formulate artificially what would be subject to that constraint when for-
malized naturally. To the contrary, the view here (as in [7]) is that mixing
up implication with ⊃ is itself unnatural, and that it might be expected to
have anomalous consequences that are not part of Nature but which result
instead from egregious error. It was after all a thesis, put forth gingerly by
Frege and not part of the mainstream of logical analysis until Whitehead
and Russell had championed it in Principia Mathematica, that the mathe-
matical sense of ‘implies’ could be naturally reduced to the fragment of that
sense preserved in the material ⊃. The ink was hardy dry on the pages of
PM before that view came under philosophical challenge by C.I. Lewis and
others. But, curiously, it has been taken for granted by almost everybody
(save Brouwer and his school, perhaps, though the Heyting ⊃, anyway, is
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open to the same sorts of complaint that are lodged against ⊃), that these
philosophical objections had much to do with formalized mathematics. In-
deed, formalized mathematics, on the whole, has proceeded as though mere
philosophical objections to reigning dogma could not possibly be relevant to
the mathematical enterprises within which that dogma is congealed. Even
stranger is the fact that the philosophers who made the objections have also
treated actual systems of formalized mathematics as though the fact that,
according to these philosophers, these systems are based on a wrong notion of
implication made no difference to the mathematical content of the systems,
or even to the ways in which this content may be accurately formulated. In
short, there are serious allegations of error, extant now (in various forms) for
over 60 years, which those who claim to have found the error feel it unneces-
sary to bring to the attention of those who are making the error, and which
those who are purportedly making the errors feel safe in ignoring completely;
indeed, the prosecution in this case tends to congratulate itself on making its
implication “extensionally intelligible,” as though a necessary condition for
mounting a challenge to the role that the material ⊃ plays in systems like
P♯ lay in expressing that challenge in terms of the material ⊃ itself. (The →
of R, incidentally, is “extensionally intelligible,” as reported in [16], lest sus-
picious readers suppose that R is indifferent to such sociologically necessary
conditions as it is its mission to destroy.)

So the entire matter, to say the least, has been very strange. And An-
derson and Belnap were quite right in locating a central issue (though not
necessarily the central issue) in the problem of γ. For, rather generally, one
might as well allow that any connective in the implicative family for which,
under any circumstances, one will admit modus ponens counts indeed as an
implication. On this allowance, there is also considerable practical benefit
in taking as a preferred implication the weakest connective for which modus
ponens is on general grounds admissible. This favors ⊃; moreover, as a
practical matter, it must also be allowed that modus ponens for ⊃ accords
with our usual intuitions and our common practice. If the resultant para-
doxes of material implication do not accord either with our usual intuitions
or our common practice, there are grounds for puzzlement, but there are not
grounds for cancelling our ordinary understandings.

Rather, however, we must ask ourselves, “Why do we hold our common
opinions?” And it is not fair to discount some of our common opinions, as
all parties to the dispute are fond of doing, so that the others may be held
without restriction. In fact, it is just by discounting our common opinion
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that we can localize contradiction that we may read into Gödel’s second
theorem metaphysical speculation which is no proper part of it. But we
must give its due to modus ponens for material implication also. That due,
as all recognize, is at root truth-functional; we are not prepared for A to be
true, and for either A to be false or B to be true, without also taking it for
granted that B is true. But the difficulty is, despite p. 1 of the elementary
text, that truth and falsity do not offer a sufficiently intelligible framework
upon which to build the theory of inference (but it is, I agree, the best place
to start the logic book). Especially in mathematics, where we are creating
our truths as we go along, modus ponens for material implication exposes us
to all the difficulties that are wrapped up in formal negation, and builds in
from the outset a significant part of the standard mythology that we are in
the process of creating. Small wonder, then, that only mythological proofs
are available to guarantee the reliability of systems formulated with this rule
primitive, however reliability is characterized.

