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Abstract

In this paper, we explore the possibility of constructing algebra-valued models
of set theory based on Priest’s Logic of Paradox. We show that we can build a
non-classical model of ZFC which has as internal logic Priest’s Logic of Paradox and
validates Leibniz’s law of indiscernibility of identicals. This is achieved by modifying
the interpretation map for ∈ and = in our algebra-valued model. We end by compar-
ing our model constructions to Priest’s model-theoretic strategy and point out that
we have a trade-off between a classical notion of identity and the validity of ZF and
its theorems.

Keywords: Priest’s Logic of Paradox, Algebra-valued models, ZFC, Non-classical
set theory

Introduction

Every formal theory is composed of two basic kinds of axioms; the logical axioms, which
are determined by the choice of our underlying logic, and the proper theory axioms, which
provide mathematical content. For example, Zermelo-Fraenkel Set Theory (ZF) is based
on classical logic and the theory axioms of ZF. But it is also possible to think about
non-classical counterparts of ZF, such as intuitionistic Zermelo-Fraenkel Set Theory or a
paraconsistent Zermelo-Fraenkel Set Theory which are based on, respectively, intuitionistic
logic or a paraconsistent logic and the theory axioms of ZF.

Moreover, given that the literature on intuitionistic Zermelo-Fraenkel Set Theory and
related systems is more abundant, (e.g., see [5] and [13]), we will focus in this paper on the
latter class of non-classical set theories, i.e., paraconsistent Zermelo-Fraenkel Set Theory. In
particular, we would like to follow a recent approach which consists in using algebra-valued
models to construct paraconsistent models of set theory. We will call this approach also
the Tarafder -approach. The Tarafder -approach initiated in [12] where the first example of
a paraconsistent model of the negation free fragment of ZF was provided. This result was
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then extended to a class of paraconsistent models of the negation free fragment of ZF in
[10] and to a class of paraconsistent models of full ZF in [7]. Additionally, the possibility
of doing cardinal arithmetic and forcing in these models was explored in [19] and [22].

The use of algebra-valued models within this approach is motivated by the fact that
we can obtain non-classical models of set theory that bear a great resemblance to the
cumulative hierarchy. This allows us to compare these models directly with their classi-
cal counterparts, i.e., Boolean-valued models, given that both Boolean and non-Boolean
algebra-valued models have the same ontological status in the universe of sets V. Further-
more, this paper aims to bring together the Tarafder -approach and the study of paracon-
sistent set theories based on Priest’s logic of paradox (LP).

The possibility of embedding set theory within LP has been explored for many years.
In particular, [18] has produced an LP-model which validates ZF minus Foundation, and
in [17] we can find an LP-model that validates both ZF and näıve set theory. However,
a considerable drawback for both these constructions is that they are model-theoretically
poor. In the case of [18] we have a highly degenerated model (see Section 2) and in the
case of [17] we lose fundamental properties of identity (see Section 4). Thus, we want to
build algebra-valued models based on LP with the hope of finding a more refined LP-model
which allows us to carry out a reasonable amount of mathematics. In particular, we want
to explore the possibility of constructing an LP-model with a classical notion of identity.

The article is organized as follows. In Section 1 we review some preliminaries and
introduce the set theories we will be using. In Section 2 we build the algebra-valued model
V(LP, J·K) based on LP and the regular interpretation map (viz. J·K). We point out the
limitations of this model. In particular, we show that Leibniz’s law of indiscernibility of
identicals fails and that all the inconsistent elements collapse to a single element. Thus,
we argue that this approach is unfeasible. Section 3 is devoted to the construction of the
algebra-valued model V(LP, J·KIN ), based on a modified interpretation map (viz. J·KIN). We
show that this model validates bounded quantification, the theory axioms of ZFC, and
Leibniz’s law of indiscernibility of identicals. Moreover, we prove that this model is indeed
paraconsistent and that the propositional logic associated with V(LP, J·KIN ) corresponds to
LP. Finally, in Section 4, we introduce Priest’s model-theoretic strategy and compare his
model constructions to our algebra-valued models based on LP.

1 Technical Preliminaries

1.1 Set Theory

In this subsection, we introduce the axiom system ZFC and some abbreviations in the
language of set theory which we will use. Notice that to avoid confusion we will denote
with ZFC the usual Zermelo-Fraenkel Set Theory plus the axiom of choice, whereas with
ZFC we refer in particular to the theory axioms of ZFC (such as Extensionality, Separation,
etc.). Similarly, for ZF and ZF. We will list the relevant axioms below.

Let L∈ be the language of set theory, which contains apart from the logical language
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the binary predicate ∈ denoting membership. In particular, we will use the following
abbreviations:

(i) z = {x} =df. ∃y(y ∈ z) ∧ ∀y(y ∈ z → y = x),

(ii) z = {x, y} =df. ∃s(z ∈ z ∧ s = x) ∧ ∃t(t ∈ z ∧ t = y) ∧ ∀w(w ∈ z → w = x ∨ w = y),

(iii) Pair(z; x, y) =df. ∃s
(
s ∈ z ∧ (s = {x})

)
∧ ∃t

(
t ∈ z ∧ (t = {x, y})

)
∧

∀w
(
w ∈ z → (w = {x}) ∨ (w = {x, y})

)
,

(iv) Func(f) =df. ∀x
(
x ∈ f → ∃s∃tPair(x; s, t)

)
∧

∀x∀y∀s∀t∀w∀v
(
(x ∈ f ∧ y ∈ f ∧ Pair(x;w, s) ∧ Pair(y; v, t) ∧ w = v)→ s = t

)
,

(v) Dom(f ; x) =df. ∀y
(
y ∈ x→ ∃w∃z

(
w ∈ f ∧ Pair(w; y, z)

))
∧

∀w
(
w ∈ f → ∃y∃zPair(w; y, z) ∧ z ∈ x

)
.

The ZFC axiom system, in the language L∈ is displayed in Figure 1. In the schemes, ϕ
is a formula with n+ 2 free variables. This formulation follows closely [2]. This definition
of ZFC is classically equivalent and is chosen to simplify the task of checking the validity
of the axioms in algebra-valued models. Moreover, we denote with ZF, ZFC minus Choice
and with ZF−, ZF minus Regularityϕ.

Definition 1.1. We denote with NLP=, the set theory that we obtain by combining the
theory axioms of näıve set theory, i.e., Extensionality and

∃y∀x
(
x ∈ y ↔ ϕ(x)

)
(Comprehensionϕ)

with the logical axioms of LP=.

Here LP= denotes the first-order version of LP with identity, which we obtain by adding
a binary predicate = to LP, where x = y receives value 1 or 1

2
just in case x = y. Further-

more, there exists an alternative presentation of näıve LP-set theory due to [18], where
identity is not a primitive notion, but defined in the following way:

x = y =df. ∀z(x ∈ z ↔ y ∈ z). (*)

We denote with NLP the näıve LP-set theory that we obtain by combining the logical
axioms of LP and the theory axioms of näıve set theory and where identity is defined as
(∗).

1.2 Properties of the lattice LP.

We briefly review some basic definitions.
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∀x∀y
(
∀z(z ∈ x↔ z ∈ y)→ x = y

)
(Extensionality)

∀x∀y∃z∀w
(
w ∈ z ↔ (w = x ∨ w = y)

)
(Pairing)

∃x
(
∃y(∀z ¬(z ∈ y) ∧ y ∈ x) ∧ ∀w(w ∈ x→ ∃u(u ∈ x ∧ w ∈ u))

)
(Infinity)

∀x∃y∀z
(
z ∈ y ↔ ∃w(w ∈ x ∧ z ∈ w)

)
(Union)

∀x∃y∀z
(
z ∈ y ↔ ∀w(w ∈ z → w ∈ x)

)
(Power Set)

∀p0 · · · ∀pn∀x∃y∀z
(
z ∈ y ↔ (z ∈ x ∧ ϕ(z, p0, . . . , pn))

)
(Separationϕ)

∀p0 · · · ∀pn−1∀x
(
∀y(y ∈ x→ ∃zϕ(y, z, p0, . . . , pn−1)) (Replacementϕ)

→ ∃w∀v(v ∈ x→ ∃u(u ∈ w ∧ ϕ(v, u, p0, . . . , pn−1)))
)

∀p0 · · · ∀pn∀x
(
(∀y(y ∈ x→ ϕ(y, p0, . . . , pn))→ ϕ(x, p0, . . . , pn)) (Regularityϕ)

→ ∀zϕ(z, p0, . . . , pn)
)

∀u
(
¬(u = ∅)→ ∃f

(
Func(f) ∧ Dom(f ;u) ∧ ∀x

(
x ∈ u ∧ ¬(x = ∅) (Choice)

→ ∃z∃y(Pair(z; x, y) ∧ z ∈ f ∧ y ∈ x)
)))

Figure 1: ZFC axioms.

Definition 1.2. We call a poset (A;≤) a meet semilattice if every pair x, y ∈ A has an
infimum, denoted by x ∧ y. If there also exists a supremum, x ∨ y, for any two x, y ∈ A,
then (A;≤) is a lattice. We say that (A;≤) is a bounded lattice if it is a lattice that has a
greatest element 1A and a least element 0A. A lattice (A;≤) is complete if the supremum∨
X and the infimum

∧
X exist for every X ⊆ A. A lattice is called distributive if it

satisfies the distributivity law, that is, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, z in its
universe.

Let us consider the complete bounded distributive lattice LP = 〈A;∧,∨,⇒,∗ ,1,0〉,
where the algebraic operations of LP correspond extensionally to the truth tables of the
logical connectives of LP as introduced in [14]. Furthermore, we take our universe to be
A = {1, 1

2
, 0}, where 0 < 1

2
< 1 and DLP = {1, 1

2
} acts as the set of designated values.

