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Abstract

The purpose of this paper is to formulate first-order Peano arithmetic
within the resources of relevant logic, and to demonstrate certain prop-
erties of the system thus formulated. Striking among these properties
are the facts that (1) it is trivial that relevant arithmetic is absolutely
consistent, but (2) classical first-order Peano arithmetic is straightfor-
wardly contained in relevant arithmetic. Under (1), I shall show in
particular that 0 = 1 is a non-theorem of relevant arithmetic; this,
of course, is exactly the formula whose unprovability was sought in
the Hilbert program for proving arithmetic consistent. Under (2), I
shall exhibit the requisite translation, drawing some Gödelian conclu-
sions therefrom. Left open, however, is the critical problem whether
Ackermann’s rule γ is admissible for theories of relevant arithmetic.

The particular system of relevant Peano arithmetic featured in
this paper shall be called R♯. Its logical base shall be the system R of
relevant implication, taken in its first-order form RQ. Among other
Peano arithmetics we shall consider here in particular the systems C♯,
J♯, and RM3♯; these are based respectively on the classical logic C,
the intuitionistic logic J, and the Sobocinski-Dunn semi-relevant logic
RM3. And another feature of the paper will be the presentation of
a system of natural deduction for R♯, along lines valid for first-order
relevant theories in general. This formulation of R♯ makes it possible
to construct relevantly valid arithmetical deductions in an easy and
natural way; it is based on, but is in some respects more convenient
than, the natural deduction formulations for relevant logics developed
by Anderson and Belnap in [ENT].
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I

Why relevant arithmetic? There are several good reasons. Champions of rel-
evant logics have long held the more familiar classical, intuitionist, and modal
points of view to license fallacious arguments. (Cf. [ENT].) On the other
hand, there has been a dearth of evidence that these fallacious arguments
actually produce anything unsatisfactory. The most persistent dissatisfac-
tion, in fact, has lain in the familiar license to pass from a contradiction to
any statement whatsoever, which rules out non-trivial inconsistent theories.
But no convincing example has been given, thus far, of a non-trivial incon-
sistent mathematical theory which we should take seriously; this defect will
be remedied here.

And, more generally, there has not yet been a serious study of a concrete
theory to determine the effect upon that theory of (1) the familiar fallacious
argument pattern and (2) the converse insistence that relevantly fallacious
arguments shall not be accepted. Most mathematicians, I think, would con-
fess some intuitive dissatisfaction with, e.g., the claim that if A is true then
anything implies A. But it is also urged upon them, by the logicians who
profer firm foundations for their discipline, that this claim (or some intuitive
equivalent which has been prettied up not to sound quite so bad) is at least
implicit and perhaps explicit in the reasoning that they have used to build
up their subject.

Accordingly, it seems at least possible that mathematics (or other sub-
jects to which logic is applied) will itself be mutilated if relevantly valid
argument patterns are intuitively implausible. For, one supposes, our infor-
mal arguments do require relevance as a component of valid inference. So,
in some sense of reasonableness, it does not seem reasonable that we should
be unable to account formally for this component; to the contrary, it seems
reasonable (and I shall argue here that it is reasonable) to assume insights
into what mathematical reasoning, and mathematical structures, are really
about.

Such, at any rate, is the informal motivation for this paper. Its formal
motivation lies in the fact that arithmetic is indeed a subject worth studying
from the relevant point of view, and that new light is indeed shed on the
nature of deductive connections within formalized arithmetic by taking that
point of view. But the reader is hereby warned also that the results of this
paper remain partial ; it is a first word in the relevant analysis of arithmetic,
not a last word.
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Two further points deserve mention. First, it is sometimes argued that
relevant insights ought to be constructive, in a way that would satisfy (per-
haps) a mathematical intuitionist. There is something to be said for this,
since there are many points of resonance, both technical and philosophi-
cal, between constructivists and relevantists. But there are points of non-
resonance also. First, the viewpoint taken in [ENT] is unabashedly non-
constructive, if not downright Platonistic. And, though I do not follow [ENT]
into outright Platonism, I think that there are good reasons for retaining the
non-constructive elements in relevant logics, especially insofar as they involve
the analysis of negation. To be sure, if anyone wishes to pare down his rel-
evant logic to the point where it is intuitionistically acceptable, it is quite
easy to do so technically. But the price, in my opinion, is the loss of some of
the most important features that go to make relevant logic attractive, both
technically and philosophically.

For constructivism, as a doctrine in the philosophy of mathematics, may
be taken as imposing either epistemological or ontological constraints on the
size and shape of the mathematical Universe. And, very roughly, we may
identify epistemological constraints as constraints on mathematical proof—
e.g., no theorem is proved unless it is proved constructively—and ontologi-
cal constraints as constraints on the mathematical entities themselves—e.g.,
there are no mathematical entities save those as are generated constructively.

Brouwer’s intuitionism, one must suppose, rests first of all on an ontolog-
ical constructivism; for if proof is our instrument for coming to know what
there is to know about mathematical entities, while the entities themselves
are the free creations of the human spirit, then surely coming-to-know must
at least satisfy the kinds of constraint that apply to entity-making. On the
other hand, relevant insight, as presented in [ENT], need satisfy no ontological
constraint whatsoever. Rather, in insisting upon relevance as a component
of valid inference, it is clear that we are here dealing, mathematically, with
an epistemological constraint only. What we know about the mathematical
Universe shall not be established by fallacious arguments. Nor need it be
presupposed that our knowledge has been obtained by fallacious arguments;
what is fallacious, it might be urged, is rather the formal C-reconstruction of
how we obtained that knowledge.

So, in particular, there is no need—and no good reasons—for the relevan-
tist to deny, in virtue of his logical doctrines, such classically valid principles
of reasoning as excluded middle and double negation, To be sure, he might
have other grounds (e.g., having been born in Holland) for such denial. E.g.,
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he might wish to impose ontological as well as epistemological constraints
upon our exploration of the mathematical Universe. But such imposition is
an added extra, which will, I think, commend itself only to a small minor-
ity of mathematicians, a group which, as a class, seems drawn to luxuriant
theoretical ontologies as the sparks fly upward.

The principal relevant thrust, for better or for worse, has been different.
It does not seek to constrain mathematicians, or any other Ontological Big
Spenders, from their freewheeling ways. (At least not so far, though rele-
vant set theory does seem likely to impose new restrictions on the kinds of
comprehension axioms which are held to determine sets or properties. Such
matters, however, are very much open at writing.) Rather, relevant systems
were motivated by a view of what counts as a Good Argument. We believe,
certainly, that most purported mathematical truths have been established by
Good Arguments. So, since our doctrines concern correct formalization of
the informal logic that we actually use, in mathematics as in other pursuits,
it is to be expected in general that these doctrines will not upset but confirm
common views about which theorems are true, if we take the common view
as to which axioms are true. To be sure, there is always the chance that
there is ome purported mathematical truth floating about which has been
established by a Bad Argument; this chance, presumably, has been increasing
as more and more mathematicians have been indoctrinated with the belief
that C is really the logic that they use. But I think it an off chance, on the
whole.

Still, while still being underwhelmed by claims that relevant logics are (or
ought to be) truly constructive, I do not want to be stuck, either, with the
view that they offer just an alternative route to Old Wisdom. First, when one
thinks relevantly, there is a question not only as to which formal theorems
follow, but also as to which formal theorems express which intuitive theorems.
In particular, we may think of the classical truth-functional vocabulary as
well-suited for the expression of facts about the natural numbers, but as
not oriented at all toward the expression of the laws in virtue of which we
discover the facts.

Let me illustrate. The material ⊃ I take to be a fact-laden connective; it
merely transmutes simpler statements of fact into a more complex statement
of fact. As such, it neither rests on nor licenses any lawful connections
between the facts so compounded. But good arguments, whether deductively
general or inductively particular, rest on connections, not facts.

The relevant →, as I see it, is introduced precisely to take account of such
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connections. And this introduces, at the formal level, an opportunity to make
distinctions which, though perhaps dimly present in the intuitive base, goes
beyond it in sharpness and in formal clarity. For example, we should expect
to find A ⊃ B provable on some number-theoretic occasions when A → B is
unprovable. And this happens. 0 = 2, being arithmetically false, materially
implies everything. But if we hypothetically overloaded arithmetic so as to
identify 0 and 2, it’s just gratuitous to suppose that we should thereby have
identified, say, 0 and 1. Indeed, when we take the integers modulo 2, we do
identify 0 and 2, without going on to identify 0 and 1. There’s a moral there
somewhere, which we shall proceed to draw below.

Ontological luxuriance escaped relevant criticism above. But its turn has
now come. I allow myself the common arithmetical vocabulary below, and
speak within it in wholly ordinary ways. (The reader, who is entitled to
his own slants, philosophical and otherwise, may take that speaking as he
will.) But natural numbers remain, on my views, funny objects, and I think
it just Quinacious to suppose that, in employing the linguistic resources of
English (or of Formalese) in ordinary ways we thereby commit ourselves to
the existence of strange things. Mathematics is treasured among us (except
for a small minority of the pure) for its utility in science and in daily life.

And, if we are to think relevantly about mathematics, what is to be
hoped for most of all are not new routes to old truths but an expansion
of the pragmatic imagination. Let us be free to wonder what it would be
like if 0 were equal to 2, and let us not be stopped short by our conviction
that 0 isn’t 2. For, to modify Russell’s famous dictum, it is a pragmatically
empty question Which are the mathematical entities, or Whether what we
say about them is true. For our pragmatic Interest in mathematical theories
lies in finding non-mathematical interpretations for them, and in general such
interpretations are both partial and approximate. One is tempted to think
that what this means is that they are really false; but what it really means
is that mathematical theories are prized among us because they help us get
on, while the question of their “real” truth or falsehood just doesn’t arise;
even less does the ontological status of, say, the number 318 arise when we
say that the mass of Jupiter is 318 earth-masses.

I turn, now, to the second of our further points. It will occur, perhaps,
to some readers to wonder whether the technical arguments of this paper
are “relevantly valid,” as one sometimes wonders whether arguments about
intuitionist mathematics are mathematically acceptable to intuitionists.

These kinds of wonder, however, are not at all analogous. For the J-
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partisan disagrees with most of the rest of us at the informal level, and
indeed he has been notoriously reluctant to formalize his informal reasoning
at all. But, at least, he is in revolt about what has passed previously as good
mathematical reasoning—e.g., proving statements of mathematical existence
by deriving a contradiction from assumptions of non-existence. So it makes
very good sense to ask whether, in an informal study of an intuitionist formal
system, the banned principles are admitted in our reasoning.

The motivation given in [ENT] for relevant logics could not stand in
starker contrast. For, despite objections that the relevant logics lack the
“disjunctive syllogism,” or other components of intuitively valid reasoning,
the relevant claim has not been that these intuitive principles are incorrect.
To repeat, what is argued rather is that the formalization of our informal
reasoning has been incorrect. To be sure, some argument-forms which the C-
partisan takes as valid are relevantly banned—e.g., the argument from A and
not-A to B. But, while I certainly am at loggerheads with anyone who claims
that he regularly uses that principle in his intuitive reasoning, this is not the
claim which one hears. What one hears rather is that the C-formalization
of our intuitive reasoning which licenses such argument forms is smooth and
elegant (which is true); and that, while we never actually use the argument,
it does no harm to have it in the system (which is false).

So what, after all, can one make of the question whether the informal
arguments about R♯ are relevantly valid? Is this a question, say, as to whether
the disjunctive syllogism is used? But why should it be avoided? There are,
following [ENT], some formal counterparts of this informal argument form
which are valid, whereas others are invalid. Obviously, if pressed, I should
claim to be using a valid one.

And, to take the point a little further, the question about the relevant
validity of the informal arguments here might be a question whether, if the
entire discussion were formalized in a system based on R, all the arguments
would turn out valid. But that, too, is a question that begs the question.
If the arguments were correctly formalized, of course they would turn out
valid; for, as a partisan of R and a believer in the validity of my own informal
arguments, I am compelled to hold that any formalization that makes them
invalid is incorrect.

There is, I think, lurking in the background of discussions like this another
presupposition, which rests on another begged question: Namely, that C-
validity is the ordinary test of the validity of informal arguments. That
claim, I hold, is evidently false, since there are invalid informal arguments
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which, when correctly formalized in C, turn out C-valid. But I do not expect
my perception to alter the perceptions of the C-partisan, who will beg the
question his way just as surely as I will beg it my way.

Is there any way out of these “paradigm clashes”? Yes, there is; this
paper is an exercise therein. For what I shall argue here is that there are
pragmatic advantages in basing our formal arithmetic in R, which do not
exist if we base it on C. That is, I shall show that the fallacious informal
argument patterns which the C-partisan endorses do in fact lead to formal
trouble. His defense, after all, was that he does not use them, not that I
was constricting his informal argument patterns so as to deprive him of a
useful tool. Very well, then, I shall force him to use them, and then (I hope)
I shall demonstrate to him that he would have been better off had he not
used them. And that I am no worse off for having abjured them (though
that demonstration remains incomplete, while the question of γ is open).

In short, I am not going to fight with the C-partisan about what goes on
in the “metalanguage.” For we are unlikely to disagree about which informal
argument forms, in use, are valid. What we would disagree about is how
these argument forms are to be formalized. But that would just give us
another formal system to talk about, in English. Again, we could formalize
that talk, but eventually the escalator ride has got to stop. And it stops,
always, in English (or other natural language), where the underlying question
is always begged.

The solution, already presented, is not to ride escalators. If the R-partisan
claims that he has a superior vehicle for formalizing informal reasoning, his
first task is to find some informal reasoning and try to formalize it better.
That is what is being attempted here. And it is a more or less objective
question, when attacked with technical rigor, what the properties of a given
formalized theory are. And, if we want a formalized theory to talk about,
let us pick an interesting one, like arithmetic, rather than a dull one, like
a formalized theory of talk about arithmetic. For, since we are informally
more or less agreed, let us attend strictly to what we think are the formal
counterparts of our intuitive arguments. Either we shall uncover some un-
pleasant anomaly (in the bad case) or find some fresh insight (in the good
case) or both (in the usual case). So let us get on with our formal work,
trusting good formalizations (e.g., of classical set theory, ZF) to produce nice
theorems that reinforce motivation; and bad formalizations (ditto, NF) to be
riddled with anomalies. By their (formal) fruits, ye shall know them. So,
Calculemus.
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II

The system R♯ is formulated straightforwardly. It is based on a first-order
language L ♯ built up as usual from the countably infinite sequence of vari-
ables x, y, z, x0, x1, etc., the individual constant 0, the unary operation ′, the
binary operations +,×, the binary predicate =, the unary connective ∼, the
binary connectives ∧,→, and the universal quantifiers ∀x, ∀y, etc.

I prefer to view R♯ (and other formal systems) as abstract in something
approaching the sense of Curry’s [FML]. This means that the constituents of
L ♯ are not to be taken as pieces of language in the ordinary sense (whatever
that mixed-up ordinary sense may be, a point that Routley and I examine at
some length in [ER]), but as abstract objects (obs, in Curry’s framework) and
functions. This frees the language we are using (Curry’s U-language, which
is here English with some special symbols adjoined) for its ordinary referen-
tial sense, to which the conventions of standard (mathematical) English will
apply without further comment. In particular, the marks displayed above
(e.g., ‘x’) are to be taken as names in English of certain formal objects. So
‘x’ names the first formal variable, namely x, just as Gerald Ford is named
by ‘Gerald Ford.’ But x is no more being displayed here than is Gerald Ford;
indeed, since x is taken as an abstract object (like the number 7) it cannot be
displayed in principle; L ♯, though I have stuck with tradition in calling it a
“language,” is by no means an “object language.” (However, in resisting even
the appearance of commitment here to a fallacious nominalism, with all the
stilted and imperspicuous conventions which it is held to involve, I leave the
reader free to make his own commitments. For, though the Curry-style plan
makes for smoothness of exposition, which it is again Quinacious to think at
all involved in any kind of ontological commitment whatsoever—we are just
setting up our talk to use the linguistic resources of English conveniently, as
does every mathematician (in his own tongue)—nothing substantial hangs on
following this plan (save clarity). Indeed, I shall assume throughout that the
reader knows well enough what a first-order language is, letting the algebraic
details be taken as self-understood.)

We next build up the usual grammatical categories in L ♯, as inductive
classes. The class FV of formal variables has already been characterized. 0 is
the only member of the class FI of formal individuals. The union of FV and
FI is the class FA of formal atoms. From FA we generate, in a universally
free way, the class FT of formal terms, using the operations ′, +, and ×.
I.e., these formal operations shall be taken as operations on FT, satisfying
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an atom property which insures that all formal terms shall be built up from
atoms, and a generalized ordered pair property, which says in particular that
if X + Y is the same term as Z +W then X is the same term as Z and Y is
the same term as W , etc., and so which says in general that each term shall
be uniquely constructed from its component atoms.

FT having been constructed, we build up the set AF of atomic formulas
by doing more of the same, taking our formal predicate = as a binary function
defined on FT × FT with range AF, subject to analogous principles of
universally free generation. I shall also refer to members of AF as (formal)
equations. And a final step of universally free generation takes us fromAF to
the class FF of formulas of L ♯ (to be identified here when convenient with
L ♯ itself); as a result, FF is closed under the formal connectives, among
which I include not only → and ∧, but also all the quantifiers ∀xi, etc.
(Thus, on the story here, ∀x is just a unary operation on formulas, which
does not contain x as a constituent, and which is a different operation from
∀y. But I assume a 1-1 correspondence between quantifiers and variables,
necessary for the usual story about freedom and bondage (just assumed here,
not told), and letting the notation carry that correspondence.)

One thing about L ♯ is that it doesn’t have parentheses in it, or, for that
matter, anything corresponding to an ill-formed formula. (Why should it?)
Still, as presented, L

♯ is hardly a break with tradition; indeed, I suspect
that such kinds of presentation are coming to be the tradition, though ac-
commodation to the pseudo-nominalism that underlay the old tradition dies
hard.

We have now divided the formal objects that comprise L ♯ into a num-
ber of (grammatical) categories. Just to recapitulate, these categories are
FV, FI, FA, FT, AF, and FF; to these let us add explicitly the classes
FO of formal operations, FP of formal predicates and FC of formal con-
nectives (which would comprise respectively, on the story more often told,
the (primitive) operation symbols, predicate symbols, and logical connectives
and quantifiers).

Although our formal objects are themselves notation-free, we do need
further notation in English for the purpose of discussing them. In particular,
we need names for these formal objects. Happily, such names are supplied
by standard mathematical convention; e.g., ‘0 + x’ shall serve as the English
name of the abstract formal term which one gets by applying the formal
operation + to the formal individual 0 as first argument and the formal
variable x as second argument. Exactly so, were + ordinary addition and
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not our formal operation (which is decidedly not ordinary addition), might a
mathematically inclined reader use ‘3+2’ as an English name for the number
5.

As we have built up L ♯, all our formal objects do receive unambiguous
English names. For this purpose, we would ordinarily use parentheses, and
such other devices of mathematical English as are necessary to render these
names unambiguous. (For, since we are discussing formal objects which, in
general, have been built up functionally from formal atoms, we need at least
some notation which will indicate the order in which the functions are being
applied, and what their arguments are. We also desire, naturally, that the
notation should be as readable as possible.)

Grouping under parentheses is an unambiguous way of achieving our nom-
inal goal. Nor need we be explicit about those conventions, since they are
commonly understood. To achieve our second goal, clarity, we adopt the fol-
lowing rather familiar conventions. First, unary operations and connectives
shall have minimal scope (consistent with the formal grammar). Second,
the operation × shall bind more tightly than +. Third, binary connectives
(including those to be defined) shall be ranked ∧, ◦, ∨, ⊃, ⊃, →, ≡, ≡, ↔
in order of increasing scope, i.e., ∧ binds more tightly than ∨, etc. Fourth,
equal operations and connectives shall be associated to the left. Fifth, we
use dots (sparingly) as parentheses in accordance with the conventions of
Church’s [IML] and Curry’s [FML]. Finally, since none of our formal func-
tions is defined on all formal objects, the reader is to be trusted to resolve
further ambiguities in the direction of sense rather than nonsense, and to
find the above conventions simple and relatively natural. Again, let him
note merely that they are not conventions about omitting parentheses.

Another requisite is the provision of intuitive variables (Curry’s
U-variables) to range over our formal categories. This provision, in prin-
ciple, will go like this: Natural numbers: I, J , K. Formal variables: X , Y ,
Z. Quantifiers: ∀X , ∀Y , ∀Z. Atomic formulas (equations): E. Formulas:
A, B, C. I also use functional notation, in the manner of Kleene’s [IMM],
where proper substitution is at issue. E.g., where T [X ] is a term, T [U ] is
the result of substituting the term U for X therein, throughout. Similarly,
where A[X ] is a formula, A[U ] shall be the result of uniform substitution of
the term U for free X therein, judiciously rewriting the bound variables of
A[X ] on a definite plan if necessary to avoid capture of free variables of U
by outlying quantifiers of A[X ]. (This notation, frankly, requires a certain
contextual good will on the part of the reader; but its alternative tend to the
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imperspicuous, which is reason enough to prefer it.)
Natural numbers, it was just hinted, comprise a grammatical category of

L ♯. Why not? For, while the nominalistically syntactic tend to think of 0,
0′, and so forth as their numerals, we Curry-style abstracters might just well
think of them as the numbers. And so we define the inductive class N of
natural numbers (which, from our viewpoint, is a subclass of FT) familiarly
as follows:

D0. 0 =DF 0

D1. 1 =DF 0′

D2. 2 =DF 1′

and so forth. Note that, restricted to N, ′ is the real operation of arithmetic
successor; i.e., not only is it intended that it should be interpreted as such,
but it is the operation. On the other hand, note that + and × are not the
corresponding genuine arithmetical operations (for which we might use ⊕ and
⊗, just to keep the matter clear.) Indeed, though ⊕ is a genuine operation
on N, and it is quite true that 2⊕ 2 is the number 4, it is not true that 2+2
is the number 4; in fact, 2 + 2 is not a number at all.

Though 2+2 isn’t a number, it is rather more like a number than is, say,
x + 2. So, N being in hand, let us define a further subset QN of FT, the
quasi-numbers. I.e., let QN be the subset of FT that one gets by starting
with 0 and closing under the formal operations ′, +, and ×. Then, though
quasi-number aren’t numbers, they’re the next best thing. E.g., 2 + 2 is one
of them.

Let us think about numbers and quasi-numbers just a little more. Where
I and J are numbers, let the atomic formula I = J be a numerical equation;
the set of these we shall call NEQ. Where I and J are quasi-numbers, let
I = J be similarly a quasi-numerical equation, and let the set thereof be
NEQQ.

Now NEQ and NEQQ play rather a privileged position with respect to
the arithmetic that we all learned in school; in fact, at least to begin with,
finding computational procedures to sort of the true from the false members
of these classes was our principal business. So, following a suggestion of
Dunn, let us call a member of NEQQ correct if it is true according to
those procedures, and incorrect otherwise. Then, surely, the least that we
can expect of a formalized arithmetic is that it will deliver as theorems the
correct quasi-numerical equations, and that it will deliver as non-theorems
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the incorrect ones. Moreover, we ought to be able to prove that fact in a very
simple and highly constructive way. Who knows how confused we may be
when (e.g., in postulating mathematical induction) we quantify over all the
natural numbers together? Maybe, though one hopes not, we have confused
ourselves into outright contradiction, which stares out at us from the Gödel
result but which, at least thus far, has blinked when we are eyeball-to-eyeball
with it.

But, however confused we may be, or however great our faith may be that
we are really clear, we are not going to take back the arithmetic which we
learned in first grade. 2+2 = 5 is incorrect, and even the possibility (however
dim) that it is nevertheless a theorem of C♯ should fill us with horror. Our
rejection of it, in short, should be just as firm formally as it is informally.
Sadly, on current stories, it is not.

We now add some further definitions, most of them familiar.

D∨. A ∨B =DF ∼(∼A ∧ ∼B)

D∃. ∃XA =DF ∼∀X∼A

D↔. A ↔ B =DF (A → B) ∧ (B → A)

D⊃. A ⊃ B =DF ∼A ∨B

D◦. A ◦ B =DF ∼(A → ∼B)

D 6=. T 6= U =DF ∼(T = U)

D≤. T ≤ U =DF ∃X(T +X = U)

D<. T < U =DF ∃X(T +X ′ = U)

We shall add more definitions below. Note, thus far, that →, ◦, and ↔ are
respectively relevant implication, fusion, and equivalence, whereas other con-
nectives are classical. Note also that these definitions are presented schemat-
ically, and that they embody certain tacit conventions—e.g., in spelling out
D≤, we might specify that X should be the first formal variable not free in
T or U . Such matters I leave henceforth to the reader’s good sense.

Definitions, as just presented, can be taken in a dual sense. First, they
may be taken merely as conventions about the use of English in referring to
formal objects. Second, however, our definitions do call attention to other
formal functions besides those set out explicitly in FO, FP, and FC. E.g., we
may suppose that there is a formal function which, when applied to formulas
A and B, does yield the formula ∼(∼A∧∼B) as value; and no harm comes
from calling this function ∨, and from thinking of it as a formal connective
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in an extended sense, with some but not all of the properties of the actual
members of FC. (I.e., the atom property holds for it, and so, in a sense,
does the generalized ordered pair property. But the latter does not hold in
full, since it would rule out the existence of formal objects A, B, C such that
A ∧ B and ∼C are the same formal object, whereas this holds by definition
of ∨, understood functionally.)

III

Our language L ♯ having been set up, we now characterize the first-order
theory R♯ in familiar axiomatic fashion. Following Kleene’s [IMM], I divide
the axioms and rules of R♯ into three groups, depending on whether they are
sentential (R-level), quantificational (proper RQ-level), or number-theoretic
(proper R♯-level).

As sentential axiom (schemes) for R, the following suffice:

A1. A → B →. B → C →. A → C

A2. A →. A → B → B

A3. A ∧B → A

A4. A ∧B → B

A5. [A → B] ∧ [A → C] →. A → B ∧ C

A6. A ∧ [B ∨ C] → A ∧B ∨A ∧ C

A7. ∼∼A → A

A8. A → ∼B →. B → ∼A

A9. A → ∼A → ∼A

I formulate rules, as before, by using &,⇒ in a self-explanatory metalinguistic
way. Rules at the sentential level of R are

→E. A → B ⇒. A ⇒ B

∧I. A & B ⇒. A ∧B

(This way of stating the rules is inspired by Belnap’s requirement that the
primitive rules for a system should correspond to theses of the system. And
it illuminates, by the way, an important difference between →E and ∧I,
which finds its formal reflection in how natural deduction systems are set up

Australasian Journal of Logic (18:5) 2021, Article no. 4



167

by Anderson and Belnap in [ENT].)
The quantificational level of RQ is formulated economically with the fol-

lowing additional axiom scheme and rule.

A10. ∀XA[X] → A[T ]

C∀I. A → B ∨ C ⇒ A → ∀XB ∨ C, where X is not free in A or C

(The latter rule, a form of conditional universal generalization, appears to
involve us in a violation of Belnap’s criterion; it does not on the consid-
eration that, intuitively, the premiss of the rule involves universal intuitive
quantification over terms.)

As specific number-theoretic axioms, we take the following:

A11. x′ = y′ → x = y

A12. x′ 6= 0

A13. x = y → x′ = y′

A14. x = y →. x = z → y = z

A15. x+ 0 = x

A16. x+ y′ = (x+ y)′

A17. x× 0 = 0

A18. x× y′ = x× y + x

To these we add a rule of mathematical induction, namely

RMI. A[0] & A[X] → A[X ′] ⇒ A[X]

R♯, which we may sometimes identify with its set of theorems, is the class of
formulas of L ♯ which is generated by the above axioms and rules.

Some motivation of R♯, and comparison with other systems of first-order
Peano arithmetic, is now in order. Relative to classical arithmetic C♯ (as
formulated, e.g., on p. 82 of [IMM]), R♯ may be viewed simply as the system
which one gets by endorsing such sentential principles as are relevantly valid.
For the property quantification and number-theory levels, at least so far as
the postulates are concerned, are essentially unchanged. Relative to intu-
itionist arithmetic J♯ (again, as presented in [IMM]), the situation is more
complicated. For here, at the sentential level R weakens J on the matter of
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implication, while R remains classical with respect to negation; relative to
J, the latter is of course a strengthening, though it is a strengthening that
depends, as we shall see, on a different view of negation altogether.

Even so, the contrast with familiar systems, and in particular with C♯,
ought not to be overestimated. While I prefer, e.g., to have mathematical
induction as a rule, both to simplify notation and because it seems to me,
intuitively, to be the right form of mathematical induction, nothing is lost if
we substitute instead its axiomatic strengthening, namely

A19. A[0] ∧ ∀X(A[X] → A[X ′]) → ∀XA[X]

For A19 is provable in R♯, using RMI, whereas obviously the latter becomes
a derivable rule when the former is taken as an axiom.

(There is, however, a subtle point involving the following classical equiv-
alent of A19.

A19′. ∀X(A[X] → A[X ′]) →. A[0] → ∀XA[X]

Taken intuitively, the sentential inference pattern underlying A19′ is some-
thing like

(1) (B → B⋆) ∧ (B⋆ → B⋆⋆) ∧ ... →. B → B ∧B⋆ ∧B⋆⋆ ∧ ...

As a particular finite instance of this, we might consider

(2) B → C →. B → B ∧C

which is relevantly invalid on the ground that one would not use the fact
that B → C to show, in general, that B implies itself. So, while attending
to relevance is to be presumed not to interfere with arguments by math-
ematical induction—such induction, certainly, is in appearance certainly a
very relevant kind of argument form—our general motivating concern to pay
careful attention to what is to be taken as the formal equivalent of a given
intuitive principle is not to be upset on sloppy presuppositions of intuitive
equivalence. Most of us, it is to be feared, have classical sentential calculus
so firmly in our heads that there is a disposition to believe that we are giving
up principles, when all in fact we are doing is being careful as to which are
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the principles.)
While we are on the subject of mathematical induction, another, and

rather central, aspect of the general consistency problem for formal arith-
metic is of course wrapped up right here. For built into formal principles like
RMI and A19 is, of course, an intuitive comprehension principle, the effect of
which on past experience we should beware of. For mathematical induction,
as it is ordinarily understood, is not part of a full formal characterization
of the natural numbers; rather, it is a consequence of that characterization.
For, the characterization generally runs, “The natural numbers are just those
entities that have every property possessed by 0 and its successors,” or some-
thing quite similar. So believing in mathematical induction is just believing
that all natural numbers have every property which 0 has and which is passed
on under successor. And our formal induction principle RMI goes beyond
this claim if, perchance, there are some open formulas of L ♯ which, in the
systematic context, cannot reasonably, or perhaps even consistently, be taken
to determine properties. Again, we all hope that this is an off chance. But
it remains, nevertheless, a substantial assumption, leaving open the possibil-
ity that the A[X ] in RMI ought to bear some restriction, consistent with a
further relevant story about the natural numbers.

With that hedge against unsatisfactory inflation of the supply of theorems
of formal number theories, the properly number-theoretic postulates of R♯ are
firmly traditional. (In fact, they are adapted straight from [IMM], where the
reader may find them all (taking induction in the A19 form) in Kleene’s
postulate group B.)

Interest here centers, accordingly, on the question whether changing
Kleene’s logic changes significantly the supply of theorems that can be de-
rived from these arithmetical postulates; and, if so, in what ways. On this
point, against the view that relevant logics involve a radical restructuring
of familiar notions, it should be noted that even our logical postulates are
rather like Kleene’s. (I have not, however, attempted to separate postulates
as Kleene does. E.g., A → A is derivable here, but not from A1, A2, →E
alone. And Kleene, who is working also with J, needs specific ∨ and ∃ pos-
tulates, whereas here (as in the classical case) these are rendered superflous
by D∨, D∃.)

In fact, the reader with [IMM] at hand will note that the chief omission
here is of the postulate 1a, the logical “law” A →. B → A. We may look
on A1, A2 as saving what is relevantly needed, in the present context, from
Kleene’s 1a, 1b. A3, A4 correspond exactly to Kleene’s 4a, 4b, as →E does
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to Kleene’s rule 2. A5 saves what can be relevantly saved from Kleene’s 4.
A6 must be added explicitly here. A7 is Kleene’s 8, which in his context
(but not here) collapses → to a material ⊃. A8, A9, ∧I are again explicitly
postulated here, though of course they are both J-valid and C-valid. On
the quantificational side, A10 is exactly Kleene’s 10. And C∀I is a C-valid
strengthening of the [IMM] rule 9, which produces here a classical rather than
an intuitionist understanding of the quantifiers (in classical contexts). On
the other hand, the Kleene postulates 1b, 5a, 5b, 7, 11, 12 are also derivable
here, along with those already mentioned (2, 4a, 4b, 8, 9, 10), whereas 6 (like
3) holds in a form dual to A5. And Kleene’s number-theoretic postulates
13–21 are, as stated, exactly our postulates for R♯.

In short, and against the view that a battering reformulation of C-insights
or J-insights is here involved, not much really has been changed. And even
what has been changed survives in altered ways, as we shall see. In fact,
the real changes can be summed up in the rejection of Kleene’s axiom 1a,
which licenses irrelevant deductive connections, and in the acceptance of A7
and C∀I, which sum up the relevant insistence on classical interpretation of
classical logical particles.