But there is a middle way between what seem to be clashing intuitions:
namely, that γ is after all truth-preserving and hence is to be desired as a
primitive principle of inference on the one hand; and that, on the other hand,
even the threat of contradiction is enough to void all finitary guarantees of
reliability, if γ is accepted as a rule. It is just the solution that one would
expect, on the Dunn-style motivating considerations urged above. For, when
one thinks about it, it is γ itself which lacks the wanted finitary guaran-
tee; its semantical justification is that it preserves truth, but—in arithmetic,
anyway—the notion of truth itself is highly ineffective. About particular
truths, on the other hand, we can be particularly certain. So let us not mix
up the ineffective question of γ for arithmetic with the class of questions—like
those involved in the multiplication table—to which we can give immediately
effective answers.

In short, as suggested in [28], let us make the admissibility of γ for a
system a normality condition on that system, not a condition which is built in
with the primitive rules. We should not expect, in general, to settle effectively
the question whether or not a system is normal. The semantic intrusions into
this question are too deep, and, at best, we shall ordinarily have to settle for
one of the watered-down criteria of effective proof to which we are condemned
on philosophically correct application of Gödelian constraint. I.e., it is not
unreasonable that we shall have to answer ineffective questions ineffectively,
and even that we should sometimes have to settle for negative answers to such
questions where we had hoped for positive ones. But it is most unreasonable
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that we should have to answer effective questions ineffectively. And it is,
moreover, intolerable that formalized mathematics itself should have been
erected on a foundation of cascading doubt, and that this should have come
to be taken as the normal state of the project, without a close look at some of
the philosophical presuppositions that have been uncritically absorbed into
that project.

In leaving the question of γ open for R♯, let us note that, while an affir-
mative solution would suffice to establish (i)–(iii) of Theorem 16, it is not
necessary for these results. In fact, if R♯ is negation-inconsistent, it is already
negation-inconsistent in its classical part R∗. This is a direct consequence of
the fact that A ∧ ∼A → ⊥ is a theorem of R♯, whence, if R♯ is inconsistent,
both ⊥, ⊤ will be theorems of its classical part R∗.

Accordingly, to establish (ii) and (iii) of Theorem 16, it suffices to estab-
lish (i), which, as suggested earlier, may be an easier task than finding a proof
of γ for all of R♯. For that matter, it is conceivable that γ fails for R♯, while
holding when restricted to its classical part R∗. (On the other hand, in view
of Theorem 12, that γ holds when restricted to R∗ is completely equivalent
to the assertion that P∗ and R∗ coincide, while continuing to imply directly
the consistency of these systems.)

VIII

In this section, we shall apply the results of the last to do some Gödelian
metatheory for R♯. We shall do so in a sketchy and intuitive way, making
full use of the standard mythology (including the standard mythology of
recursive function theory, including Church’s thesis) as is convenient.

In one sense, setting out many of the standard metamathematical re-
sults for R♯ is superfluous; e.g., simple incompleteness, recursive undecid-
ability, and so forth follow immediately from the corresponding results for
P♯. Nonetheless, since we claim that R♯ dodges the second Gödel theorem in
important respects, it is of some interest to attend to the ways in which its
machinery reflects the standard mythology on these matters. We shall rely
on our P♯ translations in so attending, but we shall take our metamathemat-
ical notions to be those appropriate to R♯, introducing corresponding notions
for P♯ only for purposes of comparison and contrast.

First, for the purposes of this section, we are going to introduce a multiple-
use program for natural numbers. We have already reserved natural numbers
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themselves for use, essentially, as names of numbers—i.e., as numerals. There
is no harm in using them also as formulas ; since we are relying, as set down
early in I, on an effective coding which associates with each natural number I
a unique corresponding formula AI , we may just as well take the formula AI

to be the number I. (With inessential differences, this is the plan of [1]; and,
for that matter, Gödel’s original motivating plan, near enough.) Note that
this does not get in the way of the previous identification of numerals and
numbers, since numerals and formulas belong to distinct syntactic categories.

