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INTRODUCTION

Modal logicians have studied many properties of binary relations,
in exploring the Kripke semantics of modal systems. It seems timely to ask
where such techniques can be applied in mathematics. Two of the well-known
plane geometries, projective and elliptic, can be axiomatized using a single
binary relation. The usual two-sorted theory of projective planes is
unsuitable for normal modal semantics, but Chapters I and VI show how it can
be made onme-sorted (by keeping careful account of whether the incidence relation
is iterated an even or odd number of times). A one-sorted theory of elliptic
planes is already available from the work of Dr. M. Kordos.

These ideas lead to a range of new modal systems (Chapters II and IIT)
with clear geometrical interpretations (Chapter V). But unfortunately
Chapter VII shows that the modal language is not powerful enough to describe
the geometry adequately. Nevertheless, the theory of Chapters I, IV and VI
may have some value in its own right, and a few possible ways forward are
outlined ip Chapter VIII,

It is a pleasure to acknowledge the support and encouragement of
Dr. L.W. Szczerba. In particular, he urged me to replace an earlier

non~triviality axiom
(Va,b)(3c) ~{a=¢VvV b =cvVv aleVv blc)

by a purely existential axiom such as (4). It was while working on the
resulting new independence proofs for the projective axioms that I realized

how appropriate it would be to introduce elliptic planes as well.



I. SOME PROPERTIES COMMON TC PROJECTIVE AND ELLIPTIC PLANES

The following sentences, (1) to (4), are in a one~sorted language.
I stands for the (symmetric) incidence relation in any projective or elliptic

plane, and each variable may be interpreted as either a point or a line in the

plane. (If aIb , then a 1is a point and b is a line, or vice versa.)
(1) (Va,b) (all =>aI2b)

(2) (Va,b) (aI%b v aI3b)

(3) (Va,b,c,d) ({alblecTdla) = (a=c v b=d))

(4 (1a,b,c,d,e,f) (aTbTcid A eIf A ~(ald v ale v aIf v ble v bIf v

cle v elf v dIe v dIf))

The wvalidity of these may be seen as follows.

Suppose aI™ , 1.e. (3x1,x2,...,xn_l)(aIXIIXZI...Ixn_llb) . It will

be seen that if n is even then a and b are both points or both lines,

whereas if n is odd then one of them is a point and the other a line. Now
if a and b are both {p?lntS}, some {11?e } 2 1is incident with them both,
lines point

i.e. alzIb , so al%b . (1) follows from this.

Also if a is a point and b 1is a line, then a line x and point ¥y
may be chosen as in Fig. 5 so that alxIyIb , whence aI’b. Likewise if a
is a line and b 1s a point. But each of a,b is either a point or a line,

so (2) follows.

Figure 5. Figure 6.



(3) states the basic uniqueness property that two distinct points
cannot both lie on two distinct lines. (4) is a non—triviality conditiom, and

Fig. 6 shows how it follows from the existence of a quadrangle.

Theorems
(1) to (4) will now be treated as axioms, and Theorems (7) to (13} and
{15) to (18) derived from them. In (7) to (15) Axioms (1} and (2) only are used.

Axiom (1) means that T2 1is tranmsitive. Hence if aI™ with n = 4 )

n—2 b

it follows that aI~ “b , a1’ b, ..., so either al’s or aI®b . {(Thus when
Axiom (2) states that I2 u I® is universal, it asks for a connected model,

i.e. a single plane rather than several disjoint planes.) This extended version
of (1) will be assumed in proofs.

However the first theorem is a simple consequence of (2) alone.

(N I is serial, i.e. (Va)(Ix)(alx) .
Proof. al?a v alla by (2)
. (3x) (aIxIa) v (3Fx,v) (aIxlyla)

In either case, (Zx)alx .

(8) (Va,b,c) (aI%b Vv bI2¢ v allc) .
Proof. (~aI’b A ~bI%c) = aI3bI3dc by (2)
=> aIb¢
= alZc by (1) .
(9) 12 is reflexive.

Proof. Substitute a for b and c¢ in {8).

(10) I2 is symmetric.
Proof. Let aI%b . Then
bI3a = bI3a12b13a =b18a
=1bI2%a by (1) .

But (2) gives bI%a v bI%a . .. bI%a .,



(11) 12 is an equivalence relatiom.

Proof. (9, (10, (1) .

(12) There are at most two equivalence classes for 12 .

Proof. (8).

At this stage a projective plane could be defined as a model having two

equivalence classes, and an elliptic plane as a model having only one. But the

rest of this chapter will continue to treat the two cases together.
The next theorem is an expansion of (12), giving more information about

the equivalence classes.

{(13) For any element a , {x : al?x} and {x : aI3x} are the only equivalence
classes for I% .
Proof. By (9), alIZa . . () (albla) .
Also aI3x => bIal3x => bI'x
= bIx by (1) ,

and bI%x = aIbI%x => aldx .
".{x : aI%%} = {x : bI%x} = the equivalence class containing b .
But (V¥x)(alI?x v aI®x) by (23,

so the only equivalence classes are those containing a and b .

b exists if a does, and both classes are then non—-empty.

(14) Definitions. In any model having two I2-classes, the elements of one
class (either) are lines; of the other, points. In a model having
only one I2-class, every element is both a line and a point. I may

be read is incident with or lies on.




(15) alb => aI% <= (one of a,b is a point and the other is a line).
Proof. alb => aIbI%b by (9)
=> ald .

If there are two Iz—classes, then
ald <= {(a and b are in different classes) by (13).

The result follows from (14).

The symmetry of the incidence relation has not been postulated, as it

can be proved from Axioms (1), (2) and (3).

(16) I is symmetric.
Proof. Let aIb .
Then (15) shows that one of a,b 1is a point and the other
a line, and hence that bI3a .

.. (3x,y) (albIxIyIa) .

L

.a=xVb=y by (3).

But bIx and yIa , so in elther case bIa .

Earlier proof of (16) would have simplified (10), but that would have
used (3) unnecessarily early. Anyway the cbvious intention of (3) concerns the

following theorem.

(1n Any two points lie on a unique line.

Any two lines lie on a unique point.

points

lines } then aIb by (14).

Proof. If a,b are distinct {

line

point} by (15).

Thus (3x)(alxIb) , and x 1is a

points

lines ] lie on at least

(16) then gives bIx , so any two {

line

e {oint



T

I

If a2 and b

also lie on y , then by (16)
so either

a=>=
But a #5b .,

alxIblyla ,
or x =Y by (3).
Hence any two {?2;2;3} lie on only one {llne

point} ’
It will sometimes be convenient to argue even less formally, and to

geometrical terms.

assume the usual definitions of collinear, concurrent and other standard

The following proof derives from (4) one of the usual non—-triviality
conditions for projective (and elliptic) planes - ecf. [4, p.231].

(18)

There exists a quadrangle.

Proof. In the situation described by (4), alblcIld may be
represented as in Fig. 19 or 20, and eIf may be
represented as in Fig. 21 or 22.
\‘1 . \
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Figure 19. Figure 20. Figure 21. Figure 22.
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Combining these gives Fig. 23, in whose notation
p! q, r! 8

are either

a, b, ¢, d respectively, or
d, ¢, b, a2 vrespectively;

%

o
S

and t,u are either e,f
respectively, or

R

f,e

3
e

Figure 23.

respectively.
5

o
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I

and t lie on a point w , by (17) (or by (7) if
£).