IV

Having set up R♯, we shall wish to prove some things in it, and then some
things about it. To do so, I wish to set up, as promised, a general theory of
natural deduction for relevant logics (and, for that matter, irrelevant ones).
In doing so, I shall have in mind the natural deduction systems of [ENT],
which stem from Anderson’s [SCP] and which, in their vital implicational
component, are motivated at length in the Anderson-Belnap [PCE].

Thinking naturally has been, from the first, an important motivating con-
sideration for relevant logics. In addition to its cited import for the enter-
prises of Anderson and Belnap, it has also been studied relevantly by Prawitz,
Urquhart, and Routley; and Urquhart in particular has made its analysis the
keystone of his very important semantical work in relevant logics.

Nevertheless, there has always been a certain tension attending the rel-
evant analysis of natural deduction. Put bluntly, it isn’t necessarily very
natural. While the underlying idea is quite clear—one tags formulas that
appear in the course of a deduction with sets of numerals (or similar orna-
ments) in order to keep track of which conclusions depend upon (and hence
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follow relevantly from) which hypothetical assumptions, the way in which
the tags are attached has on occasion the appearance of being arbitrary. So,
for that matter, do some of the inferences which are permitted (or which are
disallowed) under certain taggings, especially when one begins to discrimi-
nate between systems (as is done slightly in [ENT], but which can be carried
much further along lines explored by Urquhart and by Pottinger) by chang-
ing the rules. Add to all of this the binding of relevant systems of natural
deduction in [ENT] to Fitch-style sub-proof methods (which, though these
methods commend themselves eminently to Yalies and their logical descen-
dants, are not so familiar in the Rest of the World, if any), and the sheer
difficulty of remembering which tagging restrictions go with which rules, and
a bit of rethinking appears in order.

Well, systems of Natural Deduction, however superficially attractive, have
been a junkyard of ad hoc restriction, punctuated with intermittent discovery
that, without such restriction, motivating intentions collapse. (Such discov-
eries, however, are not necessarily unpleasant, since they wipe out the used
book market.) So one can hardly fault relevant logicians for going along
with the trend. However, given a flood of distinct systems (C, J, R, E, T, B,
etc.) that are all “naturally” motivated, one must begin to suspect that the
“naturalness” of natural deduction is pretty much relative to the intuitions
that one began with, however one dresses them up with assumptions and
eliminations and instantiations and taggings and flagging and so forth.

In fact, as a general principle, it seems to me that the “natural” intuitions
of formal logicians are themselves formal and sophisticated. Sometimes this
leads to trouble; practice makes formal manipulation second nature, and we
tend to lose sight of the first nature—namely, that we are reasoning beings,
in a much looser sense of reason—out of which this second nature grew. More
often, formal manipulation is an advantage, for it allows us to reconstruct
with accuracy and precision the kinds of inferences on which we depended in
our unwashed “natural” state.

But the logician’s Nature is not “Nature, red in tooth and claw.” The
most common and persuasive “natural” arguments—the ad baculum, the ad
hominem, the ad verecundiam, and so forth ad nauseam—have no standing
among us, for our Nature is not only a rational one but a rationalized one,
in the best sense of that now opprobious adjective. And rationalized Nature
is unlikely to exist in us univocally; once formal intuition takes hold, we
can bend system to purpose; and formal imagination takes the process a
step further; once we have got accustomed to thinking systematically about
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thought, new, and clearer, purposes arise.
So, as it seems to me, having a Natural Deduction formulation is a priori

unlikely to offer independent motivation for a logic. What is “natural” from
the point of view of a given formal system is to confine one’s inferences,
and to build one’s non-logical theories, in ways that are licensed by the
system, and to adapt one’s notion of valid deduction to that a posteriori
sort of naturalness. To be sure, the class of inferences to be considered
valid can be stipulated in various ways—one can write down axioms, one
can specify validity on certain semantical interpretations, and one can climb
trees and make tables and employ a host of kindred devices. And there is
often some surprise—and much motivating joy—when conceptually distinct
devices turn out to yield the same class of valid inferences. But, thus viewed,
so-called natural deduction systems are just one more device; and it is just a
silly supposition that any such system incorporates a preferential way to tag
and flag, which corresponds to what we would all do if we had never heard
of Gentzen or Jaskowski or Quine or Curry or Rosser or Copi or Fitch or
Lebanc or Anderson or Belnap or Mates or Thomason or Routley or Kalish
or Montague or Prawitz or Kanger or Lambert or van Fraassen or Urquhart
or Pottinger.

This does not mean that Natural Deduction is not worth pursuing; all of
logic, one presumes, grows out of our desire to clarify and to regiment our
“natural deductions.” It is to say, however, that we are to look at systems
whole, and not to get caught up or bogged down in particular devices through
which they are stipulated. For, when one reads the fine print, the test of these
devices is apt to be that they deliver wanted principles and fail to deliver
unwanted ones, where it is on the whole both simpler and more economical
to stipulate the wanted principles in some other fashion.

I do not wish to carry this last point too far. For in the work of Gentzen
and of Prawitz in particular, using natural deduction techniques to stipulate
systems produces some rather deep theorems, increasing in important ways
our understanding and control of the systems in question. But here too sys-
tems may be fashioned to purpose, and generalized almost without limit. So
the natural man, bearing his “natural logic,” does not put in an appearance
in this work either.

Still, as a class, natural deduction systems are over-advertised and under-
motivated. Who among us, after all, has much improved his arguing capacity
by learning Copi’s (or anybody’s) rules? What he is likely to have improved
is his capacity to recognize the valid arguments and theses of Copi’s (or
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anybody’s) system. Do not misunderstand me; this is no small improvement.
For the modern approach to logic bites off theories whole. And attending to
the moves that can be made within theories is a way of becoming familiar
with such theories, whether they be theories of pure logic or with intended
application to some specific subject.

Below, the interplay between theories whole and move-making will prove
to be delicate. For I shall see theories, and R♯ in particular, as involving a
certain order of ideas, which one expects their logical machinery to reflect.
The delicate interplay, however, is not a function of the way in which a theory
is stipulated ; it is rather a function of the theory itself, both in the intuitive
purposes which it reflects and in the actual formal machinery which reflects,
adapts, and changes these purposes.

That our ultimate concern is with R♯ itself, and not with the mechanics
of its stipulation, gives us a certain attitude toward its natural deduction
formulations. Since I have little confidence in the independent motivational
work of this or that technical device used in stipulating such formulations—
and even less confidence in the formal evidence thus far adduced in favor of
the independent motivational worth of the devices thus far employed in ex-
isting natural deduction formulations of relevant logics and theories—I shall
introduce technical devices only insofar as they are rather directly reflected in
the actual formal machinery of R♯ itself, or in some simple extension thereof.

And, above all, that I am concerned here with natural deduction in R♯ at
all is motivated by the desire to exhibit formal demonstrations, or to make
it easy for the reader to exhibit formal demonstrations by filling in trivial
steps. For such purposes, as I have indicated, natural deduction is chiefly
prized among us, and is taught to the freshmen so that they may do their
exercises. For stipulating C as a natural deduction system is neither very
simple nor very clear. The simple thing to do is to write down axioms;
the clear thing to do is to characterize C (and afterwards CQ) semantically,
beginning with truth-tables.

But neither of these courses inculcates the kind of practical familiarity
that we need with C, and afterwards with CQ, in order to be at home with
this system. Indeed, once we hit CQ, the “clear” semantical understanding
tends to peter out, practically speaking. And even for C, however simple the
axiomatic method may be as a device for stipulating the theory, it tends not
to be very helpful in enabling us actually to find formal demonstrations, and
so to sort out accepted principles from rejected ones.

So the practical advantages of natural deduction are obvious after all. It
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is efficient. And it is certainly clear why it is efficient; by breaking com-
plex wholes into easily manipulable parts, and by guiding our operations
on parts by taggings and flaggings that inhibit impermissible manipulations,
they yield a psychological ease and freedom which enables us to settle in
minutes what we might otherwise have spent days trying to ascertain.

So, in revising [ENT] to produce a new natural deduction system for
R♯, our objectives will be fourfold. First, we wish above all to facilitate
deduction in R♯ and in related systems. Second, we wish to stick closely to
the formal machinery of R♯ itself. Third, we wish to maximize our capacity
to use whatever we already know about R and R♯, from whatever source we
may know it (including peeking ahead in this paper). Fourth, we wish our
analysis to apply smoothly, mutatis mutandis, to related logics and theories.

The fourth point, though we won’t dwell on it, will be automatically
fulfilled. Every relevant logic (e.g., among those considered in [ALI]) can be
given a natural deduction formulation, mutatis mutandis, along the lines set
out here. So can most irrelevant ones. And, while we are content here to
treat R♯ as a paradigmatic (regular) RQ-theory, exactly the same analysis
may be adapted to all other such theories.

We shall dwell on the first three points. We shall also relate the treatment
here to that of [ENT], and to other relevant studies of natural deduction. In
particular, we shall show how motivational points urged elsewhere show up
here. Or, in some cases, how and why they do not show up here.

There are also a number of points that we shall not dwell on (some of
which, however, may be commended to the reader for further reflection). We
are not interested here in any sort of independent formulation of R♯. R♯ was
already stipulated in the last section, and there is no need to stipulate it
again. Accordingly, there will be nothing like the syntactical completeness
proofs offered by Anderson in [SCQ] and by Anderson-Belnap in [ENT].
Given our guiding principles, such a proof would be redundant. Similarly,
since we are interested in maximizing the practical utility of our natural
deduction techniques, we have no stake in economizing on the number of
principles that are set out explicitly. While we shall set out enough principles
that the reader may, if he wishes, prove even the axioms of R from them, using
only a few of these principles, it is practically advantageous to make trivial
moves (e.g., by double negation or DeMorgan laws) swiftly and trivally.

In opting thus for practicality, some interesting subjects are either ob-
scured or left hanging. In its general outline, the present approach to natural
deduction in relevant logics is very much influenced by the general theory of
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fusion (as developed, e.g., in [ALI] and [NAR]). It is influenced in another
direction by Dunn’s Gentzenization of R+, which appears under his name in
[ENT]. And it is negatively influenced by some recent claims that, on its
“natural” motivation in [ENT], the system R is not quite right, in that there
are impermissible maneuvers in the natural deduction system of [ENT] that
should have been permitted, or permissible maneuvers that should have been
forbidden. (Cf., for example, the papers by Urquhart and by Pottinger in
[PRL].)

In fact, to the extent that we wish to attend at all to informal arguments
whose ground is in taggings and flaggings, the claims of R are as good as
any, and better than most. There is some point in attending; for [ENT]
tags formulas so as to keep track of the premisses of an argument, so as to
satisfy that relevance criterion which requires premisses actually to be used
in a relevant derivation of the conclusion of that argument. Intuitively, this
makes some sense, and we should attend to it, thus far. But, formally, what
counts as use is itself a function of the tagging and tracking devices employed.
I.e., it depends on the very system which this use-criterion is being used to
motivate. So either the whole system must be related to a looser and more
intuitive sense of use—and, for that matter, to other intuitive purposes that
one had in mind in constructing the system, like making the Laws of Thought
turn out true—or else the tracking procedure becomes viciously circular.

Now, with respect to the revisionist proposals at issue, they tend to accept
crippling motivational loss for the sake of dubious technical gain. Central the-
orems in the theory of negation—e.g., excluded middle, double negation, or
contraposition—are casually sacrificed for the sake of minor theorems about
what one can do with disjunctions under hypotheses, while the underlying
use-criterion becomes no clearer on the suggested revisions.

In fact, the real trouble lies with the [ENT] tagging techniques themselves.
For R, they are without systematic significance, except via a certain kind
of representation. (Algebraically, this representation, investigated in [IDP],
relates commutative monoids to semilattices.) And this representation fails
to extend in a natural way to accommodate the truth-functional connectives
of R, in particular ∨ and ∼. Proposals to change R rest on the insistence
that this representation, not the intended meaning of the connectives of R,
shall govern the stock of theorems of R.

It is better to do things the other way round. The use-criterion which R

obeys is systematically clear; it is not further clarified, but is rather made
more murky, by appeal to [ENT]-style scorekeeping devices. For this score-
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keeping becomes blatantly ad hoc just where the aforementioned represen-
tation becomes forced—i.e., on the truth-functions. But the representation
itself (despite the semantical significance claimed for it by Urquhart in [SRL])
never did motivate R; at best it motivated only fragments of R, and then only
as a device for keeping track of the use-criterion which R itself respects.

I prefer here, and in general, to let R, or any formal system worth taking
seriously, speak for itself. For there is a gap between informal intuition and
formal response thereto which just cannot be closed. Indeed, formal response
often takes the form, as Belnap points out, “A good thing to mean by so-and-
so is such-and-such.” Like all problems in ethics, value theory, ontology, and
other branches of philosophy concerned with the Form of the Good, such
claims must be weighed, both factually and normatively, for no single hot
blast of Pure or Practical Reason settles them.

And that means, consciously, giving up a certain portion of what one took
to be the original motivation of the relevant logics. That motivation rested
heavily on the claim that relevance, as a component of valid inference, has
now been accounted for. It was bad of C to leave it out ; but now that we
have E, and R, and their camp followers, it is now in. And that is good.

That we have E and crew is no doubt good; it has expanded our logi-
cal horizons. But the claim to have accounted for relevance will not, in an
objective sense, stand scrutiny. For, very weak necessary conditions for rele-
vance aside, the only sense in which [ENT] can be said to have characterized
relevance is via the use criterion. But if the use criterion is itself relative to
system—and in detailed formal fact it was never anything else—then it is not
implausible to hold that every system intended seriously as a logic satisfies
the use criterion, by its own lights.

In fact, I hold exactly that, with respect to the serious logics that I know
of. Does C, for example, have any trouble using A ∧ ∼A to get to B? Of
course not; there is a C-tautology in hand for the purpose. But this is not to
say, as some C-apologists have had it, that there is never any trouble about
getting from A ∧ ∼A to B. No R-tautology smooths that general passage,
for example.

Having thus viewed formal relevance as a system-dependent notion, not
a system-independent notion, we seem to be heading back to the paradigm
clash. But the way out is as before; we must view systems broadly, test them
against their own motivation, and see what they are good for, and what they
are not good for. Perhaps there is some good reason—other than the kind
of hankering after the old days that would support any similar cause, like,
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say, a Bourbon restoration—why people want to hold that A∧∼A relevantly
implies B. For that’s what C appears to be committed to, making it just
false that C has no concept of relevance. (But it leaves it arguable that C

has no concept of the ridiculous.)
So our policy in choosing a natural deduction formulation for R♯ will be

to set the R-principles which it respects out in the open, not to hide them
under a cloud of technique. Let us think a bit about what this involves for
any natural deduction system, of a familiar sort. Natural deduction typically
proceeds by making hypotheses, drawing conclusions from these hypotheses
according to specified rules, and then discharging (at least some of) the
hypotheses according to further rules.

So, in general, we can divide the proof procedures of natural deduction
systems into three categories: assumption procedures, which permit us to
introduce hypotheses; working rules, which enable us to draw conclusions
from the hypotheses; and discharge procedures, which rid of us the hypotheses
that we have temporarily entertained. (In addition, there may be further
procedures of a structural kind—e.g., a rule that allows us to reiterate a
formula already derived, without doing any further work. Such rules have
an auxiliary character, often associated with the kind of tracking devices
associated with the system in question.)

Among the procedures, the central ones are the working rules. And the
working rules tend to have systematic significance (often unlike the assump-
tion and discharge procedures) quite apart from the peculiarities of natural
deduction formulation. E.g., one expects a rule →E of modus ponens for
→ in a natural deduction formulation for R; nor does [ENT] disappoint us
on this score. But →E is already an admissible rule of R itself; indeed, as
above, it is standardly used to stipulate the set of theorems.

Now how is it, after all, that we can use →E after having made some
assumptions (in natural deduction), just as we use it in grinding out theorems
on no assumptions at all? How it is, in a certain sense, is that →E is the
kind of rule, for familiar systems, that is invariant under assumptions. We
are allowed, in short, to make that same move under assumptions that we
would have been allowed to make under no assumptions.

It is also clear that invariance under assumptions is a tricky business.
Evidently, to begin with, we don’t want all the admissible rules of R♯ to be
invariant under assumptions. Substitution is a familiar case in point. And,
in fact, it is sorting out the senses in which quantificational rules (e.g., of
universal generalization) are invariant under assumptions from the senses in
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which they are not so invariant which provides employment and delight to
makers of natural deduction systems for CQ and other logics. Such sorting,
indeed, provides mush motivation (I mean “much motivation,” but some ty-
pographical errors deserve to stand) for taggings and flaggings and trackings.

It might be thought that invariance under assumptions is a terrible busi-
ness to keep straight. But in practice, and systematically, it is not so terrible
at all. For, in the first place, deduction theorems for logical calculi give us
clear systematic counterparts to a given stage of a natural deduction demon-
stration. Typically, for example, if B has been deduced “naturally” from
hypotheses A1, ..., AN in a natural deduction formulation of a system T, we
shall have, as a theorem of T, A1 ∧ ...∧AN → B. (We waive for the moment
complications that attach to particular systems.)

Now, in the second place, replacement theorems for logical calculi tell us
what we can do with the consequents of provable conditionals. Especially,
saving the old antecedent, we can typically replace the consequent of a con-
ditional with what it provably implies; all that we need to do this, indeed, is
transitivity of provable implication.

So the soul of natural deduction, viewed systematically, lies in deduction
theorems and in replacement theorems. For many simple working rules (e.g.,
a rule ∧E that tells us that we can go from A ∧ B to A, or perhaps to
B if we’d rather), this is all that is involved. For, typically, A ∧ B → A
is a theorem of the system, an appropriate deduction theorem holds, and
provable implication is transitive. And this is all that one needs to justify
systematically the assertion that a rule ∧E is invariant under assumptions.

Thus, in the first place, how we should formulate R-theories in general,
and R♯ in particular, in natural deduction style is a function of the replace-
ment and deduction theorems that hold for R. We examine these matters in
turn.

First, the replacement theorem with which we are concerned deals with
replacement under provable implication. The weaker principle of replacement
of equivalents (often taken, I think erroneously, as the replacement theorem)
follows therefrom, but not conversely.

Second, the replacement theorem for implication is quite ordinary in rel-
evant logics and theories. (I except, however, some very weak theories which
Routley keeps pressing me to take seriously, on the contrary-to-fact claim
that counterfactual logics are interesting; even for such emaciated theories,
the main points here can be made, since the ordinary replacement theorem
is not needed in full strength for our immediate purposes; but for all theories
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based on R, and other standard relevant logics, that theorem holds in full
strength anyway. In particular, it holds for R♯ as formulated above, which is
all we need concern ourselves with here.)

Since the replacement theorem will be used here quite a lot, I shall recall
for the reader its standard formulation. Let A be any formula of L ♯. To
each occurrence of a subformula B in A, we assign a charge, either + or
−. this charge is assigned recursively, as follows. We begin with outermost
subformulas.

(i) A is positively charged in A

(ii) For each subformula of A of the form C∧D, C∨D, C ◦ D, B → C,
B ⊃ C, ∀XC, ∃XC, each of C, D have the same charge as the
given subformula

(iii) For each subformula of A of the form B → C, B ⊃ C, ∼B, the
charge on B is the opposite charge to that of the given subformula.

I follow Schütte in using A[B+], A[C−], and A[B+, C−] as shorthand for
formulas A with a specified positive occurrence of a formula B, with a spec-
ified negative occurrence of a formula C, or both, where A[D+], A[E−], and
A[D+, E−] specify the result of replacing B with D, C with E, or both in
the specified occurrence(s) in A. Then

Directed Replacement Theorem for R♯. Let B → C be a theorem of R♯.
Then if A[B+] is a theorem of R♯, so is A[C+]. If A[C−] is a theorem of R♯,
so is A[B−]. If A[B+, C−] is a theorem of R♯, so is A[C+, B−].

The proof of the theorem for R♯ proceeds on familiar lines (cf. [FML] or
[ENT]) and is omitted. It may be generalized in obvious ways, of which only
the replacement of equivalents is worth noting.

Undirected Replacement Theorem for R♯. Let B ↔ C be a theorem of
R♯. Then any replacement of B with C in a theorem of R♯ yields a theorem
of R♯ yields a theorem of R♯. (Proof immediate from the last theorem and
elementary properties of ↔.)

Before leaving the replacement theorems, 2 notational points are in order.
First, we characterized charges with respect to defined as well as primitive
logical particles. Strictly speaking, this characterization only applies to prim-
itive particles, though it works out as indicated for defined ones. Second, our
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use of brackets in the replacement notation above is temporary; it is marked
by the fact that notation for formulas and charges occurs inside the brack-
ets. But the ordinary use of brackets, and substitution notation, continues
here as before to mark the proper substitution for a variable X in a formula
A[X ] of a term T . This use is also notationally distinguished, and follows
the [IMM] convention already set down.

Let us next examine the R♯ form of the other chief pillar of natural deduc-
tion, namely, the deduction theorem. This theorem might read, ordinarily,
“If one can deduce B from A1, ..., An, then one can deduce An → B from
A1, ..., An−1.” So put, however, the theorem is subject to two ambiguities.
One of them, pointed out in [ENT], concerns the meaning of a “deduction
from hypotheses.” What, in the first place, counts as a deduction? And how,
in the second place, must the hypotheses enter into that deduction so that
B is deduced from those hypotheses?

The second ambiguity is pointed out in [NAR]. When one has more than
one hypothesis, how are multiple hypotheses to be compounded in charac-
terizing deduction from those hypotheses? Put otherwise, what does the
deducibility relation relate? Is it an n+ 1-ary relation, for variable n? Or is
it a binary relation, between the hypotheses somehow collected together and
what may be concluded from this collection? If the latter, what is the nature
of the collecting process? Does one just make a list—i.e., form a sequence—
in which, e.g., the same hypothesis may occur repeatedly in different places?
If so, does one care about the order in which the hypotheses are given? Or
does one just collect the hypotheses into a set?

To be sure, ordinary precise descriptions of “deduction from hypotheses”
resolve these ambiguities. Indeed, the ambiguities are resolved so crisply that
vested interests arise in defense of the position that there were no ambiguities
to begin with; that we all “know” what is properly to count as deductions
from hypotheses.

Again, having undergone successful indoctrination is not to be confused
with having thought clearly. The gap between informal intuition and its for-
mal realization yawns once more, and it is hard to stile a yawn in the presence
of tired arguments that there is only one way to fill the gap. Or that, even
if it is not better to fill the gap in the customary way, whatever disturbs our
“conceptual scheme” least is nonetheless preferable to fresh thought. There
is something, as Belnap and Smart point out, to Quine’s concern for “mini-
mum mutilation.” But, over the years, I personally have lost my appetite for
that concern, especially where matters logical (“central” to the conceptual
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scheme, and hence “highly immune” to revision) are involved. For the con-
cern tends to confuse recent formalizing proposals—e.g., those made by the
most eminent logicians, and adopted in the most popular texts—with the
logical core of the conceptual scheme itself. Thus, even if one is conservative
on general questions of conceptual revision, one ought not to confuse attach-
ment to a received scheme with attachment to particular points of formal
engineering. And, beyond that, I suspect that only a general ideological con-
servatism motivates a conservative outlook on conceptual issues anyway. It is
a Stone Age mentality, most appropriate to Stone Age culture, which gives a
priori preference to those ideas and notions that are entrenched. Respect for
the Wisdom of the Ages is fine; respect for the Folly of the Ages is not. But
there is, I suspect, no general principle—and, a fortiori, no fussy formalizing
principle—that suffices to tell the one from the other.

So let us return to the gap between a loose informal statement of the
deduction theorem, with its evident ambiguities, and the concrete proposals
that have been made to fill that gap. And let us concentrate on the second
ambiguity, for the moment. It is convenient, and I am here content, to take
the deducibility relation as a binary relation between premisses, somehow
collected, and a conclusion. But I am not content to suppose that there is
some preferred collecting process, which is all-ways faithful to our under-
standing of the definite article when we hold that a valid argument is one
whose conclusion follows from the premisses. Accordingly, I shall speak here,
as I did in [NAR], of a bunch of premisses, and I shall not assume that there
is any preferred way of bunching (e.g., by set formation).

Rather, in letting a system speak for itself, we should ask what devices
are (or ought to be) offered by that system for bunching statements together,
and why these devices exist for that purpose in the system in question. In
relevant logics, and in R particularly, answering this question is facilitated by
the presence of bunching connectives, which can be adapted exactly to this
purpose of collecting premisses together.

In R, in particular, there are two bunching connectives with clear motiva-
tional import. They are the ordinary conjunction ∧ and the fusion connective
◦. (Motivation for the latter can be found in many places; e.g., in [NAR]
and in [ENT].) These connectives, moreover, have distinct motivational im-
portance. ∧ is intended in the familiar extensional sense, and semantic in-
vestigations into R (e.g., [SEI], [NAR]) indicate that this is exactly the sense
which ∧ has in R.

Saying that ∧ is extensional suggests that ◦ is “intensional,” motivating
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its classification as an “intensional conjunction” in a number of places. I
now resist this classification, which I think misleading, for reasons set out
in [NAR] and in [ER]. In particular, “intensional” suggests a preoccupation
with meanings, which is not being here essayed. Rather, let us be content on
this point to follow eminent philosophical authority by attending to the use
of the notion in question.

Attention to use is a formal matter as much as it is an informal matter.
While we devise formal systems on a certain intuitive input, our systems
very rapidly outrun this input. It is well that they should; formal systems,
like natural laws, are most useful to us when they broaden our perspective
beyond a simple recording of the data with which we began. We record, in
either case, more than we know. And, to discover all that is involved in the
formalizing process—not only in terms of intuitive input but also in terms of
practical output—the hard work of getting clear on the systematic import of
the components of a formal system is by all means necessary.

So ◦ and ∧ work differently in R. They correspond, respectively, to a
tighter and a looser way to bunch premisses in argument. Specifically, ◦
bunches premisses in a way that inhibits the unbunching of these premisses;
if B follows from premisses bunched by ◦ in the system R, then all of these
premisses have been used in a relevantly valid way for the derivation of B.
On the other hand, if the premisses have only been bunched by the looser
connective ∧, then some of the premisses may well have been superfluous for
the derivation in question; i.e., we can unbunch, and still derive.

In particular, this means in R that B follows from A ∧ B, but that it
does not follow in general from A ◦ B. And we are now returned to the
former of our concerns above. What is a deduction from certain premisses?
On R-insights, this question can be reduced to the question of the validity
of a certain implication. For, having bunched our premisses into a formula
A, it is held in R that B is deducible from premisses so bunched just in case
A → B is a theorem of R. For that matter, it is so held in C, in J, and in
almost every other reasonable system, save that the bunching principles are
different.

Much more needs to be said on this topic, but it is not particularly in
place to say it here. Suffice it, accordingly, to remark that the connective
→ of R is correlated (in a familiar way) with the bunching operator ◦. It
is not correlated with the looser operator ∧ (though we might, if we please,
introduce a connective of an implicational kind corresponding to ∧ as→ does
to ◦; depending on one’s attitude toward negation, this connective might
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be of an intuitionist kind, as it is in Pottinger’s studies of relevant natural
deduction; or it might be outright (semantic) material implication, on lines
explored by Routley and me and Urquhart).

We are not going to pursue the last parenthetical suggestions, for R♯

itself will provide us with all the kinds of implication—relevant, roughly
intuitionist, and material—that we need for our immediate investigations.
Having sorted out the fact that → goes with ◦, the deduction theorem which
is wanted is reflected evidently in the following provable R-equivalence:

◦1. A ◦ B → C ↔ A →. B → C

For if C is derivable from the fused premisses A, B, then and only then is
B → C derivable from A.

Also important here will be the other principal R-properties of fusion,
which are reflected in the following theses:

◦2. A ◦ B ↔ B ◦ A

◦3. A ◦ (B ◦ C) ↔ (A ◦ B) ◦ C

◦4. A → A ◦ A

Since we also have ∧ as a bunching connective, also licensing deductions from
hypotheses in a certain sense (even though not directly tied to the deduction
theorem for →), we note for comparison the following theses.

∧1. A ∧B → A, A ∧B → B

∧2. A ∧B ↔ B ∧A

∧3. A ∧ (B ∧ C) ↔ (A ∧B) ∧C

∧4. A ↔ A ∧A

Relating our two bunching connectives is the thesis

∧◦. A ∧B → A ◦ B

∧◦ may seem to the reader to refute our thesis that ∧ is looser than ◦.
But it’s just a matter of perspective; by the Directed Replacement Theorem,
whatever we might have derived from the tight bunch A ◦ B we could have
derived the loose bunch A ∧B.

Having got thus far, let us, without further ado, begin to cast R, and
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afterwards R♯, in such a form that the practical advantages of the natural
deduction technique become available. To begin with, let us introduce

(i) A ≤ B

as an abbreviation for

(ii) A → B is a theorem of R (or other system)

Since it is useful to express every theorem of R in the relational form (i), and
since not every theorem is of the preferred form A → B of (ii), it is useful to
introduce into the language a sentential constant t, subject to the following
additional axiom scheme.

t◦. t ◦ A ↔ A

The methods of [ENT] are easily adapted to show that t may be added
conservatively to R, RQ, R♯, etc. In fact, we shall have only passing use for
a new constant t in R♯, since we shall see that the formula 0 = 0 will serve
the role of this constant for all purposes that we are interested in here. But
that needs to be shown, and meanwhile it is convenient to suppose that a
primitive t is in the morphology (subject of course to t◦ and all other axioms
and rules). Strictly speaking, we should follow [ENT] and distinguish systems
Rt, RQt, R♯t with primitive t from systems R, RQ, R♯ without it; indeed, we
should distinguish a language L ♯t from our language L ♯ that doesn’t have
primitive t. In fact, given our general conservative extension result in these
circumstances, that degree of nice distinction is hardly necessary. What we
shall do instead is to use primitive t when convenient, switching over to a t

defined as 0 = 0 once we have shown that t◦ holds for this defined t in R♯.
The utility of t springs immediately from the following theorem scheme.

t→. t → A ↔ A

whence it is clear that we can express the R-theoremhood of any formula B,
in the form

(iii) t ≤ B

Let us now get ourselves into a natural deduction frame of mind. We may
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think, in general, of A as a formula compounded from subformulas A1, ..., An

by ◦, ∧, and perhaps other connectives. In particular, when the compounding
connectives are just ◦ and ∧, we are dealing with what, motivationally, is a
bunch of premisses.

Note two facts about this compounding. First, the bunch depends not
merely on A1, ..., An but on the character of the compounding. I.e., we may
compound for a while by ∧, compound again by ◦ (including some com-
ponents already compounded by ∧), compound again by ∧, and so forth.
Indeed, exactly this idea underlines the ingenious Dunn Gentzenization of
R+ that one finds in [ENT].

Second, however, the end result of this compounding is not necessarily
that complex after all. For we may reduce it in various ways, using the
principles ◦2–◦4, ∧1–∧4, and (in context) applications of the replacement
theorems. In particular, any bunched formula A is equivalent to one that
one gets by commuting or associating ◦ components, or by commuting, asso-
ciating, or dropping idempotents among ∧ components. So we can afford to
be a little bit loose (as we shall be) in permuting and otherwise manipulating
our bunched components. (We cannot, however, afford to be too loose, for
only restricted distribution principles interrelate ∧ and ◦.)

Being in a natural deduction frame of mind, however, we may now un-
derstand an assertion

(i) A ≤ B

as a claim that B is deducible from the premisses A1, ..., An bunched in A,
given that they are bunched in exactly the A way (or in some equivalent
way). And we note in particular that whenever (i) holds, and A is bunched
under ◦ and ∧ from A1, ..., An, then the following also holds:

(iv) A1 ∧ ... ∧An ≤ B

no matter how many iterations of the Ai there are in the bunch A, or how
intricate the bunching becomes. (For proof, use directed replacement and ∧◦
to eliminate all bunching occurrences of ◦ in favor of ∧, and then rearrange
and drop idempotents by ∧2–∧4). Note moreover that we can, by ∧1, add
“new” conjuncts Cj indefinitely to the Ai in (iv).)

That (i) can be traded in for (iv) is, in a sense, the classical residue of
the relevant theory of deducibility. What it means systematically in R is that
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any deduction from hypotheses may be recorded in the form (iv). Often, in
practice, concentrating on this classical residue of the relevant theory is a
good thing; why should we bother with intricate and iterated compounding
under both ∧ and ◦ when we can reduce all our compounding to the form
(iv)? Sometimes, however, such concentration is a bad thing. For the passage
from (i) to (iv) is essentially an information-losing passage. Recall that com-
pounding under ◦ required us to use all of the compounded components in
a relevant way (as R understands relevance), whereas compounding under ∧
imposes no such requirement. In particular, when we trade in a ◦-compound
for an ∧-compound, we cannot make any use of the form of the deduction
theorem embedded in ◦1 to “discharge” a hypothesis An, in order to assert
a relevant conditional An → B under the remaining hypotheses.

So a relevant theory of natural deduction must make room for both ◦-
compounding and ∧-compounding of hypotheses. In fact, this has been at
least implicit, and often explicit, in relevant logics from the start, as the
careful reader of [ENT] will have ascertained. And it is a defect of the [ENT]
approach to relevant natural deduction, which has at times confounded both
friend and foe of the relevant enterprise in general, that its set-theoretical
representation of ◦ via tagging devices biases this approach in favor of ◦ and
against ∧.