⇒ 1 1
2

0

1 1 1
2

0

1
2

1 1
2

1
2

0 1 1 1

∨ 1 1
2

0

1 1 1 1

1
2

1 1
2

1
2

0 1 1
2

0

∧ 1 1
2

0

1 1 1
2

0

1
2

1
2

1
2

0

0 0 0 0

x x∗

1 0

1
2

1
2

0 1

Table 1. Algebraic operations of LP.

The lattice LP satisfies the following properties which hold as well for the⇒ operation
of a Heyting algebra;
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Lemma 1.3. For any a, b, c in the domain of LP we have:

a ≤ b implies c⇒ a ≤ c⇒ b, (P2)

a ≤ b implies b⇒ c ≤ a⇒ c, (P3)(
(a ∧ b)⇒ c

)
=
(
a⇒ (b⇒ c)

)
. (P4)

Proof. See ([20], p. 176).

Lemma 1.4. For any subset {ai : i ∈ I} ∪ {b} of the domain of LP, where I is an index
set,

(
∨
i∈I

ai)⇒ b =
∧
i∈I

(ai ⇒ b). (†)

Proof. It is known that, for any two elements p and q of LP, p⇒ q is either 1, 1
2

or 0.

(
∨
i∈I

ai)⇒ b = 0 iff
∨
i∈I

ai = 1 and b = 0

iff there exists j ∈ I so that aj = 1 and b = 0

iff
∧
i∈I

(ai ⇒ b) = 0.

(
∨
i∈I

ai)⇒ b = 1 iff
∨
i∈I

ai = 0 or b = 1

iff for every j ∈ I so that aj = 0 or b = 1

iff
∧
i∈I

(ai ⇒ b) = 1.

1.3 The logic corresponding to (A, D).

We go on with some basic definitions.

Definition 1.5. Let A be a complete bounded distributive lattice. A set D ⊂ A is said to
be a designated set if

(i) 1 ∈ D, but 0 /∈ D,

(ii) if x ∈ D and x ≤ y, then y ∈ D, and

(iii) for any x, y ∈ D, x ∧ y ∈ D.

Moreover, we define the propositional logic of a complete bounded distributive lattice A
given a set of designated values D as follows.

Definition 1.6. Given a complete bounded distributive lattice A and a set of designated
values D ⊆ A, the propositional logic L(A, D) is defined as

L(A, D) = {ϕ ∈ LProp : ι(ϕ) ∈ D for all assignments ι}.
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1.4 A-valued models of set theory

In this subsection, we introduce the notion of an A-valued model. In particular, we follow
the Boolean-valued model construction of [2]. Let A = 〈A;∧,∨,⇒,∗ ,1,0〉 be a complete
bounded distributive lattice and V a model of set theory, which means that 〈V,∈〉 |= ZFC,
then we define an A-valued universe as follows:

Definition 1.7. We define by transfinite recursion the set-theoretic universe V(A).

V(A)
α = {x ; x is a function and ran(x) ⊆ A

and there is ξ < α with dom(x) ⊆ V
(A)
ξ )} and

V(A) = {x ; ∃α(x ∈ V(A)
α )}.

Let LA be the extended language of L∈, which we obtain by adding constant symbols
for every element in V(A). Moreover, to increase the readability, the name corresponding
to each u ∈ V(A) will be denoted by the symbol u in the extended language LA. A mapping
J·K is recursively defined from the collection of all closed well-formed formulas in LA to the
complete bounded distributive lattice A as follows (cf. [2]).

Definition 1.8. For any pair of elements u, v ∈ V(A),

Ju ∈ vK =
∨

x∈dom(v)

(
v(x) ∧ Jx = uK

)
,

Ju = vK =
∧

x∈dom(u)

(
u(x)⇒ Jx ∈ vK

)
∧

∧
y∈dom(v)

(
v(y)⇒ Jy ∈ uK

)
.

Then, we can extend the map J·K to non-atomic formulas: for any two closed well-formed
formulas ϕ and ψ,

Jϕ ∧ ψK = JϕK ∧ JψK,
Jϕ ∨ ψK = JϕK ∨ JψK,

Jϕ→ ψK = JϕK⇒ JψK,
J¬ϕK = JϕK∗,

J∀xϕ(x)K =
∧

u∈V(A)

Jϕ(u)K, and

J∃xϕ(x)K =
∨

u∈V(A)

Jϕ(u)K.

Definition 1.9. Let V(A) be the universe of A-valued functions. Then we denote with
V(A, J·K) the A-valued model that we obtain by using J·K as interpretation map.

Definition 1.10. A formula ϕ ∈ LA is said to be valid in V(A, J·K) given a designated set
D, whenever JϕK ∈ D. We denote this fact by V(A, J·K) |=D ϕ.
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1.5 The logic corresponding to (V(A, J·K), D) and some model-theoretic
notions

In this subsection, we introduce the propositional logic of the A-valued model V(A, J·K)

given a set of designated values D, and some model-theoretic notions. Let Sent∈ be the
class of sentences in the language L∈. By an ∈-translation we mean an homomorphism
T : LProp → Sent∈.

Definition 1.11. Given an A-valued model V(A, J·K), a set of designated values D ⊂ A,
the propositional logic L(V(A, J·K), D) is defined as

L(V(A, J·K), D) = {ϕ ∈ LProp : JT (ϕ)K ∈ D for all ∈-translations T}.

We say that an A-valued model V(A, J·K) is loyal to (A, D) if the propositional logic of
V(A, J·K) is the propositional logic of the complete bounded distributive lattice A given a
set of designated values D, whereas V(A, J·K) is faithful to A if every element a ∈ A is the
truth value of at least one sentence ϕ, where ϕ ∈ Sent∈. Formally:

Definition 1.12 ([11]). The A-valued model V(A, J·K) is called loyal to (A, D) if

L(A, D) = L(V(A, J·K), D)

and faithful to A if for every a ∈ A there exists a ϕ ∈ Sent∈ such that JϕK = a.

The reader may find a short proof of the following fact in [11].

Lemma 1.13 ([11]). Let V(A, J·K) be an A-valued model. Then if V(A, J·K) is faithful to A,
then it is loyal to (A, D) for any set of designated values D.

Finally, we use the following definition.

Definition 1.14. Let A and C be any two complete bounded distributive lattices. We
say that V(A, J·K1) and V(C, J·K2) are ∈-elementarily equivalent with respect to G ⊂ A and
H ⊂ C, and write

(V(A, J·K1), G) ≡∈ (V(C, J·K2), H)

whenever V(A, J·K1) �G ϕ if and only if V(C, J·K2) �H ϕ, for any ϕ ∈ Sent∈.

2 An LP-valued model of set theory

In this section, we apply the Tarafder-approach to the construction of LP-models. In
particular, we build an algebra-valued model based on LP. So, let V be a model of set
theory, then we define the LP-valued universe as follows:
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Definition 2.1. We define by transfinite recursion the set-theoretic universe V(LP).

V(LP)
α = {x ; x is a function and ran(x) ⊆ A

and there is ξ < α with dom(x) ⊆ V
(LP)
ξ )} and

V(LP) = {x ; ∃α(x ∈ V(LP)
α )}.

Moreover, the mapping J·K is recursively defined from the collection of all closed well-
formed formulas in LLP to the complete bounded distributive lattice LP as follows.

Definition 2.2. For any pair of elements u, v ∈ V(LP),

Ju ∈ vK =
∨

x∈dom(v)

(
v(x) ∧ Jx = uK

)
,

Ju = vK =
∧

x∈dom(u)

(
u(x)⇒ Jx ∈ vK

)
∧

∧
y∈dom(v)

(
v(y)⇒ Jy ∈ uK

)
.

Then, we can extend the map J·K to non-atomic formulas as specified in Definition 1.8.

We go on to define the model V(LP, J·K).

Definition 2.3. Let V(LP) be the universe of LP-valued functions. Then we denote with
V(LP, J·K) the LP-valued model that we obtain by using J·K as interpretation map.

We show in the following lemma, that due to the⇒ operation of LP, the algebra-valued
model V(LP, J·K) is too weak to validate certain set-theoretic properties which hold in the
case of Boolean and Heyting-valued models. As a consequence, we lose some properties
which would be helpful in further calculations and many standard arguments that we use
generally in algebra-valued models break down. To worsen the situation many calculations
are blocked in V(LP, J·K), given the failure of the transitivity of the conditional and the lack
of modus ponens.

Lemma 2.4. For any u, v, w ∈ V(LP, J·K) the following claims do not hold in general:

(i) V(LP, J·K) |=DLP u = v ∧ v = w implies V(LP, J·K) |=DLP u = w,

(ii) V(LP, J·K) |=DLP u = v ∧ u ∈ w implies V(LP, J·K) |=DLP v ∈ w,

(iii) V(LP, J·K) |=DLP u = v ∧ w ∈ u implies V(LP, J·K) |=DLP w ∈ v.

Proof. (i) Consider the elements u, v, w ∈ V(LP) defined as p0 = {〈∅,0〉}, p 1
2

= {〈∅, 1
2
〉},

and p1 = {〈∅,1〉}. Then we calculate readily

Jp0 = p 1
2
K ∧ Jp 1

2
= p1K ∈ DLP,

but Jp0 = p1K = 0.
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(ii) Consider the LP name z = {〈p1,1〉}. Then we calculate

Jp0 = p 1
2
K ∧ Jp 1

2
∈ zK ∈ DLP

and Jp0 ∈ zK = 0.

(iii) Consider the LP-names r = {〈p0, 1
2
〉} and q = {〈p0,0〉}. Then we have

Jr = qK ∧ Jp0 ∈ rK ∈ DLP

and Jp0 ∈ qK = 0.

In particular, we get:

Corollary 2.5. For any u, v ∈ V(LP, J·K) and any formula ϕ(x) in LLP having one free
variable x it is generally not the case that, if Ju = vK∧Jϕ(u)K ∈ DLP then Jϕ(v)K ∈ DLP.