It remains to show that pruw is a quadrangle.

(p,r,u colline) v (p,r,w colline) v (p,u,w colline) v (r,u,w colline)
=5 (qIu Vv p=r) Vv (pIs Vv r=w) Vv (pIt V u=w) Vv (rIt v slu)

=> pls v pIt v qlu v rlIt Vv siu

=» ald v ale v alf v ble v bIf v cle Vv cIf v dle v dIf

which contradicts (4).

This incidentally shows that a, b, ¢, d, e, £ are all distinct,

as in the figures.

II. THE MODAL SYSTEM 12¢

Each model for the theory of the previous chapter is a set with one

binary relation. Many such models occur in the Kripke semantics of modal

propositional logics ([7], developed by Lemmon and Scott [8] and others). Of

the foregoing axioms and theorems which fairly obviously correspond to modal

formulae, (9), (10), (11) and the first half of (15) all follow easily from (1),

(7) and (16). Some of the less obvious cases will be considered later (Chapter VII).
Systems of modal logiec are commonly based on ordinary propesitional

caleulus (PC) with the extra formation rule that if o is a well-formed formula

then so is La . {The notation of [5] is used here.) Me is defined as ~L~u .

Definition. 12g is the modal system based on all theses of PC, the rules of

modus ponens and uniform substitution for propositional variables, and (24) to (28):



(24) L(p 2 q) > (Lp > Lq)

(25) Lp > Mp

(26) Mp 2 p

zn LLp > LLLLp

(28) Necessitation rule: if [~a then Lo .

Every normal modal system has (24) and (28). (25) corresponds to the
semantic condition (7) that I 1is serial: cf. [8, p.55, 4.7]. (26) corresponds
to the condition (16) that I is symmetric: ecf. [8, p.54, 4.5]. (27)
corresponds to the condition (1): ef. [8, p.59, A(i)].

A syntactic property of the system 12g is that it has only finitely many
inequivalent modalities. To establish this, some technicalities of modal logic
are now needed.

An affirmative modality is a finite word in the letters L,M . We use

A,B,C as metalogical variables ranging over such modalities, writing A+B for
b(Ap > Bp) , and A=B for +(Ap = Bp) . If l(Ap = p) then we write A =1
(the improper affirmative modality - others are called proper).
From (28) and (24) come the standard rules [5, pp.33, 37]: if F(a o B)
then both F(La > LB)
and (Mo > MB)

From these, (29) follows by induction.
(29) For any affirmative modality € , if |-(az 2B) then F(Ca o CR)

The case of (29) where o is Ap and 8 is Bp gives part of (30).

The other part uses the substitution p/Cp . (31) follows.
(30) If A+ B, them CA~+ CB and AC -+ BC .

(31) If A=DB, then CA =CB and AC = BC .



where A

From b(Ap > Bp) easily follows %(NBNp 5 ~A~D) . But }(NAWP = Ap) ,

is the modality obtained from A by replacing each L by M and vice

versa (the modality dual to A). Hence (32) and (33).

(32)

(33)

obtain a

axiom.

(34)

(35)

(36)

If A+B then B ~» A (where the bars denote duals).

=B .

>

If A =3 then

These principles will now be applied to the modalities of 12g, first to

well-known property (34) of the system B° which has (26) as proper

IML =L, MM=M.
Proof. ML - 1 by (26), so 1+ LM by (32).
. .ILML ~ L and also L -+ LML by (30).

Thus LML = L , and dually (33) MLM =M .

L =ML =12 | MY = 1M = M2
Proof. L + M by (25), so L% + ML3 by (30).
ML ~ 1 by (26), so ML3 =~ L2 by (30).
But L2 + L% by (27). . - L* =ML3 =12 .

Dually (33), M™% = 1M3 = M2 .,

ML2 =13, 1M2 = M3 |

Proof. M.LZ = M.L%: (35), (31)
= ML3.L = L2.L (35), (31)
= 13, Dually (33), IM2 =M% .

The proper affirmative modalities of 12g form the semigroup generated

by L and M subject to (34), (35), (36). It is not yet clear why there are no

defining

relations independent of these, but that question will be taken up after (37).
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Within any modality in the semigroup, each power 1" or M" with
n 2 4 may be reduced using (35) L% =12 , M* = M% ., Also each L3 or 1?2
preceded by an M (and each M3 or M2 preceded by an L) may be simplified
using (35) ML3 =12 | (36) MLZ = L3 (and their duals); so we may assume that
any L™ or M" with n 2 2 occurs at the left—hand end. {34} then shows that

the semigroup contains only:

L,L2,13, 1M, L2, L3,
(37)

M, M2, M3, ML , M2L , ML .

To prove that there are mo defining relations independent of (34), (35), (36),
it will be enough to show why these 12 modalities (37) are distinct. That

gquestion will be taken up after the next theorem.

{(38) The 12g modalities (37) are connected with one another and with 1 by
implications as in Figure 39.
Proof. Applying (30) to (25) L + M gives LZ + ML and LM+ M? .

Combining these with (26) and its dual (32) gives

L2+ ML +~ 1+ LM + M2 .
From L2 + 1 > M2 , (30) gives
L3> L +M?L and L2M -+ M > M3
and also L2M »~ LM and ML > M3L .
From 1 ~ 1M , (30) gives M2L » M2L2?M

= ML3M = LM (36), (35).

Hence also MS3L - MLZM (30)

= 13M (36).

L2 + ML -+ 1 > 1M -+ M?
A L3 » L » M2L » L2M + M » M3
M3L » L3M

Figure 39. Affirmative modalities of 12g.
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To prove that the 12 modalities (37), together with 1 , are all
distinct, it will be enough to show why there are no implications connecting them
except those that can be seen from Fig. 39. Chapter III will settle that question,
by showing that any extra implication gives rise to a system stronger than 12g.

It is perhaps worth mentioning here the geometrical interpretations of
the basic modalities L and M . Suppose a formula o is assigned a set X
of points and lines. Then by the usuval semantic rules Mo is assigned
{y ¢ (IxeX)(yIx)} and La 1is assigned {y : (VxeX)(yIx)} . At this stage it
is not obvious whether these set constructions are enough to express, say, (1) to
(4) in the modal language; or whether any extra implications between modalities

in Fig. 39 are geometrically wvalid.

ITT. MODALITIES OF SYSTEMS CONTAINING 12g

We next consider all systems obtained from 12g solely by adding extra
implications between modalities. Every extension of 12g has the same pattern of
modalities as one of these, which is the weakest normal system having that pattern.

First we dispose of negative modalities (still using A,B to stand for
affirmative modalities). (~Ap > ~Bp) 1is merely the contrapositive of (Bp > Ap) .
Also the substitutiomn p/~p interchanges (Ap » ~Bp) and (~Ap > Bp) , where bars

denote duals. Hence negative modalities can be ignored after the following theorem.
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(4£0) Every formula (~Ap > Bp) 1is inconsistent with 12g.

Proof. Suppose ~Ap > Bp .

.. Ap vV Bp by PC.