Again and again it has turned out to be the case that the relevant log-
ics of [ENT] are more nearly classical, in more ways than one would have
thought, than one would have supposed from some of the polemic which was
introduced to motivate them. The new insights, to be sure, are the more pre-
cious; but old insights are everywhere incorporated, not least in the ∧ vs. ◦
business that we have just been looking at. For it was, in fact, a bit of a tour
de force for [ENT] to have concentrated on representing ◦ set-theoretically,
via its natural deduction techniques, when it is the more familiar connec-
tive ∧ (and ∨, for that matter), with which we might have expected to have
associated straightforward set-theoretical operations.

Now what happens, to put it roughly, is the following. Semantical tech-
niques (e.g., those of [SEI]) do associate ∩, ∪ respectively with ∨, ∧. But nat-
ural deduction techniques as in [ENT], given a semantical cast by Urquhart
in [SRL] associate ∪ rather with ◦. One wants to associate ∩ with ∧ never-
theless, as Urquhart in effect does. But this leaves ∨ out in the cold, so to
speak; it yearns after its old friend ∪, but ∪ is already going steady with ◦.
Climbing a set-theoretical level, this can be partially set to rights; ∪ becomes
a bigamist, living with ◦ downstairs and with ∨ upstairs.
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But bigamy, though exciting, is rarely satisfactory. ∪, by dividing its time
between ◦ and ∨, treats neither of them really well in terms of fundamental
relevant motivation. In particular, the duality between ∧ and ∨ is upset;
since ∼, as the negation connective of the systems of [ENT], rests heavily
on this duality, its theory becomes maximally mutilated. And so one hears
proposals, finally, to change the relevant theory of disjunction, and to throw
out the relevant theory of negation for some more familiar sort (i.e., roughly
intuitionist or semantically classical) on what are held to be fundamental
relevant grounds.

I shall not identify the authors of these proposals, since one wishes to
give them the opportunity to think better of them. But it is, at any rate,
nonsense to think that any fundamental relevant motivation is here involved.
In particular, no topic in the relevant logics has been more often or more
thoroughly motivated, from a large number of points of view, than their
theory of negation. If something has got to go, it is scarcely the theory
of ∼. Nor, for that matter, is it the theory of ∧ and ∨. Left for possible
revision are the theory of ◦ (which is anyway system-dependent, and which
is inextricably linked via deduction-theorem considerations with the theory
of →) and of relevant implication itself.

Now, personally, I do not see the theory of ◦ as in any sense univocally
motivated. So I do not attach any particular importance to the Anderson-
Belnap-Urquhart way of representing that theory. And I find it positively
perverse to suppose that this representation, designed to make formal sense
of → (and, by extension, of ◦), as as a test of its adequacy its extendibility
to make the same sort of sense of ∧, ∨, ∼. Once ◦ has been tied to ∪, in the
[ENT]-style marriage of formal convenience, all bets are off as to what ∨, or
even ∧, should be tied to.

Since I have not wished to go into formal details in the last few paragraphs
—essentially, they are spelled out in [IDP]—I must acknowledge a certain
degree of historical misrepresentation. Both the Anderson-Belnap analysis
of relevant natural deduction and the Urquhart semantical approach based
on it have been a tremendous boon to the relevant enterprise in general. Nor
did anyone associated with either project, so far as I know, think of himself
as using ∪ to do the work of ◦. But that, I think, is what both projects
amount to, accounting alike for their successes and their limitations. And,
both systematically and semantically, I think it better to let ◦ do the work
of ◦; for it is ◦ that has systematic significance, which we might as well
attack directly as to take as set-theoretical code for something else, and
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which, decoded, is going to come to the same thing anyway. And that frees
∧ to do its own work, which, if we choose, we can more naturally take as
set-theoretical work, without fear that we are thereby lousing up the code.

These, then, are further reasons why we have cut loose from the [ENT]
techniques and are concentrating on letting R speak for itself. In the end,
however, we shall have something that looks very much like the [ENT] tech-
nique anyway, especially for R (though, mutatis mutandis, for other systems
as well), while retaining at all points a firm systematic base in R itself.

Our basic “natural deduction” statements will remain firmly of the form

(i) A ≤ B

But we shall dress up statements (i) so that they look like proper natural
deduction statements, by converting A itself into a “tag” for the formula
B. And, as a tag, A will work (near enough) like the sets of relevance
numerals which function as tags in [ENT]. But since, in the end, A remains
firmly a (single) formula, we can replace it in accordance with the directed
replacement theorem, giving us a freedom of tag manipulation not available
when tags are playing a mere auxiliary role.

To strengthen the useful psychological impression that we are dealing
straightforwardly with tagged formulas B, and to avoid the wasteful and
perhaps confusing need to write out formulas A that appear in (i) in full, we
shall use Greek letters ‘α,’ ‘β,’ etc., as an alternative notation involves no
change. Practically, it has an abbreviatory character. Thus, in writing out
actual “natural deductions,” we make use of statements of the form

(v) α = A

Statements (v) are to be understood as asserting that α is exactly the same
formula as A. I.e., the identity in question is not any kind of provable equiv-
alence, but is actual identity of the formulas being referred to. Naturally
context will prevent any confusion of the (metatheoretic) statements (v) with
our use of the formal identity = of the system R♯.

Practically, (v) just records an abbreviation. Psychologically, however,
we may regard a statement (v) as having introduced A “by hypothesis.” α,
on this understanding, is just a tag, which will serve the purpose in a “natural
deduction” of helping us to keep track of which “conclusions” depend upon
this “hypothesis” A. Really, however, this is just notational manipulation.
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For, on our abstract understanding of formal systems generally, formulas
themselves are taken as abstract objects, and it is a matter of complete
indifference whether ‘α’ or ‘A’ or ‘0 = 0’ is being used as a piece of notation
in English to refer to some such object. As pieces of notation, at any rate, we
may accordingly interchange the left and the right sides of (v) whenever it is
convenient, in any subsequent statement (subject, of course, to the proviso
that we do not introduce the same Greek letter in the course of a derivation
to name two distinct formulas).

Statements (v), then, will play here the role of assumption procedures in
customary natural deduction systems. Note that, in view of the theorem
scheme A → A of R, we may pass immediately on what has been said from
a statement (v) to

(vi) α ≤ A

We shall ordinarily leave such steps tacit, citing merely a step (v) to justify
whatever use we may make rather of (vi).

Assumption procedures, it was held above, are one of the three main
ingredients of natural deduction systems. I turn now to the third of these
ingredients, namely discharge procedures. Or rather to the most salient
discharge procedure, namely a rule →I which allows us to derive a conclusion
A → B by “assuming” A and “showing” B.

Suppose, then, that we have reached a statement

(vii) Γ ◦ A ≤ B

where Γ is some formula (perhaps in compounded Greek disguise and perhaps
just, notationally, in solid, stolid Roman). In view of ◦1, we may conclude
immediately (by the “relevant” “deduction theorem”)

(viii) Γ ≤ A → B

and we may append the notation →I to justify the move.
More likely, not only Γ but also A will be in Greek disguise. I.e., we shall

have reached, from a “hypothesis” step (v), a “conclusion”

(ix) Γ ◦ α ≤ B

Then from (v) and (ix) together, we may conclude, by a “two premiss rule”
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→I, once more the statement (viii).
Now note that, in this latter incarnation, we have indeed reached a famil-

iar (relevant) natural deduction pattern. We assumed A, in step (v), with
tag α. From this assumption, we got in step (ix) the formula B, “tagged”
with α to indicate dependence on the hypothesis (v), where α is compounded
in a tag Γ ◦ α such that Γ keeps track of the “other assumptions” used in
deriving B. So we may discharge the hypothesis A, drop the tag α that
kept track of that hypothesis, and conclude A → B, tagged with the “other
assumptions” Γ on which its derivation thus far depends.

Next let us turn to working rules. They constitute, we said above, the
heart of the natural deduction procedure. Moreover, they may be linked
formally to the directed replacement theorem, which takes the necessary
heed of those rules which may be applied invariantly under assumptions.
But this link suffers two possible complications. First, we must distinguish
between 1-premiss rules and multi-premiss rules. Second, we must attend to
those complications which are occasioned by the proper care and feeding of
quantifiers.

Let us begin where we are clearest, by dealing with simple 1-premiss
rules into which quantificational complexities do not enter. ∧E above is an
example. Such rules are normally straight replacement, involving (usually)
nothing more complicated than transitivity of the provable implication ≤.
Psychologically, however, we may look upon such rules as permitting some
manipulation on a tagged formula B. Thus, viewed generally, whenever we
are given

(x) Γ ≤ B

when we have established as a theorem of R (or RQ or R♯) that

(xi) B ≤ C

we may conclude by the “one premiss rule” (xi) from the “tagged formula”
(x) the following:

(xii) Γ ≤ C

Psychologically, (xii) is also a “tagged formula,” with C bearing the same
“tag” Γ as does its “premiss” B in (x).

Australasian Journal of Logic (18:5) 2021, Article no. 4



191

In order to give the reader a good stock of these simple “one premiss
rules,” it suffices to write down a number of the provable implications and
equivalences of R and of RQ. For this purpose, as we use A ≤ B to indicate
the R-provability of A → B, let us use A ≃ B to indicate the R-provability
of A ↔ B. Evidently, when a statement (xi) is of the form B ≃ C, it licenses
an “inference” (xi) from (xii) to (x) as well as from (x) to (xii). Moreover,
we shall attach “natural deduction” style names to many of these provable
implications, to encourage the reader further to identify them psychologically
with inferences from (x) to (xii). I.e., we shall refer to theses ∧1 above as
∧E, to foster the illusion that these constitute a rule for the elimination of
conjunctions in the course of a deduction. Similarly, we shall refer to ∧2 as
C∧, ∧3 as A∧, and ∧4 as ID∧, to remind the reader that inferences depend-
ing on the commutativity, associativity, or idempotence of ∧ are respectively
permitted. Decoding other mnemonics is left to the reader’s good sense. He
may begin by finding grounds for our subsequent habit of referring to ◦2
as C◦, ◦3 as A◦, and to the square-increasing principle ◦4 which says that
A ≤ A ◦ A as SQ◦. He already knows, of course, why we refer to the prin-
ciple ◦1, sometimes in Greek disguise, as →I. He may practice his decoding
further on the following:

∨I. A ≤ A ∨B

B ≤ A ∨B

∼∼EI. ∼∼A ≃ A

D∧∨. A ∧ (B ∨C) ≃ A ∧B ∨A ∧ C

D∨∧. A ∨ (B ∧C) ≃ (A ∨B) ∧ (A ∨ C)

C∨. A ∨B ≃ B ∨A

A∨. A ∨ (B ∨C) ≃ (A ∨B) ∨ C

ID∨. A ∨A ≃ A

D∼∧. ∼(A ∧B) ≃ ∼A ∨ ∼B

D∼∨. ∼(A ∨B) ≃ ∼A ∧ ∼B

D→∧. A → B ∧C ≃ (A → B) ∧ (A → C)

D∨→. A ∨B → C ≃ (A → C) ∧ (B → C)

SF→. A → B ≤ B → C →. A → C

PF→. B → C ≤ A → B →. A → C

MP→. A ≤ A → B → B

M→∧. A ∧ (A → B) ≤ B
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RDA. A → ∼A ≤ ∼A

RDB. A → B ∧∼B ≤ ∼A

RDC. A → B ◦ ∼B ≤ ∼A

D→∼. A → ∼B ≤ B → ∼A

D→→. A →. B → C ≤ A → B →. A → C

W→. A →. A → B ≤ A → B

D◦∧. A ◦ B ∧ C ≤ (A ◦ B) ∧ (A ◦ C)

R∧◦. A ∧B ≤ A ◦ B

R→⊃. A → B ≤ A ⊃ B

In addition, we retain for the t-systems the principles t◦, t→. These lead
quickly to

tID. t ≤ A → A

and in general t◦, wherever B is a theorem of the system in question

tTR. t ≤ B

Moreover, defining f generally as ∼t, we have also

∼EIf . A → f ≃ ∼A

∼EIf functions, in Curry’s terminology, as a “quasi-definition” of ∼ here in
terms of → and f . Moreover, from left to right it may be assimilated to the
“reductio” principles RDA–RDC.

This is but a sampling of useful “natural deduction rules,” under our
stated policy, for R, RQ, R♯. To prepare ourselves for quantificational com-
plications, note that the following “rules” hold without restriction.

∀E. ∀XA[X] ≤ A[T ]

∃I. A[T ] ≤ ∃XA[X]

D∀∧. ∀X(A ∧B) ≃ ∀XA ∧ ∀XB

D∃∨. ∃X(A ∨B) ≃ ∃XA ∨ ∃XB

D◦∀. ∀XA ◦ ∀XB ≤ ∀X(A ◦ B)

D∀→. ∀X(A → B) ≤ ∀XA → ∀XB

R→∃. ∀X(A → B) ≤ ∃XA → ∃XB
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Q∀∃. ∼∀XB ≃ ∃X∼B

Q∃∀. ∼∃XB ≃ ∀X∼B

In ∀E, ∃I, T is any term properly substituted for X in A[X ].
Let us now think about the quantifier problems, while still dwelling on

1-premiss rules. These problems arise, principally, because the question
whether the application of a rule is invariant under hypotheses is sensitive to
questions of freedom and bondage. (In certain respects, this means that it
is a notational question, since there is a certain equivocation in allowing the
same variable X to function both as a free variable and as a bound variable.
It is convenient to permit such equivocation here, and so we do.) Accordingly,
we should note the following principles dealing with vacuous quantification
and confinement in RQ and R♯. Assume, for the following theses, that X is
not free in A.

V Q∀. ∀XA ≃ A

V Q∃. ∃XA ≃ A

CF∧. ∀X(A ∧B) ≃ A ∧ ∀XB

∃X(A ∧B) ≃ A ∧ ∃XB

CF∨. ∀X(A ∨B) ≃ A ∨ ∀XB

∃X(A ∨B) ≃ A ∨ ∃XB

CF◦. A ◦ ∀XB ≤ ∀X(A ◦ B)

A ◦ ∃XB ≃ ∃X(A ◦ B)

CF→. ∀X(A → B) ≃ A → ∀XB

∀X(B → A) ≃ ∃XB → A

∃X(A → B) ≤ A → ∃XB

∃X(B → A) ≤ ∀XB → A

Bound variables, too, may be rewritten at will. I.e., letting A, A′ be
alphabetic variants, we have

RBV . A ≃ A′

Thus far, none of our 1-premiss “quantificational rules” are sensitive to ques-
tions of invariance under assumptions. Thus, e.g., we are always free, given
a “tagged formula”
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(xiii) Γ ≤ ∀XA[X]

to conclude without restriction

(xiv) Γ ≤ A[T ]

for any term T by ∀E. For, from the systematic viewpoint of R or R♯, this
is just another application of the replacement theorem. But, psychologically,
we apply a “rule” ∀E.

What, however, of the converse inference? I.e., given

(xv) Γ ≤ A[X]

under what circumstances can we conclude (xiii)?
Again, we make use of our psychological interpretation of (xv) as a tagged

formula A[X ], with tag Γ keeping track of dependence relations, combined
with our actual interpretation of (xv) as stating a certain provable implica-
tion. Psychologically, the hypotheses which Γ tracks cannot contain free X ,
if we are to generalize legitimately on A[X ] to get ∀XA[X ]. For a rule of
universal generalization is not invariant under hypotheses that contain free
X .

Actually, however, Γ is not merely a tag keeping track of hypotheses; it is
the hypotheses, perhaps in Greek disguise as a result of steps (v). What (xv)
says is that Γ → A[X ] is itself a theorem of the relevant system in question.
But universal generalization on theorems permits us to infer ∀X(Γ → A[X ])
as a further theorem. And then, if X is not free in Γ, so also is Γ → ∀XA[X ]
a theorem, by CF→. I.e., (xiii) holds.

So, in short, the inference from (xv) to (xiii) is O.K. just in case X is
not free in the “tag” Γ on the “tagged formula” A[X ]. And this restriction
makes perfectly good sense, not only actually but psychologically. In prac-
tice, where a tag is generally in Greek, it suffices to check through Greek
components of the tag (e.g., α) introduced by a “hypothesis” (e.g., α = A)
by checking mechanically whether X occurs free in the formulas (e.g., A)
which these Greek components abbreviate. (Alternatively, we might keep a
running record of the free variables in our hypotheses by writing our tags in
the form α(X1, ..., Xn), where X1, ..., Xn are the variables free in the formula
A with which α is associated by a “hypothesis” step (v). Just checking back,
however, tends to be simpler.)
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Let us make a list of some useful “natural deduction” rules, in addition
to those immediately motivated by directed replacement above, that depend
on the ideas just presented. We assume, to state these rules, that X is free
neither in the “tag” Γ nor in the formula A.

∀I. Γ ≤ B ⇒ Γ ≤ ∀XB

C∀I. Γ ≤ A ∨B ⇒ Γ ≤ A ∨ ∀XB

C∀∀. Γ ≤ B → C ⇒ Γ ≤ ∀XB → ∀XC

C∃∃. Γ ≤ B → C ⇒ Γ ≤ ∃XB → ∃XC

R∀I. Γ ≤ A → B ⇒ Γ ≤ A → ∀XB

R∃E. Γ ≤ B → A ⇒ Γ ≤ ∃XB → A

Note that, in contrast to our previous “rules” like ∧E, ∀E, which were the-
orems disguised as rules, the six rules above are genuine admissible rules of
RQ, R♯, and other theories. I.e., each of them states that from the theo-
remhood of a formula of a certain form, indicated schematically on the left
hand side of the main ⇒, we may conclude that a related formula is also a
theorem, indicated schematically on the right.

We have now provided a decent inventory of 1-premiss rules. Note that
this inventory is intended for use; the reader may remember what he pleases
from it (most of which, no doubt, will already be familiar to him from other
contexts). From a conceptual viewpoint, nothing in the inventory is neces-
sary; R♯ was already completely characterized by its axioms and rules above,
and those principles alone suffice to derive all its theorems. We are not, after
all, justifying R here, but instructing the reader how best to get on in it.
And, in fact, natural deduction systems are often caught between their use
to “justify” certain insights and their practical use in developing the con-
sequence of these insights. But this kind of concern for motivation often
interferes with practicality; thus we are treated to distinctions between “un-
abbreviated derivations” in natural deduction systems, which rest only on
the rules which are supposed to reflect the insights, and “abbreviated deriva-
tions,” which yield short-cut procedures on how to get on. My view is that,
except for very limited and specific purposes, even introducing the notion
of an “unabbreviated derivation” in a natural deduction system is a waste
of time. (Such purposes, e.g., might lie in proving “cut” or “normalization”
theorems, which have various kinds of metatheoretic import.) Generally,
however, we expect makers of natural deduction systems to have a proof up
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the sleeve that their systems are sound and complete relative to something
else—semantic, syntactic, or both—and it is an insult to our collective intel-
ligence to suppose that the characterization of “unabbreviated derivation”
goes much further than that enough principles have been stated to justify
the proof up the sleeve. So there is little point, I think, in having the proof
up the sleeve at all. Let it be on the table, and let every derivation be an
“abbreviated derivation,” to the limit of what the deriver knows about the
system in question.

To push this point just a bit further, there has been, in recent years, a
certain trend away from the inculcation of systematic familiarity with formal
systems. One rushes off to prove metatheorems about the systems instead.
In part, I agree with this trend; we need to see theories whole, and not to get
bogged down in their devices. But, in another part, I think it unfortunate.
While the metatheorems, I agree, are the important theorems, by and large,
we are not too likely to come upon them if we stipulate our systems princi-
pally with the production of old metatheorems in mind. Nor are we too likely
to be able to apply our systems to real-life questions without considerable
working knowledge of how to get about in them. And thus, e.g., I agree with
Scott’s remarks in [AML], to the effect that too much absorption in projects
like proving completeness is logically unhealthy. If we know that a system is
complete, there is little benefit in pretending to discover it (or, even worse,
pretending not to know it). Let us hasten, rather, to use what we know, for
the point of inquiry is to find out what we don’t know.

We used directed replacement, mainly, to get our 1-premiss rules. Given
a “tagged formula” Γ ≤ A, and a theorem A ≤ B masquerading as a rule, we
derive by directed replacement the “tagged formula” Γ ≤ B. What happens
really is that we are replacing a positively charged A with a positively charged
B, in accordance with directed replacement. But what happens psychologi-
cally is that we are just inferring B from A, in accordance with the “rule,”
and keeping the tag constant to show that dependence on the hypotheses
hasn’t changed.

Directed replacement, however, works just as well in reverse, a fact which
we put to some slight use above. In reverse, it is a principle of “tag replace-
ment.” E.g., suppose that we are given

(xvi) ∆ ≤ B

while having otherwise established (perhaps on elementary properties of sim-
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ple connectives like ◦, ∧, ∨)

(xvii) Γ ≤ ∆

Then by directed replacement of the negatively charged ∆ in (xvi), we are
entitled to conclude by (xvii)

(xviii) Γ ≤ B

Really, this is just another passage by transitivity of ≤. Psychologically,
however, moving from (xvi) to (xviii) is just changing the tag on the “tagged
formula” B. Since tags are used to keep track of hypotheses—in practice,
of bunched hypotheses—tag-changing means that B would still have been
derivable under certain permutations of hypothesis-bunching, or even per-
haps under some significant change in the hypotheses themselves.

Since our favored bunching connectives ∧, ◦ are awash with nice prop-
erties (commutativity, associativity, etc.) in R, we can, as essentially noted
above, re-tag quite liberally. (In fact, we shall in practice refrain from re-
tagging, trusting the reader to supply an admissible re-arrangement by com-
mutativity, etc., when he sees one.) For weaker relevant logics, to the con-
trary, close attention to “re-tagging” principles is in order. For, on the line of
[ALI] (and of Maksimova’s independent work to the same effect), it is exactly
with respect to the re-tagging principles that are admitted that relevant log-
ics differ. (Cf. [NAR] for further motivation on this point.) Indeed, careful
attention on this point will lead to exactly the kinds of result—cut theorems
and the like—which are eschewed here. For, as Pascal rightly noted, to have
arranged things differently is not necessarily to have said the same thing. Or,
we add, to have drawn the same conclusions.

In R, where tag manipulation is normally so simple that explicit mention
of the manipulative principle is rarely required, there remains one point worth
noting. Suppose that we have derived, say

(xix) α ◦ α ≤ B

Then we are entitled, by SQ◦ and a negative replacement in (xix), to conclude

(xx) α ≤ B

Note, however, that this does not work in reverse; ◦ is only semi-idempotent,
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not idempotent, and so we cannot in general conclude (xix) when we are
given (xx).

But we can, however, use a general principle, reflected in the passage from
(xix) to (xx), for tag manipulation of tags compounded under ◦. First, by
associativity and commutativity of ◦, we may rearrange at will. Then, as in
passing from (xix) to (xx), we may drop iterated tags whenever we please.
(For a specific purpose, however, it is not necessarily wise to do so; for (xx) is
a weaker statement than (xix), and it is possible that the stronger statement
is in fact required.)

That we can manipulate tags, as we have seen, is the result of having a
suitable replacement theorem, together with the actual provable implications
and equivalences that license a particular replacement. Mainly, we used
above only a very weak form of replacement—namely, that ≤ is transitive.
In tag manipulation, however, the strong form comes in handy. For often,
we might wish to replace a tag which occurs, so to speak, as a sub-tag of a
bigger tag. For example, given

(xxi) Γ ◦ (α ◦ α) ◦ ∆ ≤ B

we might wish to conclude by SQ◦

(xxii) Γ ◦ α ◦ ∆ ≤ B

And this is most easily seen as a replacement within a tag, not a replacement
of a whole tag. Note, incidentally, that taking tags as bunches of hypotheses
(bunched by ◦, ∧, and even by ∨ if we like) is nicely set up for directed
replacement in this context. For the connectives in question are positive with
respect to all their arguments, which means that all tags bunched by them
occur negatively as sub-tags of Γ in a statement of the form Γ ≤ B. So, with
these bunching connectives, we can make, essentially, the same replacements
within tags as we could have made on tags taken as wholes to be replaced.
From this perspective, the passage from (xxi) to (xxii) is the same passage as
that from (xix) to (xx). And having this form of replacement is particularly
useful (e.g., the Dunn proof of “cut” in his [ENT] Gentzenization depends on
it), for it allows the replacement of sub-tags deeply nested (say by overlapping
and iterated applications of ∧, ◦) within the tags in which the replacements
are made.

Such principles of “tag replacement” are indeed key features of the natural
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deductions that one finds in [ENT]. But this is largely obscured by the fact
that fusion is “hidden” in the [ENT] system in the guise of set union, as noted
above, so that such properties of fusion as commutativity and associativity
are built in. (More interesting is the way in which an idempotent set union
comes to “represent” a fusion which is only semi-idempotent.)

Using the [ENT] technique, I fear, is like learning Japanese. The first
lessons are delightful, but their simplicity is illusory. For one has to be
at home with the systematic representation of the language, via its own
ideograms, to be at home with the language itself; simplified Western spelling
helps with lesson 1, but it becomes a positive obstacle by lesson 50. And it is
mere cultural chauvinism for the learner to suppose that the “intelligibility”
of a new language is in any way dependent on its successful reduction to
his old alphabet. It may be so reducible, perhaps, but such reduction may
conceal more central features than it reveals.

Just so, the [ENT] success in using ∪ to do the work of ◦ is largely
illusory. For, whatever our principles of tag replacement, they need to be
specifically and systematically justified. Instead, especially for the system T

of ticket entailment, [ENT] has to find ways to inhibit the tag replacement
principles, using ∪, that it has assumed. This produces over-dependence on
particular features of the Fitch-style subproof formulation. And, critically,
the [ENT] procedures (since, conceptually, they fit ◦) fail to behave smoothly
with respect to the truth-functions. There is no particular reason why they
should.

In fact, by letting ◦, and also ∧ and ∨, do their own work, instead of
resorting to artificial auxiliary devices, there is not even very much to re-
member. For it is, after all, no more difficult to keep in mind the properties
of ∧ and ∨ than to keep in mind those of ∩ and ∪. They are, near enough, the
same properties. And the properties of ◦ are those which multiplication has,
as a first approximation, on natural numbers; keeping them in mind isn’t that
hard, either. And, importantly, these properties—unlike the [ENT] represen-
tation of ◦ via ∪—have direct systematic significance. We know something
about R—and not just about scorekeeping for R—when we know what they
are. So, again, there is no point in appealing to auxiliary devices to do for R
what we can already do with the devices which the system itself makes avail-
able. To the contrary (as anyone who has worked in detail with the [ENT]
systems is aware), we often complicate arguments when we are compelled to
put them in the special forms to which the auxiliary devices apply.

Simple tag manipulations are henceforth taken for granted, as stated
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above. Complex ones will draw a note. In either case, the reader is invited
to observe that it is the same fundamental directed replacement theorem
which is doing the real work.

Thus far, we have concentrated on 1-premiss rules, in our “natural de-
duction” format. But we must think about multi-premiss rules as well. To
illumine several points, let us think about extending our conjunction intro-
duction rule ∧I to the natural deduction situation. What is it for such a rule
to be invariant under assumptions?

First, suppose that we are given “tagged formulas”

(xxiii) Γ ≤ A

(xxiv) Γ ≤ B

from which we wish to conclude

(xxv) Γ ≤ A ∧B

In fact, the passage from (xxiii) and (xxiv) to (xxv) takes place immediately
on R-valid principles. (For, keeping in mind what our “tagged formulas”
mean, we may get (xxv) immediately from the primitive rule ∧I of R, A5,
and →E.)

The form of the ∧I rule just set out is, in principle, that of [ENT]. But
it lacks generality. For suppose that we are given, together with (xxiii), not
(xxiv) but

(xxiv′) ∆ ≤ B

I.e., suppose that the “tags” on the 2 “tagged formulas” that we wish to
conjoin are not the same.

The [ENT] reply is that ∧I is then blocked. So if A, B, each derived in
the course of a natural deduction derivation, bear distinct tags (indicating
roughly that they depend on distinct bunches of hypotheses), we can infer
nothing by ∧I, however minimally these bunches may differ. (Actually, the
tag identity criteria in [ENT] are stricter yet; in order to square the idempo-
tence of ∪ with the semi-idempotence of ◦, [ENT] may attach different tags
to the same assumption formula.) In short, applying ∧I invariantly under
assumptions is taken in [ENT] in a ferociously strong sense.

And this leads, as Prawitz, Urquhart, and Pottinger may be taken to have
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seen, to practical difficulties in actually deducing things in R. Accordingly,
given (xxiii) and (xxiv′), and when tags are sets in the [ENT] fashion, it is
proposed that the following conclusion be drawn by ∧I

(?) Γ ∩∆ ≤ A ∧B

(I am assimilating, just for the moment, these ideas to our notation.)
We already commented roughly above on the idea behind (?). Tags in

[ENT] are sets, and so when tags are compounded in [ENT] (on application of
some multi-premiss rule which compounds tagged formulas), what could be
more natural than some accompanying set-theoretical compounding of tags?
And, compounding tags under ∪ having been reserved for other purposes,
why not compound them under ∩ when applying ∧I?

We have told the reader why not above. This kind of ad hoc manipulation
of the scoreboard mutilates central motivating considerations for the truth-
functions. But (?) is right in principle, however questionable it becomes in
practice when linked to certain specific directions for keeping set-theoretical
score. For the key fact is that we don’t need a set-theoretical scoreboard; ∧
is clear enough, and we are not better informed as to its properties when ∩
flashes up on the scoreboard instead. So the correct conclusion to draw from
(xxiii) and (xxiv′), reverting to our notation and our system, is just

(xxv′) Γ ∧∆ ≤ A ∧B

I.e., for a correct and generally applicable natural deduction rule ∧I, we
simply compound the hypotheses (disguised as tags) in just the way that we
compound the conclusion. When Γ and ∆ are the same, this leads immedi-
ately, by idempotence of ∧, to our old conclusion (xxv). But we are no longer
paralyzed in the presence of formulas whose tags differ, nor are motivational
points disrupted in making the most of the valid core behind (?).

A bit more comment is in order on the tagging questions, for [ENT], that
(?) raises. These questions are linked semantically to the analysis of relevant
logics set out by Urquhart in [SRL] and other papers, while they are linked
also to the Prawitz sketch of relevant natural deduction to be found in [ND],
which underlies in turn the Pottinger analyses to be found in [PRL].

So, despite the short motivational shrift which I gave it above, there would
seem to be an impressive and independent case to modify [ENT] in a way
which leads to the (?) form of ∧I. Perhaps so; given certain kinds of formal
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evidence, I might be persuaded in that direction myself; and it is anyway
worth pursuing. But, at present, I have to hold that the direction rests on
a misconception, which is signalled in the sort of motivational breakdown
noted above. But the signal is not the misconception. What I think has
happened rather is that the [ENT] scoreboard has been taken too seriously,
and that, in consequence, the [ENT] systems, with their multiple motivation,
have not been taken seriously enough. Indeed, it is with a certain admirable
audacity that Anderson and Belnap, in [ENT], shape scoreboard to system,
and are willing to bear certain roughnesses in scorekeeping for the sake of
smoothness of overall system. And here too it should be noted, as Urquhart
himself points out, that the apparent coincidence between his semantical ap-
proach to relevant logics and the natural deduction techniques of [ENT] isn’t
so coincidental, since the former was shaped out of reflection on the latter.
This was, I think, a brilliant imaginative achievement, and a very fruitful one
in the light of subsequent research. But it is also a seductive achievement
(as projects of extensional reduction often turn out to be, including some
that have been offered by Routley and me, a point that we explore in [ER]),
in that the classical set-theoretical reduction tends to command an ontolog-
ical respect which it does not deserve, except as a device for imaginative
stimulation, and that one is tempted thereby away from an exploration of
systematic insights in their own systematic contexts. In one sense, I have
never pretended to be anything but ad hoc here (for I hold that systems co-
operate in their own motivation, and look with suspicion on all claims that
overlook such cooperation, a suspicion that is redoubled when the systems
in question are systems of “natural deduction”). But it is a forthright and
democratic ad hocness ; a system, in speaking for itself, must provide its own
links with the informal motivation that it claims and seeks to shape, and its
claims are not advanced by formal friends in fashionably high places.

So (?), as the valid conclusion of a rule that [ENT] should have had but
missed, is still out; on its own grounds, and given its own motivation, [ENT]
wants no part of that conclusion. Or, rather, it wants its valid core, which
it gets straightforwardly on its own ground with (xxv′).

Having been given a clue from ∧I, let us now think about many-premiss
rules in general. From a psychological viewpoint, as we can now see, the
crucial new point is “tag” compounding. Given premisses with (in general)
distinct tags, how shall these tags be compounded in order to find the “right”
tag with which the conclusion is to be tagged? Moreover, since compound
tags on these intuitions reflect the bunches of premisses on which a conclusion
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might depend, at a given stage of a “natural deduction,” our compounding
principles are at the same time bunching principles. ∧I, since it introduces
a conclusion extensionally bunched by ∧, goes with an ordinary conjunction
of tags by ∧. On the other hand, we might well expect that a rule ◦I, which
fuses conclusions (and which hence makes them available for joint use in a
relevant sense) would go with a fusion of tags. So indeed it does.