Therefore, we can raise the first line of criticism against the algebra-valued model
V(LP, J·K). In particular, Corollary 2.5 shows that the Leibniz’s law of indiscernibility of
identicals fails within V(LP, J·K). On the one side, since we can not build equivalence classes
we are unable to define natural numbers and other basic kinds of sets in V(LP, J·K). So we
are also unable to quotient down our algebra-valued model and to build a model of set
theory with a proper notion of identity. On the other side, we have a conceptual problem
given that we are dealing with an uncontroversial and widely accepted property of equality
(see [6, pp. 108–109]). It is not clear why we should abandon such an intuitive principle
regarding equality within a paraconsistent set theory.

Thus, we believe that the failure of Leibniz’s law of indiscernibility of identicals consti-
tutes a serious challenge for the algebra-valued model V(LP, J·K). Notice that [18] has shown
that Leibniz’s law of indiscernibility of identicals fails, as well, in NLP.

We go on to show that in V(LP, J·K) we have non-well-founded sets.

Lemma 2.6. V(LP, J·K) |=DLP ∃x(x ∈ x).

Proof. Consider the LP-name p 1
2

(as defined in Lemma 2.4). Then we can readily calculate
that

Jp 1
2
∈ p 1

2
K =

(
p 1

2
(∅) ∧ J∅ = p 1

2
K
)

=
(1

2
∧ 1

2

)
=

1

2
∈ DLP.

Moreover, [18] has shown that the foundation axiom fails within NLP.

Theorem 2.7. ([18, Lemma 3 & 4]). NLP |= ZF−.
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We go on to point out the second issue of V(LP, J·K). We will need the definition of 1
2
-like

elements (these names are constituted just as canonical names with the only difference
that the range of these names is 1

2
instead of 1): for any x ∈ V let

x
◦

= {〈y◦
,
1

2
〉 : y ∈ x}.

It is easily observable that every 1
2
-like element u

◦
is a non-well-founded set in V(LP, J·K),

i.e., Ju◦ ∈ u
◦K 6= 0. We believe that the existence of these sets is not problematic by

itself, however, it seems unsatisfactory that every 1
2
-like element is identical in V(LP, J·K).

In other words, every 1
2
-like element collapses to a single element from the perspective of

our algebra-valued model.

Lemma 2.8. For any u
◦
, v

◦ ∈ V(LP, J·K) we have Ju◦
= v

◦K ∈ DLP.

Proof. Fix any two 1
2
-like LP-names u

◦
and v

◦
. Then:

Ju
◦

= v
◦
K =

(
(
1

2
⇒ 1

2
) ∧ (

1

2
⇒ 1

2
)
)

=
1

2
∈ DLP.

The situation is even worse since not only is every 1
2
-like element identical in our algebra-

valued model, but every 1
2
-like element is, as well, identical to any 0-like element. We call

an LP-name u a 0-like element whenever u = ∅ or for any x ∈ dom(u) we have u(x) = 0,
i.e. we can think of 0-like elements as representatives of the empty set ∅ in V(LP, J·K). Thus
every 1

2
-like and 0-like element collapses to a single element from the perspective of our

model, i.e., the empty set ∅. Hence, we believe that in the case that of V(LP, J·K) we have
a case of an excessive duplication of LP-names.

Moreover, it was observed by [24, pp. 393-395] that in the case of NLP= we have
also problems regarding identity. More specifically, there exists an NLP=-model where the
formula ∃x∃y(x 6= y) does not hold. In the case of NLP, on the other hand, it is possible
to find two sets x and y such that x 6= y holds (see [18, Theorem 7]). However, NLP is still
unable to prove that there exist two sets x and y such that x = y does not hold. This is
due to fact that in Restall’s NLP-model every formula receives value 1

2
. The moral that we

can draw from this, is that a non-classical notion of identity is problematic for V(LP, J·K),
(the models of) NLP and (the models of) NLP=.

Moreover, we have the following open question.

Open question: Is V(LP, J·K) a model of NLP or NLP=?

Finally, we conclude that the algebra-valued model V(LP, J·K) does not seem very fruitful.
On one side, it is unclear how much set theory we can derive since various basic set-
theoretic properties are blocked and due to the lack of basic inferential features of ⇒.
This carries over to J· = ·K, i.e., the interpretation of identity in V(LP, J·K) since J· = ·K
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is interpreted as the conjunction of conditional statements. As a consequence, Leibniz’s
law of indiscernibility of identicals fails in V(LP, J·K) and every 1

2
-like and 0-like element

collapses.

3 Modifying the interpretation map

It has been claimed by [16] that the key problem of a set theory based on LP is the weak
conditional. His solution consisted of supplying LP with a stronger conditional or modi-
fying the consequence relation. This gave rise to many variations of LP such as multiple
conclusion LP (originally introduced in [1]) or minimally inconsistent LP (originally intro-
duced in [15]). In this paper, we want to explore another possibility of constructing a set
theory based on LP without distorting the spirit of LP.

As in Section 2, we want to build an LP-valued model where we retain the conditional,
however, we modify the interpretation map of the algebra-valued model. In particular, we
propose to define a new interpretation map, denoted by J·KIN , which does not allow for
glutty identity statements anymore.

Definition 3.1. For any pair of elements u, v ∈ V(LP);

Ju ∈ vKIN =
∨

x∈dom(v)

(
v(x) ∧ Jx = uKIN

)
,

Ju = vKIN = 0 iff

there exists a x ∈ dom(u) such that u(x) > Jx ∈ vKIN ,
or there exists a y ∈ dom(v) such that v(y) > Jy ∈ uKIN .

Otherwise; Ju = vKIN = 1.

Then, we extend the map J·KIN to non-atomic formulas as in definition 1.8.

Definition 3.2. Let V(LP) be the universe of LP-valued functions. Then we denote with
V(LP, J·KIN ) the LP-valued model that we obtain by using J·KIN as interpretation map.

Definition 3.3. A formula ϕ ∈ LLP is said to be valid in V(LP, J·KIN ) given a designated
set D, whenever JϕKIN ∈ DLP. We denote this fact by V(LP, J·KIN ) |=DLP ϕ.

Notice that now for any u, v ∈ V(LP) we have either Ju = vKIN = 1 or Ju = vKIN = 0.
In other words, the range of the modified interpretation map of identity is {0,1}, whereas
the modified interpretation map of membership can range, as in the case of the usual
interpretation map, over all the elements of the universe of LP. For instance, if u is an LP-
name, then v = {〈u, a〉} (where a ∈ LP) is also an LP-name and Ju ∈ vK = a. Moreover,
every time we want to prove that Ju = vKIN ∈ DLP it is enough to show that for any
x ∈ dom(u) such that u(x) ≤ Jx ∈ vKIN and similarly for the elements of the domain of v.
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Theorem 3.4. Consider any two elements u, v ∈ V(LP). Then, Ju = vKIN ∈ DLP if and
only if both of the following hold:

(i) if u(x) = 1 then Jx ∈ vKIN = 1, and if v(y) = 1 then Jy ∈ uKIN = 1;

(ii) if u(x) = 1
2

then Jx ∈ vKIN ∈ DLP, and if v(y) = 1
2

then Jy ∈ uKIN ∈ DLP.

Proof. Let us consider two elements u, v ∈ V(LP) such that Ju = vKIN ∈ DLP.
For (i), suppose there exists an element u(x) = 1. We want to show that Jx ∈ vKIN = 1.

Suppose otherwise, so either Jx ∈ vKIN = 0 or Jx ∈ vKIN = 1
2
. In both cases we have a

x ∈ dom(u) such that u(x) > Jx ∈ vKIN , so by Definition 3.1 we get Ju = vKIN = 0. Thus in
both cases we are contradicting our initial assumption. Hence, we must have Jx ∈ vKIN = 1,
i.e., there exists a y ∈ dom(v) such that v(y) = 1 such that Jx = yKIN = 1. Similarly, if
there exists a y ∈ dom(v) such that v(y) = 1 then there also exists a x ∈ dom(u) such that
u(x) = 1 and Jx = yKIN ∈ DLP, otherwise Ju = vKIN = 0, and hence our assumption fails.

For (ii), let there be a x ∈ dom(u) such that u(x) = 1
2
. If there is no y ∈ dom(v)

such that v(y) ∈ {1, 1
2
} and Jx = yKIN ∈ DLP we must have Jx ∈ vKIN = 0. So

there exists a x ∈ dom(u) such that u(x) > Jx ∈ vKIN . Then by Definition 3.1 we
get Ju = vKIN = 0, which contradicts our initial assumption. It follows immediately that
there exists a y ∈ dom(v) such that v(y) ∈ {1, 1

2
} and Jx = yKIN ∈ DLP. Similarly, if

there exists y ∈ dom(v) such that v(y) = 1
2

and there does not exist any x ∈ dom(u), then
Ju = vKIN = 0, leads to a contradiction.

Conversely, let (i) and (ii) hold. Suppose that u(x) = 1. By (i) we have Jx ∈ vKIN = 1,
so u(x) ≤ Jx ∈ vKIN . Similarly, if u(x) = 1

2
we get by (ii) that Jx ∈ vKIN ∈ {1, 1

2
}, so again

we have u(x) ≤ Jx ∈ vKIN . We proceed analogously for the elements of the domain of v.
This leads to the fact that, Ju = vKIN ∈ DLP.