.. MMp vV MMMp from Fig. 39.

-+ ~LL{(p = p) vV ~LLL(p > p) p/~( 2p), ~L for M~ .
But LL(p = p) PC, (28), (28)

. . LLL(p 2 p) (28).

The last three lines are contradictory.

Implications between affirmative modalities give rise to nine different
systems (including 12g itself). Each of these is named by the number of its
proper affirmative modalities and then a distinguishing letter (e, f or g) .

If the number is n , there are 2(n+l) distinet modalities altogether.

Figure 39 shows no implication linking modalities of even degree with
those of odd degree. The weakest extra implications which preserve this
property are ML +L? , ML +1, L~>1%, ML + L,
their duals (32) M2 > 1M , 1> 1% , M3+ M, M > L?M ,
and L3M » M3L , L2M > M2L .

The last two are equivalent. For L3M - M3L by (30) and (35) entails
L2M = L¥M » IM3L = M?L , and L2M + M2L by (30) and (36) entails L3M » IM2L = M3L .
The resulting system is called 10g (cf. Fig. 48).

The remaining eight are equivalent. For from ML ~ L2 , (30) and (34)
give L ~ L3 , whence (30) and Fig. 39 give 1 + L3M , whence (30) and (35) give
M + L?M , whence (30) and (34) give back ML ~ L2 ; and (32) finishes the proof.
The resulting system is 4g (cf. Fig. 44).

Proofs of this kind will be so numerous that most of their details will

be omitted from here on.
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Still keeping even and odd modalities separate, the weakest extra
implications to add to Fig. 48 are ML ~L?, ML -1, L~ 13 , M2L - L and
their duals, each giving 10g + 4g . This system 1g (cf. Fig. 42) has
L =ML =12M =¥ . The weakest additions to Fig. 44 are the equivalents
1-L2 ,M2+1,M>1L, also giving 1lg.

Now, the weakest way of linking the even and odd modalities in Fig. 39
is by L2 » M3 or its dual L3 -+ M2 . The resulting system 8f has
L2 = L% > M3L% = L3 , whence Fig. 47.

One of the weakest additions to Fig. 47 is L2M >~ M2L , which gives 7f
(cf. Fig. 45). The others are ML +~ L , L - 1 and their duals; but ML + L
gives L =IML -+ L2 > 1 , so at this stage we merely add L+ 1+ M to 8f,
obtaining 8e (ecf. Fig. 46).

The weakest additions to Fig. 45 also are ML -+ L , L ~ 1 and their
duals; so again we consider only L = 1 which gives 7f + 8e . This system also
arises from adding L2M + M?L to 8e. Now in fact this addition gives the trivial
system Oe (in which every affirmative modality collapses to 1), but the proof is
very long and will not be given here.

The other weakest additions to Fig. 46 are the equivalents L » L2 |
ML ~L , M2 -+ 1 and their duals, giving 2e (cf. Fig. 43). Further additions

to this give Oe (cf. Fig. 41).

For each of these eight extensions of 12g, the following list gives
modality reduction laws to supplement (34), (35), (36), and then the appropriately

reduced version of Fig. 39.

Oe (the trivial system). L=1
M=1
Figure 41. Affirmative modalities of Oe.

lg. L2 =1
1 L

M2 = 1
Figure 42. Affirmative modalities of 1g.
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-

7f.

(Lewis's S5). L2 =1L

M2 = M

L3 =1
M3 =um
L3 = 12 , M2L = L2y ,

8e, 8f., L3 =12

10g.

M3 = M2

_14_

L~» 1+ M

Figure 43. Affirmative modalities of Z2e.

L2 » 1+ M2 LM

Figure 44. Affirmative modalities of 4g.

L2 » ML » 1 =+ LM - M2
“x “ s P
L -+~ ML -~ M

Figure 45. Affirmative modalities of 7f.

8e and 8f have the same modalities, but different implications

between them. 8e is the system T; of Thomas [103 ,

cf. [5, p.260].

M2L = L2M

L2 > L + ML - 1 » IM > M - M
\ 4

M?L -+ L2M

Figure 46. Affirmative modalities of 8e.

L2 > ML » 1 » LM » M2

L - M2I, = L21v{ > M/

Figure 47. Affirmative modalities of 8f.

1
7N
L2 » ML LM > M2 13 > L » M2L » M » M3
XA
M3L

Figure 48, Affirmative modalities of 10g.
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Figure 49 is a lattice diagram showing the inclusions between the
nine systems. Since all are contained in Oe , the systems are consistent:
cf., [5, pp.41-421,

Oe&k(Trivial)

™~
lg 7t 2e (S5)

>< X >8e ()

Figure 49. The nine systems.

The 13 affirmative modalities of 12g give 169 formulae Ap > Bp which
may be added to 12g as axioms. Finding what system results in each case is a
tedious continuation of the foregoing argument, so the details will be omitted.
The conclusions are tabulated in Table 50 (whose blank spaces are for theses

of 12g itself).

A
fzgfgyﬁi .,ﬁéiﬁ,wlwm VL3M' ﬂZM S 55ﬁ m”§'m””ﬁ§\
7 R — :TMJWJﬁrWNW.:hmwm:mmmméfwu_éé_u. éfm"w'gf'wwégwmwééu
ML | 4g - - - - - - 2e  2e 8f 8f 8f 8f
M3L | 4g 4g - 4g -~ =~ =~ 2¢ 2e 8f 8 8f 8f
1 ig 1g lg - be - - Qe Qe Oe 2e 8e 8f
L3M | g 1g 10g 1g - - - Oe Oe 7f 8f 8f 8f
M 1g 1lg g 1g hg - - Oe Qe Oe 2e  Be  8f
A-<% M2 é lg 1g 1g 1g bg bg - Oe Oe Oe 2e 2e 8f

L3 gf 8 8f 8t 8f 8f 8F - - - - - -
L @ 2 8e 8f 8e 8f 8f 8f 4g - - - - -
M2L % 2¢ 2 8 2 8f B8f B8f 4g 4g - - - -
L2M f e Qe 7f Oe 8¢ 8f 8f 1lg 1lg 10g - - -

M | QOe Qe Oe Qe Ze 2e 8f lg 1g lg 4g - -

. M3 0e Oe 0e Oe 2 2 B8 1lg lg lg 4g 4y -

Table 50. Systems 12g + (Ap > Bp).
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The distinctness of the nine systems in Fig. 49 will be proved using

four models (undirected graphs).

In the diagrams for these, each element is

represented by a small square, and links between squares show the relation I .

(25), (26) and (27) are valid om all of these models (as they satisfy (7), (16)

and (1)), so all four are models for 12g.