So much for the psychological viewpoint. What is the formal one, based
on our straightforward understanding of assertions A ≤ B as asserting prov-
able implications of R? The question, accordingly, is one of what we can
conclude, with respect to a specific connective, when it is given (by theorems
of R, RQ, or R♯) that both A ≤ B and A′ ≤ B′. The principal part of the
answer is given, for our purposes here, in virtue of the following theorem
schemes that reflect compounding principles.

CM∧. (A → B) ∧ (A′ → B′) →. A ∧A′ → B ∧B′

CM∨. (A → B) ∧ (A′ → B′) →. A ∨A′ → B ∨B′

CM◦. (A → B) ◦ (A′ → B′) →. A ◦ A′ → B ◦ B′

In view of ∧◦ above, CM◦ continues to hold if ◦ is traded in for ∧ as the
principal connctive in its antecedent. (However, the stronger form is worthy
of note, while it is also worth noting that ∧ cannot be so traded in for ◦ in
the antecedents of CM∧, CM∨.)

Our compounding principles lead immediately to the following “natural
deduction” rules:

∧I. Γ ≤ A & ∆ ≤ B ⇒ Γ ∧∆ ≤ A ∧B

∨E. Γ ≤ A & ∆ ≤ B ⇒ Γ ∨∆ ≤ A ∨B

◦I. Γ ≤ A & ∆ ≤ B ⇒ Γ ◦ ∆ ≤ A ◦ B

These are the basic multi-premiss compounding principles. Note, inciden-
tally, that the middle principle gets called ∨E, and gets taken conceptually
as an elimination rather than as an introduction rule. But this is just to
make contact with familiar systems of natural deduction; formally, ∧I and
∨E are, in their fundamental forms, analogous, a fact which tends to get
hidden in some conceptual frameworks.

Normally, a multi-premiss rule will involve both some compounding op-
eration and some further inference. A crucial example is
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→E. Γ ≤ A → B & ∆ ≤ A ⇒ Γ ◦ ∆ ≤ B

(The reader who reflects on the [ENT] form of →E will now make some
further sense of our claim that ◦ does the systematic job that ∪ does, in an
auxiliary sense, in [ENT].)

We can break the →E rule into 2 parts. First, given its premisses, we
can conclude immediately by ◦I,

(xxvi) Γ ◦ ∆ ≤ (A → B) ◦ A

Moreover, by reflexivity of ≤ and →I, we have immediately

→◦E. (A → B) ◦ A ≤ B

Whence from (xxvi) and →◦E we conclude by directed replacement

(xxvii) Γ ◦ ∆ ≤ B,

which is the conclusion of the →E rule above.
This suggests that, from a formal viewpoint, we can, in applying a multi-

premiss rule, break that application into a compounding stage (e.g., that
reflected in (xxvi)) and a replacement stage (e.g., which led just above from
(xxvi) to (xxvii), given →◦E). Note that the replacement stage is, from a
psychological natural deduction point of view, encompassed in a 1-premiss
rule (e.g., we view (xxvi) as a “tagged formula” and →◦E as a “rule,” as in
the 1-premiss cases above).

This casts light, too, on what is systematically involved in the motivating
“use criterion” of [ENT]. For [ENT] counts such use as “use in an application
of modus ponens for →.” In some sense, this is backward; the key use
involved, systematically speaking, is one of ◦I, which signals that we are
going to concern ourselves with formulas tightly bunched. And then it is a
matter of some choice what we are going to claim obtains in this case; we lay
down what follows from a tight bunch of premisses (as, for that matter, we
lay down what follows from premisses loosely bunched by ∧). Whether what
we have laid down is correct, or plausible, is not a matter which the system
itself can adjudicate. We adjudicate it, by deciding to employ the system
(or by refusing to employ it), given our informal goals, insights, and sense
of “fit.” And we do not adjudicate it by referring on indefinitely to further
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formal systems, formal semantics, and formal whatnot. For each of these
devices raises the same questions of correlation and reflection of informal
purpose that the original system raised.

Again, in all of this, use is not univocal. There are uses and uses. In
particular, from the R viewpoint, there is tight use, in which all the premisses
must collaborate, so to speak, to yield a conclusion tightly derived from
them, and loose use, in which that degree of collaboration is not required.
This clears up something in the debate as to whether we should “switch”
to relevant logics. What is involved, in fact, is not so much of a “switch”
as a provision to make formal room for various argumentative situations
that arise informally. The C-defender tells us that one kind of provision
does for everything; that is a priori unlikely, and a posteriori false, except
on attenuated epicycular distortion of those features of C that attract us to
it in the first place. But the R-defender is ill advised to set out to start
a New Church. It will suffice to revoke some of the indulgences issued by
(and requested for) the old one, and to restore formal insight, in its various
manifestations, to its proper role as the servant and the guide of informal
purpose, not its master.

In particular, though we have here 2 kinds of bunching connectives, ∧ and
◦, it is not ruled out that there should be more, or that the ones which we
have might be assigned different properties. Nor is it the case, despite all the
priority which I have given to informal purpose, that such decisions should be
referred too simply to informal intuition. The collaboration between purpose
and system is 2-way, not 1-way, and the formalizing process would lose most
of its charm if all that was sought was a pedantic record of what, informally,
we say and think anyway. For that matter, it would lose most of its utility
as well. Response to existing human needs and a spirit of free creation
intermingle in all intellectual enterprises worth pursuing. It is well that they
should do so in logic also.

We spoke above of →E as though it were almost optional for R. In fact,
the concern for a proper deduction theorem reflected above in the principle
→I makes it by no means optional; indeed, as we saw in breaking it into
stages, →E follows when we are given →I and ◦I. But our general principle
remains; R is motivated whole, and we cannot account individually for the
motivation of its parts without taking account of relations of systematic
interdependence.

So compounding principles have joined our general concern for replace-
ment and deduction theorems, in the analysis of what makes natural deduc-
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tion tick. Let us now turn to some other multi-premiss rules that may prove
useful in actual derivations. One of the big headaches of natural deduction
turns often on ∨E rules that may prove useful in actual derivations. One
of the big headaches of natural deduction turns often on ∨E rules, which
are systematic counterparts of arguments by cases. We gave a basic form of
this rule above. But, typically, we want to apply ∨E when we have already
derived C ∨D, on some assumptions reflected in a tag Θ. So let us take, in
complicating ∨E to account for this situation, some further matters to heart.

The central further matters involve distribution. Recall that each of ◦,
∧, together of course with ∨ itself, distributes over ∨ on R-related insights.
(Caution: → does not so distribute.) This allows us to combine the ∨E rule
above with a bit of distributive tag manipulation. Pursuing such thoughts
leads to the following useful forms of the ∨E rule.

∨E′. Γ ≤ C ∨D & Γ ∧C ≤ A & Γ ∧D ≤ B ⇒ Γ ≤ A ∨B

∨E′′. Γ ≤ C ∨D & ∆ ◦ C ≤ A & ∆ ◦ D ≤ B ⇒ Γ ◦ ∆ ≤ A ∨B

∨E ′′ corresponds to the [ENT] form of the ∨E rule. It may be generalized
as follows. Let f [p] be any tag built up from the atom p and other fixed
formulas A1, ..., An on (possibly iterated) compounding by ◦, ∧, ∨. Let f [C],
f [D], f [Γ] result respectively from the replacement of a specific occurrence
of p in f [p] with C, D, Γ; then we have in general the rule

∨E⋆. Γ ≤ C ∨D & f [C] ≤ A & f [D] ≤ B ⇒ f [Γ] ≤ A ∨B

This generalization is suggested by Dunn’s Gentzen system.
Two points may be noted about the above rules. First, we have felt free

to mix Γ, ∆ on the one hand and C, D on the other in what we have been
suggesting to the reader is “tag” position. There is, formally, no harm in that.
And, psychologically, there is some gain. Consider the ∨E ′ rule. The idea is
that, given that we have derived a “tagged formula” C ∨ D, under certain
assumptions signalled by the “tag” Γ, we may eliminate C ∨D by cases on
adding first C and then D to our stock of fixed assumptions. ∨E ′′, ∨E⋆ rest
on similar points, though they give us a bit more manipulative freedom, at
some cost in perspicuity. (But it is this cost in perspicuity which makes the
[ENT] ∨E rule unmemorable, and which will lead us in practice to prefer the
simpler rules ∨E, ∨E ′. But any of these rules, in use, will be called simply
∨E. None of them, of course, need be remembered, except the original tag-
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compounding and simple ∨E, for each of ∨E ′, ∨E ′′, ∨E⋆ is easily worked
out on our suggested plan of splitting multi-premiss rules into compounding
steps and replacement steps. On the other hand, since arguments by cases
are quite important in practice, a few finger exercises to determine what goes
in R and what doesn’t will do the reader no harm. And, if he keeps in mind
the simple distribution laws mentioned above, he will, without undue strain
on his memory, quickly get the formal intuitions down. While, since ∨ is not
primitive for our formulation of R♯, no intuitions regarding it are required,
they are to the point when we are thinking seriously about, say, numbers.)

Second, the reader will have noted that none of the above rules actually
eliminate ∨. But that’s a small point; if, in the rules above, A, B are the
same formula, ∨ may be eliminated by idempotence. And, in arguing by
cases, one often gets down to more cases, which is reason enough to leave the
above rules as they stand. And further modification (e.g., so that we don’t
always have to use the same Γ in ∨E ′, as we argued against always being
stuck with the same Γ in applying ∧I above) will readily occur to the reader.

Having thought that much about ∨E, let us use what we have thought to
get a useful and correct form of the principle ∃E of existential quantifier elim-
ination (i.e., existential instantiation). Our original ∨E was a compounding
principle. For quantifiers, such compounding principles require only 1 pre-
miss and are rather trivial. For we get without toil the rules

CM∀. Γ ≤ A ⇒ ∀XΓ ≤ ∀XA

CM∃. Γ ≤ A ⇒ ∃XΓ ≤ ∃XA

on easy application of principles given above. And, since tags are formulas,
this introduction of quantified tags makes sense.

Now, concentration on CM∃, let us copy the move which took us from
∨E to ∨E ′ above. It produces

∃E′. Γ ≤ ∃XA & Γ ∧A ≤ B ⇒ Γ ≤ ∃XB

To apply ∃E ′, it is evidently required that X must not occur free in Γ.
And, for ∃E ′ actually to eliminate an existential quantifier, it suffices that X
not be free in B either, whence the vacuous quantifier on B may be dropped
(compare our discussion of the conditions under which ∨E actually eliminates
a ∨).

Skipping an intermediate stage corresponding to ∨E ′′, let us move im-
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mediately to the appropriate generalization of ∨E⋆ in this case. We require
that X should not occur free in f [p]. Then

∃E⋆. Γ ≤ ∃XA & f [A] ≤ B ⇒ f [Γ] ≤ ∃XB

The same restrictions as before on building up f [p] are in force. And we
shall henceforth refer to any of CM∃, ∃E ′, ∃E⋆ simply as ∃E, making minor
moves (e.g., dropping a vacuous quantifier) without specific comment, and
concentrating on the simple rules CM∃, ∃E ′.

We have now dealt with all major principles that are standardly involved
in systems of natural deduction except for indirect proof. But this also takes
a particularly simple form in R. Having added t conservatively, and hence
f , recall our “quasi-definition” above on which ∼A is linked equivalently to
A → f . Combined with →I, this yields

◦5. A ◦ B → f ≃ A → ∼B

And this motivates the following rule, on our old 1-premiss principles.

∼I. Γ ◦ B ≤ f ⇒ Γ ≤ ∼B

Given double negation, we may indifferently apply this rule in the alternative
form

∼I ′ Γ ◦ ∼B ≤ f ⇒ Γ ≤ B

As in the case of →I, we may dress up an application of ∼I, in either form,
to give the psychological impression that we have assumed a “hypothesis”
for “reductio ad absurdum.” In that guise, this 1-premiss rule also looks like
a 2-premiss rule: e.g.,

∼I. Γ ◦ α ≤ f & α = B ⇒ Γ ≤ B

As before, the second premiss of this rule is just window dressing formally,
though psychologically useful.

These are the basic forms of indirect proof in R, making use of the tech-
nical convenience of f . But we can, of course, do without f . Doing without
f may, however, most simply be referred to the following three principles of
f -introduction.
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fI. A ◦ ∼A ≤ f

fI ′. A ∧ ∼A ≤ f

fI ′′. (A → ∼A) ◦ A ≤ f

Each of these principles is trivially established; we take the first as basic, but
refer (on our usual practice) to them collectively as fI. And note that they
reflect respectively our reductio principles RDC, RDB, RDA above. And
what the basic principle fI suggests is the following form of ∼I.

∼I⋆. Γ ◦ B ≤ A & ∆ ≤ ∼A ⇒ Γ ◦ ∆ ≤ ∼B

Given double negation, we have various forms of ∼I⋆ also. Moreover, it too
can be dressed up for psychological purposes by adding an extra premiss as
“tagged hypothesis,” just like ∼I above.

Note that, so far as use is concerned, there is a curious feature to ∼I⋆. We
only have to use B to get one-half of the contradiction between A, ∼A. (But
this is, as Dunn points out, just modus tollens under hypotheses; compare
the →E rule above.)

All of our forms of ∼I will be referred to simply as ∼I, while we leave
to the reader the formulation of reductio principles corresponding to the
weaker forms of f -introduction. This is somewhat interesting, independently,
in view of our parenthetical remark just above. For, while R-insights are very
much tied to modus tollens (reflected, systematically, in an attachment to
contraposition), weaker relevant logics do without this principle (in a way
adaptable to natural deduction technique). So, for that matter, does the
classical semantical negation investigated by Urquhart and by Routley and
me.

This brings up a more general point. Our general scheme of natural
deduction is easily adaptable to other relevant logics. But, in analyzing
indirect proof, it is rather more convenient to concentrate rather on specific
properties of R. The most important of these are (i) that ∼A is definable as
A → f and (ii) that A ◦ B is definable as ∼(A → ∼B). Neither (i) nor (ii)
is true even in E, to say nothing of the weaker systems.

Some objections have been lodged to these points (i) and (ii). The essence
of the objection to (i) is that if ∼A is defined in R, the double negation prin-
ciple ∼∼A → A, which now becomes a principle of the theory of deduction,
is no longer plausible; neither is the law A ∨ ∼A that follows from it. (This
line is taken, e.g., by the paper contributed by Urquhart to [PRL].) The
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essence of the objection to (ii) is that ◦, which is a kind of conjunction, is
ill-served by being taken, formally, as a kind of consistency. (E.g., Harper
has raised in conversation the following kind of objection. It is the case that
the axiom of choice, together with other axioms of set theory, implies, say,
Zorn’s lemma. Let us symbolize these respectively as AC, OA, ZL. On the
use criterion, we might well expect

(1) AC ◦ OA → ZL

to be a theorem of a relevant set theory. Moreover, it is known that the
axiom of choice is consistent with the other axioms; i.e.,

(2) AC ◦ OA

Putting (1) and (2) together with →E, this seems to suggest that we can
derive

(3) ZL

outright, perhaps without the benefit of any axioms at all.)
To both of these objections, one must answer that the deductively classi-

cal character of the negation ∼ of R has not been sufficiently appreciated or
understood. Consider, to begin with, the putative “deduction” of (3). And
let us transfer it to a wholly classical context. In that case ◦ just collapses
to ordinary ∧, both on deduction-theorem considerations and on the defini-
tion of A ◦ B as ∼(A → ∼B), where → is in this last case material. So
put, classical conjunction is also a kind of consistency. But it is a material
consistency, which is of a very strong kind. I.e., A is in this material sense
consistent with B just when both are in fact asserted. And, on such classical
thoughts, there is no objection at all to (1) above. But (2), standing alone,
won’t do. Gödel, certainly, did not prove both the axiom of choice, and the
other axioms of set theory, from scratch; that, indeed would have taken some
doing. But what he did do was to construct a model of OA in which (2) is
true. In the model, ZL is also of course true. But there is nothing shocking
about that. To be sure, this establishes (insofar as it can be trusted) that
OA → ∼AC is not a theorem of logic; but this is a far cry from establishing
that ∼(OA → ∼AC), i.e., OA ◦ AC is a theorem of logic, or even that it is
a theorem of the proper theory determined classically by OA. Of course it is
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not, as Cohen showed (insofar as one can trust him).
Now let us transfer these thoughts to an R-context. A ◦ B means, when

asserted in an R-theory, that A and B are relevantly consistent in the same
sense that A∧B means that A and B, classically, are materially consistent;
i.e., that∼(A → ∼B) is a theorem. Again, this must be sharply distinguished
from the mere unprovability of A → ∼B. This is a much weaker sense of
consistency. And, on analogies to other relevantly formulated theories, one
would suppose that, if a relevant ZF were formulated, its theorems would all
be classical theorems (though not conversely) on a direct trade-in of relevant
→ everywhere for material ⊃. And, in this case, exactly the classical situation
would obtain; i.e., OA → ∼AC is a presumptive non-theorem of relevant
logic, and even of the relevant set theory determined by OA. But its negation,
namely (2), is also a presumptive non-theorem, both logically and in the
theory determined by OA. Of course, trivially, (2) is, both classically and
relevantly, a theorem of the theory determined by both OA and AC. And,
while relevant model theory has not proceeded to ZF, presumptively one can
use the Gödel technique to cook up, relevantly, the Gödel model of OA that
makes AC true.

However, the relevant theory does open one interesting possibility that
the classical theory cannot accommodate, and which might make interesting
sense of Harper’s “counterexample.” For, set theory being a highly exten-
sional subject, it is not all that clear that (1) is wanted relevantly. Perhaps
we should just want it with ∧ standing in the antecedent instead of ◦. In
that case, we could transfer the Gödel result to an object theory by taking
(2) as an additional axiom of a theory in which OA and ∼AC appropriately
formulated, are already theorems. But this is speculative, and I shall not
pursue it; my guess is that relevant insights will give rise to their own set
theories, which may lead both to alternative ways or formulating traditional
set theories and perhaps to simplified ways of reaching old results. The point
to be stressed here is that, however one looks at it, the claims of (2) to be
an object theorem must be independently justified, and cannot rest merely
on the unprovability of its negation.

And now let us move this discussion of the objection (ii) above to a more
general level. There is a precious sense in which we wish to say that A is
consistent with B, really, just when A does not entail ∼B. And this ties
in with a pet idea that Anderson used to express, and which finds its way
partially into [OPP]: namely, that the true entailments are exactly what they
are, on formal grounds, and that when an entailment is not true, its negation

Australasian Journal of Logic (18:5) 2021, Article no. 4



212

is true. From the viewpoint of concrete theories formalizing some subject
matter, this suggests that such theories should be complete on the class of
formulas A → B, where → expresses entailment; i.e., for each A and B,
exactly one of A → B, ∼(A → B) should be a theorem.

I do not know to what degree this Andersonian ideal can be approached,
in formulating theories based on some non-logical subject matter, or even in
formulating logic itself. After all, there is a certain preference for theories
that are consistent and complete on all formulas without free variables, but
we find them hard to come by. But I do know that it is not an ideal which
is applicable to R. For R, as I learned from Belnap, and have repeated often,
does not express entailment. It indicates entailment, in the sense that, when
A → B is a theorem of R, the R-view is that A entails B. Exactly the same
point can be made in the classical case; the C-view of when A entails B may
be a little strange, but, as Quine has often noted, it is quite clear; and it has
nothing to do with taking material implication as a kind of entailment, or
even a strict implication.

In particular, when we are formalizing some non-logical subject matter,
material implication ceases to indicate classical entailment. If, e.g., we have
proved A → B in C♯, that doesn’t mean that B is a logical consequence of A;
it’s just an arithmetical consequence, insofar as C♯ formalizes classical arith-
metic. (Such matters, alas, tend to get mixed up in claims that mathematical
and logical truths share the property of being analytic; while, however, I have
to hold that the dragons have got St. Willard rather more often than he has
got them, the notch on his tunic for having done in the Beast of Analyticity
in [TDE] is deserved, and the confusions caused by that Beast will not be
recommended, or even further noticed, here, save to note that the slaying
of the Beast may be bad for the Andersonian ideal. But I am not pursuing
that ideal here anyway; and if I were, in contexts other than R, I should be
doing so in a system-dependent way, relativizing the Andersonian ideal, re-
specting [TDE], and giving aid and comfort to some of the fine, upstanding,
law-abiding dragons whom the author of [TDE] too easily maligns.)

Just so, when A → B is a theorem of R♯, or other theory based on R, this
is to be taken not as a logical but as a non-logical (indeed, an arithmetical)
kind of implication. In exact analogy, the theoremhood of A ◦ B, though
it states (in R) some kind of consistency, is not in R♯ a statement of logical
consistency. It is a statement, rather, of arithmetic compatibility. And that’s
a useful notion, which stands reasonably between the C-insistence that such
compatibility is just ordinary ∧, and the (presumptive) E-insistence that
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arithmetic compatibility is at root logical compatibility.
From the beginning, all parties have held that relevant implication, in

the sense of R, is not entailment. Some of us have expected that relevant
implication might well turn out to be more interesting and useful than en-
tailment. (But, as Belnap has said in another context, the jury is apt to be
out for a while on that one.) For our grounds for holding, in real life, that A
implies B are unlikely to be explicated either in terms that are wholly formal
or in those that are wholly material. If so, neither waving systems of logic
nor truth-tables at real life implication is going to capture it. Rather, we
are going to be thrown back on pre-theoretic convictions (to be reflected in
the non-logical axioms of a concrete theory) to ground the implication state-
ments that we accept, and to separate them from those which we reject. For
while we may expect R (or some other relevant logic) to furnish the logic of
implication, knowing the logic does not tell us which implication statements
are true, save for those few that are logically true.

And, on this point, much discussion of implication has just veered north
or south of the central matter. (And much of this discussion, I fear, has
shown undue respect for the Beast which St. Willard slew.) For people
have indulged themselves in so parsing the word ‘Implies’ (and the rough
synonyms thereof that enter into such discussions) so that it turns out either
wholly formal (e.g., validity of the material conditional) or wholly material
(e.g., the material conditional itself), with calumny thereupon heaped upon
the other side for failing to understand simple logical points. But the whole
discussion has been vitiated by the unwillingness of almost everybody to
take into account simple pre-logical points—namely that, taken together,
both formal and material considerations underdetermine the stock of honest
implications that we use to tie together actual theories. And there is just no
point in dwelling on the finely spun stories about how, deep down, formal
or material considerations rule anyway, at least in principle. For that is just
to prolong the debate at its most useless point: namely, the point at which
project is mistaken for accomplishment, while reductions which no one has
seen are taken for granted.

As goes relevant implication, so goes relevant consistency. In E, where
consistency is taken in a logical sense, it is not identified with fusion. In C,
where consistency is taken in an outright material sense, it is identified with
fusion, which is just ∧ there. R veers to the C-side on this point, save that ◦
is no longer ∧. On its intuitions, that is exactly where it belongs.

Similar remarks are to be made about point (i) above; namely, the de-
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finability of ∼A in R as A → f . It is the definability which establishes the
negation of R as a deductive kind of negation, as it is the holding of classical
negation laws which establishes ∼ as a classical kind of negation. So ∼ is
deductively classical.

Now being deductively classical is not, for my money, the same thing as
being semantically classical. (Belnap, however, suggests in correspondence
that there is a point of view on which ∼ in R turns out to be semantically
classical also; I have my doubts, but am not sufficiently acquainted with his
latest thoughts to close off that point of view completely.) In fact, to be se-
mantically classical, for my part, I take as subscribing to an article of faith;
namely, that our semantic intuitions about negation are clear. When conve-
nient, I will buy that article of faith, though in view of the set-theoretic and
semantic paradoxes I never feel truly at ease in that faith. To be deductively
classical I take in a weaker sense: namely, that we will proceed as though
our article of semantic faith were justified. Thus, e.g., we will buy laws of
double negation, non-contradiction, excluded middle, and so forth. But we
will not buy them with a blank cheque. I.e., consider the law of excluded
middle. This expresses, in one perspective, a kind of Peircean conviction that
the world is complete in the long run, or at least that our theories about the
world are to be taken as thus potentially complete. By adopting a law of
excluded middle, we tie ourselves to that conviction, asserting p ∨ ∼p even
without grounds to assert p or ∼p independently. Similarly, in asserting dou-
ble negation, we take it as sufficient verification of p when the claim that p
relevantly implies trouble itself runs into trouble.

However, the deductive viewpoint leaves open one possibility that the
semantic viewpoint forecloses; namely that, in certain circumstances, we shall
run into trouble. Systematically, that means, formalizing the circumstances
in question, that we get a proof of f . We hoped that that wouldn’t happen;
it runs contrary to our semantic faith. We hope moreover that, when it does
happen, there is something unusual about the circumstances, that we can fix
up. But it’s good also to carry on resolutely in tough times, making what
we can of our temporarily undone faith without accepting thereby the total
shattering of the insights that we sought to formalize.

Maybe the semantic faith, ultimately, just won’t do. In that case, R

should cancel ∼∼A → A, or at least restrict to those situations in which it
will do. Maybe the semantic faith will always do; in that case, R is “chicken”
for lacking A ∧ ∼A → B. But the intermediate possibility is that we do not
know how far, and in what circumstances, our semantic faith will carry us.
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As a regulative principle, we accept it. As a blank cheque, we do not. So R

understands ∼A via the assertion that A implies something objectionable;
itself, for example, if A is objectionable. And R understands moreover that
there will be non-trivial theories with objectionable theorems; the weak case
for this understanding is that we may entertain such theories for pragmatic
reasons; the strong case is that, in matters of metaphysical or dialectical
depth, we shall have no option but to entertain them. (I have put, mainly,
the weak case here, but I have some attachment to the strong one also; but
I am not insisting on the latter attachment here.) Even in the midst of this
understanding, however, R hews to our ordinary processes of reasoning where
negation is concerned. This may have the effect of isolating the inconsistent
portions of a theory, and thus give us hints for its consistent repair; or per-
haps in practice, of simply ignoring those portions of a theory, to pursue
other matters; e.g., despite the overall inconsistency of Newtonian theory
and physical observation, it is good enough for moon shots, even if it isn’t
good enough for shooting at the perihelion of Mercury a century hence. The
computers at NASA don’t care about that now, and a theoretical perspective
which discards irrelevant difficulties has something, accordingly, to be said
for it.

So we shall stick to our R-perspective regarding negation, and its resultant
simplification of a general relevant theory of indirect proof. And now we
turn to one final matter respecting our general theory of deduction. We
have taken deduction deductively. In particular, this means that when we
have bunched premisses for the purpose of deduction, we have bunched them
finitely (pairwise, in fact, though the finitary generalizations are obvious).

A popular view, however, is that logical consequence itself is a semantic
notion. On that view, it is natural to take such consequence as a relation
between a set S and a formula A (or perhaps another set T ), such that this
relation holds unless it is the case that all members of S are true and A (all
members of T , alternatively) is false. (One takes Tarski to have popular-
ized this view, together with the related view that logical consequence is an
operation (though not necessarily of a semantic kind) on sets.)

Our view seems to be somewhat different. In the first place, we look
not only to the premisses collected, but to the manner of their collection, in
order to decide what follows from them. Second, we only provide for finite
collecting processes. And third, the notion of consequence which results is
at all points system-dependent.

In fact, our view is merely more general. In the finitary case, the classical
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view merely amounts, as we have seen, to bunching the members of the
above S by ∧, and of T by ∨ on its parenthetical extension, and letting the
relation ≤ be C-entailment. The infinitary case, in a securely classical first-
order perspective, is reduced to the finitary one by the classical compactness
theorem; it is, so to speak, an added extra. In the more intricate situations in
which compactness fails, so that properly infinitary collections of premisses
are considered, we have two things to say. First, insofar as we are concerned
with actual argument, it is perforce finitary; extensions to infinitary cases
are imaginative extensions. Second, there is no objection in principle to a
similar imaginative extension of the present account. If we can collect, in
the process of set formation, infinitely, we can conjoin infinitely. There is no
reason why we cannot fuse infinitely. We are not interested, here, in doing
so; indeed, to do so would seem to be a bit of an arcane diversion. But such
diversions may be pursued as one will.

Finally, let us concentrate on the third of the above points; namely, that
our account is system-dependent. So, I hold, is the classical one; indeed,
it is dependent on a certain mythology with regard to truth and falsehood
that seems to me productive of great evils. But let that pass. The question
is whether anything but truth and falsehood enters into the notion of con-
sequence. The C-view is that it does not. And we can accommodate that
view: directly, at the lower levels of logic. But we are also prepared for an
affirmative answer; for one thing, an affirmative answer is the pre-theoretic
one, and we are not convinced by claims made for its post-theoretic negation.
And, once we are off the terrain in which the notion of consequence is God-
given, we are not in search of another god to give us another notion. Let us
see what notions there are. And of course that inquiry is system-dependent;
while mathematical theology, perhaps, will find new reasons for divine pref-
erences among systems, we leave that enterprise, for now, in the hands of
those who have been confounded by it so far.

Let us turn now from such philosophical reflections to a concrete demon-
stration of how our natural deduction system works in practice. E.g., let
us derive, for practice, a set of axioms sufficient for the pure implicational
fragment of R. Since it would suffice, given the non-independent character
of this system of natural deduction, just to write those axioms down, let us
make the problem a little hard by allowing ourselves only principles of tag
introduction (i.e., hypothesis introduction, psychologically), tag replacement
(on the R properties of fusion), and our rules →E, →I.

Australasian Journal of Logic (18:5) 2021, Article no. 4



217

1. α = A Hypothesis

2. t ◦ α ≤ A 1, t◦, Tag Replacement

3. t ≤ A → A 1, 2, →I

4. β = A → B Hypothesis

5. β ◦ α ≤ B 4, 1, →E

6. α ◦ β ≤ B 5, C◦, Tag Replacement

7. α ≤ A → B → B 4, 6, →I

8. t ≤ A →. A → B → B 7, t◦, Tag Replacement,
1, →I

9. γ = B → C Hypothesis

10. β ◦ γ ◦ α ≤ C 9, 5, →E, A◦, C◦, Tag Re-

placement

11. β ◦ γ ≤ A → C 1, 10, →I

12. β ≤ B → C →. A → C 9, 11, →I

13. t ≤ A → B →. B → C →. A → C 12, t◦, Tag Replacement,
4, →I

14. δ = A →. A → B Hypothesis

15. δ ◦ α ≤ A → B 14, 1, →E

16. δ ◦ α ◦ α ≤ B 15, 1, →E

17. δ ◦ α ≤ B 16, SQ◦, A◦, Tag Re-

placement

18. δ ≤ A → B 17, 1, →I

19. t ≤ (A →. A → B) →. A → B 18, t◦, Tag Replacement,
14, →I

We have presented this as a deduction of “tagged formulas” (which accounts
for our curious habit of putting the main relations ≤, = right up against
the Greek letters; in fact, the symbols for the main relations could be left
out altogether, since = always goes with a Hypothesis step and ≤ with
anything else). We have also been unusually explicit in calling attention to
Tag Replacement principles, including those that introduce t on a formula
that would otherwise be untagged after an application of →I.

It is well-known that the tagged formulas 3, 8, 13, 19 above suffice for
the derivation of all pure implicational theorems of R, with →E as rule. And
the reader is invited to verify, accordingly, that all such theorems will be
derivable in our “natural deduction system” on the limitations imposed for

Australasian Journal of Logic (18:5) 2021, Article no. 4



218

the sake of practice. He is also invited to pick and choose among the other
rules so as to derive all theorems of R, and of RQ, tagged just with t, from
a limited basis of “natural deduction” rules.

For readers familiar with the [ENT] account (other readers being free
to skip this part), let us compare the proofs of pure implicational theorems
offered above in “natural deduction” style with those of [PCE] and [ENT].
There are some inessential differences. E.g., we “tag” formulas derived with
Greek letters, much as [ENT] uses sets of Arabic numerals. And we tag
theorems of R with t as [ENT] tags them with the empty set.

Most strikingly, we have, as a matter of form, ditched Fitch as promised;
i.e., the nested subproofs which play such a striking part in [ENT] are absent
here. (Fitch, I hope, won’t mind.) This has the important advantage of
linearizing our “natural deductions,” making redundant complex rules of
“reiteration” of formulas from one subproof to another.

Another feature of the present treatment is that formulas assumed here
on “hypothesis” are never finally discharged; we may go on using them as
many times as we wish, even after applications of →I. (Was it not, perhaps,
a little surprising that, after “discharging” the hypothesis of step 1 in step 3,
we nevertheless managed to “use” this hypothesis to justify 6 further steps
in the above derivation?)

In fact, as the reader will recall from our discussion above of →I, it is,
deeply speaking, a 1-premiss rule, not a 2-premiss rule. (That much, indeed,
is just Gentzenish thinking.) So a hypothesis may hang around indefinitely,
and be used as often as one pleases, without doing any damage. (Indeed, on
the conventions here, damage could occur only if we abbreviated 2 distinct
hypotheses with the same Greek letter; that, evidently, is a no-no.)