We may also associate natural numbers, in an effective many-one way,
with the recursively enumerable sets of natural numbers. Our plan will be
system-dependent, being relativized for present purposes to R♯, but applying
mutatis mutandis to P♯, P∗, etc. Specifically, each natural number I is, on
present conventions, also a formula AIx, where x is as above the first variable
of L ♯. On our substitution conventions, AIJ is the result of replacing all
free occurrences (if any) of x with J in AIx; we shall always specialize those
conventions to replacement of x in this section. Accordingly, let us define a
function r, on N with subsets of N as values, by setting, for each I ∈ N,
J ∈ N

(i) J ∈ r(I) iff ⊢R♯ AIJ

Let now S be any set of natural numbers, and that S = r(I) for some I ∈ N.
Then we say that S is weakly expressed by the number I (indifferently, the
formula AI , the formula AIx), or that I (or AI , etc.) weakly expresses S.
A set S is weakly expressible in R♯ just in case there is an I ∈ N such that
AI weakly expresses S. Mutatis mutandis, we speak of weak expressibility of
sets S ⊆ N in P♯, etc. The following theorem is evident.

Theorem 17. Let S be any set of natural numbers. Then the following
conditions are equivalent.

(a) S is recursively enumerable

(b) S is weakly expressible in P♯

(c) S is weakly expressible in P∗

(d) S is weakly expressible in R♯

Proof. The equivalence of (a) and (b) is well-known (e.g., from [5]). (c)
merely restates (b). We show that (d) implies (a), and that (c) implies (d),
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to complete the proof.
First, suppose that S is weakly expressible in R♯. Then there is some

formula AIx that expresses S in R♯; i.e., S = r(I), and (i) holds, for this
choice of I. But the set of theorems of R♯ is clearly recursively enumerable,
and one may use this enumeration to construct a recursive enumeration of
the theorems of R♯ of the particular form AIJ , for the I selected above.
But this amounts evidently to a plan on which S itself may be recursively
enumerated, whence (d) implies (a).

Finally, suppose that S is recursively enumerable, and so that S is weakly
expressed by some formula Ax in P∗. Then, by Theorem 14, Axφ will weakly
express S in R♯. Thus (c) implies (d), ending the proof of Theorem 17.

Let us adapt [33] to call a formula Ax a class formula provided that (1)
Ax is in the classical sublanguage L

∗, (2) x occurs free in Ax, and (3) no
variable distinct from x occurs free in Ax. Then we may add to the equivalent
conditions (a)–(d) of the theorem,

(e) S is weakly expressible in R♯ by some class formula.

(f) S is weakly expressible in P∗ by some class formula.

For it is trivial that (c) may be specialized to (f), whence the argument from
(c) to (d) may be directly transformed into an argument from (f) to (e).
We take these added equivalents, (e) in particular, as part of the content of
Theorem 17.

Let us use Theorem 17 to establish the existence of a Gödel formula for
R♯, which may be taken to assert its own unprovability in R♯. In the first
place, we form a Gödel set G of natural numbers by setting, for each J ∈ N,

(ii) J ∈ G iff J ∈ r(J)

I.e., by (i),

(iii) J ∈ G iff ⊢R♯ AJJ

On past considerations, G is evidently a recursively enumerable set, whence,
by our addendum (e) to Theorem 17, there is a class formula Gx which
weakly expresses G in R♯; i.e., for all J ∈ N,

(iv) J ∈ G iff ⊢R♯ GJ
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Consider now the formula ∼Gx. This has a Gödel number; indeed, on our
conventions, it is a number, which may replace x in the class formula ∼Gx.
I.e.,

(v) Let ∼G∼Gx be the Gödel formula.

Despite appearances, the Gödel formula is notationally well-formed on our
conventions, as just observed. Then, by (iii)

(vi) ∼Gx ∈ G iff ⊢R♯ ∼G∼Gx

But by (iv),

(vii) ∼Gx ∈ G iff ⊢R♯ G∼Gx

Evidently, by (vi) and (vii),

(viii) ⊢R♯ G∼Gx iff ⊢R♯ ∼G∼Gx

So, clearly, from (viii),

(ix) If R♯ is negation-consistent, neither the Gödel formula nor its nega-
tion is a theorem of R♯.