Lemma 3.5. For any u, v, w ∈ V(LP) the following hold:

(i) V(LP, J·KIN ) |=DLP u = u,

(ii) for any x ∈ dom(u), u(x) ∈ DLP implies V(LP, J·KIN ) |=DLP x ∈ u,

(iii) V(LP, J·KIN ) |=DLP u = v ∧ v = w implies V(LP, J·KIN ) |=DLP u = w,

Proof. (i) Consider any x ∈ dom(u) such that u(x) ∈ DLP. Suppose u(x) = 1, then by (i)
of theorem 3.4 we have Jx ∈ uKIN = 1. Hence, u(x) ≤ Jx ∈ uKIN . Similarly, if u(x) = 1

2

then by (ii) of theorem 3.4 we get Jx ∈ uKIN ∈ {1, 1
2
}. This means that for any x ∈ dom(u)

we have u(x) ≤ Jx ∈ uKIN . We may conclude Ju = uKIN ∈ DLP for any u ∈ V(LP).
(ii) Let u(x) ∈ DLP, so we have Jx ∈ uKIN ≥ (u(x) ∧ Jx = xKIN) ∈ DLP, since Jx = xKIN ∈
DLP by item (i).
(iii) By induction on the domain of w. Assume that for all z ∈ dom(w) we have:

Ju = vKIN ∧ Jv = zKIN ∈ DLP implies Ju = zKIN ∈ DLP.
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Take any x ∈ dom(u) such that u(x) ∈ DLP. We want to show that u(x) ≤ Jx ∈ wKIN . If
u(x) = 1, then since Ju = vKIN ∈ DLP by item (i) of Theorem 3.4 we have Jx ∈ vKIN = 1,
i.e., there exists a y ∈ dom(v) such that v(y) = 1 and Jx = yKIN ∈ DLP. Now, since
Jv = wKIN ∈ DLP and v(y) = 1 we can apply the same argument again, so Jy ∈ wKIN = 1,
i.e., there exists a z ∈ dom(w) such that w(z) = 1 and Jz = yKIN ∈ DLP. Then by induction
hypothesis:

(
Jx = yKIN ∧ Jy = zKIN

)
∈ DLP implies Jx = zKIN ∈ DLP. Hence, there exists

a z ∈ dom(w) such that w(z) = 1 and Jx = zKIN ∈ DLP, i.e., Jx ∈ wKIN = 1. Moreover,
if u(x) = 1

2
we simply apply (ii) of Theorem 3.4 instead of (i) and proceed similarly as

in the previous case. We can proceed similar for any z ∈ dom(w) such that w(z) = 1.
Likewise, for any z ∈ dom(w) such that w(z) = 1

2
we can show that w(z) ≤ Jz ∈ uKIN .

Hence, for any x ∈ dom(u) we have u(x) ≤ Jx ∈ wKIN and for any z ∈ dom(w) we have
w(z) ≤ Jz ∈ uKIN . Hence, we may conclude Ju = wKIN ∈ DLP.

Lemma 3.6. For any u, v ∈ V(LP) and any formula ϕ(x) ∈ LLP, if Ju = vKIN ∈ DLP then
the following hold:

(i) if Jϕ(u)KIN = 1 then Jϕ(v)KIN = 1,

(ii) if Jϕ(u)KIN = 1
2

then Jϕ(v)KIN = 1
2
.

Proof. By induction on the complexity of ϕ.

Base case (I). (i) Let ϕ(x) := w = x, where w ∈ V(LP). If Ju = wKIN = 1, then by
Lemma 3.5(iii) we have that Jv = wKIN = 1. (ii) Follows vacuously, since we have either
Ju = vKIN = 1 or Ju = vKIN = 0 for every u, v ∈ V(LP).

Base case (II). (i) Let ϕ(x) := w ∈ x, where w ∈ V(LP). Suppose Jϕ(u)KIN = 1.
Then, there exists a p ∈ dom(u) such that u(p) = 1 and Jp = wKIN = 1. Since we have
Ju = vKIN ∈ DLP, by item (i) of Theorem 3.4, there exists q ∈ dom(v) satisfying v(q) = 1
and Jp = qKIN ∈ DLP. By Lemma 3.5(iii), Jq = wKIN ∈ DLP, i.e., Jq = wKIN = 1. So there
exists a q ∈ dom(v) such that v(q) = 1 and Jq = wKIN = 1, i.e., Jw ∈ vKIN = 1. Hence
Jϕ(v)KIN = 1.
(ii) Now suppose Jϕ(u)KIN = 1

2
. Then, there exists p ∈ dom(u) such that u(p) = 1

2
and

Jp = wKIN ∈ DLP. At the same time there does also not exist any s ∈ dom(u) such that
u(s) = 1 and Js = wKIN ∈ DLP. Since, it is given that Ju = vKIN ∈ DLP, Theorem 3.4
ensures the existence of q ∈ dom(v) satisfying v(q) = 1

2
and Jp = qKIN ∈ DLP, in addition,

there does not exist any t ∈ dom(v) such that v(t) = 1 and Jt = wKIN ∈ DLP. By Lemma
3.5 (iii), we have Jq = wKIN ∈ DLP. Hence Jϕ(v)KIN = 1

2
.

Base case (III). Let ϕ(x) := x ∈ w, where w ∈ V(LP). (i) Let Jϕ(u)KIN = 1, i.e.,∨
z∈dom(w)

(w(z) ∧ Ju = zKIN) = 1

So there exists a z1 ∈ dom(w) such that w(z1) = 1 = Jz1 = uKIN . Thus, we have that
Ju = vKIN ∧ Jz1 = uKIN ∈ DLP and by Lemma 3.5(iii), Jz1 = vKIN ∈ DLP. So there exists
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a z1 ∈ dom(w) such that w(z1) = 1 = Jz1 = vKIN , i.e., Jv ∈ wKIN = 1. (ii) Now, suppose;
Jϕ(u)KIN = 1

2
, i.e., ∨

z∈dom(w)

(w(z) ∧ Ju = zKIN) =
1

2

This can only be the case if;

1. There exists z1 ∈ dom(w) such that w(z1) = 1
2

and Jz1 = uKIN = 1.

2. For any z ∈ dom(w), if w(z) = 1 then Jz = uKIN = 0.

By Lemma 3.5(iii) we have Jz1 = vKIN ∈ DLP. So there exists a z1 ∈ dom(w) such that
w(z1) = 1

2
and Jz1 = vKIN ∈ DLP, i.e., Jv ∈ wKIN ∈ DLP. We shall now prove that

we have Jv ∈ wKIN < 1. Suppose otherwise, so there exists a z2 ∈ dom(w) such that
w(z2) = 1 = Jz2 = vKIN . Since Ju = vKIN = 1 by Lemma 3.5(iii), we have Jz2 = uKIN = 1.
So there exists a z ∈ dom(w) such that w(z) = 1 and Jz = uKIN = 1.This contradicts that
Ju ∈ wKIN = 1

2
. Hence we get, Jv ∈ wKIN = 1

2
.

Induction step:

Case (I). Let ϕ(x) := ψ(x) ∧ γ(x). (i) If Jϕ(u)KIN = 1 then both of Jψ(u)KIN and
Jγ(u)KIN get value 1. By the induction hypothesis, Jψ(v)KIN and Jγ(v)KIN are 1, as well.
Hence Jϕ(v)KIN = 1. (ii) Now, if Jϕ(u)KIN = 1

2
holds, then we have Jψ(u)KIN = 1

2
or

Jγ(u)KIN = 1
2
. Again, by the induction hypothesis it can be concluded that Jϕ(v)KIN = 1

2
.

Similarly, Case II, Case III and Case IV can also be proved.

Case (II). Let ϕ(x) := ψ(x) ∨ γ(x).

Case (III). Let ϕ(x) := ψ(x)→ γ(x).

Case (IV). Let ϕ(x) := ¬ ψ(x).

Case (V). Let ϕ(x) := ∃y ψ(y, x). (i)Suppose Jϕ(u)KIN = 1. So there exists p ∈ V(LP)

such that Jψ(p, u)KIN = 1. Therefore, Jψ(p, v)KIN = 1, by the induction hypothesis. Hence
Jϕ(v)KIN = 1.

(ii) Let Jϕ(u)KIN = 1
2
. Then, there exists p ∈ V(LP) such that Jψ(p, u)KIN = 1

2
and

there does not exist any q ∈ V(LP) such that Jψ(q, u)KIN = 1. The induction hypothesis
ensures that Jψ(p, v)KIN = 1

2
and Jψ(q, v)KIN 6= 1, for all q ∈ V(LP). Finally, Jϕ(v)KIN = 1

2
.

Case (VI). Let ϕ(x) := ∀y ψ(y, x). By an immediate application of the induction hypoth-
esis, both (i) and (ii) can be proved in this case also.

Hence, we obtain as corollary the validity of Leibniz’s law of indiscernibility of identicals
in V(LP, J·KIN ).
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Corollary 3.7. For any u, v ∈ V(LP) and any formula ϕ(x) in LLP having one free variable
x, if Ju = vKIN ∧ Jϕ(u)KIN ∈ DLP then Jϕ(v)KIN ∈ DLP.

Lemma 3.8. For any u ∈ V(LP), and a formula ϕ(x), having one free variable x, in LLP,

J∀x
(
x ∈ u→ ϕ(x)

)
KIN =

∧
x∈dom(u)

(
u(x)⇒ Jϕ(x)KIN

)
. (BQϕ)

Proof. By the definition of the assignment function J·KIN ,

J∀x
(
x ∈ u→ ϕ(x)

)
KIN

=
∧

y∈V(LP)

J
(
y ∈ u→ ϕ(y)

)
KIN

=
∧

y∈V(LP)

( ∨
x∈dom(u)

(u(x) ∧ Jy = xKIN)⇒ Jϕ(y)KIN
)

=
∧

y∈V(LP)

∧
x∈dom(u)

(
(u(x) ∧ Jx = yKIN)⇒ Jϕ(y)KIN

)
, by Lemma 1.4

=
∧

y∈V(LP)

∧
x∈dom(u)

(
u(x)⇒ (Jx = yKIN ⇒ Jϕ(y)KIN)

)
, by (P4)

=
∧

y∈V(LP)

∧
x∈dom(u)

(
u(x)⇒ (Jx = yKIN ⇒ Jϕ(x)KIN)

)
, by Lemma 3.6

=
∧

y∈V(LP)

∧
x∈dom(u)

(
(u(x) ∧ Jx = yKIN)⇒ Jϕ(x)KIN

)
, by (P4).

Moreover, by (P3) we conclude that,∧
x∈dom(u)

(
u(x)⇒ Jϕ(x)KIN

)
=

∧
y∈V(LP)

∧
x∈dom(u)

(
u(x)⇒ Jϕ(x)KIN

)
≤

∧
y∈V(LP)

∧
x∈dom(u)

(
(u(x) ∧ Jx = yKIN)⇒ Jϕ(x)KIN

)
.