(51) Every system contained in 1lg is distinct from every system containing 8f.
Proof. Consider the 12g-model of Fig. 52, i.e. the set {wl,wz} with
R relation I = {(wl,wz) s (Wz,wl)} . For each subset X , the
W, v, following table gives MX = {y : (3xeX) (yIx)} .
Figure 52. X | @ {Wl} {Wz} {Wl,Wz}
MX | @ {w,} {w} Ao ,w,}
Hence also MMX @ {WI} {Wz} {WI’WZ}
In each case -MMK u X = {wl,wz} , the whole set, so
(by the usual evaluation rules) (MMp o p) 1is wvalid.
But ~M{w,} u MM{w,} = {w,} , not the whole set, so
(Mp o MMp) is imvalid.
Hence (cf. Table 50) Fig. 52 gives a model for lg but not for 8f.
(53) Every system contained in 7f is distinet from every system containing &g
or 8e.
Proof. Consider Fig. 54, in which the small loop indicates a reflexive
, é) element.
v, Here (LLMp > MMMLp) is valid, but both (MMp > Mp) and
Figure 54. (p » Mp) are false when p 1is assigned {Wl} .
Hence we have a model for 7£ but not for 4g or 8e.
(55) Every system contained in 2e is distinct from every system containing 10g.
Proof. In Fig. 56, (MMp > Mp) is valid, but (LLMp o MMLp) is false
L0 wvhen p is assigned {w,}
;1 ;; Henice we have a model for 2e but not for 10g.

Figure 56.
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(57) 8e is distinect from 2e. (This is well-known.)

Proof. In Fig. 58, (p » Mp) is valid, but (MMp = Mp) is false

- when p 1is assigned {w_} .
G0 :

v, Hence we have a model for 8e but not for Ze.
Figure 58.

(51), (53}, (55) and (57) prove that all the systems in Fig. 49 are
distinect from one another. It then follows that any implication between 12g
modalities mot alrveady apparent from Fig. 39 gives (cf. Table 50) a system
stronger than 12g; so Fig. 39 already shows all such implications in 12g itself.
It then also follows that the 13 modalities in Fig. 39 are distinct, with no
modality reduction laws independent of (34), (35), (36). Similar remarks apply

to the other eight systems, with Figs. 41 to 48.

1v. ELLIPTTC PLANES

Chapter II set up the system 12g so that its semantics would include
all models of the theory of Chapter I. This gives a geometrical significance to
modal formulae, including those in Table 50. In particular, the 8f axiom

(LLp » LLLp) corresponds to the semantic condition:
(59) (Va,b) (aI3b => al2b) . {8, p.59, A(i).]

But from (13), this is just the condition that there be only cone equivalence class
for I2 , i.e. (ef. Def. (14)) that every element be both a point and a line.
Thus geometrical models of 8f are (possibly degenerate) elliptic planes as treated

by Kordos [6].
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Any variable in any formula of Kordos's theory may be interpreted
either as a line or as its pole. The corresponding four interpretations of
alb (cf. [1, p.48]) are: the point a 1lies on the line b ,
the point a 1is maximally distant from the point b ,
the line a lies on the peint b ,
the line a 1s perpendicular to the line b .

(2) and (59) entail:
(60) (Va,b) (aI®b) .

In turn, {60) entails (2), (59) and also (1). So in specializing the theory of
Chapter I to elliptic planes we may replace (1) and (2) by (60). Since (7) to
(17) rest on (1), (2) and (3) only, they follow equally well from (60) and (3)

as axlioms. In particular, (17) now gives:
(61) (Va,b) ((a#b) = (Alec)(alcIb))

(any two distinct elements have a unique common neighbour).
The theory based on (60) and (3) can be regarded as elliptic plane
geometry in a general sense which permits degenerate planes. A little of this

theory is developed in Theorems (62) to (74).

(62) No elements can be related as in Fig. 56, 63 or 64.

Proof. Figure 56 shows wllwllwzlwzlwl but wl # w2 , which violates (3).

i) Figure 63 shows w_Iw Iw Iw Iw_ but
/ \\ § § w, #w,_ and w, ¥ w_ , violating (3).
vy - | | 1 2 1 3
0 W [ L Figure 64 obviously violates (3).

Figure 63. Figure 64.
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(65) (~aIb) => (the sets of neighbours of a and of b have the same
cardinal number).
Proof. Let A ={x: alx} , B ={y : bly} . It is required to
prove IAI = |B| .
Assuming ~alb , we have b ¢ A .
« . (WxeA) (1Y) (xIy1b) by (61)
But yIb <= y ¢ B .
"o (VxeA) (31yeB) (xIy)
Similarly (VyeB) (3lxed) (xIy) .
Hence the restriction of I is a 1-1 correspondence

between A and B .

(66) Either (i) every element has the same number of neighbours; or
(ii) some element a is related to all the others, and every
element except a has the same number of neighbours.

Proof. First, suppose (Vb,c)(b=c Vv ble) .
If there are at least four elements, this violates (3).
If there are at most three elements, (62) permits only the

four models shown in Fig. 67. The first

ja

§ﬁ _;\\ (1 Q three of these satisfy (i), and the last
- A - L i

H

A

three satisfy (ii).

Figure 67. Some degenerate
elliptic planes.

Henceforth, assume (3b,e) ~ (b=c Vv blc)
Such elements b and ¢ have the same number of neighbours,
by {65). Call this number n+l (a finite or infinite cardinal).

Let A =1{x: x has n+l neighbours}! , so b,c e A .



Then
a . a
1 ™ "2
-{\ et
“\/4§
,/”%Z?xiﬂkﬁwi“““w
o7 L (S
b c %

Figure 68.
(69)
Proof.
with
AR
Ly td i
d b e

Figure 70.

(n =
(n =
( )
;{a
/;; \\\\
/// ’)f Y
VA AN
/o \
. 4 i:_}

0) gives the situation of Fig. 71, where a

1) gives the situation of Fig. 72, where a

—.20_

a ¢ A = (number of neighbours of a) # n+l

=> (VxeA) (alx) by the contrapositive of (65).
So if distinct elements a,,a, ¢ A, (3) is violated

(Fig. 68}.

Hence either every element is in A , giving case (i),
(VxeA) (alx) , giving

or just one element a ¢ A , and

case {(ii).

Any model of (66)(ii) must be as in Fig. 71 or 72.

With the notation of the previous proof, assume case (ii)

nz 2.,
Then any element b of A has at least three neighbours

a, d, e as in Fig. 70. (d or e may coincide with b .)

But (VxzeA) (alx) , whence the dotted links in the figure
lead to a violation of (3).

<« .n s 1.

is reflexive because of (60).

is irreflexive because of (62).

k irreflexive elements

k =2 0)

Figure 71.

% pairs m reflexive elements
20, m=z0, 28+m = 1)
Figure 72.
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E Si ; ,\7
Note. From Fig. 71, the cases k = 0,1 give Eﬁ and Nb—-T1 .

From Fig. 72, the cases (2=1,m=0)} , (2=0,m=1) give ﬁéiiﬁ and ié%mwwﬁ

But these make up all of Fig. 67 except @& , so (69) embraces all

non—empty degenerate elliptic planes considered so far.

(73) Definition. A non—empty model of (66){i) in which each element has

n+l mneighbours, is called an elliptic plane of order n .

(74) An elliptic plane of order n has n2 + n + 1 elements.