Moreover,

(x) If R♯ is negation-consistent, ∼G /∈ G,

from (ix) and either of (vi), (vii).
Inasmuch as we are assuming the standard mythology, in this section, we

have

(xi) R♯ is negation-consistent

whence

(xii) ∼Gx /∈ G & not ⊢R♯ ∼G∼Gx & not ⊢R♯ G∼Gx

(xii) establishes, on an absolutely standard argument, that a standard Gödel
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formula for R♯ has the expected properties. Let us take a peek behind the
mythological facade to see what substantive assumptions we are making. We
may isolate the following.

(A) Every recursively enumerable set is weakly expressible
in the classical arithmetic P∗

(B) The set of theorems of R♯ of the form AJ , for each fixed
formula Ax, is recursively enumerable

(C) R♯ is negation-consistent

To these we might add our underlying assumption of an effective correspon-
dence between natural numbers and formulas, our abstract treatment of for-
mal systems in general, and the naive comprehension axiom for sets of natu-
ral numbers that enters into (ii). However, none of these latter assumptions
is essential to the treatment, though some vestige of them will presumably
remain on any treatment. So far as the explicit assumptions (A)–(C) are con-
cerned, we note that (B) hardly counts as an assumption at all; for there is,
in fact, no real appeal to Church’s thesis in (B), since, with a little patience,
we can actually construct a recursive sequence of theorems (i.e., numbers)
AJ , for fixed Ax, which will include all such theorems in R♯. As for (C), it is
already implied by (A). For if R♯ is negation-inconsistent, so is P∗. But then
all formulas of P∗ are theorems, whence the only recursively enumerable set
weakly expressible in P∗ is N itself. Surely there are others–e.g., the set of
odd numbers. So if we believe (A), we already believe (C).

Ought we to believe (A)? Well, maybe not. Even to understand (A),
we have to know what a recursively enumerable set of natural numbers is.
While we don’t need the standard mythology for this purpose—a constructive
mythology, for example, will also make sense of this notion—it is unlikely that
we can make this notion mythology-free. More to the immediate point, the
truth of (A), even if it is allowed that it is tolerably clear, requires certain
assumptions on P∗ that cannot be effectively guaranteed. Gödel’s assumption
in [33], it will be recalled, was that P∗ is ω-consistent.

Let us, however, not nitpick with the standard mythology, or seek out
degrees of credibility within it, in this section. For we are merely seeking out
here the metamathematical properties of R♯ from a standard point of view;
there are, I suspect, deeper anomalies to be uncovered yet in P∗ and its kin,
including R♯, but our purpose here is to find terrain—for R♯, anyway—into
which these anomalies cannot penetrate. Meanwhile, there is no doubt on
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the standard mythology that R♯, P∗, etc., are consistent, ω-consistent, and
what you will, settling for the moment any difficulties with (A).

In looking at the above argument, it is to be noted that the role of the
negation ∼ of R♯ is in fact very limited. What has happened simply, in
Curryesque terms, is that we have found a way to secure within R♯ the effect
of the fixed point (or paradoxical) combinator of [20]. Any other definable
unary connective in R♯ (or, for that matter, definable unary function on
natural numbers, since formulas are just natural numbers) may be applied
to the same effect. For let σ be any such connective, and consider the class
formula σGx. The reasoning so far as (viii) proceeds in exactly the same
way, yielding the following generalized counterpart of (viii).

(xiii) ⊢R♯ GσGx iff ⊢R♯ σGσGx

If the conjunction of the two sides of (xiii) together imply something ob-
jectionable in R♯, then it had better be the case that neither of them is a
theorem. Let us use, for our generalized negation σ, σ-consistent and σ-
complete in the obvious sense. Then, on the obvious generalization of (ix),
for arbitrary σ,

(xiv) If R♯ is σ-consistent, then R♯ is σ-incomplete

I.e., if for no sentence A of L ♯ are both A and σA theorems of R♯, then
for some sentence B neither B nor σB are theorems of R♯; in fact, we may
choose B as GσGx.