On the other hand, for any x ∈ dom(u),∧
y∈V(LP)

(
(u(x) ∧ Jx = yKIN)⇒ Jϕ(x)KIN

)
≤ (u(x) ∧ Jx = xKIN)⇒ Jϕ(x)KIN

= u(x)⇒ Jϕ(x)K, using Lemma 3.5(i),

which implies,∧
y∈V(LP)

∧
x∈dom(u)

(
(u(x) ∧ Jx = yKIN)⇒ Jϕ(x)KIN

)
≤

∧
x∈dom(u)

(
u(x)⇒ Jϕ(x)K

)
.
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Hence, ∧
y∈V(LP)

∧
x∈dom(u)

(
(u(x) ∧ Jx = yKIN)⇒ Jϕ(x)KIN

)
=

∧
x∈dom(u)

(
u(x)⇒ Jϕ(x)K

)
,

and as a conclusion,

J∀x
(
x ∈ u→ ϕ(x)

)
KIN =

∧
x∈dom(u)

(
u(x)⇒ Jϕ(x)K

)
.

We will use the following definitions to show the validity of Choice in our model:1

Definition 3.9. Let u ∈ V(LP, J·KIN ). Then we can define the subset dompos(u) of dom(u)
as

dompos(u) = {x ∈ dom(u) : u(x) 6= 0}.

Definition 3.10. We define dompos(u)/ ∼ as the partition of dompos(u) by ∼ where for
any u, v ∈ V(LP, J·KIN )

u ∼ v iff V(LP, J·KIN ) |=DLP u = v.

It is easy to check that ∼ is indeed an equivalence relation. Moreover, we denote
with [x] = {v ∈ V(LP, J·KIN ) : V(LP, J·KIN ) |=DLP x = v} the elements of dompos(u)/ ∼ where
x ∈ V(LP, J·KIN ). Now, we are in a position to show that ZFC holds in V(LP, J·KIN ). Moreover,
notice that the following proof is a modification of the proof of Theorem 3.13 of [7]. Only
that this time we are considering a different algebra and interpretation function.

Theorem 3.11. V(LP, J·KIN ) |=DLP ZFC.

Proof. Extensionality: We want to show that for any u, v ∈ V(LP) we have

J∀w(w ∈ u↔ w ∈ v)→ u = vKIN
=
(
J∀w(w ∈ u↔ w ∈ v)KIN ⇒ Ju = vKIN

)
∈ DLP.

Suppose J∀w(w ∈ u↔ w ∈ v)KIN ≤ 1
2
, then we get immediately JExtensionalityKIN ∈ DLP.

So let J∀w(w ∈ u↔ w ∈ v)KIN = 1, i.e.,∧
w∈dom(u)

J(u(w)→ w ∈ v)KIN ∧
∧

w∈dom(v)

J(v(w)→ w ∈ u)KIN = 1

This can only be the case if

1We would like to acknowledge Sourav Tarafder who was the first one to provide a complete proof of
Choice in an algebra-valued model of a paraconsistent set theory in [19].
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(1) for every w ∈ dom(u), u(w) ≤ Jw ∈ vKIN and

(2) for every w ∈ dom(v), v(w) ≤ Jw ∈ uKIN .

Then by Definition 3.1 we have Ju = vKIN = 1. Therefore, JExtensionalityKIN ∈ DLP.

Pairing: We show that for any two u, v ∈ V(LP) there exists a w ∈ V(LP) such that

J∀z
(
z ∈ w → (z = u ∨ z = v)

)
KIN ∧ J∀z

(
(z = u ∨ z = v)→ z ∈ w

)
KIN ∈ DLP.

We begin by showing that the first conjunct of Pairing holds. Consider two arbitrary
u, v ∈ V(LP). Let w be such that dom(w) = {u, v} and ran(w) = {1}. Then, applying
BQϕ it is enough to show that∧

z∈dom(w)

(
w(z)⇒ J(z = u ∨ z = v)KIN

)
∈ DLP.

Now take any z ∈ dom(w) such that w(z) ∈ DLP, then due to the construction of w we
have Jz = u∨ z = vKIN = 1. Thus, it follows that the first conjunct of Pairing holds. Now,
we show that also the second conjunct of Pairing holds. Take any z ∈ V(LP) and suppose
that Jz = u ∨ z = vKIN ∈ DLP. Then, by the construction of w, we get immediately that
Jz ∈ wKIN ∈ DLP. Therefore, it follows that the second conjunct of Pairing holds, as well.
Hence, we get JPairingKIN ∈ DLP.

Infinity: We define for each x ∈ V, where V is the ground model, x̌ = {〈y̌, 1〉 : y ∈ x}.
Then, we go on to show that

J∀z¬(z ∈ ∅)KIN ∧ J∅ ∈ ω̌KIN ∧ J∀w
(
w ∈ ω̌ → ∃u(u ∈ ω̌ ∧ w ∈ u)

)
KIN ∈ DLP,

where ∅ is the empty function in V(LP) and ω is the collection of all natural numbers in
V. The first two conjuncts of Infinity do clearly hold. We go on to show that also the third
conjunct of Infinity holds. By applying BQϕ it is enough to show that∧

w∈dom(ω̌)

(
ω̌(w)⇒ J∃u(u ∈ ω̌ ∧ w ∈ u)KIN

)
∈ DLP.

Now take any w̌ ∈ dom(ω̌). By the definition of ω̌, we have ω̌(w̌) = 1. Therefore, w̌ ∈ ω
holds in V. Now, due to Infinity in V we know that there exists a u ∈ V (the successor of
w) such that u ∈ ω and w ∈ u holds in V. Thus ǔ ∈ V(LP). It can be calculated readily
that Jǔ ∈ ω̌KIN = 1 and Jw̌ ∈ ǔKIN = 1. Therefore, J∃u(u ∈ ω̌ ∧ w̌ ∈ u)KIN ∈ DLP. Fur-
thermore, since the choice of w̌ was arbitrary we get immediately that the third conjunct
of Infinity holds. Hence, JInfinityKIN ∈ DLP.

Union: We have to prove, for any u ∈ V(LP), there exists an element v ∈ V(LP) such that

J∀x
(
x ∈ v → ∃y(y ∈ u ∧ x ∈ y)

)
KIN ∧ J∀x

(
∃y(y ∈ u ∧ x ∈ y)→ x ∈ v

)
KIN ∈ DLP.
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Take any u ∈ V(LP) and define v ∈ V(LP), as follows:

dom(v) =
⋃
{dom(y) | y ∈ dom(u)} and v(x) = J∃y(y ∈ u ∧ x ∈ y)KIN , for x ∈ dom(v).

We first prove that the first conjunct of Union holds. Applying BQϕ we get:

J∀x
(
x ∈ v → ∃y(y ∈ u ∧ x ∈ y)

)
KIN

=
∧

x∈dom(v)

(
v(x)⇒ J∃y(y ∈ u ∧ x ∈ y)KIN

)
=

∧
x∈dom(v)

(
J∃y(y ∈ u ∧ x ∈ y)KIN ⇒ J∃y(y ∈ u ∧ x ∈ y)KIN

)
∈ DLP, since a⇒ a ∈ DLP, for any element a ∈ LP.

We now show that also the second conjunct of Union holds. Fix a x0 ∈ V(LP) such that
J∃y(y ∈ u ∧ x0 ∈ y)KIN ∈ DLP. By definition, J∃y(y ∈ u ∧ x0 ∈ y)KIN ∈ DLP implies
that, there exists y0 ∈ V(LP) such that Jy0 ∈ u ∧ x0 ∈ y0KIN ∈ DLP. Now, Jy0 ∈
uKIN ∈ DLP guarantees the existence of an element y1 ∈ dom(u) such that u(y1) ∈ DLP
and Jy1 = y0KIN ∈ DLP. So, we have, Jy1 = y0 ∧ x0 ∈ y0KIN ∈ DLP and by Lemma 3.5(v)
we have Jx0 ∈ y1KIN ∈ DLP. Hence, there exists x1 ∈ dom(y1) such that y1(x1) ∈ DLP
and Jx0 = x1KIN ∈ DLP. Since, by our assumption, u(y1) ∈ DLP and y1(x1) ∈ DLP,
by Lemma 3.5(ii) we get Jy1 ∈ uKIN ∈ DLP and Jx1 ∈ y1KIN ∈ DLP hold. Hence,
Jy1 ∈ u ∧ x1 ∈ y1KIN ∈ DLP, which leads to the fact that J∃y(y ∈ u ∧ x1 ∈ y)KIN ∈ DLP,
i.e., v(x1) ∈ DLP. So, we have derived that, Jx0 = x1KIN ∈ DLP and v(x1) ∈ DLP. Hence,
Jx0 ∈ vKIN ∈ DLP. Therefore, it follows that the second conjunct of Union holds. Thus,
JUnionKIN ∈ DLP.

Power Set: We have to prove that for any u ∈ V(LP) there exists a v ∈ V(LP) such that

J∀z
(
z ∈ v → ∀w(w ∈ z → w ∈ u)

)
KIN ∧ J∀z

(
∀w(w ∈ z → w ∈ u)→ z ∈ v

)
KIN ∈ DLP.

We begin by showing that the first conjunct of Power Set holds. So, take any u ∈ V(LP)

and define v such that

dom(v) = LPdom(u) and for any z ∈ dom(v), v(z) = J∀w(w ∈ z → w ∈ u)KIN .