Proof. Being non-empty, the model is generated by an element a .
First suppose n =0 , so a has just one neighbour b .
If b # a , we obtain Fig. 52, violating (60).
Hence b = a , so we have gg , i.e. 02 + 0 + 1 elements.
Now assume n 2 1 , so a has at least two neighbours.
Hence there are at least two elements.
Since Fig. 56 violates (62), there is at least one irreflexive
element, say a itself.
Let its npeighbours be 358 5 0e s (distinct from one ancother
and from a ).
Then (Vaj)(ﬂfai)(alailaj) by (61).
This gives the situation of Fig. 72, with 2&+m = n+l .
By (62) there are no other links amcngst the elements
3,858, 500453 -
For any other element x , (H!ai)(alailx) .
But each a; has n+l mneighbours including a and some aj ’

so mn~1 other neighbours (which may be imagined as added to

the bottom of Fig. 72).

i

.". total number of elements 1 + (n+l) + (n+1) (n~-1)

n2 +n+1.
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Of course this is strongly reminiscent of a projective plane of
order n , which has 2 (n%+n+1) elements (points and lines). In fact every
elliptic plane E fairly obviously corresponds to a projective plane P whose
points and lines may each be labelled in the same way as the elements of E .
Whenever alIb in E , then in P the point a 1lies on the line b and also
the line a lies on the point b . Thus P is self-dual. If P is a
Pappus plane then the elements of E may be given homogeneous coordinates over

a field, with:

<= =
(75) (x15¥52) T (%,,5,,2,) XX, *y,¥, + 2z, 0.

cf. [3, pp.217-8, Th.1].

(74) and even (69) could have been obtained indirectly through standard
projective results, instead of directly from (60) and (3).

A1l elliptic planes having orders up to 3 are illustrated in Fig. 76.
The plane of order O is also included in Fig. 71 (case k = 0) , and those of
order 1 are included in Fig. 72 (case 2 =0, m = 2, and case % =1, m = 0)

Those of orders 2 and 3 correspond to (75) over the fields GF(2) and GF(3) .

Figure 76. Elliptic planes of small order .
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In Chapter I, the axiom to exclude degenerate planes was (4). This
requires a model to contain at least one of the six graphs in Fig. 77 (with no
extra links between the elements shown).

3

o Tt T W S / il R B .y
I i

Figure 77.

So (4) excludes @ and all cases of Fig. 71 and 72 (including the elliptic planes

of orders O and 1) , i.e. it requires an elliptic plane to have an order, which

must be at least 2 . But the same can be achieved by . L; ~
requiring a model to contain at least one of the two : e,
graphs in Fig. 78 (with no extra links between D=L L
distinct elements). Hence (4) may be replaced by Figure 78.

the shorter axiom:
(79) (3a,b,c,d) (aIblc A ~(a=c v b=d v alc v bId))

No further such shortening is possible, as every 3~element irreflexive model for
(3) can be embedded in a degenerate plane as in Fig. 72.

It may be wondered why non-trivial elliptic planes (satisfying (60), (3)
and (79)) can be finite, in view of Karzel'stheorem quoted by Bachmann
i1, pp.123-4, Satz 20]. He shows that a finite elliptic plane cannot exist, by

proving that the number of points in each orbit under the automorphism group would

n2+1
2

proof uses mid-points, it might be thought to require Kordos's mid-points axiom

have to be » which (for = > 1) 1is not a factor of n2+n+l . Since the
[6, p.613, AX6]; but in fact any elliptic plane over a field of odd order has the
particular mid-points required in Karzel'sproof. The problem is that such a

mid-point (x,y,z) may be reflexive, i.e. from (75) it may satisfy:
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(80) x2 + y2 + 22 = 0.

There is no proper reflection in such a point. This frustrates the argument
24
2
odd order n has three orbits under its automorphism group: n+l reflexive

n(n—1)
2

that an orbit must have elements. Instead, a Pappus elliptic plane of

irreflexive elements having

ni{n+l)
2

elements (points/tangents of the conic (80)),
no reflexive neighbours (interior points/non-secants of the conic), and
elements each having two reflexive neighbours (exterior points/secants of the comnic).
Over a field of characteristic 2 , the conic (80) degenerates to the repeated
line/point (x+y+z)2 = 0 ; and for even order n the three orbits comprise:

this single element (1,1,1) , its n+l neighbours (the reflexive elements), and
the remaining n?-1 elements. (Cf. Fig. 76 for the cases n = 2,3.) Over the
real field, (80) is the elliptic absolute, having no real points or tangents. If
by analogy with this we want to banish the conie (80), we can add Kordos's AX2

(6, p.613], viz. the irreflexive law:

(81) (Va) ~ (ala) .

Although the axiom set {(3), (60), (79), (81)} is weaker than Kordos's or Bachmann's,
it still has no finite model, by the "Friendship Theorem" of graph theory

(3, p.234, Th.6], cf. [2, p.337]. However this whole paragraph is a digression
{with no proofs). Before (79) there was already enough material for the discussion

of 7f in the next chapter.
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V. GEOMETRICAL SIGNIFICANCE OF THE STRONGER SYSTEMS

The discussion of elliptic planes in Chapter IV arose from (59), the
semantic condition for the modal system 8f. Similarly it may be asked what
special properties a plane must have in order to be a model for any one of the
eight extensions of 12g obtained in Chapter III.

Since much of the answer involves degenerate planes, axiom (4) will
usually be ignored in this chapter. Axiom (2) is satisfied by any generated
(i.e. connected) 12g-model. But axiom (3) needs to be borne in mind.

Fig. 49 shows that Oe, 2e, 8e and 7f all contain the basic elliptic
system 8f, so all models for these e- and f-systems are elliptic planes,
Projective planes are models for 12g but not for 8f, so the g-systems are

relevant to these.

Oe, 2e, 8e.

The e-systems can be dismissed fairly quickly. L = 1 is an axiom for
8e (Table 50), so is also in the other two (cf. Fig. 49). But models for
Lp o p have I reflexive, so any two related elements would be as in Fig. 56
which violates (3) (cf. (62)). Hence the only non—empty model is the elliptic

plane of order O (cf. Fig. 76), i.e. a single point/line incident with itself.

1g.

From Table 50, 1+ L2 is an axiom for lg. The corresponding semantic
condition [8, p.59, A(i)(b)] is (Va,b)(al?b =>a = b), which makes each equivalence
class for 1I” collapse to a singleton. Hence, by Def. (14), there are only one
point and one line; i.e. the plane has order zero. Fig. 82 shows the two
non-empty possibilities. The first is a R
model for the stronger system Oe %f L
(= 1g + 8f : cf. Fig. 49). The second Elliptic. Projective.

is a model for lg but not for Oe. Figure 82. Models for lg.
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4g.

From Table 50, L » L3 is an axiom for 4g. The corresponding semantic
condition [8, p.59, A(i)] is (Va,b) (aI3b => aIb) . From (15), this means that
every point lies on every line. If there were more than one point and more than
one line, this condition would violate (3); so at least one 12~class collapses
to a singleton. Fig. 83 shows the
non—empty possibilities. The first is

o

a model for the stronger system 2e

(= 4g + 8f : cf. Fig. 49), indeed for
Oe. The second is a model for 4g but Elliptic. Projective.
not 2e, although the case h =1 is a Figure 83. Geometrical models for 4g.

model for 1lg (ecf. Fig. 82).

7€, 10g.
From Table 50, L2?M > M2L is an axiom for 10g. Such axioms are

notoriously difficult to handle semantically (cf. L8, pp.74-761), but it is

possible to cope with this one in the present context of geometrical models

satisfying (3). It will be convenient to derive a variant of the axiom.