To apply (xiv), let us set

(a) σ0A =DF ¬A

(b) σ1A =DF A → ∀y∃z(y = 2z)

(c) σ2A =DF A →. ⊥ → ⊤

(d) σ3A =DF A → ⊤

In each of the cases (a)–(c), we have a finitary proof of the σ-consistency of
R♯; e.g., since we can refute ∃z(1 = 2z), we may be assured that for no A are
both A and σ1A theorems of R♯, and similarly in cases in (a) and (c). Thus
there is a sentence, by (xiv), which is itself unprovable, and which does not
provably imply ∀y∃z(y = 2z). Similarly, R♯ is incomplete with respect to the
intuitionist negation ¬, without invoking in a formal proof of this fact in R♯
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with respect to its own negation ∼.
This much, however, we may view with equanimity. For each of (a)–(c)

invoke an incompleteness that, since → is a relevant implication, we might
well expect. (Note, incidentally, that, as we should also expect, σ-consistency
is not necessary for σ-incompleteness. E.g., R♯ is σ3-inconsistent, in that both
⊤ and σ3⊤ are theorems; but it is also σ3-incomplete, we trust, having neither
⊥ nor σ3⊥ as theorems.) For there are some formulas that fail to imply other
formulas, irrespective of the truth or the falsity of the components of such
an implication; there is no reason, e.g., why we should expect R♯ to assert at
least one of ⊥, ⊥ →. ⊥ → ⊤. So far as R♯ is concerned, both are false, and
hence both deserve to be unprovable.

There is a bit more bite in the original Gödel result, which we have not yet
come to. For the Gödel formula is distinguished not only by being formally
undecidable, but by being true. And we may well ask whether our generalized
Gödel formulas, constructed using arbitrary σ, likewise give rise to true but
unprovable formulas.

By way of comment on this point, there are 2 more segments of the con-
ventional wisdom on Gödelian topics that are worth thinking about. One line
of this wisdom, suggested in [33] itself and worked out in considerable de-
tail by Wang, is that it is the semantic paradoxes that Gödelian arguments
rest upon, and that moreover one may choose his favorite semantic para-
dox (Gödel liked Richard’s, with a dose of The Liar) and develop therefrom
Gödelian consequences. It is a little hard to see, however, what is partic-
ularly semantic about the argument above. In fact, if anybody’s paradox
seems especially germane to it, it is Russell’s; G, on our multiple use pro-
gram for natural numbers, is just the collection of r.e. sets that belong to
themselves. We do our best, in constructing our Gödel formula, to say that
the complement of this set does not belong to itself; we are saved, we hope,
from the Russellian contradiction only because this complement it not itself
r.e. In fact, if the argument has a semantic component, it seems to lie in our
inability to say what we intended to say; as we noted essentially in Section
I, ∼Gx does not express, even weakly, the complement of G. At the very
least, the line between set-theoretic and semantic paradox, which almost all
have respected since Ramsey in [34] gave invalid arguments for drawing it,
does not seem so clearly drawn after all, once we have got use to Gödel-style
coding, which disrupts the categorical distinctions that semantics intends.

And this brings us back to a more central segment of the conventional
wisdom on these matters, which we have alternately asserted and viewed
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with misgiving. For what warrant do we have, anyway, to think that the
Gödel formula is true though unprovable, or that, intensionally, it asserts its
own unprovability in R♯? Here, we must keep in mind, and keep distinct,
2 levels of interpretation, which are often meshed together. One level of
interpretation is merely with respect to the natural numbers, as we pointed
out in I. The classical part L ∗ of L ♯, in which we are doing our metatheory,
makes presumptively straightforward assertions about the natural numbers,
which are to be taken as either true or false, when sentences of L

∗, in the
standard model N. From this viewpoint, we have indeed produced a true but
unprovable formula; for both of G∼Gx and ∼G∼Gx are unprovable, and
exactly one of them is true in the standard model. We are not yet, however,
in a position to say which one, while we are in absolutely no position to
say that either of them has, on these considerations, any metamathematical
meaning whatsoever.