Applying BQϕ we get:

J∀z(z ∈ v → ∀w(w ∈ z → w ∈ u))KIN

=
∧

z∈dom(v)

(
v(z)⇒ J∀w(w ∈ z → w ∈ u)KIN

)
=

∧
z∈dom(v)

(
J∀w(w ∈ z → w ∈ u)KIN ⇒ J∀w(w ∈ z → w ∈ u)KIN

)
∈ DLP, since a⇒ a ∈ DLP, for any element a ∈ LP.
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For the second conjunct of Power Set, fix an arbitrary z ∈ V(LP). Then,

J∀w(w ∈ z → w ∈ u)KIN ⇒ Jz ∈ vKIN
=

∧
w∈dom(z)

(
z(w)⇒ Jw ∈ uKIN

)
⇒

∨
q∈dom(v)

(
v(q) ∧ Jz = qKIN

)
, by BQϕ

=
∧

w∈dom(z)

(
z(w)⇒ Jw ∈ uKIN

)
⇒

∨
q∈dom(v)

( ∧
p∈dom(q)

(
q(p)⇒ Jp ∈ uKIN

)
∧ Jz = qKPA

)
.

Let us assume that, ∧
w∈dom(z)

(
z(w)⇒ Jw ∈ uKIN

)
= 1.

Then it is enough to show that there exists a q0 ∈ dom(v) for which,∧
p∈dom(q0)

(
q0(p)⇒ Jp ∈ uKIN

)
∧ Jz = q0KIN

)
∈ DLP. (†)

Notice that, for any q ∈ dom(v), we have dom(q) = dom(u). Fix q0 ∈ dom(v) such that
q0(p) = (u(p)∧Jp ∈ zKIN), for any p ∈ dom(q0). The first conjunct of (†) follows by Lemma
3.5(ii). Now, we show that Jz = q0KIN ∈ DLP. In the case that z(w) = 0 we are done. So
for some w ∈ dom(z) let z(w) ∈ DLP. By our assumption, z(w) ≤ Jw ∈ uKIN .Hence, there
exists p0 ∈ dom(u) such that z(w) ≤ (u(p0) ∧ Jp0 = wKIN) ∈ DLP. Now, we notice that,
Jp0 ∈ zKIN ≥ (z(w) ∧ Jp0 = wKIN) ∈ DLP, by our assumptions. Hence, we get:

Jw ∈ q0KIN =
∨

p∈dom(q0)

(q0(p) ∧ Jp = wKIN)

≥ (q0(p0) ∧ Jp0 = wKIN), since p0 ∈ dom(q0) as well

= (u(p0) ∧ Jp0 ∈ zKIN ∧ Jp0 = wKIN)

≥ z(w).

Now, take any p ∈ dom(q0) and notice that

q0(p) = (u(p) ∧ Jp ∈ zKIN) ≤ Jp ∈ zKIN .

Therefore, we get that the second conjunct of (†) holds. Thus, JPower SetKIN ∈ DLP.

Separationϕ: Let ϕ(x) be any formula in LLP, where x is the only free variable. We want

to show that for any u ∈ V(LP) there exists a v ∈ V(LP) such that

J∀z
(
z ∈ v → (z ∈ u ∧ ϕ(z))

)
KIN ∧ J∀z

(
(z ∈ u ∧ ϕ(z))→ z ∈ v

)
KIN ∈ DLP.

For any u ∈ V(LP) define v ∈ V(LP) as follows:

dom(v) = dom(u) and for any z ∈ dom(v) let v(z) = (u(z) ∧ Jϕ(z)KIN).
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We go on to prove that the first conjunct of Separationϕ holds. Applying BQϕ, we have:

J∀z
(
z ∈ v → (z ∈ u ∧ ϕ(z))

)
KIN

=
∧

z∈dom(v)

(
v(z)⇒ Jz ∈ u ∧ ϕ(z)KIN

)
=

∧
z∈dom(v)

(
(u(z) ∧ Jϕ(z)KIN)⇒ (Jz ∈ uKIN ∧ Jϕ(z)KIN)

)
∈ DLP, by Lemma 3.5(ii).

Now, we show that the second conjunct of Separationϕ holds as well. Since, P4 holds for
LP, we have∧

z∈V(LP)

J
(
z ∈ u ∧ ϕ(z)

)
→ z ∈ vKIN =

∧
z∈V(LP)

(
Jz ∈ uKIN ⇒ (Jϕ(z)KIN ⇒ Jz ∈ vKIN)

)
= J∀z

(
z ∈ u→ (ϕ(z)→ z ∈ v)

)
KIN

=
∧

z∈dom(u)

(
u(z)⇒ J(ϕ(z)⇒ z ∈ v)KIN

)
.

Fix a z0 ∈ dom(u) such that u(z0) ∈ DLP and Jϕ(z0)KIN ∈ DLP. Then by construction of
v we have v(z0) ∈ DLP and by Lemma 3.5(ii) we get Jz0 ∈ vKIN ∈ DLP. Therefore, we can
conclude that for any z0 ∈ dom(u),

(
u(z0) ⇒ Jϕ(z0) ⇒ z0 ∈ vKIN

)
∈ DLP. Hence, the

second conjunct of Separationϕ holds. Thus, JSeparationϕKIN ∈ DLP.

Replacementϕ: Let ϕ(x, y) be any formula in the language of set theory with two free

variables. We want to proof that for every u ∈ V(LP) we have

J∀x
(
x ∈ u→ ∃yϕ(x, y)

)
→ ∃v∀x

(
x ∈ u→ ∃y(y ∈ v ∧ ϕ(x, y))

)
KIN ∈ DLP.

Take any u ∈ V(LP) and assume the antecedent of Replacementϕ holds. Applying BQϕ, we
have; ∧

x∈dom(u)

(
u(x)⇒

∨
y∈V(LP)

Jϕ(x, y)KIN
)
∈ DLP. (1)

Now, we will show that the consequent of Replacementϕ holds. We know that LP is a set,
so LP ∈ V. Thus, we may apply Replacementϕ in V so that for any x ∈ dom(u) we obtain
an ordinal αx such that ∨

y∈V(LP)

Jϕ(x, y)KIN =
∨

y∈V(LP)
αx

Jϕ(x, y)KIN .

So we have ∧
x∈dom(u)

(
u(x)⇒

∨
y∈V(LP)

αx

Jϕ(x, y)KIN
)
∈ DLP. (2)
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We apply Union in V to define α =
⋃
{αx : x ∈ dom(u)}. Then, we define the element

v ∈ V(LP) as dom(v) = V
(LP)
α and for every y ∈ dom(v), v(y) = 1. We move on to show,∧

x∈dom(u)

(
u(x)⇒ J∃y

(
y ∈ v ∧ ϕ(x, y)

)
KIN
)
∈ DLP.

Take any x0 ∈ dom(u) such that u(x0) ∈ DLP. By (2) we have y0 ∈ V
(LP)
αx0

such that
Jϕ(x0, y0)KIN ∈ DLP. By our construction y0 ∈ dom(v) and v(y0) = 1. Then, it follows by
Lemma 3.5(ii) that Jy0 ∈ vKIN ∈ DLP. Therefore, Jy0 ∈ v ∧ ϕ(x0, y0)KIN ∈ DLP and thus,

J∃y
(
y ∈ v ∧ ϕ(x0, y)

)
KIN ∈ DLP.

Since the choice of x0 is arbitrary it follows that the consequent of Replacementϕ holds.
Therefore, we conclude that JReplacementϕKIN ∈ DLP.

Regularityϕ: We want to show that

J∀x
(
∀y(y ∈ x→ ϕ(y))→ ϕ(x)

)
→ ∀xϕ(x)KIN ∈ DLP.

Thus take any x ∈ V(LP) and consider the following two cases:

(i) Let Jϕ(x)KIN ∈ DLP for every x ∈ V(LP), which implies J∀xϕ(x)KIN ∈ DLP. Therefore,
we get immediately that JRegularityϕKIN ∈ DLP.

(ii) Let Jϕ(x)KIN /∈ DLP for some x ∈ V(LP). Then, take a minimal u ∈ V(LP) such that
Jϕ(u)KIN /∈ DLP and for any y ∈ dom(u) ∈ DLP and Jϕ(y)KIN ∈ DLP. Using BQϕ and our
assumption, it is immediate that

J∀y(y ∈ u→ ϕ(y))KIN ∈ DLP.

Now, we have two cases:

(1) J∀y(y ∈ u→ ϕ(y))KIN = 1
2

or

(2) J∀y(y ∈ u→ ϕ(y))KIN = 1.

However, in both cases we get

J∀x
(
(∀y(y ∈ x→ ϕ(y))→ ϕ(x)

)
KIN ≤

1

2
.

Hence, the antecedent of Regularityϕ receives a value less or equal to 1
2
. Thus we have

JRegularityϕKIN ∈ DLP.

Choice: Fix an arbitrary non-empty u ∈ V(LP, J·KIN ), i.e., V(LP, J·KIN ) |= ¬(u = ∅). In
particular, this means dompos(u) 6= ∅. Now, take any [x] ∈ dompos(u)/ ∼ and consider the
following two cases.
Case (I): Suppose that [x] does not contain any 0-like element. Fix an element s[x] ∈ [x].
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By our assumption, we know that dompos(s[x]) 6= ∅. Moreover, choose a t[x] ∈ dompos(s[x]).
Then we define three elements p[x], q[x], w[x] ∈ V(LP, J·KIN ) such that

p[x] = {〈s[x],1〉}, q[x] = {〈s[x],1〉, 〈t[x],1〉} and w[x] = {〈p[x],1〉, 〈q[x],1〉}.

Case (II): Suppose that [x] is the class of 0-like elements in dompos(u). Let us arbitrarily
fix any two 0-like elements s, t ∈ V(LP, J·KIN ). Following the same construction as in Case
I, we define three elements p[x], q[x], w[x] ∈ V(LP, J·KIN ) such that

p[x] = {〈s[x],1〉}, q[x] = {〈s[x],1〉, 〈t[x],1〉} and w[x] = {〈p[x],1〉, 〈q[x],1〉}.

Then consider an element f such that

f = {〈w[x],1〉 : [x] ∈ dom(u)/ ∼}.

The existence of f in V follows by the fact that Choice holds in V. Then, by the construc-
tion f ∈ V(LP, J·KIN ). Furthermore, it can be shown readily that

V(LP, J·KIN ) |=DLP Func(f) ∧ Dom(f ; u).