LLMp > MMip

M~Mp Vv DMMLp PC, M~ for ~L .
MM(~Mp v Lp) M~-distribution [5, p.37, T71].
{84) MM(Mp > Lp) Substitution of equivalents.

As these steps are reversible, (84) may be added to 12g to give 10g; and hence
also added to 8f to give 7f (= 10g + 8f : cf. Fig. 49).

A useful description of the modal semantics (¢f. e.g. (8, p.22]) says that
a formula o 1is true at x 1ff o 1is assigned a set X with x ¢ X . Then
Lp is true at an element w 1iff p 1is true at every mneighbour of w , and

Mp 1is false at w 1iff p is false at every neighbour of w . Thus Mp » Lp
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is true at w iff p has the same truth-value at every neighbour of w .

In that situation (84) is true at every element u such that ul?w , i.e.
throughout the I%-class containing w . (In the elliptic case this class is
the whole plane, by (60).) These principles will be used frequently in the

following proofs.

(85) Every degenerate elliptie plane is a model for 7f.
Proof. Consider first the degenerate plane of Fig. 71, with k = 1 .

At each element, assign either truth-value to p .

Any irreflexive element w (on the lower level of the diagram)
has only one neighbour.

+ "+ p has the same truth-value at every neighbour of w .

- Mp o> Lp is true at w .

". (84) is true at every element, whatever the assignment to p .
. . Fig. 71 gives a model for 7f whenever k = 1 .

When k =0 it is a model for Oe , so certainly for 7f (cf.
Fig. 49). The same applies to the empty model.

Now treat Fig. 72 in a similar way.

If p has the same truth-value at every lower—level element,
then Mp = Lp 1is true at the upper element a .

Otherwise p has the same truth-value at a as at some
lower-level element x , so Mp > Lp is true at the element
whose only neighbours are a and x .

In either case Mp 5 Lp is true somewhere, so (84) is true
everywhere.

. Fig. 72 gives a model for 7f.

(85) could also be obtained from the projective case (88), but the

argument might be less clear.
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Degenerate projective planes are shown in the next two figures, first
by schematic geometrical diagrams and then by modal semantic graphs. The latter

have their small squares black or white to show the two IZ-classes.

R 1z 1) k elements (G20, k2 0)
Figure 86. Figure 87.

(88) These degenerate projective planes are models for 10g iff (j=0 <=> k=0) .
Proof. First consider Fig. 86.

If p has the same truth-value at every upper white element,
then Mp = Lp 1is true at the top black element.
Otherwise p has the same truth-value at the bottom white
element as at some upper white element, so Mp > Lp is true
at the intermediate black element.
In either case Mp = Lp 1is true at some black element, so (84)

is true at every black element.
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Similarly (in fact, dually) (84) is true at every white element.
". Fig. 86 gives a model for 10g.
Next consider Fig. 87 with j 2 1 and k 21 .
Any top—level black element has only one neighbour, so Mp = Lp
is true there.

(84) is true at every black element, and similarly at every
white element.
. Fig. 87 with j 21 and k 21 gives a model for 10g.
Finally consider Fig. 87 with j =0 or k=0 .
This is the projective case of Fig. 83, with h = k+l or j+l
respectively.
". it is a model for 4g.
Hence (cf. Fig. 49) it is a model for 10g iff it is a model for
ig (= 4g + 10g) ,

i.e. iff h

1 (cf. Fig. 82),

1l

i.e. iff j=k =0 .

(89 The projective plane of order 2 is a model for 10g.
The elliptic plane of order 2 is a model for 7f.
Proof. The next three figures are schematic geometrical diagrams of the
projective plane of order 2. This becomes the elliptic
plane of order 2 (Fig. 76) if each point is identified with a

suitable (polar) line.

o o o

Figure 90. Figure 91. Figure 92.



_30—-

The following argument shows that Mp > Lp cannot be false

at every line.

One of the lines is represented in Fig. 90 by a circle. Suppose
Mp = Lp is false at this line.

Then p does not have the same truth—value at all three points
on it.

Without loss of generality, assume the truth-values shown in

Fig. 90.

Suppose Mp > Lp is false also at the vertical line {ewmphasized
in Fig. 91).

Then since p i1s false at the bottom point on this line, it is
true at some other peint on it.

Without loss of generality, assume p is true at the top point
(Fig. 91).

Suppose Mp = Lp 1s false also at the other two lines through
this point (emphasized in Fig. 92).

Then since p 1s true at two points on each of these lines, it
is false at the third (Fig. 92).

But then p 1is false at every point on the bottom line, so

Mp o Lp 1is true at this line.

.. however truth-values are assigned to p , Mp > Lp is true at
some line, so (84) is true at every line.

In the elliptic case this means that (84) is true at every element.
In the projective case a similar (dual) argument shows that (84)
is true at every point as well as every line.

.". the projective and elliptic planes of order 2 are models for

10g and 7f respectively.
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{(93) If a projective or elliptic plane has order at least 3, it is not a
model for 10g oxr 7f.
Proof. Take any triangle in the plane. (The plane satisfies (4),
and hence (18).) Let p be true at every point which lies

on just one side (l-point), and false at

Y

Y

/?I every other point (0O-point). Fig. 94 roughly
A

Vi
!

indicates this.

Since the order of the plane is at least 3,
each line passes through at least 4 points.
(C£f. Def. 73.)

Thus any line passing through no vertex meets
the three sides at l-points, and also has at

Figure 94. least one O-point.

Also any line through just one vertex meets the opposite side
at a l-point, and has at least three O-points.

Also any line through two vertices is a side of the triangle,
having two O-points and at least two l-points.

". every line passes through at least one l-point (where p is
true) and at least one O-point (where p 1is false).
-+ Mp ® Lp is false at every line.

- .+ (84) is false at any line.

.". the plane is not a model for 10g or 7f.

The only degenerate projective planes [ 4, p.232] not yet mentioned comprise
an isolated point, line or both, i.e. one or two irreflexive elements; but these

do not satisfy (2).

Summary of this chapter.

In the following list, each plane is allotted to the strongest system

(highest in Fig. 49) for which it is a model.
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Elliptic planes.

Geometrical models for Oe, 2e, 8e.
The empty model,

A single reflexive element (the elliptic plane of order O).

Geometrical models for 7f but not for Oe.
All other degenerate elliptic planes : Fig. 71 with k 2 1 , and
Fig. 72. (85) (Fig. 72 includes the elliptic planes of
order 1 : Fig. 76.)

The elliptic plane of order 2 : Fig. 76. (89)

Geometrical models for 8f but not for 7f (or 8e).

Elliptie planes having order at least 3. (93)

Projective planes.

Geometrical model for lg but not for Oe.

One point on one line (the projective plane of oxder 0) : Fig. 82.

Geometrical models for 4g but not for lg (or 2e).
A line through at least 2 points, or a point on at least 2 lines :

Fig. 83 with h =2 2 . (One-dimensional models.)

Geometrical models for 10g but not for lg or 7f.
All other degenerate projective planes : Fig. 86, and Fig. 87 with
j=21 and k=1 . (88) (Fig. 86 inecludes the projective plane
of order 1.)