Metamathematical meaning is provided by our second level of interpreta-
tion; namely, we picked Gx because it weakly expresses the set G. On this
level of interpretation, GJ “says” that the formula AJ does in fact belong to
the set G; so, presumably, ∼GJ denies that AJ belongs to G. Well, ∼Gx, in
particular, does not belong to G, as we saw in (xii). So, on the second level
of interpretation, ∼G∼Gx is true. Moreover, on this level, it is reflexively
true; when G is unpacked, the formula asserts its own unprovability.

There is, however, a gap between these two levels of interpretation. In
one sense, this gap can easily be filled; in another, it is unfillable. For, thus
far, nothing prevents ∼G∼Gx from being false on our first level, as a sheer
statement of arithmetic, while being true, so to speak, on our second, since
it still correctly asserts its non-theoremhood in G. And, in the classical
context, anyway, we can insist upon its truth, even if it is arithmetically
false, by taking it as an extra axiom; since its negation is not classically
provable, by the completeness theorem of Gödel for first-order classical logic,
no new inconsistency will result by making this move.

That such a clash of interpretations might arise, however, is a consequence
of our not having chosen Gx very carefully. We asked only that it weakly
express G, and were satisfied with any Gx (the first, say, in an enumeration
of class formulas) that had this property, having been assured by Theorem 17
that some Gx weakly expresses G. We can make, however, a tighter choice
of Gx by tightening our characterization of expressibility.

Specifically, let S be a set of natural numbers, and let AIx be a class
formula of L ∗. Then we shall say that AIx truly expresses S provided that
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r(I) = S (i.e., that condition (i) above holds, for all J in N, for S in place
of r(I)), and moreover, for all J ∈ N,

(xv) ⊢R♯ AIJ iff �N AIJ

where, for each formula B in the classical sublanguage L ∗, �N B means that
B is semantically valid (i.e., true, if B has no free variables) in the standard
model N of the natural numbers.

We note now the following:

Theorem 18. Let S be any set of natural numbers. Then the following
conditions are equivalent.

(a) S is recursively enumerable

(g) S is truly expressible in P∗ by some class formula AIx

(h) S is truly expressible in R♯ by a class formula AIx of L ∗

Proof. Again, the equivalence of (a) and (g) is well-known, given the stan-
dard proofs of Theorem 17 and the standard mythology. And (g) implies (h)
by hauling out once more the φ translation from P∗ to R♯, while (h) implies
(a) by Theorem 17, ending the proof of Theorem 18.

So we may partly fill the gap between our two levels of interpretation, by
choosing Gx so that it truly expresses G in R♯. Then, in particular, G∼Gx
is arithmetically true iff it is provable in R♯; as we know, it is unprovable,
and hence false. Accordingly, our Gödel sentence ∼G∼Gx is, as desired, a
standard arithmetical truth which is unprovable in R♯.

What happens on our alternative choices of σ; e.g., σ1? Even though
¬Gx is outside of the classical sublanguage L ∗ (for which truth in N makes
immediate mythological sense), G¬Gx is, as a statement of the form GI,
within that sublanguage. Choosing Gx to truly express G, G¬Gx, since
it is unprovable, is likewise false in N, whence ∼G¬Gx is true. Is then,
on a suitable extension of our semantic ideas, ¬G¬Gx likewise true but
unprovable? There is no reason to think so; for it is not ruled out that both
of G¬Gx and ¬G¬Gx are unprovable falsehoods.

This, however, underlines remarks made above about the insufficiency
of formal ∼ to intuitive ‘not’ in formalized arithmetic, whatever our sincere
intentions. For nothing prevents us from taking ¬, rather than ∼, as the
negation with respect to which we characterize truth in the standard model
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N. If so, ¬G¬Gx gets promoted from unprovable falsehood to unprovable
truth. In short, we cannot measure the success of our formalism on sincere
intentions alone; for these intentions may admit favored interpretation, but
they cannot compel them. And, in fact, no theorems of R♯ will turn out false
if we favor ¬ over ∼ as our preferred negation; we may wince at some of the
non-theorems of R♯ on this perverse preference, which neither classicist nor
even intuitionist could approve.