We are done if we prove that

∀x
(
x ∈ u ∧ ¬(x = ∅)→ ∃z∃y(Pair(z; x, y) ∧ z ∈ f ∧ y ∈ x)

)
.

Consider any v ∈ V(LP, J·KIN ) such that

V(LP, J·KIN ) |=DLP v ∈ u ∧ ¬(v = ∅).

Then there exists an element x ∈ dompos(u) such that V(LP, J·KIN ) |=DLP v = x, and x
is not 0-like. Consider the equivalence class [x] containing x in dompos(u)/ ∼. By the
construction of f , there exists w[x] ∈ dom(f) which is of the form {〈p[x],1〉, 〈q[x],1〉}, where

p[x] = {〈s[x],1〉}, q[x] = {〈s[x],1〉, 〈t[x],1〉}, s[x] ∈ [x] and t[x] ∈ dompos(s[x]).

Since s[x] ∈ [x], we get V(LP, J·KIN ) |=DLP s[x] = x, which implies V(LP, J·KIN ) |=DLP s[x] = v.
Hence, we can derive that

V(LP, J·KIN ) |=DLP Pair(w[x]; v, t[x]) ∧ w[x] ∈ f ∧ t[x] ∈ v.

Thus, we can finally conclude that JChoiceK ∈ DLP.

Moreover, we show that the model V(LP, J·KIN ) modulo the set of designated values DLP
is non-classical.

Lemma 3.12. There exists a formula ϕ ∈ Sent∈ such that V(LP, J·KIN ) |=DLP ϕ ∧ ¬ϕ.
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Proof. Consider the following sentence: ϕ := ∃x∃y(x ∈ y ∧ x /∈ y). Now, simply consider
the LP-name u = {〈v, 1

2
〉} where v is an arbitrary LP-name. We readily calculate that

Jv ∈ uKIN = 1
2
, as well as Jv /∈ uKIN = Jv ∈ uK∗IN = 1

2

∗
= 1

2
. Hence,

Jϕ ∧ ¬ϕKIN = (
1

2
∧ 1

2

∗
) =

1

2
∈ DLP,

which completes the proof.

It is interesting to notice that paraconsistent set theories have traditionally been ex-
plored with the purpose of accommodating Comprehensionϕ and the contradictions that
follow from it within a non-trivial set theory. We call these set theories, näıve paraconsis-
tent set theories. Some of the advocates of this approach are authors such as [3], [4], [16],
[18], and [23]. Moreover, the main argument of this approach goes along the following lines;
the cost of removing contradictions of our universe and maintaining the underlying logic
of our set theory is higher than the cost of weakening our underlying logic and accepting
them. In particular, the LP-set theories that we can find in the existing literature follow
this approach.

However, the LP-set theory that we have developed follows a different approach. We
believe that a paraconsistent set theory does not necessarily have to validate the theory
axioms of näıve set theory, rather it should have a model that resembles as closely as
possible the cumulative hierarchy. We call these set theories, iterative paraconsistent set
theories. Moreover, our LP-set theory is an iterative set theory as demonstrated by Theo-
rem 3.11 (where we show that ZFC and, in particular, Regularityϕ holds, which is arguably
the essential axiom behind the iterative conception for [6]) and Lemma 3.14 (where we
show that Comprehensionϕ fails).

The main motivation for developing an iterative paraconsistent set, rather than a näıve
one, is that we can avoid the following criticism by [6, Chapter 4] against paraconsistent
set theories. His arguments can be resumed by the following dilemma.

(1) Either a paraconsistent set theory is too weak,

(2) or a paraconsistent set theory is unfaithful to its underlying conception.

The first horn of the dilemma demands that a paraconsistent set theory should be
both non-trivial and mathematically expressive. The second horn, on the other hand,
dictates that a paraconsistent set theory should be coherent with respect to their basic
(philosophical) assumptions. In the case of the näıve conception of set, this means for
instance, that we can not argue on behalf of the intuitiveness of Comprehensionϕ and at
the same time give up on principles which seem equally intuitive (such as Leibniz’s law of
indiscernibility of identicals).

Moreover, to be precise, this criticism is only directed against näıve paraconsistent
set theories that follow the material, relevant, or model-theoretic strategy, presented in
[16]. However, it seems that this criticism can be extended to any näıve paraconsistent
theory since the mentioned strategies are regarded as the most promising and well-known
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candidates of the näıve approach. In general, we believe that mathematical strength and
faithfulness offer two solid maxims which any non-classical set theory should satisfy. Fur-
thermore, in [8] it was shown that there exist iterative paraconsistent set theories which are
both, strong enough to carry out a reasonable amount of standard set theory and which
are faithful (to a reasonable degree) to the iterative conception of set. Thus, avoiding the
mentioned criticism by [6].

We acknowledge that the iterative approach has also a certain drawback. By adopting
an iterative paraconsisent set theory we abandon the intuitive appeal of Comprehensionϕ.
However, we bite the bullet. We still believe that iterative paraconsistent set theories
can be insightful for the study of classical and non-classical models of set theory. On the
one hand, we have shown in this paper and in others, such as [10] and [7], that the class
of models of ZFC and ZF exceeds the class of Boolean and Heyting-valued models of set
theory. On the other hand, we can actually explore paraconsistent models of set theory
which are mathematically very expressive as shown in [21]. Thus, the main imput of the
models provided by the iterative approach, is that they allow us to do a reasonable amount
of mathematics in a paraconsistent framework.

Despite this fact, we believe that both approaches to paraconsistent set theory are
similar in spirit, they agree that the logical axioms of set theory should correspond to a
paraconsistent logic, however, they disagree regarding which conception of set is the right
one. So, in a certain way we can consider the iterative approach a radicalized version of
the näıve approach. Because we are not only modifying the logical axioms of näıve set
theory, but also the non-logical ones.

Lemma 3.13. For any u ∈ V(LP) we have Ju ∈ uKIN = 0 and thus J∃y∀x(x ∈ y)KIN = 0.

Proof. Suppose we have a minimal counterexample to the claim. So there exists a u such
that Ju ∈ uKIN 6= 0 (†) , however, for every x ∈ dom(u) we have Jx ∈ xKIN = 0. Due to
(†) we know that there exists a x0 ∈ dom(u) such that u(x0) 6= 0 and Ju = x0KIN 6= 0. In
particular, Ju = x0KIN = 1, so for every x ∈ dom(u) we have u(x) ≤ Jx ∈ x0KIN . Moreover,
given that u(x0) 6= 0 we have Jx0 ∈ x0KIN 6= 0 which delivers us the desired contradiction.
Hence, for any u ∈ V(LP) we have Ju ∈ uKIN = 0 and thus J∃y∀x(x ∈ y)KIN = 0.

Now, we show that Comprehension fails in V(LP, J·KIN ).

Lemma 3.14. V(LP, J·KIN ) 2DLP Comprehensionϕ.

Proof. Consider ϕ =df. y /∈ y. Due to Lemma 3.13, for every u ∈ V(LP, J·KIN ), Ju ∈ uKIN = 0
and thus Ju /∈ uKIN = Ju ∈ uK∗IN = 1. Then we get:

Ju ∈ u↔ u /∈ uKIN =
(
(0⇒ 1) ∧ (1⇒ 0)

)
= 0.
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3.1 The logics of V(LP, J·KIN )

We go on to show that the model V(LP, J·KIN ) is indeed faithful to the lattice LP.

Theorem 3.15. The model V(LP, J·KIN ) is faithful to LP and hence loyal to (LP, D), for
any set of designated values D.

Proof. We know that the sentence ∀x(x = x) receives value 1, i.e., J∀x(x = x)KIN = 1
and hence we have J¬∀x(x = x)KIN = 0. So we are done in the case that we can find a
sentence ϕ ∈ Sent∈ such that JϕKIN = 1

2
. Simply consider sentence ϕ of Lemma 3.12.

Moreover, it is a well-known fact that the propositional logic associated to the lattice
LP modulo DLP is LP and that the propositional logic associated to the same lattice given
the set of designated values that contains only the top element, i.e., {1}, is Kleene’s Logic
K3. Thus we get:

Corollary 3.16. L
(
V(LP, J·KIN ), DLP

)
= LP.

Corollary 3.17. L
(
V(LP, J·KIN ), {1}

)
= K3.

It is easy to notice that Theorem 3.4, Lemma 3.5, Lemma 3.6, Corollary 3.7 and Lemma
3.8 are still valid in V(LP, J·KIN ) given the set of designated values {1}. Introspection of the
relevant proofs shows that exactly the same calculations work for this case. The validity
of ZFC, however, does not extend to this model due to the failure of Extensionality.

Theorem 3.18. V(LP, J·KIN ) 2{1} Extensionality

Proof. Consider the LP-names p 1
2

and p1. Then we calculate readily:

JExtensionalityKIN
= J∀x∀y

(
∀z(z ∈ x↔ z ∈ y)→ x = y

)
KIN .

=
∧

u∈V(LP)

∧
v∈V(LP)

(
J∀z(z ∈ u↔ z ∈ v)KIN ⇒ Ju = vKIN

)
=

∧
u∈V(LP)

∧
v∈V(LP)

(( ∧
x∈dom(u)

(u(x)⇒ Jx ∈ vKIN) ∧
∧

y∈dom(v)

(v(y)⇒ Jy ∈ uKIN)
)
⇒ Ju = vKIN

)
≤
(
(p1(∅)⇒ J∅ ∈ p 1

2
KIN) ∧ (p 1

2
(∅)⇒ J∅ ∈ p1KIN)

)
⇒ Ju = vKIN

=
(
(1⇒ 1

2
) ∧ (

1

2
⇒ 1)

)
⇒ 0

=
1

2
/∈ {1}.