Having hypotheses linger on has a strangely irrelevant flavor. In fact, it
is the tags which suffice for relevance. If a hypothesis bears tag α, the only
steps which depend upon this hypothesis are steps which also have α as a
constituent of their tags. So the discharge in step 3 above was a genuine one,
as far as it went. The hypothesis of step 1 lingers on, but the tagged formula
in step 4 does not depend on that hypothesis; indeed, in asserting A → A,
we have no need of the hypothesis A. (Indeed, in R, we cannot tag step 3
with the α of step 1.) The notation makes this clear; to repeat, only those
hypotheses are in force for a given step as are explicitly recorded in the tag
on that step.

So the present technique introduces important economies, compared to
[ENT]. But, in the theory of pure implication, it is not so different, as a
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comparison of [ENT] style proofs of the above theorems of R will make clear;
moreover, the most important economies here could be introduced into [ENT]
as well. But, once we are out of the pure theory of implication which the
[ENT] technique most directly reflects, the present methods become con-
siderably more flexible. And their eventual import, after all, is conceptual,
not mechanical. By basing natural deduction directly on our system, not
seriously on a coding of the system, we need not shift, in actually deriving
theorems, from one mode of thought to another. The proof of that pudding,
I hope, will be in the eating hereafter.

I said above that a “syntactical completeness proof” for the natural de-
duction system would be superfluous, but let me provide one anyway. Drop-
ping Greek disguise, “statements” of the natural deduction system are of
the form A = B or A ≤ B, where A, B are formulas of R (or RQ, R♯ as
the case may be). Out of Greek disguise, A = B states that A is the same
formula as B; moreover, such statements only occur in circumstances of tag
(Hypothesis) introduction, whence, undisguised, they are all of the form
A = A. Similarly, A ≤ B says that A → B is a theorem of the appropriate
system; for completeness, we may just as well take A ≤ B as a “natural
deduction” axiom whenever A → B is a theorem. For soundness, we need
note only that the rules laid down above do not lead out of the class of ≤
statements that correspond to provable → statements. (Indeed, as just put,
they do not lead out of the class of axioms.) Finally, to assure that all the-
orems of R, RQ, R♯ are covered, and not just the → formulas, we note that,
since t → A is a theorem exactly when A is a theorem, t ≤ A will be a
“natural deduction” theorem (indeed, an axiom once more) just when A is
an honest theorem of the system in question. Hence our natural deduction
system is trivially sound and complete, in a couple of respects, relative to its
intended transformation into the axiomatic system.

This merely sums up what was said above while natural deduction was
being motivated. But the reader may feel a little uneasy nonetheless. What
is the point of having “natural deduction rules,” when, if strictly formalized,
all the “natural deduction theorems” are already axioms? And again, the
point is practical; we desire, if one wants to put it that way, efficient pro-
cedures to discover what the natural deduction axioms are (or, really, what
the theorems of R are). In fact, we might always appeal to known ineffi-
cient procedures (e.g., recursively enumerating the theorems of R) for this
purpose; we could even Craig the procedure to reduce the natural deduction
axioms to an effective set (saving, for this purpose, the rule of replacement

Australasian Journal of Logic (18:5) 2021, Article no. 4



220

for ∧ idempotents). But we don’t have time for all that. Hence, natural
deduction!

V

Setting up our natural deduction system has by now occupied the major part
of the paper, and it is time that we returned to our principal aim of applying
it to R♯. In order to do so, we now make some further definitions in our
language L ♯.

D⊤. ⊤ =DF 0 = 0

D⊥. ⊥ =DF ∼⊤ =DF 0 6= 0

D▽. ▽A =DF ⊤ ∧A

D△. △A =DF ⊥ ∨A

D≡. A ≡ B =DF (A ⊃ B) ∧ (B ⊃ A)

D⊃. A ⊃ B =DF ▽A → B

D≡. A ≡ B =DF (A ⊃ B) ∧ (B ⊃ A)

DF. F =DF 0 = 1

DT. T =DF ∼F =DF 0 6= 1

D¬. ¬A =DF A ⊃ F

We motivate these definitions as follows.
First, ⊤, ⊥ will, as suggested above, gradually take over the roles of the

sentential constants t and f . It would be inexpeditious, however, to turn
over these roles too suddenly. For t is a natural deduction convenience, and
we have not yet proved that 0 = 0 has the right properties to stand in for it.
But, once we have proved the necessary theorems, we shall see that ⊤ does
play the role of an arithmetic least truth, as ⊥ plays the role of an arithmetic
greatest falsehood, whence the need for primitive t, f will vanish.

A special role is also played by ⊤ ∧ A, relative to A, motivating our cor-
responding definition of ▽A. (Mnemonic: ▽ points down, just like ⊤.) The
special role goes back in principle to early work by Ackermann, Anderson,
and Belnap, and is made explicit (for t) in [IEN]. The idea is to make room
for looser notions of follows from than relevantly follows from, without mak-
ing the notions so loose that we cannot use them to argue relevantly. In such
a looser sense, we may use not only A but anything else which we know to
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be true in investigating the consequences of A. And since, by t→ in a new
form ⊤→, everything that is provable in R♯ is going to be provable from our
“least truth” ⊤, we see by definition that ▽A will provably imply not only A
but all that, from the R♯ viewpoint, is known to be true. So the effect of ▽
is to strengthen A so that we may draw from it other conclusions from those
to which it is directly relevant.

As ▽ goes, so goes our new defined ⊃. (Note that this ⊃ must be kept
conceptually and notationally distinct from the material ⊃.) This ⊃ is stud-
ied in [IEN], where it turns out to have generally intuitionistic properties.
(This was already to be expected from Anderson-Belnap [ETH]. Our concep-
tion of arithmetic, incidentally, is not intuitionistic, which masks somewhat
the underlying logical properties of ⊃.)

Note the following principles of R♯.

▽E. ▽A ≤ A

▽I. A ⇒ ▽A

⊃E. (A ⊃ B) ∧ ▽A ≤ B

⊃I. A ∧B ⊃ C ⇔ A ⊃. B ⊃ C

As put, ▽E and ⊃E are theorems of R♯, while ▽I and ⊃I are rules (the
latter a two-sided rule). In view of ⊃E, ⊃I, ▽I, it is to be noted that, in R♯,
⊃ has the useful properties that modus ponens works for it and that it gives
rise to an appropriate deduction theorem relative to ordinary conjunction ∧.
(Verification of the latter, however, depends on the left to right direction of
⊃I, which itself depends on t◦. So it will not be complete until we have
shown that ⊤ will serve in R♯ for t.)

Having ⊃ in hand cancels in part, within our relevant arithmetic itself,
the practical difficulties that might attend to the insistence that we must
argue relevantly if we are arguing validly. Such difficulties, e.g., might arise
in arguments by cases. For we often dispose, in such arguments, of one case
by invoking some relevant hypothesis in force, while another case is settled
trivially on background knowledge, without appeal to the hypothesis. But
the conjunction of relevant hypothesis and relevant background knowledge
settles both cases, and it does so relevantly. Following the line of [ETH] and
[IEN], we may encapsulate such appeals to background knowledge in the
machinery just introduced.

We have, nevertheless, by no means cancelled relevant implication. For
we continue to see the → of R♯, for present purposes, as the underlying
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implication on which arithmetic is being built up. I.e., we find structural
arithmetical connections between formulas only in case the corresponding
relevant implications or equivalences hold. Such connections must go back
to the point that the natural numbers are built up from 0 by adding 1’s. Once
we begin to see the natural numbers as themselves constituting a universe
of discourse, and of certain facts as holding in this universe, we shall indeed
wish to express these facts. But there is more than a little mythology in
such expression, and so, both for the sake of safety and of clarity, we do
not assume that all arithmetical facts are structurally linked. Indeed, this
last view is to be seen as an imposition upon arithmetic of certain currently
fashionable views in the philosophy of logic—which, however, there are no
convincing general reasons to think true. (As to whether there are convincing
arithmetical reasons, that’s a matter for research. Probably not, but we shall
see.)

As ▽ goes, so goes △, turning the mnemonic upside down. In view of
the DeMorgan laws and definitions, note that ∼△A is provably equivalent
to ▽∼A, etc. And we note, formally, that △ has many of the properties
normally associated with a possibility operator, while ▽ resembles necessity
in the same respects. (E.g., ▽E above is a theorem, but ▽I is only a rule.)
Other modal analogies, and some disanalogies, will occur to the reader.

Central motivational problems of R♯, as yet open, can be related to prop-
erties of △. (The same holds for relevant logics and theories generally.) For
△ is related in a simple way to the rule γ, whose importance for relevant
motivation has been apparent ever since Anderson’s [OPP]. For γ is just the
following rule ⊃E.

⊃ E. A ⊃ B & A ⇒ B

And for R♯ (as for relevant logics and theories generally, assuming the pres-
ence of the constant f), the admissibility of γ boils down simply to the
admissibility of

△E. △A ⇒ A

For a little more practice with our natural deduction system, we shall show
that ⊃E is admissible in R♯ iff △E is. (So as not to clutter up the notation,
we shall assume that t has already been identified with ⊤, and f with ⊥. We
shall make no systematic appeal to the present observation until that has
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been done.)
Suppose, first, that ⊃E is admissible in R♯. To show △E admissible, let

△A be a theorem of R♯. We show A a theorem. △A is defined as ⊥ ∨ A,
which is evidently equivalent to ⊤ ⊃ A. ⊤, of course, is a theorem of R♯,
whence by ⊃E so is A.

Suppose conversely that △E is R♯-admissible. To show ⊃E also admis-
sible, we assume that both A ⊃ B, A are theorems of R♯, and we show B
a theorem. Natural deductively, on the parenthetical observation above, we
have

1. ⊤ ≤ A ⊃ B

2. ⊤ ≤ A

3. α = ∼△B Hypothesis

4. α ≤ ⊤ ∧∼B 3, D△, D∼∨, D⊤

5. α ≤ A ∧ ∼B 2, 4, Directed Replacement

6. ⊤ ◦ α ≤ ⊥ 1, 5, D⊃, ⊥I (i.e., fI)

7. ⊤ ≤ △B 3, 6, ∼I

Step 7 means that △B is a theorem of R♯, whence by △E so is B. This
completes the demonstration that one of ⊃ E, △E is admissible in R♯ iff the
other one is.

This concludes our natural deduction practice (skipping obvious steps, as
we shall henceforth). And, indifferently, we shall henceforth take either ⊃E
or △E to be the rule γ for R♯. Question: is γ admissible for R♯?

Answer: I don’t know; I suppose so, since γ has been shown admissible
for an ever wider class of relevant logics and theories; i.e., for RM in [ENT];
for relevant sentential logics in general in [ERG]; for relevant quantification
theories in [CRQ]; and for second and higher-order relevant logics in [CR].
In these places, the reader will find general reflection on the significance of γ
for relevant theories generally; below, we shall reflect in various ways on its
significance for R♯.

Meanwhile, let us note that, even if for some good reason γ turns out not
to be admissible for R♯, it might be the case that it is not wanted. If, e.g., C♯

is inconsistent, γ must fail for R♯. Fortunately, in that case. Conversely, we
shall show that the admissibility of γ in R♯ implies the consistency of C♯. So,
on general Gödelian grounds, a hard proof (if there is one) is to be expected.

Anyway, being prepared for the worst case, we must adjust our proof tech-
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niques in R♯ so that they do not assume γ. We should wish to do this in any
case. For γ, where it holds, we take in general to be a factual principle, not a
structural one. And it is just at this point that our hedged semantic faith in
classical negation becomes seriously hedged; for inference, we want structural
principles, not “facts” about a domain whose entities we are making up as we
go along. Technically, this is reflected in the fact that γ, relevantly speaking,
is not a principle which is invariant under assumptions. We shall adjust our
technique to take account of this situation.

The contrast between ⊃E and ⊃E also needs to be noted. The latter, in
general, is just a restricted form of M→∧, for the special case in which the A
of the latter is of the particular form ▽A′. So general →E principles may be
specialized as appropriate ⊃E principles; in that guise, they apply generally
to regular R-theories and RQ-theories. Except, however, in a very weak sense
(for which cf. [IEN]), we cannot view ⊃E as any sort of specialization of →E.
This means that ⊃E is admissible only for theories that are semantically
normal in a rather strong sense (for which see [ERG] and [SEI]).

Other new connectives and constants can be passed over rather lightly.
≡, ≡ are respectively the equivalences which go with the implications ⊃, ⊃.
They are subject to the same kinds of remarks. F plays the role of an arith-
metically absurd proposition; it implies almost (but not quite) everything.
Conversely, almost everything implies its negation T. Finally, given that ⊃
functions as an intuitionist kind of implication, and given that intuitionist
negation is absurd (in an [FML] sense), we have in ¬ something approaching
an intuitionist negation. Thus, there is a sort of intuitionist arithmetic in
the ⊃, ¬, ∧, ∨, ∀X , ∃X fragment of R♯, built up from the atomic formulas
T = U of R♯. Let us call this fragment J♯

R
.

Note, however, that J♯
R
is by no means the intuitionist arithmetic J♯ (as one

finds it, e.g., in [IMM]). On two grounds. First, R♯ has a classical theory of
quantification, which makes J♯

R
stronger than J♯ on, e.g., certain confinement

principles. Second, and more important here, R♯ does not buy the J♯ form of
the principle that says that 0 is not the successor of any number, on grounds
of relevance. For J♯ asserts that if X ′ is 0 then all hell breaks loose; i.e.,
¬(X ′ = 0) is a theorem of J♯; equivalently, X ′ = 0 ⊃ 0 = 1 is a theorem of
J♯; equivalently, for all A, X ′ = 0 ⊃ A is a theorem of J♯.

But these are not theorems of R♯, for reasons touched on when motivating
the corresponding axiom A12 of R♯. For while it is false that 0 is the successor
of some number, it is not necessarily absurd. And only, in fact, that kind of
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theory of negation which holds that all falsehoods are absurd could provide
general grounds for interpreting the Peano postulate A12 in the J♯ way above.

The last point is not to be pushed too far. For we might have specific
grounds (e.g., cancellation laws) for preferring the stronger J♯ and C♯ forms
of A12. Here, these specific grounds are not accepted. We accept, indeed,
X ′ = 0 ⊃ 1 = 0 as an arithmetical fact, signalled by the material ⊃. But we
do not accept it as an arithmetical law, to be signalled by an → or even a ⊃.

Let us get clear on this point. I am not concerned with the practical
inferences which a number theorist will permit himself. So far as practical
inferences are concerned, he will no doubt assume that he is working with
facts in a numerical universe of discourse, and use γ. I have no objection
to this procedure, if indeed γ can be made plausible for this imaginative
universe. (I do object, however, to the claim that there is nothing at all
problematic about using γ in arithmetic. That’s, ultimately, an act of faith,
and mathematics is not a religion. Or, to the extent that it is one, the
worship of Baal becomes plausible by comparison.)

However, what we are concerned with here is the logical framework from
which we build up the natural numbers. (It is not ruled out that there are
alternative frameworks, good for different purposes.) We are told that there
are certain first principles—enunciated by Dedekind and made famous by
Peano—on which the natural numbers turn out to be, intuitively and near
enough, what vaguely we held them to be. Now certainly this is not the
case on first principles alone; unless there are deductive connections between
certain number-theoretic statements and others, we shall never get beyond
first principles. Moreover, these connections are themselves presupposed in
the very vocabulary in which we state the first principles; they are certainly
presupposed in the vocabulary in which we formalize these principles.

VI

Our next topic will be the properties of identity in R♯. There is at present no
commonly accepted relevant theory of identity, even for RQ. Instead, there
are alternative relevant theories. Let us briefly say why.

Urquhart has suggested that, at the level of pure predicate calculus with
identity, the relevant theory may perhaps be summed up in the following 2
principles.
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R=. X = X

S=⋆. Y = Z →. A[Y ] → A[Z], where A[X] is an atomic formula in which
X occurs free

One’s first thought, rather would have been to have adopted, in place of S=⋆,
the more general principle

S=. Y = Z →. A[Y ] → A[Z], where A[X] is any formula

However, the latter choice leads to certain apparent anomalies. For, on the
general [IMM] convention that A[X ] does not necessarily contain free X , we
can prove from S= such apparent fallacies of relevance as

(1) X = Y →. P → P

(2) X = Y → Z = Z

in the version of RQ with identity based on R=, S=.
So, it would seem, something along the general lines of the suggested

Urquhart approach might better suit relevant logics in general. (Another
and apparently even weaker policy was subsequently recommended by Free-
man in his contribution to [PRC].) In R♯, however, objections to these sorts
of theorems do not apply. If one wills, this is because R♯ sees its domain of
intended application, namely the natural numbers, as already tightly struc-
tured, whence we can prove, say, from the assumption that X = Y that
Z = Z. (There is, however, a catch in this, in that R♯ allows for subtraction,
in view of the postulate that says that distinct numbers have distinct succes-
sors, in a stronger sense than it allows for division. It would be interesting,
accordingly, to weaken the subtraction principles, thereby loosening some
structural connections and refuting (1) and (2). But I shall not give further
consideration to this possibility here.)

Thus given its domain of intended application, the identity theory of
R♯ will satisfy not only R= and the weak principle S=⋆, but the stronger
principle S=. We shall establish that fact in this section, together with the
corresponding strong replacement principle for terms. I.e.,

T=. Y = Z →. T [Y ] = T [Z]

where T [X ] is any term and T [Y ], T [Z] result respectively from the replace-
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ment of all occurrences of X in T [X ] with Y , Z.
To begin with, we have, in virtue of axioms A13, A11, A14, the following

schematic theorems for all terms T , U .

SU=. T = U ≤ T ′ = U ′

PR=. T ′ = U ′ ≤ T = U

S→=. T = U ≤ T = V → U = V

(Although we have assigned ≤ its ordinary arithmetic significance between
terms, evidently no ambiguity arises if we continue, as above, to use it be-
tween statements for provable implication in R♯, on our natural deduction
practice.)

Evidently these, and subsequent, provable entailments give rise, on di-
rected replacement in R♯, to 1-premiss natural deduction rules as in IV. We
shall indifferently employ, as before, notation introduced to name theorems
for the corresponding natural deduction rules as well. We now establish,
schematically, some elementary properties.

(1) t ≤ T + 0 = T A15, ∀I, ∀E

(2) t ≤ T + 0 = T → T = T (1), S→=, Directed Replacement

(3) t ≤ T = T (1), (2), →E, t◦

(3) establishes the reflexivity principle R= for all T . Then

(4) α = T = U Hypothesis

(5) α ≤ T = T → U = T (4), S→=

(6) t ◦ α ≤ U = T (3), (5), →E

(7) t ≤ T = U → U = T (6), (4), →I

(7) establishes the symmetrical property of identity; i.e.,

SYM=. T = U ≃ U = T

We henceforth take SYM= for granted, without explicit comment. It leads
almost immediately to the following transitivity rule.

TR=. Γ ≤ T = U & ∆ ≤ U = V ⇒ Γ ◦ ∆ ≤ U = V
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The simple verification of TR=, using S→=, is left to the reader. He should
note, in particular, the strong mode of tag composition by ◦ in the conclusion
of this rule (which may be weakened to ∧ composition by directed (tag)
replacement).

Before going further with the properties of =, let us return to a favored
topic—namely, the elimination of t from R♯ in favor of ⊤. As a halfway
measure, we define

D⊤′. ⊤′ =DF ∀x(x = x)

We shall prove that ⊤′ has the following crucial property

CP⊤′. ⊤′ ≤ A → A

for all formulas A of L ♯ (not containing, of course, the constant t).
We prove CP⊤′ by induction on the length of A. First, suppose that A

is an atomic formula T = U . Then, evidently,

(8) T = T ≤ T = U → T = U S→=, SYM=

(9) ⊤′ ≤ T = U → T = U D⊤′, (8), ∀E, Replacement

This disposes of the atomic case. Suppose now, on inductive hypothesis,

(10) ⊤′ ≤ A → A

(11) ⊤′ ≤ B → B

Then

(12) ⊤′ ≤ ∼A → ∼A

(13) ⊤′ ≤ A ∧B → A ∧B

(14) ⊤′ ≤ A → B →. A → B

(15) ⊤′ ≤ ∀XA → ∀XA

are readily verified on principles set out above, as the reader may check. This
disposes of the inductive cases, and establishes CP⊤′ for all formulas A of
L

♯.
Evidently, ⊤′ ≤ ⊤, by ∀E and definitions. We wish to show, conversely,

that ⊤ ≤ ⊤′. For this it will suffice, by ∀I, to show
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(16) 0 = 0 ≤ x = x

We let (16) be our induction proposition A[x], and we use our primitive rule
RMI of R♯ to prove it. For this we must prove A[0] and A[x] → A[x′]. But
the former is just

(17) 0 = 0 ≤ 0 = 0

an instance of B → B. To prove the latter,

(18) α = 0 = 0 → x = x Hypothesis

(19) α ≤ 0 = 0 → x′ = x′ (18), SU=, Replacement

I.e., A[x] ≤ A[x′]. Hence we conclude (16) by RMI, and

(20) ⊤ ≃ ⊤′

in R♯ as claimed. In view of (20), we may now transfer the crucial property
to 0 = 0, inferring

CP⊤. ⊤ ≤ A → A

for all (t-free) formulas of L ♯. Applying →I, we get from CP⊤

(21) ⊤ ◦ A ≤ A

which is half of the wanted version of t◦. For the other half, it suffices to
observe

(22) ⊤ ◦ A ≤ ⊤ ◦ A

(23) ⊤ ≤ A → ⊤ ◦ A (22), →I

whence, since ⊤ is a theorem of R♯ by (essentially) R=, we get in R♯ by →E
on theorems

(24) ⊤ ≤ ⊤ ◦ A (23), R=, →E

And (21) and (24) together establish the special formal property of a constant
t in relevant theories, namely that it is an identity with respect to ◦. I.e.,

Australasian Journal of Logic (18:5) 2021, Article no. 4



230

⊤◦. ⊤ ◦ A ≃ A

holds for all (t-free) formulas A of L ♯. And, since t◦ was the only special
property of t to which we appealed in giving it its general natural deduction
role in relevant theories, that role is henceforth assigned in R♯ to ⊤, with all
previous principles holding on replacement of t with ⊤.

So t now departs from this paper. So does f , traded in similarly for ⊥
on analogy of definition. Officially, t, f never belonged to L ♯ at all, but to a
convenient extension thereof, useful for setting up natural deduction. Since
t, although it is always contextually definable, is not always eliminable by
explicit definition in an arbitrary regular relevant theory, it was good to have
it when we were thinking in general terms in IV. But, not being arithmetical,
it would become a nuisance for arithmetic itself to retain primitive t. And,
as we bid t farewell, it is important to recall again that we have nowhere
proved t ≃ ⊤, even in the extension of R♯ that contains them both. So the
reader is to be pardoned for suspecting that, perhaps, our casual appeal to
natural deduction technique somewhere smuggled in an illegitimate appeal
to properties of t, and that we have covered our tracks by now expelling t

from the system. Such a suspicious reader is, accordingly, hereby assigned
the task of proving ⊤◦ directly in R♯, without even passing appeals to t.
(Hint: we never did appeal to t to prove ⊤◦, really.)

That being settled, let us get on with showing that identity has the desired
properties T=, S=. To begin with, let us vindicate our faith in subtraction
by establishing

SB=. X = X ≤ 0 = 0

We prove SB= also by the induction rule RMI, taking X = X → ⊤ as our
induction proposition A[X ]. Again, A[0] is trivial, and so it suffices to show
A[X ] ≤ A[X ′] in R♯. So

(25) α = X = X → ⊤ Hypothesis

(26) α ≤ X ′ = X ′ → ⊤ (25), PR=, Directed Replacement

(26) is the induction proposition to be demonstrated, whence SB= holds by
RMI.

SB= can be strengthened, by generalizing on the class of equations. To
begin with, every atomic formula T = U counts as a direct equation. A quan-
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tified equation is any result of prefacing zero or more quantifiers (universal
or existential) to a direct equation. (Thus, on definitions above, T ≤ U ,
T < U are quantified equations.) An indirect equation is either a quanti-
fied equation, or is of one of the forms A ∧ B, A ∨ B, A ◦ B, ∀XB, ∃XB,
where each of A, B is an indirect equation. (E.g., the law of trichotomy
T < U ∨ T = U ∨ U < T is an indirect equation.) Finally, a secondary equa-
tion is any formula A such that, for some indirect equation B, it is provable
in R♯ that A → B is a theorem. (Thus, e.g., T = U ∧ V 6= W , though not
an indirect equation, is a secondary equation, since it provably implies the
(indirect) equation T = U .)

In view of the transitivity of provable implication, obviously every formula
A that provably implies a secondary equation is itself a secondary equation.
Classically and intuitionistically, since every formula provably implies 0 = 0,
every formula would count on the above criterion as a secondary equation.
But this, as we shall see, is not the case in R♯. However, the various classes
of equations defined above, of which the secondary equations are the widest
class, do play an interesting role in R♯. The direct equations and the quanti-
fied equations, the latter corresponding intuitively to assertions that certain
equations hold universally or have solutions (or have solutions that hold uni-
versally, etc.), are of evident special interest. Moreover, the principle SB=
generalizes to the whole lot of secondary equations. I.e.,

=≤⊤. A ≤ ⊤, whenever A is a secondary equation

In view of the transitivity of provable implication, it suffices to prove =≤⊤
for the case in which A is an indirect equation. We do this by induction on
the length of A. Interesting cases are the atomic case, where A is of the form
T = U , the case where A is B ◦ C, and the case where A is ∃XB, assuming in
the latter two cases that B and C are indirect equations for which =≤⊤ has
already been established. For the atomic case, note that T = U ≤ T = T by
symmetry and transitivity of identity, and that T = T ≤ ⊤ by trivial steps of
∀I, ∀E, D⊤ in SB=, whence by transitivity of provable implication =≤⊤ is
established for this base case. The inductive cases, including the interesting
ones, are left to the reader.

So our standard truth 0 = 0, even if not provably implied by absolutely
everything, is certainly implied by a whole bunch of formulas. Recalling our
definition of ▽, another nice property of secondary equations is that they are
unaffected by application of ▽. I.e.,
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=≃▽. A ≃ ▽A, whenever A is a secondary equation

From right to left, this is trivial by ▽E. From left to right, given that A is
a secondary equation,

(27) α = A Hypothesis

(28) α ≤ ⊤ (27), =≤⊤

(29) A ≤ ▽A (27), (28), ∧I, D▽

Similarly, when the antecedent of a relevant conditional A → B is a secondary
equation, A → B is completely equivalent to our enthymematic conditional
A ⊃ B. I.e.,

→≃⊃. A → B ≃ A ⊃ B, whenever A is a secondary equation

This is immediate from =≃▽, D⊃, and replacement of provable R♯ equiva-
lents. So in a large class of cases, including everything in the J♯ vocabulary
(as that vocabulary is construed relevantly), intuitionist implications are the
same as relevant implications. (Again, however, we caution the reader not
to think that J♯ is thereby a relevant arithmetic, on points noted earlier.)

The last 2 principles pushed =≤⊤ in one direction. To push it in another
direction, note that

=≃⊤. A ≃ ⊤, when A is both a secondary equation and a theorem of R♯

If we take, imaginatively, provably equivalent formulas in R♯ to express the
same (arithmetic) proposition, what =≃⊤ amounts to is that very many
theorems of R♯ are going to express the same proposition as the standard
truth 0 = 0. (By comparison, all provable formulas express the standard
truth from the viewpoint of C♯ and J♯.) In particular, all direct equations,
quantified equations, and conjunctions, disjunctions, and fusions of quantified
equations will expressly be R♯ equivalent to ⊤ if they are theorems.

Related principles are the following:

=≃⊤⋆. A ≃ ⊤ ↔ A, whenever A is a secondary equation

=≤⊤⋆. A ≤ B, whenever A is a secondary equation and B is a theorem of
R♯

∧≃◦. A ◦ B ≃ A ∧B, whenever both of A, B are secondary equations
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For proof, assuming A a secondary equation,

(30) α = A Hypothesis

(31) α ≤ ⊤ → A (30), ⊤→

(32) α ≤ ⊤ ↔ A =≤⊤, (30), (31), ∧I, D↔

(33) ρ = ⊤ ↔ A Hypothesis

(34) ρ ≤ A (33), D↔, ∧E, R=, D⊤, →E

(35) A ≃ ⊤ ↔ A (30), (32), →I, (33), (34), →I, D↔

If also B is a theorem of R♯, A a secondary equation

(36) A ≤ ⊤ =≤⊤

(37) ⊤ ≤ B ⊤TR

(38) A ≤ B (36), (37), Replacement

If each of A, B are secondary equations,

(39) A ∧B ≤ A ◦ B ∧◦

(40) α = A Hypothesis

(41) ρ = B Hypothesis

(42) ρ ≤ ⊤ (41), =≤⊤

(43) α ◦ ρ ≤ A (40), (42), ⊤◦, ◦I

(44) α ◦ ρ ≤ B In Like Manner To (43)

(45) A ◦ B ≤ A ∧B (43), (44), ∧I, (40), (41)

(46) A ◦ B ≃ A ∧B (39), (45)

These proofs establish the three principles just set out. Note, incidentally,
that =≃⊤ follows from =≃⊤⋆.

In R♯, the following three statements are equivalent, for each formula A.

(i) A is a secondary equation

(ii) A ≤ ⊤

(iii) A ≃ ▽A

For (ii) implies (i) by definition of secondary equation and D⊤, (iii) implies
(ii) by D▽, ∧E, and (i) implies (iii) by =≃▽.

We note that, in R♯,
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⊤≃⊤. ⊤ ≃ ⊤∧ ⊤ ≃ ⊤ ∨ ⊤ ≃ ⊤ → ⊤ ≃ ⊤ ◦ ⊤ ≃ ∃X⊤ ≃

∀X⊤ ≃ ⊤ ↔ ⊤ ≃ ⊤ ⊃ ⊤ ≃ ▽⊤

Accordingly, where A, B are both provable secondary equations of R♯, we
have by =≃⊤, Replacement,

=≃⊤⋆⋆. ⊤ ≃ A ∧B ≃ A ∨B ≃ A → B ≃ A ◦ B ≃ ∃XA ≃

∀XA ≃ A ↔ B ≃ A ⊃ B ≃ ▽A

The considerations just gone through open up a considerable realm in which
classical kinds of thinking are going to work in R♯. For most purposes, this
is fine; cutting loose from the classical intuitions that we have learned to
feel at home in, formally, is a bit painful, and it is reassuring that, in many
respects, we are still hewing to them. However, we are cutting loose from
classical intuition at just those points, relevantly, where it is most suspect.
For example, despite our long list of equivalents of ⊤ above, it is to be noted
that ⊤ ⊃ ⊤ is not on that list (even though ⊤ ⊃ ⊤ is on the list). And it is
not ruled out that further relevant researches will inhibit some of the moves
permitted above.

Relative to the constant ⊤, secondary equations play a special role. So
it is to be expected that the negations of secondary equations will play a
dual role relative to the dual constant ⊥. By a negated equation, we shall
accordingly mean something of the form ∼(T = U), where T , U are terms
(i.e., T 6= U , on our standard abbreviation). We shall not bother to introduce
classes of quantified or indirected negated equations, though this is easy to
do on dual analogy with the quantified and indirect equations above. But
A shall be a secondary negated equation iff, for some formula B such that
A ↔ ∼B is a theorem of R♯, B is a secondary equation.

Contraposition on principles stated above yield the following

⊥≤6=. ⊥ ≤ A, whenever A is a secondary negated equation

6=≃△. A ≃ △A, whenever A is a secondary negated equation

6=≃⊥. A ≃ ⊥, whenever A is a secondary negated equation and ∼A is a
theorem of R♯

6=≃⊥⋆. ∼A ≃ A ↔ ⊥, whenever A is a secondary negated equation

⊥≤6=⋆. B ≤ A, whenever ∼B is a theorem of R♯ and A is a secondary
negated equation

→≃∼⊃∼. A → B ≃ ∼B ⊃ ∼A, whenever B is a secondary negated equation
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∨≃∼→. A ∨B ≃ ∼A → B, whenever both of A, B are secondary negated
equations

⊃≃→. A ⊃ B ≃ A → B, whenever A is a secondary equation and B is a
secondary negated equation

Proofs are immediate from definitions, contraposition, and ⊤ principles just
laid down, and so are left to the reader.

The principle ⊥≤6= may be taken as the R♯ form of the ex falso quodlibet.
Note, however, that it is not everything, but just every secondary negated
equation, that follows from the false. Indeed, we may take this fact, as above,
to characterize the secondary negated equations; i.e., A being any formula,
the following are equivalent in R♯.

(i) A is a secondary negated equation

(ii) ⊥ ≤ A

(iii) A ≃ △A

Given (ii), it is evident that the class of secondary negated equations, besides
containing everything of the form T 6= U , is closed under ∧, ∨, ◦, ⊃, and
prefacing quantifiers; it is even closed under ⊃, ≡, ≡. But note that neither
of the classes of secondary equations or secondary negated equations is closed
under →.