Wincing aside, we are stuck with the same problems with our preferred
classical ∼. In fact, there are not two levels of interpretation induced by
thinking about R♯, but three. For true-in-R♯, if it means anything (except by
mythological consent), must surely mean provable-in-R♯. On this perspective
∼G∼Gx is as false-in-R♯ as is ¬G¬Gx. As verification, we may, after all,
reverse our previous move by adding G∼Gx consistently to R♯; this upsets
our intention that R♯ should have the standard model N, but, systematically,
it does not upset R♯ at all. I.e., even after we have moved up to true-
expressibility of the r.e. sets, we are still stuck with the non-categoricity
of the first-order Peano postulates.

So our move up to true expressibility is not as successful as we might
have hoped. On a sheer extensional level, to be sure, it is quite satisfactory;
∼G∼Gx is true-in-N while unprovable-in-R♯, contrary to what was hoped
and expected before [33]. But this continues to leave out our intensional level
of interpretation, on which ∼G∼Gx asserts-truly-that-it-is-unprovable-in-R♯.
At best, we have so far merely an extensional coincidence. I.e., ∼G∼Gx is
arithmetically-true-in-N, and moreover ∼G∼Gx is true-in-N iff ∼G∼Gx is
unprovable in R♯. But, clearly, any unprovable arithmetic truth in R♯ will
satisfy these criteria, at least in a material sense.

So let us not be too sure that our move from weak expressibility to true
expressibility was an improvement. The former, at any rate, is syntactically
clear, and involves less mythology; moreover, it does not require us to look
over our shoulder at intended extensions of R♯ (given that R♯ itself, like any
formal system, cannot distinguish internally its intended from its unintended
extensions). And our real problem, even in an extensional sense, is that
our success in expressing G in R♯ does not imply success in expressing the
complement of G; indeed, if R♯ is consistent, it implies failure, not only in R♯

but in all of its negation-consistent and recursively axiomatized extensions.
(Note that we do not solve this problem simply by taking ∼G∼Gx as an
extra axiom; for this still leaves infinitely many sentences of the form ∼GI
unprovable, though true; i.e., we are in no better shape than before to suppose
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that ∼GI says, except on extrinsic mythology (that may be controverted by
extending R♯ non-standardly), that I /∈ G.)

Again, the strong suggestion is that it is not arithmetic which is here
to blame, but logical particles like ∼. Similar problems, lest it seem like
negation is getting too much of the heat, are raised by the quantifiers. More
interesting here, they are raised also by our relevant implication →, as we
saw above on our σ-generalizations of the basic Gödel-style argument. In the
→ case, reflected in the specialization to the ¬ case above, we found a way
out, in that, for general σ, nothing prevents A and σA from both being false.
What hurts, then, where ∼ is essentially involved is our semantic faith that
both of A, ∼A shall not turn out false together. And what gets mixed up
here is that we tend to wish for ∼ both a fact-expressing and an inferential
role, as we have seen; once material implication has been dumped, on the
other hand, we can be content to make the inferential role primary for →,
allowing simply that some arguments are bad arguments regardless of the
truth-values of premiss and conclusion.

With respect to ∼, on the other hand, we are stuck. If A is bad, ∼A is
good, as a matter of semantic faith, whether we can prove it or not. Note,
incidentally, the concentration in the above argument in showing that G∼Gx
is bad. And so it is sometimes said that the import of Gödel’s incomplete-
ness theorem is that we cannot encompass, in the same system, all intuitively
valid proof procedures. But that, I think, is an overstatement, at least as
it involves formal negation. As ∼ enters into arguments, its role remains
steadfastly inferential; the semantic faith embodied in our understanding of
negation is not part of the argument, save as this faith is codified in partic-
ular inferential principles. Indeed, it is to be seriously doubted (even in the
first-order case, despite the mythology attached to the classical completeness
proof) whether there exists a totality of valid arguments. Again, we must not
confuse semantic faith with deductive reason. Faith is not a proof procedure,
valid or otherwise; rather it embodies our guiding ideals, to which we seek
to make rational proof procedures conform.