The projeective plane of order 2. (89)

Geometrical models for 12g but not for 4g or 8f or 10g.

Projective planes having order at least 3. (93)
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VI. AXIOMS AND INDEPENDENCE

(17) and (18) make up a standard definition of projective plane
[4, p.231], provided that the set of points is disjoint from the set of lines.
(Cf, Def. 14.) Hence a projective plane may be defined by axioms (1), (2), (3),

(4} and (95). The proofs of (96) and (97) require only (1), (2) and (95).
(95) (3a) ~ (aI3a) .

(96) There are two distinct equivalence classes for 12 .
Proof. By (95), some element a satisfies ~(al3a) .
By (13), the 1I2-classes are {x : aT2x} and {x : aIdx} .

a 1is in the first class but not the second, so they are distinct.

Axiom (95) states that I3 1is not reflexive, but it may be strengthened

to the universal statement that I3 is irreflexive.

(97) (Va) ~ (al3a) .
Proof. Let a be any element.
By (13), the I%-classes are {x : aI?x} and {x : aI3x} .
a is in the first class, so by (96) it is not in the second.

LY

. ~aIla .
Corollary : (8L).

Definition (14) names the elements of the two I%~classes from (96).
But for any model, it is quite arbitrary which I2-class is called the class of
points and which the class of lines. This makes the principle of duality semantic.
There are no dual theorems (unless each theorem is regarded as idemtical with its
dual), as the theory itself treats the two classes in exactly the same way. The
point/line distinction may be made either way in each particular model. For
example, in Figs. 86 and 87, the black squares could represent either points or

lines, and the white squares lines or points respectively.
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For elliptic planes, the non—-triviality axiom (4) could be replaced by
the shorter (79). ©No such shortening is possible for projective planes, as
every 5-element model for (3), (97) and (Va) ~ (al®a) (a consequence of (1)
and (97)) can be embedded in a degenerate plane as in Fig. 86. The two such

6—element graphs which cannot be embedded in

I { T O—11
Fig. 86 or 87, are shown in Fig. 98. (4) was

obtained from the first of these in order to
ease the proof of (18), but alternative L= O t & -
6-variable formulae could be obtained by Figure 98.

taking account of the second.

Independence of the projective axioms.

The following models will prove the independence of (1), (2), (3), (4)
and (95). (16) will be treated as a possible alternative axiom, as the cyclic
order of variables in the antecedent of (3) may seem an artificial way of making
I symmetric. Cf., [6, p.613, AX3 and AX5]. For a similar reason, (97) will be
considered as well as the weaker (95).

{16) has already been proved from (1), (2) and (3); and (97) from (1),

(2) and (95). Another such result should be noted.

(99) (@), (3, O 16
Proof. Let aTb.
bIZa v bI3a by (2).
But bI2a=>albI2a=>al3a , contradicting (97).
. bI%a .

Proceed using (3) as in the original proof of (16).
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Independence of (2).
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Figure 103.
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Fig. 100 shows the two smallest models for
(2), (3), (&) and (95). (62) may be helpful in
checking (3). For (4), take a=d, b=c and e=f .
For (95), use the lower right-hand element. These
models happen to satisfy (16) alse. They do not
satisfy (1), as the left~hand and right-hand elements
are related by I" but not by I2 ., Hence (1)

is independent of (2), (3), (4), (95), and (16).

Fig. 101l shows the smallest model for (2), (3),
(4) and (97), and hence also (16), by (99). It does
not satisfy (1), so (1) is independent of (2), (3),

(4), (97) and (16).

The obvious model is two disjoint projective
planes, but other models can have as few as 4 elements.
0f such models, the two satisfying (16) are shown in
Fig. 102. Hence (2) is independent of (1), (3), (4),

(95) and (16).

Every model for (1}, (3), (4) and (97) has at
least 5 elements. One such model is shown in Fig. 103
where an arrow from x to y indicates that xIy
but not yIx . For (4), take e and f to be the
left-hand elements, and £ = a . A symmetric model
requires at least 6 elements, as in the upper part of
Fig. 98. Hence (2) is independent of (1), (3), (4),

(97) and (16).
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Independence of (3). Every model for (1), (2), (&), (95), and hence
also (96) and (97), has at least 7 elements. One
;fig\ such model is shown in Fig. 104. For (4), take a
.ﬁ b \\i\ and f both to be the top black element. Subgraphs
Ziﬁ B XEE as in Fig. 64 show that (3) is not satisfied.
\ -
X\\ E//jj Hence (3) is independent of (1), (2), (4), (95) and
o 97).
Figure 104, A symmetric model requires at least 8 elements.
//,ﬁgx\\\ One such model is shown in Fig. 105. Hence (3) is
$\T " independent of (1), (2), (4), (37) and (16).
o w
\\.._i,/
Figure 105,
Independence of (4). The smallest model for (1), {(2), (3), (95),

and hence also (16) and (97), is the projective plane of order 0 (¥Fig. 82).

(4) is false in this, so (4) is independent of (1), (2), (3), (95), (97

and (16).
Independence of (95) or (97). The negation of (95) or of (97) reduces the
number of I2-classes to ome, by (13). Thus the independence models

are the non-degenerate elliptic planes, and the smallest such model is
the elliptic plane of order 2 (Fig. 76). Hence {(95) or (97) is
independent of (1), (2), (3), (4) and (16).

Each of the earlier independence arguments included an irreflexive
model, because (81} is a corollary of (97). In the present case there
is no finite irreflexive model, as mentioned near the end of Chapter IV.
A countable irreflexive model is the ratiomal elliptic plane (defined
using (75)), which shows that (95) or (97) is independent of (1), (2), (3),
fé), (16) and (81). This might be of some interest if (81) were proposed
as an axiom in the theory common to projective and elliptic planes. It

could have been included in Chapter I, but would have served no useful

purpose there.
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Independence of the elliptic axioms.

(3), (60) and (79) are the axioms, but (16) and (81) will also be

considered.

Independence of (3). A model for (60) and (79) needs at least
3 elements, as for example in Fig. 106. (For (79), take a=d .) To
satisfy either (16) or (81) as well, it needs at least 4 elements, as
for example in Figs. 107, 108 respectively. Fig. 109 shows the two
smallest models for (60), (79), (16) and (81). None of these models

satisfies (3).

T
/ \Va
/N
SRS g S

vy : ‘32 } ] = __; \\\\f}xw \E‘/I
GHJW%%: Ly [ =i 1/ A
Figure 106, Figure 107. Figure 108. Figure 109.
Independence of (60). A model for (3) and (79) needs at least 3
elements. The example in Fig. 110 satisfies (81)
e e el also. A model for (3), (79) and (16) needs at
Figure 110. least 4 elements. Fig. 78 shows the two such
models which satisfy (81) as well. None of these
models satisfies (60).
Independence of (79). A model for (3) and (60) is a (possibly

degenerate) elliptic plane, as discussed in Chapter IV. The smallest

is the empty model, which also satisfies (16) and (81) but not (79).

The smallest non—empty model with these same properties is the irreflexive
elliptic plane of order 1 (self-polar triangle : cf. Fig. 76). The

plane of order O has the same properties except for (81).
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Further axioms.