We next turn to some relations that obtain, and some which do not ob-
tain, between negated equations and secondary negated equations. The most
significant is that we do not have, as a theorem of R♯, ⊥ ≤ ⊤. We do not
want it, of course. But the effect is that equations between terms, in R♯, are
something like modal statements of the form �A, while negated equations
are something like statements of possibility. (iii) in the last paragraph, its
analogue above, and our previous remarks about ▽, △ convey something of
this sense. In [ENT], that possibility is classified as a fallacy of modality.
While, in systems based on R♯, we do not have modal notions (the [ENT]
account applying in this context to E instead), the same kinds of formal intu-
itions are at work. As relevant formal evidence for the truth of an equation,
we should have a hard time counting a negated equation. For the picture
is that the equations are the principal facts about the numbers that we are
trying to establish; the negated equations are the factual assertions that,
if asserted hypothetically, prove untenable in the systematic context. And,
while we are willing to go from assertions of untenability in some cases to
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factual claims—we accept double negation, for reasons given above—we see
no relevant way of arguing from, say, 2 + 2 6= 5 to 2 + 2 = 4, and believe it
reasonable to suppose in general that direct arithmetical facts are not to be
established from negations of such direct facts.

Truth-functional and quantificational compounding, it should be noted,
does not lead us out of the union of the classes of secondary equations and
secondary negated equations. Let us call this union the class of secondary
formulas. Note that the class of secondary formulas contains all atomic
formulas and is closed under the truth-functional connectives and quantifiers.
(In particular, it contains all formulas in the properly classical vocabulary.)
Question: are all formulas secondary formulas?

The answer to this question, as we shall see, is “No.” It boils down to
the question whether A → B is a secondary formula whenever each of A, B
is a secondary formula. There are four cases, which we may put as follows:

(i) Both of A, B are secondary equations

(ii) Both of ∼A, B are secondary equations

(iii) Both of A, ∼B are secondary equations

(iv) Both of ∼A, ∼B are secondary equations

In case (ii), we may conclude that A → B is a secondary equation and hence
a secondary formula. (For, since the class of secondary equations is closed
under ∨, ∼A ∨ B is a secondary equation. So by D⊃, =≤⊤, A ⊃ B ≤ ⊤.
But A → B ≤ A ⊃ B by R→⊃, whence A → B ≤ ⊤.) In case (iii), we may
conclude that A → B is a secondary negated equation and hence a secondary
formula. (For ⊥ ≤ B by ⊥≤6=. By ⊤→, we have ⊥ ≤ ⊤ → B. By =≤⊤,
applicable because A is a secondary equation, we have ⊥ ≤ A → B on a use
of directed replacement.)

The cases (i) and (iv) march together, in view of contraposition. But
they do not march anywhere in particular, so far as the present problem
is concerned. Below, in fact, we shall find formulas A, B which are both
secondary equations, but such that A → B is not a secondary formula. For
now, we merely observe that not all formulas are secondary formulas.

Let us return now to the concerns with which we opened this section.
We began by attempting to fit the identity theory of R♯ in particular into
a general relevant framework. The actual logical content of the identity
axioms of R♯ strikes one as quite weak; we appealed to that content to show,
rather trivially, that identity in R♯ has the expected properties of reflexivity,
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symmetry, and transitivity. But identity functions in R♯ not merely as part of
a general logical theory, but, more important, as part of our arithmetic. So
arithmetical interconnections, as seen from R♯, will be important to establish
even general logical laws for identity, above and beyond those which we can
all agree hold on fundamental principles of relevant logic. Our constant ⊤,
the foundation law 0 = 0 of arithmetic, has significant properties, which we
have here surveyed, in terms of which the proof theory of R♯ in general, and
of its identity theory in particular, will henceforth be developed.

VII

In this section, we wish to do some actual formal arithmetic, from the R♯ point
of view. To begin with, let us think about our natural deduction system once
again.

First, we are going to make some notational changes in it. While, thus
far, we have been writing things like

(1) α = A Hypothesis

we switch this notation to

α (1) A Hypothesis

Similarly, where we might previously have gone from step (1) to

(2) α ≤ A ∨B (1), ∨I

this will be, in our new notation

α (2) A ∨B (1), ∨I

For its interpretation, the new notation is to be translated directly back
into the old notation and interpreted as before. (Note, for this translation,
that a tag is an α = tag iff the step which it tags bears the annotation
Hypothesis; otherwise, it is an α ≤ tag.) Tags, however, firmly remain
formulas, provably implying the formulas they tag, and we shall continue
to switch easily back and forth between Greek and Latin notation, a switch
justified by our Hypothesis steps, and even to use Latin notation in tags.
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Where convenient, we shall also use the old notation for tagged formulas.
(E.g., when we wish to call psychological attention to the R♯ implication that
is provable, instead of to the tagged formula which is provable under some
hypotheses.)

Particularly important, so far as tagging formulas is concerned, are con-
siderations that rest on the principle =≤⊤ of the last section, on which every
secondary equation provably implies ⊤. This means that, whenever a tag Γ
is a secondary equation, and when A is known to be a theorem of R♯, we are
entitled to a step, say

Γ (3) A,

in virtue of ⊤ ≤ A and directed replacement. In fact, we shall very often be
concerned with hypotheses that are secondary equations. And our principal
tag compounding maneuvers, under ∧, ∨, ◦, ∀X , ∃X , do not lead out of
the class of secondary equations, when applied to tags that are in this class.
So steps like (3) can occur rather frequently. Caution: such steps remain
illegitimate when Γ is not a secondary equation, even if A is a theorem of R♯

anyway.
A last notational simplification. In tags, we shall henceforth drop ◦ in

favor of simple juxtaposition. (And we modify our general notational con-
ventions to let juxtaposition bind even more tightly than ∧. However, to
keep the number of parentheses down, an explicit notational occurrence of ◦
can still be indulged in, binding less tightly than ∧ as before.) This is quite
important, because ◦, the tag combiner which is introduced by→E and other
important 2 premiss rules, occurs constantly; so the reader should remember
that it is still there, even if invisibly. (On our general formal philosophy,
naturally, all the connectives are there invisibly, but ◦ will henceforth be a
little more invisible than most.)

Henceforth, our appeal to the rule RMI of mathematical induction has
been minimal. It is, however, a principal tool for arithmetical deduction, and
so we wish to bring it under our general natural deduction technique.

First, let us think about a direct application of RMI. This is an inference
from A[0] and A[X ] → A[X ′], once we have proved them in R♯, to A[X ].
Dressed up, in our natural deduction format, the inference will henceforth
look something like this.

⊤ (4) A[0] Justification
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α (5) A[X] Hypothesis
...

...

α (71) A[X ′] Justification

⊤ (72) A[X] (4), (5), (71), RMI

Often, however, we shall wish to carry out inductive arguments under
hypotheses (including hypotheses entertained for some outer inductive ar-
gument within which we are nesting an inner inductive argument). So it is
important to get straight on the kinds of inductive argument that are in-
variant under assumptions. (It is important, moreover, that we have for this
purpose mathematical induction in the “theorem” form A19 of Section II.)

So suppose that we are given

Γ (6) A[0] Justification

∆ (7) ∀X(A[X] → A[X ′]) Justification

Then, by an application of ∧I, we have

Γ ∧∆ (8) A[0] ∧ ∀X(A[X] → A[X ′]) (6), (7), ∧I

whence, by directed replacement and A19, we may conclude

Γ ∧∆ (9) ∀XA[X] (8)

So we may take (6) and (7) directly as premisses from which (9) may be
derived, tagged as noted, and justified by a notation RMI which we shall
henceforth consider all-purpose, so far as inductive arguments are concerned.

(6), normally, will have to be justified directly. But (7) tempts us to
further analysis. For we should normally prove (7) by assuming A[X ], deriv-
ing A[X ′] relevantly on that on that hypothesis, and then generalizing with
respect to X . So, on further refinement, we proceed

α (0) A[X] Hypothesis

∆ ◦ α (00) A[X ′] Justification

whence, provided that we have safeguarded the ∀I step envisioned above
by insisting that X should not occur free in ∆, we may infer (9) once more,
citing this time (0), (00), (6), RMI as justification. And this, in fact, will
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be our preferred form of RMI.
Let us, now, clean up the above discussion slightly. Ordinarily, there will

be little point in making Γ, ∆ distinct tags. So suppose that Γ is a tag in
which X does not occur free. (In practice, the reader will recall, this means
that X must not occur free in any of the hypotheses which components of
Γ are introduced to tag.) Then the general pattern of an inference by RMI
will usually look like this.

Γ (6) A[0] Justification
...

...

α (10) A[X] Hypothesis
...

...

Γα (73) A[X ′] Justification

Γ (74) A[X] (6), (10), (73), RMI

Two further points deserve minor note. First, the “direct application” of
RMI which was schematized in introductory remarks is just the special case
of the above rubric in which Γ is taken as ⊤. (In this special case, the tag Γα
on (73) is completely equivalent to the tag α on (71), since ⊤α is equivalent
to α by ⊤◦.)

The second minor point is that, in stating the conclusion (74), we left
off the prefaced ∀X which we had previously attached to (9). Since it is
important for the rubric that X not occur free in Γ, this is an indifferent
point, since the quantifier may be immediately restored by an application
of ∀I. In fact, we are going to be henceforth rather cavalier about trivial
application of rules like ∀I, ∀E. When the conditions for their application are
met, we shall merely apply them, without necessarily taking specific notice
of that fact. (In fact, we have been a bit cavalier already.) Consider, e.g., the
principle R=. We might take this principle to be any of the following: x = x,
∀x(x = x), X = X , ∀X(X = X), T = T . The first two are specific theorems
of R♯; the third and fourth are theorem schemes for an unspecified variable
X ; and the last is a theorem scheme for an unspecified term T , which may be
(but which need not be) a variable. However, all of these schemes translate
into each other by trivial steps of ∀I, ∀E (bearing in mind, in the final three
cases, that schemes are assumed for all their instances).

So we allow ourselves, henceforth, such minor variations on the way that
we put our principles, and the trivial transformations which turn one such
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variant into another. And we shall similarly presume on the reader’s good will
in other minor ways; e.g., in picking bound variables fresh to context when
necessary to avoid confusion of bound variables. (Example: D≤ above.)

So much for trivia. Let us return to induction. A19 above, on which
we depended for the natural deduction story told thus far about RMI, was
stated in terms of relevant implication →. But it might just as well have
been stated in terms of our enthymematic implication ⊃. I.e., the following
is a theorem scheme of R♯.

A19⋆ A[0] ∧ ∀X(A[X] ⊃ A[X ′]) ⊃ ∀XA[X]

Let us, in fact, prove A19⋆.

α (11) ▽(A[0] ∧ ∀X(A[X] ⊃ A[X ′])) Hypothesis

α (12) ⊤ ∧A[0] (11), D▽, A∧, ∧E

ρ (13) ⊤ ∧A[X] Hypothesis

α (14) ⊤ ∧A[X] → A[X ′] (11), ∧E, D⊃, D▽

αρ (15) A[X ′] (13), (14), →E

αρ (16) ⊤ (12), ∧E, (13), ∧E, ◦I, ⊤◦

αρ (17) ⊤ ∧A[X ′] (15), (16), ∧I

α (18) ⊤ ∧A[X] (12), (13), (17), RMI

α (19) A[X] (18), ∧E

⊤ (20) A19⋆ (11), (19), D⊃, →I, ∀I

Note that, in the application of RMI completed in step (18), the induc-
tion proposition is not simply A[X ]. Instead, by definition, it is ▽A[X ].

Having proved A19⋆, note that the form of mathematical induction which
was denied us in the → case (for all we know, anyway) is O.K. in the ⊃ case.
For, while A19′ in Section II could not be justified there, in the intuition-
istically acceptable atmosphere of A19⋆ we may move directly, on R-valid
principles for defined ⊃, to

A19⋆′ ∀X(A[X] ⊃ A[X ′]) ⊃. A[0] ⊃ A[X]

Having A19⋆ allows us to weaken our opening direct scheme for proving
theorems of R♯ by mathematical induction. For this scheme can now be put
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⊤ (4) A[0] Justification

α (5′) ▽A[X] Hypothesis
...

...

α (71) A[X ′] Justification

⊤ (72) A[X] (4), (5), (71), RMI

I.e., we are allowed to conjoin in ⊤ to the hypothesis A[X ] of the inductive
stage (5′) of our inductive argument, carrying everything else as before. This
gives us a stronger hypothesis, whose effect is to allow us to import our
background knowledge into our inductive argument from A[X ] to A[X ′].
(Note, however, that this strengthening is illusory when A[X ] is already an
equation or secondary equation, since in that case it provably implies ▽A[X ]
anyway by =≃▽.)

Using A19⋆ in a way that is invariant under natural deduction assump-
tions, on the other hand, requires a bit of care. (The main point is that, in
justifying the last rubric formally, we would have to appeal to the admissi-
bility of the rule ▽I. While the rule is admissible, for theorems of R♯, it is
not invariant under assumptions. So we must take care.)

Let us introduce, accordingly, ▽Γ for a tag that is (as a formula) a sec-
ondary equation. (E.g., any tag Γ which implies ⊤, and hence is equivalent to
▽Γ, will fall schematically under this rubric. Similarly, when we know that
a tag is, as a formula, a secondary equation, we shall move without further
notational notice trivially between Γ and ▽Γ.)

Under these circumstances, the general rubric above may be put, where
X does not occur free in ▽Γ,

▽Γ (6′) A[0] Justification
...

...

▽α (10′) ▽A[X] Hypothesis
...

...

▽Γ ∧ ▽α (73′) A[X ′] Justification

▽Γ (74′) A[X] (6′), (10′), (73′), RMI

Now let us return to our view of ▽ as a defined operation on formulas,
rather than as indicative of a special category of tags. ▽ is interesting to
us on account of three properties: First, the ▽E property reflecting the R-
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theoremhood of ▽A → A; second, the ▽I property reflecting the R-admissible
rule A ⇒ ▽A; third, the property, inherited from ⊤→, that makes B →.
▽A → B a theorem of R♯, and which makes ▽A ◦ ▽B provably equivalent
to ▽A ∧ ▽B. On the first of these properties, a step of replacement always
permits us to retag Γ as ▽Γ on the “tagged formula” A, even if Γ is not
a secondary equation. On the third, we can always tag with ▽Γ anything
tagged with ⊤, for any Γ whatsoever; and we can always infer from a tagged
formula ▽A any theorem of R♯, with the same tag. Moreover, we can trade
▽ tags compounded by ∧ for the same tags compounded by ◦ (e.g., with a
subsequent step of →I in mind).

All these things having been said, let us put the above rubric in the
strongest useful form.

Γ (6⋆) A[0] Justification
...

...

α (10⋆) ▽A[X] Hypothesis
...

...

Γ ∧ α (73⋆) A[X ′] Justification

▽Γ (74⋆) A[X] (6⋆), (10⋆), (73⋆), RMI

As usual, X must not occur free in Γ. And, we note, the above rubric is
particularly useful because we allow ourselves the strong inductive hypothesis
(10⋆), while we need only derive the conclusion (73⋆) with the weak tag
Γ∧ α. This combination of strong hypothesis and weak conclusion, so far as
the inductive stage of an inductive argument is concerned, makes this form
of mathematical induction particularly easy to work with. But there is no
help for the fact, in general, that the tag on the ultimate conclusion of the
argument, namely (74⋆), must be of the form ▽Γ. Often, we don’t care about
this, either because Γ is itself a secondary equation or because we are aiming
at an eventual conclusion tagged with ⊤, to which a conclusion tagged with
▽⊤ is the same thing. But, whenever it is important that we retain the tag
Γ, and do not weaken it to ▽Γ, then the last rubric won’t do, and we must
fall back on the properly relevant rubrics set out above.
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VIII

Now let us do some arithmetic. We shall busy ourselves, mainly, with demon-
strations that the relevant arithmetic R♯ has, roughly, the same substantive
theorems as anybody’s arithmetic. In doing so, we have Kleene’s [IMM] par-
ticularly in mind, adapting Kleene’s proofs straightforwardly in many cases.
Two points, however, require care. First, despite the fact that it is often
held that nobody really reasons from contradictions to arbitrary formulas,
[IMM] in fact does so quite often. We neither wish, nor shall attempt, to
incorporate such fallacious arguments here. (The reader may spot these ar-
guments in [IMM] by looking for references to weak ¬ elimination; I take it
that what is weak about such moves is that there is a weak case that they
are valid, since the logical principle on which they rest is so strong that,
to the extent to which formalization is supposed to represent and to codify
intuitively acceptable mathematical argument, [IMM] fails to do so on this
point.) So important modification of many [IMM] proofs is in order.

Second, to repeat a point touched on earlier, we must concern ourselves
not only with the proofs but with the formal statement of the theorems of
intuitive mathematics. Once we have got rid of the notion that there is a
canonical language, embodying canonical principles of inference, in which
this can be done, we are returned to a more innocent state in which we are
permitted to wonder, “What is formal arithmetic?” And, once we have got
used to the further notion that formal methods need not merely reflect, or
be an instrument in the reconstruction of, our naive mathematical intuitions,
but may be used to shape these intuitions, then our formal homework appears
in a new light. In that light, it is no longer tolerable to hold that we are just
“formalizing” some necessary truths with which we are already thoroughly
familiar, or the body of which, at the very least, have already been “char-
acterized” by some existing postulate set (e.g., the Dedekind-Peano one).
For there is no such characterization of the arithmetical truths without a
companion characterization of the arithmetically acceptable inferences, and
indeed of the arithmetical language. It is not enough that we should agree
on such things, that eminent authority should recommend them to us, or
that platonic myths should have been invented for their support. To under-
stand, we must begin again, as ever, at the beginning, and work things out
ourselves, from the beginning. We have, to be sure, certain criteria as to
what we expect to do, and hope to do, themselves grounded in the existing
practices which stem from the critical investigations into the foundations of
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mathematics initiated in the last century. We expect, in fact, that the re-
sults of our inquiry will be conservative relative to these investigations. But,
given the confusion into which the foundations of mathematics were plunged
by Russellian and Gödelian anomalies, and the ever more scholastic char-
acter of the enterprises that have arisen from the attempt to dispel these
anomalies, beginning again at the beginning may not be a half-bad idea. For
what we need to do is to get a firmer feel for formal methods as such, without
committing ourselves too soon to particular formal methods that will suffer
forever from the philosophical limitations of the viewpoint from which they
have sprung.

As a contribution to such great enterprises, what is done here is severely
pedestrian, since we shall concentrate on the most elementary properties of
and functions on the natural numbers. Since, for now, even the stability
of R♯ is in doubt, and given the conservative character of our present aims
and methods, the Big Questions will have to wait. Not only arithmetic, but
all of mathematics awaits relevant reconstruction. And, in the end, it is
the Big Questions that must be faced. The import of all formal work on
foundational questions is, in the last analysis, philosophical, and it misses its
purpose when it simply strays down arcane technical by-ways. If the set myth
won’t do, if a correspondence theory of mathematical truth won’t do, if an
empty tautological justification of mathematics won’t do, then much of the
arcane wandering has already missed its purpose. We are back, indeed, with
Dedekind, Frege, and Cantor, confronting their questions, but not content
with their answers. So, proceeding sometimes as they did, and sometimes
perhaps breaking with them, we shall have to answer their questions afresh,
perhaps in quite different ways.

Dedekind, Frege, and Cantor, we suppose, thought that ordinary addition
was commutative. So do we. Let us see what other points of elementary
agreement we can find.

First, let us develop some of the elementary properties of +. Among them
are

+0. X + 0 = X

0+. 0 +X = X

+1. X + 1 = X ′

+2. X + 2 = X ′′

...
...
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A+. X + Y + Z = X + (Y + Z)

C+. X + Y = Y +X

CA+. X + Y + Z = X + Z + Y

M+. X = Y → X + Z = Y + Z

N+. X = Y → Z +X = Z + Y

M−. X + Z = Y + Z → X = Y

The principle +0 is our axiom A15. The other principles we shall have to
prove. Let us begin with 0+.

⊤ (1) 0 + 0 = 0 +0

α (2) 0 +X = X Hypothesis

α (3) 0 +X ′ = X ′ (2), SU=, A16, TR=

⊤ (4) 0 +X = X (1), (2), (3), RMI

Similarly trivial are +1, +2,... E.g.,

⊤ (5) X + 1 = X + 0′ = (X + 0)′ = X ′ D1, A16, TR=, +0, SU=,
TR=

When convenient, we use abbreviated notation as in (5) for simple arguments
by TR=, not necessarily so annotated. Let us move on to M+.

α (6) X = Y Hypothesis

α (7) X + 0 = Y + 0 (6), +0, TR=

ρ (8) X + Z = Y + Z Hypothesis

ρ (9) X + Z ′ = Y + Z ′ (8), SU=, A16, TR=

α ∧ ρ (10) X + Z ′ = Y + Z ′ (9), ∧E, Tag Replacement

▽α (11) X + Z = Y + Z (7), (8), (10), RMI, =≃▽

⊤ (12) X = Y → X + Z = Y + Z (8), (11), =≃▽, →I

We reached step (11) by induction on Z, using the form of RMI considered
last in VII (depending on A19⋆). This entitled us to a prefaced ▽ on step
(8), which we ignored as superfluous since (8) is a (secondary) equation.
Note also that, since the conclusion (9) depends only on (8) (and not also
on (6)) we conjoined in the tag α on (6) by ∧E to get step (10). Since it
is ordinary conjunction ∧, not fusion ◦, by which we compound tags in this
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form of RMI, no questions of relevant use arise and the step (10) is well-
motivated. We are unconcerned that the form of RMI used here results in
the tag ▽α in step (11). For α itself is also a (secondary) equation, whence
▽ is removed to make the tags on (11), (6) match, allowing the final step
(12) by →I. We shall not be so explicit in the future, nor need the reader be
constantly alert to these subtle moves. He must, however, keep in mind the
motivational principles set out above on which they rest. For otherwise he
might come to think that moves buried in annotations (or passed over tacitly)
are superfluous, leading perhaps to the suspicion that we are making moves
which we are not making, and which it would be motivationally incorrect,
and destructive of claims to relevant insight, to make. In short, while none
but the most careful readers will want to check the proofs to come in formal
detail, writing out a few proofs in full is always useful to get the hang of
what is going on, other than those which the author has made reasonably
complete, and so the reader should be alert to just the kinds of moves made
explicit above, and to reasons already provided for them.

M+ shows, in one sense, that we can add sensibly in R♯; in the same
sense, M− shows that we can subtract. Here we use the original direct form
of RMI for induction on Z.

⊤ (13) X + 0 = Y + 0 → X = Y +0, TR=

α (14) X + Z = Y + Z → X = Y Hypothesis

ρ (15) X + Z ′ = Y + Z ′ Hypothesis

ρ (16) X + Z = Y + Z (15), A16, TR=, PR=

αρ (17) X = Y (14), (16), →E

α (18) X + Z ′ = Y + Z ′ → X = Y (15), (17) →I

⊤ (19) X + Z = Y + Z → X = Y (13), (14), (18), →I

Before proving C+, it is helpful to prove the following.

⊤ (20) X ′ + Y = X + Y ′

We prove (20) thus.

⊤ (21) X ′ + 0 = X + 0′ +0, +1, D1, TR=

α (22) X ′ + Y = X + Y ′ Hypothesis

α (23) X ′ + Y ′ = X + Y ′′ (22), SU=, A16, TR=

Australasian Journal of Logic (18:5) 2021, Article no. 4



248

(20) now follows from (21), (22), (23) by the direct form of RMI. Now let
us prove C+.

⊤ (24) 0 + Y = Y + 0 0+, +0, TR=, ∀I

α (25) X + Y = Y +X Hypothesis

α (26) X + Y ′ = (X + Y )′ = (Y + X)′ =
Y +X ′

(25), SU=, A16, TR=

α (27) X ′ + Y = Y +X ′ (20), (26), TR=

⊤ (28) X + Y = Y +X (24), (25), (27), RMI

We may now add the left monotony principle N+ to the right monotony
principle M+ already proved.

α (29) X = Y Hypothesis

α (30) X + Z = Y + Z (29), M+

α (31) Z +X = Z + Y (30), C+, TR=

⊤ (32) X = Y → Z +X = Z + Y (29), (31), →I

We next prove the associative principle A+.

⊤ (33) X + Y + 0 = X + (Y + 0) +0, N+, +0, TR=

α (34) X + Y + Z = X + (Y + Z) Hypothesis

α (35) X + Y + Z ′ = X + (Y + Z)′ (34), SU=, A16, TR=

⊤ (36) (Y + Z)′ = Y + Z ′ A16

⊤ (37) X + (Y + Z)′ = X + (Y + Z ′) (36), N+

α (38) X + Y + Z ′ = X + (Y + Z ′) (35), (37), TR=

⊤ (39) X + Y + Z = X + (Y + Z) (33), (34), (38), RMI

CA+, which combines the commutative and associative laws, is easily proved
from C+ and A+, completing our verification of the most elementary prin-
ciples of addition. Next, naturally, is multiplication, together with principles
relating addition and multiplication.

×0. X × 0 = 0

0×. 0×X = 0

×1. X × 1 = X

×2. X × 2 = X +X
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...
...

A×. X × Y × Z = X × (Y × Z)

C×. X × Y = Y ×X

CA×. X × Y × Z = X × Z × Y

M×. X = Y → X × Z = Y × Z

N×. X = Y → Z ×X = Z × Y

D×+. X × (Y + Z) = X × Y + X × Z

The principle ×0 is our axiom A17. In proving other principles, we may take
the properties of + already established for granted. We begin with 0×:

⊤ (40) 0× 0 = 0 ×0

α (41) 0×X = 0 Hypothesis

α (42) 0×X ′ = 0×X + 0 = 0×X = 0 A18, +0, TR=, (41), TR=

⊤ (43) 0×X = 0 (40), (41), (42), RMI

×1, ×2,... come next.

⊤ (44) X × 1 = X × 0′ = X × 0 + X =
0 +X = X

D1, A18, ×0, M+, 0+

⊤ (45) X×2 = X×1′ = X×1+X = X+X D2, A18, ×1, M+

And so forth. M× is also straightforward.

α (46) X = Y Hypothesis

α (47) X × 0 = 0 = Y × 0 ×0, TR=, =≤⊤, (46)

ρ (48) X × Z = Y × Z Hypothesis

ρ (49) X × Z +X = Y × Z +X (48), M+

α (50) X × Z +X = Y × Z + Y (46), N+

αρ (51) X × Z +X = Y × Z + Y (49), (50), TR=

αρ (52) X × Z ′ = Y × Z ′ (51), A18, TR=

α (53) X × Z = Y × Z (47), (48), (52), RMI

⊤ (54) X = Y → X × Z = Y × Z (46), (53), →I

Note that the above argument uses the form of RMI that rests in A19. To
prove C× it is helpful to prove
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⊤ (55) X ′ × Y = X × Y + Y

We prove (55) thus.

⊤ (56) X ′ × 0 = 0 = X × 0 + 0 ×0, +0, M+

α (57) X ′ × Y = X × Y + Y Hypothesis

⊤ (58) X ′ × Y ′ = X ′ × Y +X ′ A18

α (59) X ′ × Y ′ = X × Y + Y +X ′ = X ×
Y +X + Y ′ = X × Y ′ + Y ′

(58), (57), M+, TR=, CA+,
SU=, A16, A18, M+

from which (55) follows by RMI, (56), (57), (59).
Now comes C×.

⊤ (60) 0× Y = Y × 0 0×, ×0, TR=

α (61) X × Y = Y ×X Hypothesis

α (62) X ′×Y = X×Y +Y = Y ×X+Y =
Y ×X ′

(55), (61), M+, A18, TR=

⊤ (63) X × Y = Y ×X (60), (61), (62), RMI

× distributes over + by D×+.

⊤ (64) (Y + Z)× 0 = Y × 0 + Z × 0 ×0, +0, M+

α (65) (Y + Z)×X = Y ×X + Z ×X Hypothesis

⊤ (66) (Y +Z)×X ′ = (Y +Z)×X+(Y +Z) A18

⊤ (67) Y × X ′ + Z × X ′ = Y × X + Y +
(Z ×X + Z)

A18, M+, N+

α (68) (Y + Z)×X ′ = Y ×X + Z ×X +
(Y + Z)

(65), (66), M+, TR=

α (69) (Y + Z)×X ′ = Y ×X ′ + Z ×X ′ (68), A+, CA+, M+, (67),
TR=

⊤ (70) (Y + Z)×X = Y ×X + Z ×X (64), (65), (69), RMI

The form of D×+ given above then follows from (70), C×, TR=. Similarly,
the right monotony law M× yields the left monotony law N×, exactly as in
the addition case, once the commutative principle C× has been established.
Here is A×.
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⊤ (71) X × Y × 0 = X × (Y × 0) ×0, N×, ×0, TR=

α (72) X × Y × Z = X × (Y × Z) Hypothesis

⊤ (73) X × Y × Z ′ = X × Y × Z +X × Y A18

⊤ (74) X × (Y × Z ′) = X × (Y × Z) +X × Y A18, N×, D×+

α (75) X × Y × Z ′ = X × (Y × Z ′) (72), N+, (73), (74)

⊤ (76) X × Y × Z = X × (Y × Z) (71), (72), (75), RMI

CA× is again immediate from C×, A×, ending our survey of the most
elementary arithmetical laws. Let us pause for a bit of stock-taking.

We introduced in II the notions of numerical equation and quasi-numerical
equation, comprising respective classesNEQ andNEQQ. The slightly wider
class NEQQ, in particular, is the class of all the ordinary statements of
intuitive arithmetic: 2 + 2 = 4, 5× 3 = 17, and the like. Without troubling
ourselves further on the matter, we take it as understood which of these
statements are to be taken as true. And we lay down immediately

Theorem 1. For every true quasi-numerical equation A, A is a theorem of
R♯

To prove Theorem 1, it suffices to observe that every quasi-number J
may be, by possibly repeated application of the recursive axioms for + and
×, perhaps also using SU=, TR=, transformed into a number J⋆, such that
J = J⋆ is a theorem of R♯. On severely finitistic argument (e.g., that indulged
in by one’s third grade teacher), only one such J⋆ can be churned out by this
procedure. So, given a quasi-numerical equation, it is correct, in the sense
of II, iff, on application of this procedure, I⋆ and J⋆ are the same number, if
I = J was the given equation. So, if I = J is correct, all of I = I⋆, J = J⋆,
I⋆ = J⋆ are theorems of R♯, the last by R=. Accordingly, I = J , if correct,
is a theorem also, by TR=.

With only a little more effort, we can form the general notion of a correct
arithmetical equation. For suppose that we are given any term T . Without
loss of generality, we may take T to have been built up from variables and
numbers by + and ×. (For, given +1, we may now trade in any term U ′ for
U+1, while we may by definition trade in the successors of 0 for numbers.) By
the distributive, associative, and commutative laws from + and ×, we may
go on to transform T into T ⋆, where T ⋆ is of the form T1+ ...+TN , and where
each TI is of the form J ×X1 × ...×XM , where M is a number and the XK

are variables. (The same variable, of course, can occur repeatedly in such a
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TI .) On settling degenerate cases imposing some further criteria of standard
form, it is clear that for every term T of L ♯ there is only one T ⋆ in standard
form to which T corresponds, and that, for this T ⋆, we can prove T = T ⋆

in R♯. Similarly, for arbitrary terms T , U , T = U is a correct arithmetical
equation just in case T ⋆ and U⋆ are the same (standard polynomial) term.
So,

Theorem 2. For every correct arithmetical equation A, A is a theorem of
R♯.

Since we explained how to prove Theorem 2 in the process of stating it,
and since the reader need only advance from 3rd grade arithmetic to 8th
grade algebra to convince himself which are the correct equations, we need
dwell no further this theorem.

It is presumably as clear which are the false quasi-numerical equations as
which are the true ones. And the requisite theorem is forthcoming just as
easily.

Theorem 3. For every false quasi-numerical equation A, ∼A is a theorem
of R♯.

For proof of Theorem 3, we let an example suffice by showing 2 + 2 6= 7.

α (77) 2 + 2 = 7 Hypothesis

α (78) 4 + 0 = 4 + 2′ (77), Theorem 1

α (79) 0 = 2′ (78), C+, M−

⊤ (80) 0 6= 2′ A12

α (81) ⊥ (79), (80), ⊥I

⊤ (82) 2 + 2 6= 7 (77), (81), ∼I, D 6=

Similarly, given Theorem 1, and the subtraction principle M−, it is evi-
dent that every false quasi-numerical equation A will imply 0 = K ′ for some
number K, whence, by A12 and modus tollens, we prove ∼A in R♯.

Theorem 3 is one other side of the Theorem 1 coin. We can prove the true
equations, and prove the negations of the false ones, when they are quasi-
numerical. Moreover, these proofs work relevantly in just about the same
way that they work classically; there are no surprises, nor were any likely to
have been expected. (In fact, save for our purpose in exhibiting the relevant
system and actually accustoming the reader to it, we might have employed
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various shortcuts.)
However, there is a more salient side to the Theorem 1 coin. For, be-

sides demonstrating ∼A whenever A is a false equation, we should like some
believable assurances that A itself is undemonstrable. Having demonstrated
2 + 2 6= 7, it profits us little if we can also demonstrate 2 + 2 = 7. And here
exactly is where classical technique leaves us flat. Such assurance as it gives
us is not believable, save on more faith than we had when we undertook to
do formal arithmetic in the first place. A simple arithmetic faith we shall
perhaps concede, so long as it does not become too platonistic. But a super
arithmetic faith we do not concede. And we demonstrate below, for R♯, that
it is superfluous.