The failure of Extensionality shows that if we choose a more classical set of designated
values, i.e., {1}, on V(LP, J·KIN ) we end up with a model which is properly speaking not a

Australasian Journal of Logic (18:7) 2021, Article no. 1



682

model of set theory anymore. What do we learn from this? On the one hand, it shows
that the choice of the set of designated values is relevant, unlike in the case of Boolean-
valued models and the standard interpretation map J·K. Thus, even though the J·KIN -
interpretation map allowed us to build a non-classical model of ZFC based on LP, it comes
with a price: we are bounded to one particular choice of designated values.

On the other hand, it is curious that in V(LP, J·KIN ) modulo {1} we get Leibniz’s law
of indiscernibility of identicals but not Extensionality since they are both conditions that
describe identity. In particular, Leibniz’s law is normally regarded as the stronger condition
of both (see [8] for a more detailed discussion on these two conditions). Thus, V(LP, J·KIN )

modulo {1} is the first algebra-valued model of set theory to our knowledge where Leibniz’s
law of indiscernibility of identicals is valid, but not Extensionality.

Moreover, given that Extensionality is a sentence in the language of set theory we can
show that V(LP, J·K) and V(LP, J·KIN ) are non-∈-elementarily equivalent with each other.

Corollary 3.19. We have

(V(LP, J·KIN ), DLP) 6≡∈ (V(LP, J·KIN ), {1}).

Moreover, we can show as well that V(LP, J·KIN ) is non-∈-elementarily equivalent with
other algebra-valued models of paraconsistent set theory. In particular, we will compare
V(LP, J·KIN ) to the class of (T,∼)-valued models presented in [10].

Lemma 3.20. Let DA = {x : x ∈ A ∧ x 6= 0}, then we have(
V(LP, J·KIN ), DLP

)
6≡∈
(
V((T,∼), J·K), DT

)
.

Proof. Consider the following sentence

ψ =df. ∀w
(
∃xy(x ∈ y ∧ x /∈ y)→ (w 6= w)

)
.

We know by Lemma 3.5(i) that J∀w(w = w)KLPIN = 1. Thus we get

J¬∀x(x = x)KLPIN =
(
J∀x(x = x)KLPIN

)∗
= 1∗ = 0.

Moreover, due to Lemma 3.12 we get

JψKLPIN = (
1

2
⇒ 0) =

1

2
∈ DLP.

Then, we calculate readily J¬∀w(w = w)K(T,∼) = 0 and J∃xy(x ∈ y ∧ x /∈ y)K(T,∼) = a,
where a is the co-atom of the universe of T. We conclude

JψK(T,∼)
IN = (a⇒ 0) = 0 /∈ DT.

Australasian Journal of Logic (18:7) 2021, Article no. 1



683

Similarly, if we choose {1} as set of designated values then we still have:

Lemma 3.21. Let D = {1}, then(
V(LP, J·KIN ), {1}

)
6≡∈
(
V((T,∼), J·K), {1}

)
.

Proof. Consider the sentence σ =df. ψ → ψ, where ψ is the same sentence we were consid-
ering in the proof of Lemma 3.20. We calculate readily that V(LP, J·KIN ) 2{1} σ. However,
we have V((T,∼), J·K) |={1} σ.

Notice that Lemma 3.20 and Lemma 3.21 are still valid in the case that we choose the
same interpretation map J·K on both V(LP) and V(T,∼). Similarly, considerations hold for
the choice of the interpretation map J·KIN for both models.

4 Comparision to Priest’s model-theoretic strategy

In this section, we will briefly present Priest’s set-theoretic models based on LP and com-
pare them to the models developed in this paper. In particular, we presuppose familiarity
with [17].

We have the following result (applying Priest’s partition construction):

Theorem 4.1 ([17]). Suppose thatM is a classical model of ZF containing two inaccessible
cardinals κ1 and κ2. Then there is an LP-model M∼ = 〈D∼, I∼〉 such that:

(i) M∼ is a model of ZF + NLP= and

(ii) M∼ contains a model N where N is a classical model of ZF.

This means, in particular, that we can construct a model of ZF which is compatible
with LP. More importantly, in this model, we do not only have the validity of the theory
axioms of ZF, but we get, as well, all the theorems of ZF. Nevertheless, we have two decisive
drawbacks:

1. M∼ is constructed by leaving alone only a proper fragment of the original model.

2. A single set a is the witness for all the instances of Comprehensionϕ.

To avoid these problems, Priest has used another construction which he calls the Hamkins
type-lift. First of all, notice that Theorem 4.1 applies, as well, to the models produced
by the type-lift. The type-lift construction is a big advance compared to the partition
construction concerning problem (1) given that the partition construction is produced by
leaving alone the entire original model. Furthermore, using the type-lift we obtain models
where different sets witness different instances of Comprehensionϕ, thus providing more
discriminating models. Thus, this construction also provides a solution to problem (2).

Priest concludes;
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Of the ways we have looked at for constructing models of ZF and naive set
theory, the Hamkins type-lift produces perhaps the most natural candidate for
a model of the universe of sets. The other constructions deliver a model of the
cumulative hierarchy (as defined in ZF) with inconsistent sets inside it. The
Hamkins construction delivers a consistent model of the cumulative hierarchy
with extra inconsistent sets. ([17], p. 105)

Nevertheless, we have again a decisive drawback with this model construction which
concerns the treatment of identity, i.e., Leibniz’s law of indiscernibility of identicals fails.
We, on the other hand, have shown that we can build an algebra-valued model that vali-
dates ZFC, which has as internal logic LP and which preserves all the intuitive properties
we would like to attribute to identity. Moreover, we observe that we have two fundamental
differences in our model construction.

(a) V(LP, J·KIN ) is not a model of Comprehensionϕ.

(b) V(LP, J·KIN ) does not allow us to derive all the theorems of ZF.

Notice that (a) is due to Lemma 3.14. Without going into technical details we believe
that it might be possible to extend our algebra-valued model with class functions that
might be used to interpret the universal set. Nevertheless, it is unclear how exactly our
underlying model V has to look like. What we can say here is that V should be a model of a
class theory, so we can talk about class-functions in our extended algebra-valued model and
that the resulting model should avoid problem (2) of Priest’s model-theoretic approach.2

Moreover, (b) is a drawback compared to Priest’s model construction since it is unclear
how many theorems of ZF we can derive in our model. At the same time, this is also
a distinctive feature of our approach, i.e., the possibility of determining the set of valid
theorems of ZF within a non-classical model of set theory. We leave this task for future
work. However, we believe that V(LP, J·KIN ) is an excellent candidate for this enterprise due
to the validity of Leibniz’s law of indiscernibility of identicals. In particular, we can build
a quotient model out of V(LP, J·KIN ) following the strategy outlined in [9].

Finally, instead of arguing that one model construction is preferable over another one,
we simply acknowledge that two different games are played. Whereas Priest is concerned
in showing that we can make sense of the classical theorems of ZF from a paraconsistent
perspective, we are concerned in finding out how much set theory we can obtain in a
paraconsistent model of ZFC. It seems that a moral that we can draw from this is that we
can not have the whole cake. There exists a trade-off between the validity of ZF (and its
theorems) and a classical notion of identity. In the case of Priest we get the validity of ZF
and all of its theorems, however, we have a non-classical notion of identity. In our case,

2We have tried to use a class theory à la NBG (i.e., a class theory that extends ZFC) and showed that
the respective does not validate Comprehension. But we recognize that our result is not even near to be
conclusive since other set theories that allow classes in their ontology, such as MK (Morse-Kelly set theory)
or NF (New Foundation), might do the trick. We leave this as an open problem.
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we get a model of the theory axioms of ZFC with a classical notion of identity, but we
do not get all the theorems of ZFC. Thus, forcing identity to behave properly within our
algebra-valued models is unfortunately not enough to obtain a model of all the theorems
of ZFC.

5 Conclusion

In this paper, we offer new contributions to the study of LP-set theories. Before, pointing
out these contributions we would like to situate this work within a more general project
that explores the construction of algebra-valued models for paraconsistent set theories.

The technical main results of this project (that we have used for this paper) can be
found in [9] and [19]. In particular, in [9], it was shown that there exists an interpretation
map (viz. J·KPA) that allows us to validate an classically equivalent formulation of ZF for
a class of algebra-valued models. Thus, providing the first paraconsistent models of full
ZF. Additionally, in [19] it was shown that the same class of algebras together with the
standard interpretation map (viz. J·K) gives rise to models of the negation-free fragment
of ZFC.

However, non of these two interpretation maps applied to LP produce an algebra-valued
model that validates ZFC (precisely because we have a non-classical notion of identity
in these models). So, we loose Leibniz’s law of indiscernibility of identicals and thus
some axiom schemes such as Separationϕ fail. We could only overcome this difficulty by
modifying the interpretation of identity and membership in our algebra-valued model. In
particular, we had to tailor the interpretation map in such a way that the resulting notion
of identity would be classical. This constitutes precisely the novelty of this paper: the
J·KIN -interpretation map. However, there remains an important open question which we
leave for future work:

Open question: Which is the class of algebras that gives rise to models of ZFC under
the J·KIN -interpretation function ?

Let us now turn to the contributions towards LP-set theory. We have showed that we
can build LP-models that come very close to the cumulative hierarchy and where identity
behaves classically. Thus, from a classical perspective, these models are nicer than the
LP-models that we find in the existing literature. A particular nice feature of these LP-
models is that we can actually carry out a considerable amount of mathematics within
these models as witnessed by Theorem 3.11. However, these models come at a big price.
Namely, we do not get a model of all the theorems of ZFC and, even worse, if we choose
the classical set of designated values then we do not even get a model of the theory axioms
of ZFC.

Finally, notice that, we have used the interpretation map J·KIN , in the case of LP,
because we needed a classical notion of identity given that the glutty notion of identity
was causing all the problems in previous model constructions. However, we can also try
to apply a similar strategy for the construction of all kind of non-classical models of set
theory. Thus, we conclude with the following open question.
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Open Question: Given any non-classical logic L(A, D), is it possible to define an in-
terpretation function J·KX such that V(A,J·KX) |=D ZFC ? What are the minimal algebraic
properties that the operations of A have to satisfy so we can find such an interpretation
map ?
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