So, while we may invoke guiding ideals to supply new proof procedures—
indeed, Gödel supplied one, and it counts these days as a proof of ∼G∼Gx,
for suitably chosen Gx—this is a little different from supposing that such
proof procedures already exist, in embryo, in virtue of the guiding ideals
themselves. And, again, the confusions engendered by material implication
cut hard against this point. For the consistent error of modern mathematical
logic has been to assume that true (or valid) material implications already
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license some admissible (or universally admissible) proof procedure. This,
combined with our semantic faith in the truth or falsity of atomic proposi-
tions, and in truth-functional compounding of such propositions, does sug-
gest that all the good arguments already exist, and that logic is an exercise
in finding them (blighted, alas, by the fact that there is no effective way
to do so, or, past first-order logic, even to tell what they are). The view,
indeed, seems to be that God keeps most of the good arguments for himself,
but that, in his infinite kindness, he lets us find a few of them.

God, as I have noted elsewhere, has no need of any arguments, even good
ones. So it is about time to abandon theological validity as a criterion of good
reasoning. Our semantic faith is ours, and it does not come from above; the
proof procedures that we admit are ours also, and it is sufficient for the
invalidity of an alleged proof procedure that we do not admit it; the angels
need not be consulted, nor is it relevant that, in a better world, we would
admit it. So, when we turn our semantic faith upon our stock of undecidable
propositions, it is not that there has been all along an intuitively valid proof
procedure which has been thus far overlooked; it is that we have invoked our
guiding ideals to enlarge our stock of proof procedures. There is danger in
this course; guiding ideals do not come with divine guarantees, either, and the
enlargement may lead to something silly. But it is especially silly to build the
semantic faith so deeply into the proof procedures that the entire deductive
enterprise is in constant danger of going completely wacky. And we must not
suppose that our guiding ideals themselves—e.g., the negation-completeness
of ideal mathematical theories—are themselves capable of proof. That much
we should have learned from Gödel. For what, after all, might count as a
proof, save as it rests on more comprehensive guiding ideals.

Let us sum up the situation thus far in a theorem.

Theorem 19. R♯ is negation-incomplete. In particular, we may choose the
Gödel sentence ∼G∼Gx so that it is arithmetically true, and so that, in an
intensional sense, it may be taken to express its own unprovability. Neither
∼G∼Gx nor G∼Gx, when the Gödel sentence is so chosen, is a theorem of
R♯. Similarly, letting σ be any defined 1-place connective on formulas of R♯,
if R♯ is σ-consistent then neither GσGx nor σGσGx is a theorem of R♯, and
∼GσGx is arithmetically true.

Proof. Subject to the mythological assumptions, standard results, and philo-
sophical caveats declared above, this theorem already stands proved.
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We shall also draw some of the usual corollaries. Henceforth, we use Rx
for a class formula that weakly expresses the set of theorems of R♯. (Since
this set is r.e., there are many formulas that will do this job; for the moment,
any one of them will do.) We use Px to weakly express the set of theorems of
P♯, as above. And we suppose that each of Rx, Px (and also Gx, when we are
interested in it) is a sentence Aφ, where φ is as in Theorem 14; evidently we
may do this without loss of generality, and we reap the benefit, by Theorem
14 and consideration of φ, that these formulas then weakly express the same
sets in both R♯ and P♯.

We have noted the following two theorems, but they are worth making
explicit.

Theorem 20. R♯ is negation-consistent in sense (6) of II iff it is negation-
consistent in sense (5). I.e., ⊥ is a theorem of R♯ iff, for some formula A,
each of A, ∼A is a theorem of R♯. Moreover, this equivalence is effective, in
the sense that proof of a contradiction in R♯ may be trivially lengthened to
become a proof of ⊥, and vice versa.

Proof. Trivial, since A ∧ ∼A → ⊥ is a theorem scheme of R♯, while ∼⊥ is
a theorem.

Henceforth, we shall take negation-consistent to mean indifferently
consistent-in-sense-(5) or consistent-in-sense-(6) of II, either for R♯ or for P♯;
we shall prefer the former, as somewhat simpler. We also note [Typescript

Ends.]
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