Next let us ask, “What kind of theorem stands to Theorem 2 as Theorem
3 stands to Theorem 1?” Strictly speaking, the answer is “None.” For, e.g.,
although x = 0 is an incorrect equation, the open formula x 6= 0 is likewise
arithmetically invalid.

However, by passing to universal closures of arbitrary equations, we may
state and prove the appropriate generalization of Theorem 2. Specifically,
where A is any formula, let ∀A be any formula ∀X1...∀XNA, such that all
the free variables of A are among X1, ..., XN . (All such universal closures of
A being provably equivalent in RQ and a fortiori in R♯, we may let ∀A serve
indifferently for any of them.) Similarly, let ∃A be any existential closure
∃X1...∃XNA of A. Then

Theorem 4. For every incorrect arithmetical equation A, ∃∼A and hence
∼∀A are theorems of R♯.

Proof. We leave it to the reader to demonstrate that, where A[X1, ..., XN ]
is an incorrect equation with free variables X1, ...XN , there are numbers
I1, ..., IN such that the quasi-numerical equation A[I1, ..., IN ] is arithmetically
false. By Theorem 2, ∼A[I1, ..., IN ] is a theorem of R♯, whence by existential
generalization so is ∃X∼A[X1, ..., XN ], whence so by quantifier interchange
is ∼∀XA[X1, ..., XN ], ending the proof of Theorem 4.

Theorems 1–4 are trivial results at the bottom of the arithmetical hierar-
chy. Nevertheless, they are important here as indications of the stability of
R♯. On the most basic theorems of formalized arithmetic, R♯ agrees with C♯

and, we presume, with almost everybody’s arithmetical intuitions. And, as
in the case of the theorem which it generalizes, there is more than one side to
Theorem 3. Again, we seek proof that every incorrect arithmetical equation
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is underivable. And the classical hang-up over consistency still applies to C♯

on this point; we can only have the proof we seek, classically, if we can prove
C♯ consistent. And we cannot prove C♯ consistent, classically, save on greater
arithmetical faith than C♯ itself formalizes. In R♯, on the other hand, the
consistency hang-up vanishes, so far as basic arithmetic is concerned, so that
the desired counterpart of Theorem 3 will also follow in a wholly elementary
way, below.

IX

In the last section, we devoted ourselves to proof of the most elementary
propositions of anybody’s formal arithmetic. In this section, we continue
with this project. However, we shall begin to note an increasing divergence
between C♯ and J♯ on the one hand and R♯ on the other. For, while we shall
find no divergences here, within the classical vocabulary itself, between C♯

and R♯, we shall find theorems which hold materially such that their natural
relevant counterparts fail, for good relevant reasons. (However, the possibility
of future formal evidence which undermines the stability of R♯, or of C♯ for
that matter, must always be left open.)

First, let us return to a topic left over from the beginning of VI, with
respect to which we are more classical, perhaps, than we should like to be.
We stated in VI but did not prove two principles relation to substitution
properties of equality. They were

T=. Y = Z → T [Y ] = T [Z]

S=. Y = Z →. A[Y ] → A[Z]

where T [X ], A[X ] are respectively an arbitrary term and an arbitrary for-
mula, in which X may (but need not) occur free.

We prove T= by induction on the length of T [X ]. In the base case, T [X ]
is a formal atom. We distinguish two subcases.

Subcase 1.1. T [X ] isX . Then T= is in this case of the form Y = Z → Y = Z,
which is a theorem of R♯ at the purely sentential level.

Subcase 1.2. T [X ] is a formal atom U distinct from X . In this case the
substitution is vacuous, and T= is of the form Y = Z → U = U . By R=,
=≤⊤⋆, this is a theorem of R♯.
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We now suppose on inductive hypothesis that T= holds for arbitrary terms
U [X ], V [X ], and we wish to show that it continues to hold when T [X ] is of
one of the forms U [X ]′, U [X ] + V [X ], U [X ]× V [X ], giving rise to one of the
following 3 subcases.

Subcase 2.1. T [X ] is U [X ]′. On inductive hypothesis, we prove Y = Z →
U [Y ] = U [Z]. By SU=, Replacement, we have Y = Z → U [Y ]′ = U [Z]′,
which was to be proved in this case.

Subcase 2.2. T [X ] is U [X ] + V [X ]. Then

α (1) Y = Z Hypothesis

α (2) U [Y ] = U [Z] By Inductive Hypothesis, (1),
→E

α (3) V [Y ] = V [Z] By Inductive Hypothesis, (1),
→E

α (4) U [Y ] + V [Y ] = U [Z] + V [Y ] (2), M+

α (5) U [Z] + V [Y ] = U [Z] + V [Z] (3), N+

α (6) U [Y ] + V [Y ] = U [Z] + V [Z] (4), (5), TR=

⊤ (7) Y = Z → T [Y ] = T [Z] (1), (6), →I

Subcase 2.3. T [X ] is U [X ]× V [X ]. The argument is exactly the same as in
subcase 2.2., using M×, N× instead of M+, N+.

This completes the inductive argument, and establishes T= without restric-
tion in R♯. We now prove S= similarly, by induction on the length of A[X ].
In the base case, A[X ] is an atomic formula T [X ] = U [X ]. We wish to show
the theoremhood of Y = Z →. T [Y ] = U [Y ] → T [Z] = U [Z]. So

α (8) Y = Z Hypothesis

ρ (9) T [Y ] = U [Y ] Hypothesis

α (10) T [Y ] = T [Z] (8), T=

α (11) U [Y ] = U [Z] (8), T=

αρ (12) T [Z] = U [Z] (9), (10), (11), TR=

⊤ (13) Y = Z →. A[Y ] → A[Z] (9), (12), →I, (8), →I

This disposes of the base case for S=, and we now assume on inductive
hypothesis that S= holds for arbitrary formulas B[X ], C[X ]. We wish to
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show that it continues to hold when A[X ] is one of the forms ∼B[X ], B[X ]∧
C[X ], B[X ] → C[X ], ∀XB[X ], ∀WB[X ], giving rise to the following 5
subcases.

Subcase 3.1. A[X ] is ∼B[X ]. On inductive hypothesis and an elementary
appeal to contraposition, S= holds in this case.

Subcase 3.2. A[X ] is B[X ] ∧ C[X ]. Then

α (14) Y = Z Hypothesis

α (15) B[Y ] → B[Z] By Inductive Hypothesis, (14)

α (16) C[Y ] → C[Z] By Inductive Hypothesis, (14)

ρ (17) B[Y ] ∧ C[Y ] Hypothesis

αρ (18) B[Z] ∧ C[Z] (17), ∧E, (15), →E, (16), →E, ∧I

⊤ (19) Y = Z →. A[Y ] → A[Z] (17), (18), →I, (14), →I

Subcase 3.3. A[X ] is B[X ] → C[X ]. Like 3.2, left to reader.

Subcase 3.4. A[X ] is ∀XB[X ]. In this case, the replacement in A[Y ], A[Z]
is vacuous, and S= is of the form Y = Z →. A → A, which is a theorem of
R♯ by =≤⊤⋆.

Subcase 3.5. A[X ] is ∀WB[X ], where W is distinct from X . We suppose, to
begin with, that W is also distinct from Y , Z. Then

α (20) Y = Z Hypothesis

α (21) B[Y ] → B[Z] By Inductive Hypothesis, (20)

ρ (22) ∀WB[Y ] Hypothesis

αρ (23) B[Z] (22), ∀E, (21), →E

αρ (24) ∀WB[Z] (23), ∀I

⊤ (25) Y = Z →. A[Y ] → A[Z] (22), (24), →I, (20), →I

If W is one of Y , Z in subcase 3.5, the situation is complicated slightly by
the steps which we took in II, on a rather informal level, to avoid confusion
of bound variables. Note, at least, that the step of ∀I that produces (24)
will not go through if, say, W is the same variable as Y , since in that case
W will be free in α, and hence in αρ, contravening the restriction on our ∀I
rule.

However, the point just made doesn’t really arise in our inductive argu-
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ment. For, on our suggested convention, if A[X ] is of the form, say, ∀Y B[X ],
then A[Y ] will be formed in the following steps. First, replace ∀Y B[X ] with
some alphabetic variant ∀V B⋆[X ] thereof, where V is some variable fresh to
the context and B⋆[X ] is the result of systematic replacement of free Y with
V . Second, let A[Y ] be ∀V B⋆[Y ]. On a trivial strengthening of our induc-
tive hypothesis, the above argument then goes through as before, since step
(24) is no longer blocked if we generalize on fresh V , while we may rewrite
bound variables at will by RBV to replace V once more with W in (24), if
appropriate. Similar remarks apply if the W of the subcase is Z, ending the
inductive argument and completing the proof of S= for R♯.

Now that we have T= and S= in full generality, together with the var-
ious arithmetical laws developed in the last section, we can be somewhat
more free and easy with respect to some aspects of our proof procedure. In
particular, most of our special replacement laws (e.g., SU=, M+, N+, M×,
N×, and even =≤⊤) now become instances of T=, and may be referred to
as such. Similarly, matters that we had to be careful about above (e.g., not
making illicit appeals to the commutativity or associativity of +, ×, or the
distribution of × over +) have now lapsed, since terms that are equal under
elementary arithmetic transformations have now been established to be in-
tersubstitutable in any context. Since the reader may be taken to be familiar
with these transformations, we need call attention to them henceforth only
when some special point relative to the formalism of R♯ is involved, otherwise
leaving the transformations tacit.

While we are at it, we also adopt some more common arithmetical no-
tation. In particular, just as we have reserved simple juxtaposition between
formulas (and especially between tags) for the fusion connective ◦, so we
shall now follow ordinary arithmetical convention and use simple juxtaposi-
tion between terms for multiplication. Henceforth we shall also use

DT 0. T 0 =DF 1

DT 1. T 1 =DF T

DT 2. T 2 =DF TT ,

etc. And we shall also revert to the ordinary practice, usually, of using
additive notation for the successor function. I.e.,

D+1. T + 1 =DF T ′
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Strictly speaking, none of the “definitions” just entered are formal definitions
at all. (For it should be recalled that our formal systems are abstract, and
that they are thus quite independent of any notational habits which it might
be useful for us to form, or which (as is more to the point here) most of us
have already formed.) We have not, in particular, defined anything like an
exponential function inDT 0, DT 1, etc. We have merely indicated how we are
going to use certain pieces of notation. And, so far as D+1 is concerned, we
are introducing a deliberate ambiguity into our notation. Henceforth, when
the reader sees, say, the piece of notation “0 + 1,” only contextual clues will
tell him which of the distinct formal objects 0′, 0 + 1 is being named by that
piece of notation. In view, however, of theorems proved above, the successor
notation has fully served its purpose, save where very great compactness
is desired, and it is time to replace it with a notation that most of us see
through more quickly, without troubling ourselves over ambiguities that by
now have become harmless.

There is, however, one respect in which continuing attention to the suc-
cessor function is worthwhile. 0, as we all know, is a very special number,
and it is sometimes convenient to restrict our attention to positive integers.
E.g., where A[X ] is an open formula with single free variable X , a quite
natural way to assert that this formula is satisfied by all positive integers
is to assert ∀XA[X ′]. In order to make this use of the successor function
psychologically immediate, we shall often assert ∀XA[X+] instead, entering
the trivial definition

D+. T+ =DF T ′

So much, presently, for convenient notation. We extend it and bend it as is
useful.

Our next formal topic is the natural order on natural numbers. We have
already defined T ≤ U as ∃X(T+X = U) and T < U as ∃X(T+X+1 = U).
We enter the following familiar and related definitions.

D≥. T ≥ U =DF U ≤ T

D>. T > U =DF U < T

D≮. T ≮ U =DF ∼(T < U)

D�. T � U =DF ∼(T ≤ U)

D�. T � U =DF ∼(T ≥ U)

D≯. T ≯ U =DF ∼(T > U)
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We may also write, without the courtesy of a formal definition, T ≤ U ≤ V ,
etc., for T ≤ U ∧ U ≤ V , etc.

The above definitions, together with those already entered above, are
straightforward and familiar. However, relevant order is a subtle topic, and
materially equivalent order notions (e.g., T < U and T � U) are not necessar-
ily relevantly equivalent, even though the proof of their material equivalence
is quite straightforward in R♯. In particular, let us think about the diversity
claim T 6= U . This says, relevantly, that if one assumes T = U , one deduces
something objectionable—in particular, ⊥.

But there is another diversity claim worth notice, which is prima facie
stronger. Namely, we may be able to prove either that T is bigger than U or
that U is bigger than T . So, to make room for this stronger diversity claim,
we define

D≶. T ≶ U =DF T < U ∨ U < T

Note that our “strong” diversity ≶, unlike 6=, does not involve negation at
all, if we consider the existential quantifier entering into the definition of <
as a “positive” logical particle. And, while our theory of negation is rather
classical, we wish to respect some intuitionist intuitions, e.g., those usually
attributed to Griss, which see underlying mathematical insights as negation-
free. We are not bound to these intuitions, but it is convenient from a
deductive point of view, and philosophically salutary, to pursue them as far
as they go. Indeed, exactly the kinds of philosophical motivation that cause
us to forswear γ as a primitive rule, much as we should perhaps like to find
it admissible anyway for R♯, urge a concentration on “positive” reasoning.
We are not so arithmetically faithless as to expunge ∼ from our arithmetical
vocabulary, or to deny it its ordinary properties. But, given the unusual
arguments (e.g., those of Russell and Gödel) that rest on strange quirks of
these ordinary properties, we are cautious enough to appeal to negation-
free reasoning whenever we can carry it through, and to argue to material
implications (as facts about the natural numbers), not to argue through such
implications (as if they were the arithmetical laws).

When thinking from a negation-free point of view, 0 = 1, which corre-
sponds to the technically absurd intuitionist F, is about as objectionable a
formula as one might find. 0 = 2, 6 = 12, and so forth are pretty bad too,
though perhaps they are not quite so bad. However, noting that any such
direct arithmetic falsehood will imply ∃X(0 = X+), and that it was the nega-
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tion of this assertion, essentially, which was the only one of our arithmetic
principles that we might take to involve negation in a central way (though it
is certainly involved also in RMI), we might take a formula of the sort just
cited as a positive falsehood likely to be implied by arbitrary positive false-
hoods. Indeed, we might think of ourselves as having a hierarchy of positive
falsehoods, beginning with our old F. So let us define

DF1. F1 =DF 0 = 1

DF2. F2 =DF 0 = 2

etc. And then the join of positive falsehoods contemplated above is just

DF∞. F∞ =DF ∃x(x+ = 0)

On this scheme, we might as well express our axiom A12 simply as

A12⋆. ∼F∞

And it is of course trivial, for I = 1, 2, 3, ..., that

1≤I. F1 → FI

I≤∞. FI → F∞

are theorems of R♯. And, still on the subject of F∞, it is equally trivial that

0<∞. F∞ ↔ 0 < 0

is a theorem of R♯, by definitions and the theorem 0 +X = X .
Corresponding to each of these falsehoods we can define an appropriate

“positive negation.” I.e.,

D∼1. ∼1A =DF A → F1

D∼2. ∼2A =DF A → F2

etc. Similarly,

D∼∞
. ∼∞

A =DF A → F∞

Ordinarily, we shall leave out the subscript on the final connective, writ-
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ing simply ∼A for ∼∞
A. Similarly, we may have a corresponding string of

intuitionist negations, on the plan

D¬1. ¬1A =DF A ⊃ F1

D¬2. ¬2A =DF A ⊃ F2

...

D¬∞. ¬∞A =DF A ⊃ F∞

In this case, it will be recalled that we have already reserved ¬1A for our
intuitionist ¬A, in keeping with tradition but on another plan than that just
set out for ∼A.

As a final interesting order related definition, we set

D∼=. T ∼= U =DF T ≤ U ∧ T ≥ U

Again, we should expect a material, but not necessarily a relevant equiva-
lence, provable in R♯, between T = U and T ∼= U .

Some expected order theorems are not very hard to prove, such as

≤→≯. T ≤ U → T ≯ U

<→�. T < U → T � U

>→�. T > U → T � U

≥→≮. T ≥ U → T ≮ U

=→≤. T = U → T ≤ U

<→≤. T < U → T ≤ U

R≤. T ≤ T

∞→<. F∞ → X < Y

≤<<. T ≤ U < V → T < V

<≤<. T < U ≤ V → T < V

TR<. T < U < V → T < V

TR≤. T ≤ U ≤ V → T ≤ V

IR<. T ≮ T

We construct a derivation which suffices for some of these principles, leaving
the rest to the reader.
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α (26) Z + 1 = 0 Hypothesis

α (27) Y + Z + 1 = Y (26), T=

α (28) 0 < Y (27), ∃I, D<

ρ (29) X < Y Hypothesis

ρ⋆ (30) X +W + 1 = Y Hypothesis

αρ⋆ (31) X + 1 + (W + Z + 1) = Y (30), M+, (26), T=

αρ⋆ (32) X + 1 < Y (31), D<

αρ (33) X + 1 < Y (32), ∃E, (30), (29)

α (34) X < Y (28), (29), (33), RMI

⊤ (35) F∞ → X < Y (26), (34), →I, R∃E

ι (36) Y ≤ Z Hypothesis

ι⋆ (37) Y + U = Z Hypothesis

ρ⋆ι⋆ (38) X +W + U + 1 = Z (30), M+, (37), T=

ρι (39) X < Z (38), ∃I, D<, ∃E

⊤ (40) X < Y ≤ Z → X < Z (36), (39), →I, (29), →I

ρ⋆ (41) ∃Z(X + Z = Y ) (30), ∃I

⊤ (42) X < Y → X ≤ Y (30), (41), ∃E, (29), →I, D<,
D≤

ω (43) X + Z + 1 = X Hypothesis

ω (44) F∞ (43), M−, ∃I, DF∞

⊤ (45) ∼(X < X) (43), (44), →I, ∃E, D<, D∼
⊤ (46) ∼(X < X) (45), A12⋆

β (47) Z < Y Hypothesis

β⋆ (48) Z +W ′ = Y Hypothesis

β⋆ι⋆ (49) Y + U +W + 1 = Y (37), (48), T=

⊤ (50) Y ≤ Z → Z ≯ Y (49), D<, (46), (48), ∃E, (37),
∃E, (47), ∼I, (36), →I

Steps of the derivation correspond to theorems stated above as follows: (35),
∞→<; (40), <≤<; (42), IR<; (50), ≤→≯. Other assertions are either
trivial or follow in like manner to the above.

An innovation in the above derivation, which is much more telescoped
than usual, is that, where Γ is of the form ∃XA[X ], when definitions (e.g., of
<) are eliminated, we have been using Γ⋆ to tag (on hypothesis) what might
count as an existential instantiation of Γ. (Thus having attached ρ to step
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(29) we attached ρ⋆ on this plan to step (30).) Officially, this changes nothing;
ρ⋆ just counts as another piece of Greek, not to be confused with ρ (or any
other distinct piece of Greek). Nor do we allow any inference from, say, step
(29) to step (30). Psychologically, however, it is useful to pretend that step
(30) is an existential instantiation of step (29), and to use the ⋆ notation to
reinforce this suggestion. Officially, however, we are just organizing the work
for the various forms of ∃E, which accordingly appears as justification in the
course of various arguments just above. And since each step continues to
state, in a direct and immediate fashion, a theorem of R♯, no complex and
devious restrictions on our “existential instantiation” rule are required, for
the simple reason that, when the notation is unpacked, there is no such rule,
but simply very ordinary procedures for passing from theorems to theorems.

Note that we have established, almost by the way

∼→∼. ∼A → ∼A

We next develop some monotonicity properties.

M≤′. T ≤ U ↔ T ′ ≤ U ′

M<′. T < U ↔ T ′ < U ′

M≤+. T ≤ U ↔ T +W ≤ U +W

M<+. T < U ↔ T +W < U +W

M≶+. T ≶ U ↔ T +W ≶ U +W

M∼=+. T ∼= U ↔ T +W ∼= U +W

We prove M<+ as typical of these properties, leaving the others to the
reader.

α (51) X < Y Hypothesis

α⋆ (52) X + Z + 1 = Y Hypothesis

α⋆ (53) X +W + Z + 1 = Y +W (52), T=

α (54) X +W < Y +W (53), D<, (52), ∃E, (51)

ρ (55) X +W < Y +W Hypothesis

ρ⋆ (56) X +W + Z + 1 = Y +W Hypothesis

ρ⋆ (57) X + Z + 1 = Y (56), M−

ρ (58) X < Y (57), ∃I, D<, (56), ∃E, (55)
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⊤ (59) X < Y ↔ X +W < Y +W (51), (54), →I, (55), (58), →I,
D↔

Here are some further easy theorems.

<+1. X + 1 > X

0<+1. X + 1 > 0

≤↔+1. X ≤ Y ↔ X < Y + 1

<↔+1. X < Y ↔ X + 1 ≤ Y

Our deduction continues.

⊤ (60) 0 +X + 1 = X + 1 0+

⊤ (61) X < X + 1 (60), ∃I, D<

⊤ (62) 0 < X + 1 (60), ∃I, D<

α (63) X ≤ Y Hypothesis

α (64) X + 1 ≤ Y + 1 (63), M≤+

α (65) X < Y + 1 (61), (64), <≤<

ρ (66) X < Y + 1 Hypothesis

ρ⋆ (67) X +W + 1 = Y + 1 Hypothesis

ρ⋆ (68) X +W = Y (67), M−

ρ (69) X ≤ Y (68), ∃I, D≤, (67), ∃E, (66)

⊤ (70) X ≤ Y ↔ X < Y + 1 (63), (65), →I, (66), (69), →I,
D↔

⊤ (71) X + 1 ≤ Y ↔ X + 1 < Y + 1 (70)

⊤ (72) X < Y ↔ X + 1 ≤ Y (71), M<+, Replacement

More order properties follow.

+≥. X + Y ≥ X

+>. X + Y + > X

=0∨<. X = 0 ∨ 0 < X

=1∨<. X = 0 ∨X = 1 ∨ 1 < X

=2∨<. X = 0 ∨X = 1 ∨X = 2 ∨ 2 < X, etc.

≤↔<=. X ≤ Y ↔ X < Y ∨X = Y

Australasian Journal of Logic (18:5) 2021, Article no. 4



265

Here are their proofs.

⊤ (73) X + Y = X + Y R=

⊤ (74) X ≤ X + Y (1), ∃I, D≤

⊤ (75) X < X + Y + (2), <+1, ≤<<

⊤ (76) 0 = 0 ∨ 0 < 0 R=, ∨I

α (77) ▽(X = 0 ∨ 0 < X) Hypothesis

⊤ (78) X + 1 = 0 ∨ 0 < X + 1 0<+1, ∨I

⊤ (79) X = 0 ∨ 0 < X (76), (77), (78), RMI

ρ (80) X ≤ Y Hypothesis

ρ⋆ (81) X + Z = Y Hypothesis

⊤ (82) Z = 0 ∨ 0 < Z (79)

ι1 (83) Z = 0 Hypothesis

ρ⋆ι1 (84) X = Y (81), (83), T=, +0

ι2 (85) 0 < Z Hypothesis

ι2 (86) X < X + Z (85), M<+, +0, T=

ρ⋆ι2 (87) X < Y (81), (86), T=

ρ⋆ (88) X = Y ∨X < Y (82), (83), (84), (85), (87), ∨E

⊤ (89) X ≤ Y → X = Y ∨X < Y (81), →I, ∃E, D≤, (80)

⊤ (90) X ≤ Y ↔ X = Y ∨X < Y (89), R≤, T=, <→≤, ∨E,
D↔

⊤ (91) X = 0 ∨ 1 ≤ X (79), < ↔ +1

⊤ (92) X = 0 ∨X = 1 ∨ 1 < X (91), (90), Replacement

⊤ (93) X = 0∨X = 1∨X = 2∨ 2 < X,
etc.

(92), In Like Manner

We now state the important trichotomy principles.

TC1. X < Y ∨X = Y ∨X > Y

TC2. X ≤ Y ∨X > Y

TC3. X < Y ∨X ≥ Y

TC4. X = Y ∨X ≶ Y

TC5. X ≤ Y ∨ Y ≤ X

It will suffice to prove TC3, TC1, the other principles following trivially
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using definitions and in like manner.

⊤ (94) 0 < Y ∨ 0 = Y =0∨<

⊤ (95) 0 < Y ∨ Y ≤ 0 =→≤, (94), Replacement

α (96) X < Y ∨ Y ≤ X Hypothesis

α1 (97) X < Y Hypothesis

α1 (98) X + 1 ≤ Y (97), <↔+1

α1 (99) X + 1 ≤ Y ∨X + 1 = Y (98), ≤↔<=

α2 (100) Y ≤ X Hypothesis

α2 (101) Y < X + 1 (100), ≤↔<=

α (102) X + 1 < Y ∨ X + 1 = Y ∨
Y < X + 1

(96), (97), (99), (100), (101),
∨E

⊤ (103) X < Y ∨ Y ≤ X (95), (96), (102), RMI

⊤ (104) X < Y ∨X = Y ∨X > Y (103), ≤↔<=, Replace-

ment

So far, we have considered pure order properties, and we have related these
properties to addition. We need also to relate them to multiplication, proving
the following theorems.

+≥X. XY + ≥ X

++>X. X+Y + > X

∃+>X. ∃Z(ZY + > X)

M<×. X < Y → XZ+ < Y Z+

M≤×. X ≤ Y → XZ ≤ Y Z

CM<×. XZ < Y Z → X < Y

CM≤×. XZ+ ≤ Y Z+ → X ≤ Y

QM<×. X < Y ↔ XZ+ < Y Z+

QM≤×. X ≤ Y ↔ XZ+ ≤ Y Z+

QM∼=×. X ∼= Y ↔ XZ+ ∼= Y Z+

QM≶×. X ≶ Y ↔ XZ+ ≶ Y Z+

Proofs are indicated as follows.

⊤ (105) XY + = X(Y + 1) = XY +X ≥ X D≥

⊤ (106) X+Y + = XY +X + Y + 1 > X D>
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α (107) X < Y Hypothesis

α (108) X0+ < Y 0+ (107), ×1

ρ (109) XZ+ < Y Z+ Hypothesis

ρ (110) XZ+ +X < Y Z+ +X (109), M<+

α (111) XZ+ +X < Y Z+ +X (107), M<+

αρ (112) XZ++ < Y Z++ (110), (111), TR<

α (113) XZ+ < Y Z+ (108), (109), (112), RMI

⊤ (114) X < Y → XZ+ < Y Z+ (107), (113), →I

⊤ (115) X ≤ Y → XZ ≤ Y Z (114), In Like Manner

ι (116) XZ < Y Z Hypothesis

ω (117) Y ≤ X Hypothesis

ω (118) Y Z ≤ XZ (117), (115), →E

ιω (119) XZ < XZ (116), (118), <≤<

ιω (120) F∞ (119), 0+, M<+, 0<∞

ιω (121) X < Y (120), ∞→<

ι (122) X < Y ∨ Y ≤ X TC3, (116), =≤⊤

ι (123) X < Y (122), (117), (121), ∨E

⊤ (124) XZ < Y Z → X < Y (116), (123), →I

⊤ (125) XZ+ ≤ Y Z+ → X ≤ Y (124), In Like Manner

The reader will have noted that (115) is for unrestricted Z, while its
converse (125) is restricted to positive Z. Oppositely, (114) is for positive Z,
while (124) is unrestricted. The other principles follow easily from definitions
and those just set out, and their proofs are again left to the reader.

We have been seeking, so far as possible, to prove relevantly the theorems
set out in §38, §39 of [IMM]. There are some differences in style which now
need to be attended to. First, where we have proved statements of relevant
implication, of course the corresponding material implications, being weaker,
hold also in R♯. The same comments hold where we have proved relevant
equivalences.

Second, Kleene’s technique for restricting theorems to positive integers
differs from ours. Where, e.g., we proved

(i). XY + ≥ X

the corresponding [IMM] statement, in our notation, is
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(ii). 0 6= Y ⊃ XY ≥ X

and similarly in other cases. Since we wish to prove as many theorems as
possible in the C♯ vocabulary, we need to show that from theorems like (i)
we can prove in R♯ theorems like (ii).

First, let us define a predicate in R♯ which says that T is a positive integer.
0 6= T is not a good choice. But 0 < T works fine. So

DP. PT =DF 0 < T

Next we wish to show that we could have achieved the same result by rel-
ativizing to P that we got by superscripting +. For this purpose, we shall
prove in R♯

QP+. ∀X(PX → A[X]) ↔ ∀XA[X+]

It suffices to deduce each side of QP+ from the other.

α (126) ∀X(PX → A[X]) Hypothesis

α (127) PX+ → A[X+] (126), ∀E

⊤ (128) PX+ 0<+1, DP

α (129) ∀XA[X+] (127), (128), →E, ∀I

ρ (130) ∀XA[X+] Hypothesis

ι (131) PX Hypothesis

ι⋆ (132) X = W+ Hypothesis

ρ (133) A[W+] (130), ∀E

ρι⋆ (134) A[X] (132), (133), T=

ρι (135) A[X] (132), (134), ∃E, DP , (131)

ρ (136) ∀X(PX → A[X]) (131), (135), →I, ∀I

In our illustrative case, this means that we can prove from (i)

(iii) PY → XY ≥ X

Moreover, we have by =0∨<,

(iv) Y = 0 ∨ PY
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as a theorem of R♯. By the directed replacement theorem in R♯, we have from
(iii) and (iv)

(v) Y = 0 ∨XY ≥ X

after which (ii) is trivial in R♯ employing D⊃. (But note in this case that it
is the material implication which is proved, as was to be expected.) We can
employ this technique in general to get theorems like (ii) in R♯ from theorems
like (i) or (iii), but it is perhaps better to say that (i) and (iii) themselves
are the relevant versions of the somewhat weaker assertion (ii).

We next turn to some theorems of §39 of [IMM] that we have hitherto
skipped. They are

⋆128. X + Y = 0 ⊃ X = 0 ∧ Y = 0 ⋆129. XY = 0 ⊃ X = 0 ∨ Y = 0

⋆130. X + Y = 1 ⊃ X = 1 ∨ Y = 1 ⋆131. XY = 1 ⊃ X = 1 ∧ Y = 1

⋆133. Z 6= 0 ⊃. XZ = Y Z ⊃ X = Y

An interesting feature of these theorems is that none of them hold in R♯ when
⊃ is replaced everywhere by → (even if we change Z 6= 0 to our preferred
PZ in ⋆133.). So we have some theorems here that, from the R♯ point of
view, are seriously material. Let us look first for relevant counterparts, from
which we can systematically prove them in R♯.

<→≶. T < U → T ≶ U

>→≶. T > U → T ≶ U

≶→6=. T ≶ U → T 6= U

P 6=0. PX → X 6= 0

P→∨. (PX → X) ⊃ X = 0 ∨A

P→⊃. (PX → A) ⊃. X 6= 0 ⊃ A

R128. PX ∨ PY → P (X + Y )

R129. PX ◦ PY → P (XY )

R130. PX ◦ 1 < Y → 1 < X + Y

R131. 1 < X ◦ 1 < Y → 1 < XY

R133. X ≶ Y → XZ+ ≶ Y Z+

≶→∨. (X ≶ Y → A) ⊃ X = Y ∨A

≶→⊃. (X ≶ Y → A) ⊃. X 6= Y ⊃ A

<→6=. T < U → T 6= U
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Apart from R128–R131, most of the theorems in the above list are rather
trivial from definitions and what has been already proved, being introduced
here rather to simplify proofs. We prove ≶→6=, R126–R133, ≶→∨, leaving
the others to the reader.

α (137) T ≶ U Hypothesis

ρ (138) T = U Hypothesis

αρ (139) T < T (137), (138), T=, D≶, ID∨

α (140) T 6= U (138), (139), IR<, ∼I

⊤ (141) T ≶ U → T 6= U (137), (140), →I

ι (142) PX Hypothesis

ι (143) 0 6= X (142), DP , <→6=

⊤ (144) PX → 0 6= X (142), (143), →I

ω (145) ▽(X ≶ Y → A) Hypothesis

ω (146) X ≶ Y ∨X = Y TC4, D▽, =≤⊤

ω (147) X = Y ∨A (145), (146), ▽E, ∨E

⊤ (148) (X ≶ Y → A) ⊃ X = Y ∨A (145), (147), →I

Here are R128–R133.

α (149) 0 < X Hypothesis

⊤ (150) X ≤ X + Y +≥

α (151) 0 < X + Y (149), (150), <≤<

⊤ (152) PX → P (X + Y ) (149), (151), →I, DP

⊤ (153) PY → P (X + Y ) (152), In Like Manner

⊤ (154) PX ∨ PY → P (X + Y ) (152), (153), ∨E

ρ (155) 0 < Z Hypothesis

ρ⋆ (156) Y = Z+ Hypothesis

⊤ (157) X ≤ XZ+ +≥X

αρ⋆ (158) 0 < XY (149), (157), <≤<, (156), T=

⊤ (159) PX ◦ PY → P (XY ) (156), (158), →I, ∃E

(155), (149), →I, DP

To prove R130 use M<+; to prove R131 use M<×; to prove R133 use
QM≶×. Now let us prove the Kleene theorems ⋆128, ⋆129, ⋆133, leaving
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⋆130, ⋆131 to the reader. (The latter are slightly case-ridden, but R130,
R131 may be taken as their key ingredients.)

⊤ (160) X = 0 ∨ P (X + Y ) (152), P→∨, ⊃E

⊤ (161) Y = 0 ∨ P (X + Y ) (160), In Like Manner

⊤ (162) X = 0 ∧ Y = 0 ∨ P (X + Y ) (160), (161), ∧I, D∧∨

⊤ (163) X + Y 6= 0 ∨X = 0 ∧ Y = 0 (162), C∨, P 6=0, Replace-

ment

⊤ (164) X + Y = 0 ⊃ X = 0 ∧ Y = 0 (163), D⊃
⊤ (165) X = 0 ∨ ▽(PY → P (XY )) R129, →I, P→∨, R=, ∧I,

D∧∨, D▽

⊤ (166) X = 0 ∨ Y = 0 ∨ P (XY ) (165), P→∨, D⊃, Replace-

ment

⊤ (167) XY = 0 ⊃ X = 0 ∨ Y = 0 (166), P 6=0, Replacement,
C∨, D⊃

⊤ (168) X ≶ Y → XZ+ ≶ Y Z+ R133

⊤ (169) X = Y ∨XZ+ ≶ Y Z+ (168), ≶→∨

⊤ (170) XZ+ = Y Z+ ⊃ X = Y (169), ≶→6=, Replacement,
D⊃

⊤ (171) PZ →. XZ = Y Z ⊃ X = Y (170), ∀I, QP+, ∀E

⊤ (172) Z 6= 0 ⊃. XZ = Y Z ⊃ X = Y (171), P→⊃, ⊃E

We next prove the existence of quotients and remainders.

⊤ (173) 0 = X+0 + 0 ∧ 0 < X+ R=, 0<+, ∧I

⊤ (174) ∃Q∃R(0 = X+Q+R ∧R < X+) (173), ∃I

α (175) ∃Q∃R(Y = X+Q+R ∧R < X+) Hypothesis

α⋆ (176) Y = X+Q+R ∧R < X+ Hypothesis

α⋆ (177) Y + 1 = X+Q+R+ 1 (176), ∧E, T=

α⋆ (178) R+ 1 ≤ X+ (176), ∧E,
<↔+1

α⋆ (179) R+ 1 < X+ ∨R+ 1 = X+ (178), ≤→<=

α1 (180) R+ 1 < X+ Hypothesis

α⋆ ∧ α1 (181) ∃Q∃R(Y + 1 = X+Q+R ∧R < X+) (177), (180), ∧I,
∃I

α2 (182) R+ 1 = X+ Hypothesis
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α⋆ ∧ α2 (183) Y + 1 = X+Q+X+ = X+(Q+ 1) + 0 (177), (182), T=,
∧◦

α⋆ ∧ α2 (184) ∃Q∃R(Y + 1 = X+Q+R ∧R < X+) (183), 0<+, ∧I,
∃I, =≤⊤

α⋆ ∧ α⋆ (185) ∃Q∃R(Y + 1 = X+Q+R ∧R < X+) (179), (180),
(181), (182),
(184), ∨E

⊤ (186) ∃Q∃R(Y = X+Q+R ∧R < X+) (185), (176),
∃E, (173), (175),
RMI

⊤ (187) PX → ∃Q∃R(Y = XQ+R ∧R < X) (186), QP+

⊤ (188) X 6= 0 → ∃Q∃R(Y = XQ+R ∧R < X) (187), P→⊃

We may take any of (186), (187), (188) to be our desired principle ∃Q∃R
asserting that division by a positive integer is always possible in R♯, yielding a
quotient and remainder. A principle UQUR, asserting that the result of such
division always yields a unique quotient and remainder, is considerably more
bother. Again, UQUR is perhaps best considered a material principle, with
various relevant counterparts. And it is most convenient to approach these
counterparts via our weak equality relation ∼=, whence a few more auxiliary
theorems are in order.

Q<∞. X < X ↔ F∞

∼=∞=. X ∼= Y ↔ F∞ ∨X = Y
∼=→△. X ∼= Y → △(X = Y )
∼=→⊃. (A → X ∼= Y ) ⊃. A ⊃ X = Y

Proofs of these are as follows.

⊤ (189) X < X ↔ F∞ (45), (35), ∧I, D↔

⊤ (190) F∞ ∨X = Y → X ∼= Y (35), =→∼=, ∨E

α (191) X ≤ Y ∧ Y ≤ X Hypothesis

α (192) X ≤ Y ∧ (Y < X ∨ Y = X) (191), ≤↔<=, Replace-

ment

α (193) X ≤ Y ∧ Y < X ∨ Y = X (192), D∧∨, Replacement

α (194) X < X ∨ Y = X (193), ≤<<, Replacement

α (195) F∞ ∨X = Y (194), (189), Replacement
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⊤ (196) X ∼= Y ↔ F∞ ∨X = Y (191), D∼=, (195), →I, (190)

⊤ (197) X ∼= Y → ⊥∨X = Y (196), D↔, ∧E, A12⋆, Re-

placement

⊤ (198) X ∼= Y → △(X = Y ) (197), D△

ρ (199) ▽(A → X ∼= Y ) Hypothesis

ι (200) A ∧X 6= Y Hypothesis

ρι (201) X ∼= Y (199), ▽E, (200), ∧E, →E

ρι (202) ⊥ ∨X = Y (197), (201), →E

ρι (203) X 6= Y (200), ∧E, (199), =≤⊤

ρι (204) ⊥ ∨X = Y ∧X 6= Y (202), (203), ∧I, D∧∨

ρι (205) ⊥ (204), ⊥I, Replacement,
ID∨

ρ (206) A ⊃ X = Y (200), (205), ∼I, D⊃
⊤ (207) (A → X ∼= Y ) ⊃. A ⊃ X = Y (199), (206), →I, D⊃

The following is a key lemma for UQUR.

RUQU. X+Q1 +R1 ≤ X+Q2 +R2 ∧R2 < X+ → Q1 ≤ Q2

We prove it as follows.

α (208) X+Q1 +R1 ≤ X+Q2 +R2 ∧
R2 < X+

Hypothesis

ρ (209) Q2 < Q1 Hypothesis

ρ (210) Q2 + 1 ≤ Q1 (209), <↔+1

ρ (211) X+Q2 +X+ ≤ X+Q1 (210), M≤×

α (212) R2 < X+ (208), ∧E

α (213) X+Q2 +R2 < X+Q2 +X+ (212), M<+

αρ (214) X+Q2 +R2 < X+Q1 (213), (211), <≤<

⊤ (215) X+Q1 ≤ X+Q1 +R1 +≥

αρ (216) X+Q2 +R2 ≤ X+Q1 +R1 (214), (215), <≤<

αρ (217) F∞ (208), ∧E, (216), ≤<<, (189)

αρ (218) Q1 < Q2 (217), (35)

α (219) Q2 < Q1 → Q1 ≤ Q2 (218), <→≤, (209), →I

α (220) Q1 ≤ Q2 → Q1 ≤ Q2 =≤⊤, (208)
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α (221) Q1 ≤ Q2 (219), (220), ∨E, TC3

⊤ (222) RUQU (208), (221), →I

We take the following as a preferred form of UQUR.

UQUR. X+Q1 +R1
∼= X+Q2 +R2 ∧R1 < X+ ∧R2 < X+ →

Q1
∼= Q2 ∧R1

∼= R2

Its derivation is as follows.

α (223) X+Q1 +R1
∼= X+Q2 +R2∧

R2 < X+

Hypothesis

ρ (224) R1 < X+ Hypothesis

ι (225) R2 < X+ Hypothesis

α ∧ ι (226) Q1 ≤ Q2 (223), D∼=, (225), ∧E, ∧I,
RUQU

α ∧ ρ (227) Q2 ≤ Q1 (226), In Like Manner

α ∧ ρ ∧ ι (228) Q1
∼= Q2 (226), (227), ∧I, D∼=

α ∧ ρ ∧ ι (229) R1 +X+Q1
∼= R1 +X+Q2 (228), QM∼=×, M∼=+

α ∧ ρ ∧ ι (230) R1 +X+Q2
∼= R2 +X+Q2 (229), (223), TR∼=

α ∧ ρ ∧ ι (231) R1
∼= R2 (230), M∼=+

α ∧ ρ ∧ ι (232) Q1
∼= Q2 ∧R1

∼= R2 (228), (231), ∧I

⊤ (233) UQUR (223), (224), (225), (232),
→I

ω (234) X+Q1 +R1 = X+Q2 +R2 Hypothesis

ω (235) α (234), (223), =→∼=

ω ∧ ρ ∧ ι (236) Q1
∼= Q2 (235), (228), Replacement

⊤ (237) ω ∧ ρ ∧ ι → Q1
∼= Q2 (236), →I

⊤ (238) ω ∧ ρ ∧ ι ⊃ Q1 = Q2 (237), ∼=→⊃
⊤ (239) ω ∧ ρ ∧ ι ⊃ R1 = R2 (238), In Like Manner,

Use (231)

⊤ (240) ω ∧ ρ ∧ ι ⊃ (238), (239), D⊃, D∧∨

Q1 = Q2 ∧R1 = R2

Unpacking the abbreviations, it will be noted that, after proving UQUR
in (233), we have arrived in (240) in a wholly classical form of UQUR with
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ordinary equality. Using (233), (240), we get on moves already explored the
following alternative forms.

UQUR1. PX →. XQ+R ∼= XQ1 +R1 ∧R1 < X ∧R < X →

Q ∼= Q1 ∧R ∼= R1

UQUR1. PX →. R+XQ ∼= R⋆ +XQ⋆ ∧R < X ∧R⋆ < X →

Q ∼= Q⋆ ∧R ∼= R⋆

UQUR2. PX →. R+XQ ∼= R⋆ +XQ⋆ ∧R < X ∧R⋆ < X ⊃
Q = Q⋆ ∧R = R⋆

UQUR3. X 6= 0 ∧ Y = R+XQ ∼= Y = R1XQ1 ∧R < X ∧R1 < X ⊃
Q = Q1 ∧R = R1

We have by now proved quite a number of elementary theorems of R♯. Indeed,
the material forms of all theorems in §38, §39 of [IMM] all hold in R♯, either
because they have been directly demonstrated above or because they follow
trivially from relevant counterparts demonstrated above.

However, the situation remains a bit puzzling. Lacking γ in R♯, so far
as we know thus far, the best that we can do is to prove theorems of C♯

one at a time. As the chain of reasoning which ended in UQUR3 (Kleene’s
⋆146b) shows, this can be quite a time-consuming business. First we need
to get clear on what the relevant insights are; and then we have the task of
transforming them to the classical vocabulary.

It would be tempting to shortcut this whole business, say by assuming
γ outright. However, no such shortcut is really satisfactory. In the first
place, though it is always possible that eventually there will be no help
for it, an outright assumption of γ would have disastrous effects both on
philosophical motivation and on the major technical results below. More
important, producing a fair copy of Kleene is not really what we are after.
The utility of trying to produce a fair copy of Kleene has lain mostly in the
relevant results that we obtained by way of doing so, with honest arrows in
them and with close attention to the kinds of distinction (e.g., in the relevant
theory of order) to which that approach has led us. While in the end, we
seek, and have sought, some approximation to intuitive reasoning, it has been
necessary to keep careful formal track of how that reasoning turns out in the
present context. While there has been neither space nor time to write out
the above proofs in total detail—nor is there any reason to suppose that the
reader would have read them in such detail—I have sought above to give
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rather full indication of how a totally detailed proof might go.
In this matter, there is just no substitute for the reader’s careful atten-

tion, irksome though that may be. In particular, the reader who has picked
and chosen his way through the above proofs, and the information which
accompanied them, ought to look again at some of them. In particular,
he should attend carefully to the tags which the several steps bear, and he
should ask himself how it came about that such a step can indeed be derived
with the tag that it bears. For it is the tags, in this technique, which carry
relevance, and it is in the tags that can be legitimately attached to a step
and those which cannot be so attached that the principal innovations here lie;
indeed, it is often in not being able to attach a tag relevantly that one comes
to see what relevant arithmetical claim lies behind a familiar material one.
Again, so far as we know, all the familiar material claims are made in R♯; the
difference lies in how they are made, and it is a most important difference
when one comes to philosophize on what the natural numbers are and how
we come to assert what we assert about them. We have, above, merely made
a beginning. But it is a careful beginning, opening alternative interesting
possibilities, both mathematical and philosophical. For their realization, a
careful continuation is required.

X

We have, in the preceding sections, proved a number of theorems of C♯ on
direct translation into R♯. The question arises whether all theorems of C♯

are thus provable. And the subsidiary question arises whether there exists
a straightforward translation from C♯ into R♯ such that, on this translation,
exactly the theorems of C♯ are the theorems of R♯.

We shall show in this section that the answer to the second question is
“Yes.” C♯ is “hidden” in a clear and effective way. This has immediate import
for the formal properties of R♯, since it means that the considerable amount of
technical research into C♯ is applicable to R♯ as well. E.g., R♯ is undecidable;
it is incomplete; all recursive functions can be represented within it; certain
formal statements that may be taken to express its consistency are unprovable
within it; and so forth. (But these last remarks depend upon the assumption
that R♯ is consistent, while moreover requiring some care with respect to their
exact formulation.)

However, it is not yet clear that the answer to the first question is “Yes”;
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i.e., that R♯ contains C♯ on the direct translation. If γ holds, that question
will be answered affirmatively. Accordingly, we shall be concerned in this
section to think about various γ related problems. But it should be pointed
out that the direct translation from C♯ to R♯ is of independent interest, and
that it is conceivable that this translation is exact even if γ fails for all of R♯.

To discuss translation in a fairly careful way, let us set up some con-
ventions. We shall, accordingly, let L ∗ be the classical sublanguage of L ♯;
i.e., L

∗ is based on ∧, ∼, ∀X , dropping → from among the primitives but
otherwise building up L ∗ in the same way as L ♯. Let C∗ be the system
got by restricting C♯ to the L ∗ vocabulary; i.e., so far as its theorems are
concerned, C∗ = C♯ ∩ L ∗. Obviously this involves no real restriction, since
primitive A → B and defined A ⊃ B are fully equivalent from the C♯ view-
point. Likewise, let R∗ = R♯ ∩ L

∗, in the same sense. Evidently this does
involve a real restriction, since A → B and A ⊃ B are sharply distinguished
by R♯.

By a translation from a language L to a language L ′, we mean here
simply a function T defined on all formulas of L with values in L ′. If
L ⊆ L ′, and particularly if L = L ′, the idiot’s translation is the function
which takes every formula to itself; i.e., it is the identity function on L .
Where S and S′ are systems, based respectively on languages L and L ′,
we may also refer to a translation from L to L

′ as a translation from S to
S′. When convenient, we continue to indulge in the (theoretically incorrect)
practice of identifying systems with the sets of their theorems.

Let S and S′ be systems, based respectively on languages L and L ′,
and let T be a translation from S to S′. If T preserves theoremhood in
S (i.e., if for all A ∈ L , if A ∈ S then T (A) ∈ S′), then T is a good
translation from S to S′. If T preserves non-theoremhood in S (i.e., if for all
A ∈ L , if T (A) ∈ S′ then A ∈ S), then T is a fair translation from S to S′.
Finally, T is an exact translation from S to S′ if it preserves both theoremhood
and non-theoremhood—i.e., if it is both fair and good. If there is an exact
translation from S to S′, then clearly S is “hidden in” S′ with respect to that
translation. (Whether, however, this is a reasonable claim that S is contained
in S′ depends on the character of the translation T itself—i.e., its simplicity,
its effectivity, its semantic acceptability, and so forth.)

We may suppose C♯ formulated axiomatically in a number of ways. The
simplest is just to add A →. B → A (or even ⊥ → A) as an additional axiom
scheme to our formulation of R♯. A second formulation takes all first-order
tautologies in the language L ♯ as logical axioms; in this case, it is readily
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observed that the rules →E, RMI, and a simple rule UG of generalization
(from A, to infer ∀XA) suffice to yield all theorems of C♯, with arithmetical
axioms A11–A18. To formulate C∗ axiomatically, simply change all occur-
rences of → to ⊃ in the axioms and rules of C♯, trading in →E for ⊃E in
particular.

We make some observations about idiots’ translations.

Theorem 5. The idiot’s translation from R♯ to C♯ is a good translation. The
idiot’s translation from C♯ to R♯ is a fair translation. Similarly, the idiot’s
translation from R∗ to C∗ is good, and from C∗ to R∗ is fair.

Proof. By definitions, given that we may formulate C♯ from R♯ by adding
axioms.

We next define direct translation from C♯ and C∗ to R♯ and R∗. Specifically,
the direct translation ∗ is defined as follows on all formulas of L ♯ (and a
fortiori of L ∗).

(i) If A is an atomic formula T = U , then A∗ is A

(ii) (B ∧ C)∗ is B∗ ∧ C∗

(iii) (∼B)∗ is ∼B∗

(iv) (B → C)∗ is B∗ ⊃ C∗

(v) (∀XB)∗ is ∀XB∗

Note that the direct translation, restricted to L ∗, coincides with the idiot’s
translation. Then

Theorem 6. The direct translation from C♯ to C∗ is an exact translation.
The direct translation from C♯ (or C∗) to R∗ (or R♯) is a fair translation.

Proof. Trivial, given Theorem 5.

We do not expect the idiot’s translation from C♯ to R♯ to be exact. Rather,
we anticipate that there will be some theorems of C♯ which, in the vocabulary
L ♯, are not theorems of R♯, and our finitary consistency proof for R♯ will
demonstrate that this is the case. But it would be nice if the direct translation
from C♯ to R♯ were exact (or, what comes to the same thing, if C∗ and
R∗ have the same set of theorems). For this would mean that, so far as
formalizing purely classical intuitions are concerned, C♯ and R♯ are on a par,
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in an appropriate sense. However, with the means presently at our disposal,
we cannot demonstrate this exactness. We can, however, show the following.

Theorem 7. Suppose that γ (i.e., ⊃E, or equivalently △E) is an admissible
rule of R♯. Then the direct translation ∗ is an exact translation from C♯ to
R♯, and C∗ has the same theorems exactly as R∗.

Proof. That ∗ is fair was shown in Theorem 6. We need to show, on the
supposition, that ∗ is also good. We defer this task.

Our interrupted Theorem 7 has, at any rate, a supposition, which may
be true or false. And it would be nice to find an exact translation from C♯ to
R♯ whose exactness does not rest on such suppositions. The delta translation
from L

♯ to L
∗ (and hence to L

♯) has this property, defining, for each
formula A of L ♯, a formula A∆ as follows:

(vi) A∆ is △(A∗)

Note that, for all formulas B of L ∗,

(vii) B∆ is △B

Before proving the exactness of the delta translation from C♯ to R♯, we note
the following properties of △ as reflected in theorem schemes of R♯.

△△. △△A ↔ △A

△∧. △(A ∧B) ↔ △A ∧△B

△∨. △(A ∨B) ↔ △A ∨△B

△∀. △∀XA ↔ ∀X△A

△∃. △∃XA ↔ ∃X△A

△⊃E. △(B ⊃ C) ∧ △B → △C

△⊃I. △(B ⊃ C) ⊃. △B ⊃ △C

△→I. ▽△(B ⊃ C) →. ▽△B → ▽△C

The first five of these, which are essentially distribution principles for △,
follow trivially from the definition of △A as⊥∨A and elementary distributive,
confinement, and idempotence principles of the classical logical particles.
But △⊃E, which allows us to eliminate even material ⊃ in △ contexts, and
△⊃I, which allows us in △ contexts to trade in little ⊃ for big ⊃ (and to
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take advantage of the fact that ⊃E is known to be admissible in R♯), are
interesting enough to devote a derivation to. △→I, which allows us similarly
to trade in ⊃ for → in ▽△ contexts, is the main point behind △⊃I, though
we content ourselves with a derivation of △⊃I here.

α (1) △(B ⊃ C) ∧ △B Hypothesis

α (2) △(B ∧ ∼B ∨ C) △∧, D∧∨, Replacement

α (3) △△C (2), ⊥I, Replacement, D△

⊤ (4) △(B ⊃ C) ∧ △B → △C (3), △△, (1), →I

ρ (5) ▽△(B ⊃ C) Hypothesis

ι (6) ▽△B Hypothesis

ρ ∧ ι (7) △C (5), ▽E, (6), ▽E, ∧I, (4), →E

ρ ◦ ι (8) △C (7), ∧≃◦, Tag Replacement

⊤ (9) △(B ⊃ C) ⊃. △B ⊃ △C (6), (8), →I, D⊃, (5), →I, D⊃

This completes the promised derivation, enabling us to show that the
delta translation from C♯ to R♯ is exact.

Theorem 8. The following conditions are equivalent, for all formulas A of
L ♯:

(i) A is a theorem of C♯

(ii) A∆ is a theorem of C♯ (and indeed of C∗)

(iii) A∆ is a theorem of R♯ (and indeed of R∗)

Moreover, if A is in the classical sublanguage L ∗, the following conditions
are equivalent to each other and to each of (i)–(iii):

(iv) A is a theorem of C∗

(v) △A is a theorem of C∗

(vi) △A is a theorem of R∗

Accordingly, the translation ∆ is exact from C♯ to R∗.

Proof. If A is in the sublanguage L ∗, each of the pairs (i)–(iv), (ii)–(v), (iii)–
(vi) is synonymous with the other, by definitions. Moreover, (iii) implies (ii),
by Theorem 5. Assume that △(A∗) is a theorem of C♯. Since ⊥ ∨ B and B
are classical equivalents for all B, evidently A∗, and hence A (by Theorem
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6) is a theorem of C♯. So (ii) implies (i). We conclude the proof by showing
that (i) implies (iii).

We suppose the second suggested formulation of C♯ above, and we assume
A a theorem of C♯. We prove that △(A∗) is a theorem of R♯, by induction on
the length of proof of A.

First, suppose that A is an axiom of C♯. If it is a logical axiom, it is known
from [ENT] that A∗ is a theorem of R♯, arguing at the RQ level; so then is
A∆ by △I. Moreover, each of the properly arithmetical axioms A11–A18
entail, in R♯, their ∗ translations, whence again △A∗ is a theorem of R♯ for
each such axiom of C♯.

Next, suppose that A comes in C♯ by one of the rules →E, UG, RMI,
where on inductive hypothesis the premisses of this rule are theorems of R♯

on the delta translation. Then the subcases are handled as follows:

Subcase →E. A comes in C♯ from predecessors B, B → A. On inductive
hypothesis, △B∗ and △(B∗ ⊃ A∗) are theorems of R♯. By ∧I, ∧⊃E, →I, so
also is △A∗, which was to be shown.

Subcase UG. A is of the form ∀XB, coming by UG from B. On inductive
hypothesis, △B∗ is a theorem of R♯, whence by ∀I in R♯ so also is ∀X△B∗.
By △∀, Replacement, △∀XB∗ is also a theorem of R♯, which was to be
shown.

Subcase RMI. A is of the form A[X ], and comes in C♯ from predeces-
sors A[0] and A[X ] → A[X ′]. Noting that our substitution notation is
preserved under translation, we may assume on inductive hypothesis that
△A[0]∗ and △A[X ]∗ ⊃ △A[X ′]∗ are theorems of R♯. By △⊃I, ⊃E, we have
△A[X ]∗ ⊃ △A[X ′]∗ as a theorem of R♯ also. By A19⋆′ of Section VII, with two
applications of ⊃E, we get as desired △A[X ]∗. This completes the inductive
argument and with it the proof of Theorem 8.

We may now complete the section by returning to our interrupted proof
of Theorem 7.

Proof of Theorem 7 (Completed). Suppose A is a theorem of C♯. By Theo-
rem 8, △A∗ is a theorem of R♯. By (unproved) supposition, γ is admissible
in R♯, whence A∗ is a theorem of R♯. Thus, on the supposition, ∗ is a good,
and hence an exact, translation from C♯ to R♯, ending the proof of Theorem
7.
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XI

In this section, we apply the results of the last section to do some Gödelian
metatheory for R♯. In particular, we shall investigate the question whether,
and in what sense, Gödel’s famous theorems apply to R♯. In making this
investigation, and for the sake of simplicity, we shall assume the usual arith-
metical mythology outright. Even so, many matters too tedious to work out
will be simply left as conjectures.

In assuming the usual mythology, I assume in particular the standard
model N = 〈N, 0, ′,+,×〉 of the natural numbers, and that moreover all
theorems of C♯ are true therein on standard Tarskian interpretation. This
assumption, which is of course stronger than those made in Gödel’s semi-
nal [FUS], implies outright that C♯ is ω-consistent, and a fortiori consistent.
Since, moreover, C♯ contains R♯ on the idiot’s translation (though not con-
versely), R♯ has these properties also. Moreover, I assume standard results
of elementary recursion theory (to be found, e.g., in [IMM], though my ter-
minology will not always agree with [IMM]).

It is immediate, on these assumptions, that

Theorem 9. R♯ is simply incomplete. I.e., there is a closed formula A of
L ♯ such that neither A nor ∼A is a theorem of R♯.

Proof. C♯ has this property, by Gödel’s result, and non-theoremhood in C♯

is preserved on the idiot’s translation into R♯, by Theorem 5, ending the
proof.

Theorem 10. R♯ is undecidable. I.e., there is no recursive procedure which,
applied uniformly to the formulas of L ♯, suffices to separate the theorems of
R♯ from the non-theorems.

Proof. C♯ is known to be undecidable, by Church! Suppose R♯ were nonethe-
less decidable. Applying this decision procedure to formulas A∆, we should
get a decision procedure for C♯ by Theorem 8, which is impossible.

Theorem 11. R♯ is essentially undecidable. I.e., there is no decision proce-
dure for any extension of R♯ which is consistent with respect to negation.

Proof. Let S♯ be an extension of R♯ for which a decision procedure exists.
Let S∗ be the collection of theorems of S♯ in the classical sublanguage L

∗,
and let S◦ be the class of formulas of S∗ of the form △A. We shall show
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first that S◦ contains △⊥; i.e., ⊥ ∨ ⊥, whence S∗ and hence S♯ contains ⊥.
But S♯ contains ⊤, which is already a theorem of R♯. Accordingly, S♯ is
inconsistent with respect to negation. Contraposing, if the extension S♯ of
R♯ is negation-consistent, it is undecidable.

The argument for Theorem 11 is now complete, except for the demon-
stration that △⊥ is indeed in S◦. Indeed, let S be the set of formulas such
that A ∈ S iff △A ∈ S◦. By Theorem 8, every theorem of C∗ belongs to S.
Moreover, since we require of an extension of R♯ that it be closed under the
rules of R♯, it is clear (by the argument of Theorem 8, mutatis mutandis)
that S is closed under ⊃E and UG. Accordingly, S is an extension of C∗

in the classical sense. Moreover, applying our decision procedure to S◦ in
particular, we get a decision procedure for S. So S is a decidable classical
extension of C∗, in the vocabulary L

∗. There is only one such, namely the
trivial theory, by Tarski, which is L ∗ itself. So S contains ⊥ in particular,
whence S◦ contains △⊥ by definition of S. This was what remained to be
proved.

Corollary 1. Let S♯ be a decidable extension of R♯. Then S♯ is inconsistent.

Proof. To prove the theorem we proved the corollary, so that its proof is
already complete.

Theorem 12. There is no recursively axiomatizable extension T♯ of R♯ such
that, for every closed formula A of L

∗, A is a theorem of T♯ iff A is true in
the standard model. Accordingly, however truth is defined on → statements
of L ♯, the arithmetic truths remain relevantly unaxiomatizable.

Proof. Suppose that there is a recursively axiomatizable T♯ with the forbid-
den property. Let T∗ be the class of theorems of T♯ in the vocabulary L ∗.
Since T♯ is recursively axiomatizable, and is the closure of its axioms under
the deterministic rules of R♯, T♯ is recursively enumerable. So then is T∗, the
class of arithmetic truths in the standard model. But this class is known not
to be r.e., whence the theorem follows.

Theorem 13. Let K be an r.e. set of natural numbers. Then K is weakly
expressible in R♯, in the following sense. There exists an open formula A[x]
of L ♯, in the single free variable x, such that, for each natural number I,

(1) I ∈ K iff A[I] is a theorem of R♯.
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Conversely, if there is an A[x] such that (1) holds for all I, the set K is
recursively enumerable.

Proof. The last statement is trivial, since we may recursively enumerate the
theorems of R♯, and those of the form A[I] in particular, where I ∈ N.

Suppose, then, that K is an r.e. set of natural numbers. Then, classically,
there is an open formula B[x] of L ∗ such that, for each I ∈ N,

(1⋆) I ∈ K iff B[I] is a theorem of C∗.

By Theorem 8, we get our desired A[x] satisfying (1) by taking A[x] as △B[x],
completing the proof of Theorem 13.

Theorem 14. Let K be a recursive set of natural numbers. Then K is
strongly expressible in R♯, in the following sense. There exists an open for-
mula A[x] of L

♯ such that (1) holds for each natural number I, and moreover,

(2) I /∈ K iff ∼A[I] is a theorem of R♯.

Conversely, if there is an A[x] such that (1) and (2) hold, for all I, then K

is recursive.

Proof. The last sentence is again trivial. Suppose then that K is recursive.
Then, classically, there is an open formula B[x] such that (1⋆) holds for each
natural number I, and moreover, for each I,

(2⋆) I /∈ K iff ∼B[I] is a theorem of C∗.

Let A[x] be ▽△B[x]. Note that this is classically equivalent to B[x]. Accord-
ingly, if A[I] is a theorem of R♯, and hence by Theorem 5 a theorem of C♯,
then I ∈ K by (1⋆). Similarly, if ∼A[I] is a theorem of R♯, I /∈ K by (2⋆). So
both (1) and (2) are established from right to left, for arbitrary I. To show
(2) from left to right, assume that I /∈ K. By (2⋆), ∼B[I] is a theorem of C∗.
Trivially, ▽∼B[I] is a theorem of C∗. By Theorem 8, △▽∼B[I] is a theorem
of R♯. But this is equivalent to ∼▽△B[I], i.e., to ∼A[I], as promised. Finally,
to show (1) from left to right, assume I ∈ K. By (1⋆) and Theorem 8, △B[I]
is a theorem of R♯, whence by ▽I, and definition of A[x], so is A[I] a theorem
of R♯. This ends the proof of Theorem 13.

So far, our use of classical results has been directly parasitic. It is per-
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haps a little more interesting, though scarcely more novel, actually to carry
out some Gödel-style arguments, referred specifically to R♯. For example,
enumerating effectively the class of formulas of L ♯ in the single free variable
x, and using AI [x] for the Ith such formula, let us establish Theorem 9 by
direct argument, using our other results. Let Q be the set of natural numbers
such that

(3) I ∈ Q iff AI [I] is a theorem of R♯.

Q is clearly r.e., whence there is by Theorem 13 an open formula Q[x] that
weakly expresses Q. I.e., for all I ∈ N,

(4) Q[I] is a theorem of R♯ iff AI [I] is a theorem of R♯.

We consider now the formula ∼Q[x]. This is a formula in the single free vari-
able x, and is accordingly AJ [x] for some J ∈ N, in view of our enumeration
of such formulas. I.e., trivially,

(5) ∼Q[J ] is a theorem of R♯ iff AJ [J ] is a theorem of R♯.

While, since (4) holds for all I, we have in particular,

(6) Q[J ] is a theorem of R♯ iff AJ [J ] is a theorem of R♯.

So, by (5), (6),

(7) ∼Q[J ] is a theorem of R♯ iff Q[J ] is a theorem of R♯.

Having assumed R♯ consistent, it immediately follows from (7),

(8) ∼Q[J ] is not a theorem of R♯, and

(9) Q[J ] is not a theorem of R♯.

So Q[J ] is an undecidable formula of R♯, which indeed we could patiently
construct on Gödelian grounds were we so inclined. Moreover, we have by
(8), (5), (3),

(10) J /∈ Q

Australasian Journal of Logic (18:5) 2021, Article no. 4



286

whence we may conclude (if we have built Q[x] familiarly),

(11) ∼Q[J ] is a true but unprovable closed formula of R♯.

This establishes Theorem 9 by direct argument (so to speak, since we haven’t
actually done much of the work). Henceforth, we let ∼Q[J ] be the Gödel
formula (Göd, for short). Let us devote at least as much argument to Theo-
rem 10. If R♯ were decidable, clearly the set Q above would be recursive. In
view of Theorem 14, we could then choose Q[x] above so that it satisfies not
only the criteria (3)–(9), but also so that, for all I ∈ N,

(12) I /∈ Q iff ∼Q[I] is a theorem of R♯.

But then by (10), (12),

(13) ∼Q[J ] is a theorem of R♯

contradicting (8). For the truth of Göd cannot be established by R♯ reason,
even though we know by arithmetic faith (11) that Göd is true. So Theorem
10 stands confirmed also by direct R♯ argument.

Thus Gödel’s famous first theorem, which asserts the incompleteness of
effectively formulated arithmetics, goes through straightforwardly for R♯, to-
gether with a number of related theorems. This has been in no way surpris-
ing, given Theorem 8 and the strong assumptions that we have been making.
Even under these strong assumptions, however, the status of Gödel’s famous
second theorem, which asserts that any system containing a suitable frag-
ment of arithmetic can only be proved consistent by means stronger than
those formulated by the system itself, is both more interesting and more du-
bious, relevantly speaking. Accordingly, we devote the next section to this
and related topics. [Typescript Ends.]
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