Configurational axioms (e.g. Fano, Desargues, Pappus) may be added to
the theory if suitably stated in the one-sorted language.
The Fano axiom states that the diagonal peints of a guadrangle never

: colline, i.e. that there is no

\\> // \\ non-degenerate projective sub-plane

of order 2. Thus if 14 elements are

related as the points and lines of

E/

aé>\\ g,,//”’/ % such a sub-plane (cf. Fig. 111), there

// /// / \\\ agw must be some further incidence to make

\\ f//f \\ //’ it degenerate. Any formula expressing

\k this has to be rather clumsy, although

Figure 111. Projective plane of order 2, with care it 1s possible to reduce the

consequent to three disjuncts, as follows:

(112) (Y ag,a bysbysby bbb b ) ((a,Tby A a b A a b, A

12892832%,58558
A A A A A A A A A
aSIb1 aSIb2 aSIbL+ ath2 auIb3 athS aslb3 aBI‘DL+
AaIb AalIb AalIb AalIb Aalb AalIb Aalb Aalb A
3 6 2 4 2 5 2z 0 1 5 1 6 1 1 3 6

A aolb0 A aDIbz) = (akah v aslb5 v aSIbG)).

In elliptic planes the same formula may be used, even though Fig. 111
does not represent an elliptic sub-plane unless certain pairs of elements coincide.
The Desargues and Pappus axioms may be expressed by formulae even clumsier

than (112), which are better understood from diagrams.

- The Desargues axiom {or its dual) states that if 19 elements
AT
ifl oo " are related as in Fig. 113, then there exists an element
f"\Kf‘E;/ .
w//.’// Eﬁf\\\ N related to all three of 4d, e, f. (The formula
@GP
§,>< ;<J i?x ﬁ>/ expressing this would also cover degenerate cases, in
oo o Yy N
ot [ w\.\ ) G i P . . . . .
RN \\\//’///// e which some elements shown distinct in Fig. 113 would
A s ol -
13 Mo coincide.)

Figure 113. Desargues.
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The Pappus axiom (or its dual) states that if 17 elements are related

]

7 ag in Fig. 114, then there exists an element
“ \\\\\\ related to all three of u, v, w. (Degenerate
",
. . .
S N cases would be included as in the Desargues
;%éi‘iﬁ/ l axiom.)
il

Figure 114. Pappus.

VII. SHORTCOMINGS OF THE MODAL LANGUAGE

Chapter II set up the modal system 12g so that its models would satisfy
(1), (7), (16) and hence certain other formulae from Chapter I. The lack of
modal formulae corresponding to (2) and (4) is not important. To satisfy (2),
restrict attention to generated (i.e. connected) 12g-models; and to satisfy (4),
exclude the degenerate planes discussed in Chapters IV and V.

But several of the first—order formulae which cannot be so easily
dismissed have no modal counterparts. The proof of this uses a metatheorem
due to Segerberg [91: the class of semantic models for any set of modal axioms
is closed under homomorphisms. Such a model is a set W with a binary relation

I, and a homomorphism from (W,I) to (W',I') 1is a mapping 8 : W~ W' with

the following two properties:

{115) (Vx,y ¢ W) (xIy = (xB) I'(y98))

(116) (Vx ¢ W(V2' ¢ W)H((x0)I'z" = Oy e W (xIy A {y8 =2"))) .
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Consider the special case where (W',I') comprises a single reflexive
element (elliptic plane of order O). From any non—empty (W,I} , the unique
mapping 8 : W= W' trivially satisfies (115). It also satisfies (116)
provided that (¥x ¢ W)(3y ¢ W) (xIy) , i.e. provided that (W,I) satisfies (7).
But any projective plane (W,I) , e.g. that in Fig. 111, satisfies (1), (2), (3),
{(4), (95), and hence also {(97) and (81) as well as (7). S8ince (W',I') does
not satisfy (81), (95) or (97}, none of these properties is preserved under all
homomorphisms, so none of them can be axiomatized by any modal formulae.

But (95) or (97), the irreflexiveness of 13 , is the basic property of
projective planes which distinguishes them from elliptic planes. And in
Chapter V, modal axioms did make this distinction: the e- and f-systems
(containing 8f) applied only to elliptic planes, whereas projective planes were
models for 12g but not 8f. In this indirect way the modal language can cope

with (95) by means of its negation:
(117) (va)(aI3a) .

This semantic condition corresponds to the modal formula L3 > 1 [8, p.59,

A(i)(a)], which Table 50 shows is indeed an axiom for 8f.

S50 far the modal language has coped with most of the geometrical axioms,
even if indirectly. But there remains Axiom (3). In Chapter V, (3) was
frequently used to select the geometrical planes from among the models of various
modal systems. It would have been simpler to add to 12g one or more modal axioms

corresponding to (3) itself. But no such axioms exist.

(118) The class of 8f-models satisfying (3) is not modally axiomatizable.
Preof. In any elliptic plane of order at least 3, label the points
as in the proof of (93) {(cf. Fig. 94).
A mapping € from this plane onto the model of Fig. 56 maps

every l-point to Wy , and every O-point to w2 .
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However,

cope with (3).
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Since the relation shown in Fig. 56 1s universal, 6 satisfies
(115).

The proof of (93) showed that every line in the plane is incident
with a O-point and a l-point.

Since every element is a line as well as a point, © satisfies
(116) also.

.". & is a homomorphism.

But the elliptic plane satisfies (3), whereas its image (Fig. 56)
does not. (62)

-

.. 8f + (3) cannot be axiomatized by any modal formulae.

class of 12g-models satisfying (3) is not modally axiomatizable.

some indirect approach might enable the modal language to

One such idea is to weaken (3) to (119), allowing each point and

line to correspond to a set of elements rather than a single element of the graph.

(119) (Va,b,c,d) ({aIbIeIdIa) => ((Ve)(ale <=> cle) VvV (VE) (bIf <= dIf)))

Unfortunately:

(120) The class of 8f-models satisfying (119) is not modally axiomatizable.

Proof.
) { :
e
W W W
0 1 2

Figure 121.

In any elliptic plane (of order at least 2),

give any irreflexive element (point/line) the label 2,
give every nmeighbour of this 2-element the labél 1,

and give every other element the label O.

A mapping 0 from this plane onto the model of Fig. 121

maps every O-element to w,_, , every l-element to Wl s

0

and the 2Z—element to W2 .

The method of labelling ensures that 8 satisfies (115).
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Every O-point and every l-point lies on a l1-line {which joins
it to the 2-point) and a O-line (any other); and every l-point
lies on the 2-line.

8 satisfies (116) also, so it is a homomorphism.
The elliptic plane satisfies (3) and hence (119).
To see that its image (Fig. 121) does not satisfy (119), take
a=b=w,, c=4d-= Wy, ©= f= LA

8f + (119) cannot be axicmatized by any modal formulae.

Corollary. The class of 12g-models satisfying (119) is not modally axiomatizable.

It was possible to deal with (95) by means of a modal axiom for its

negation (117). But in the case of (3) or (119), even that device fails.

(122) The class of 8f-models satisfying the negation of (3) is not modally
axiomatizable.
The class of 8f-models satisfying the negation of (119) is not modally
axiomatizable.
Proof. The models of Fig, 56 and 121 may each be mapped homomorphically
to a single reflexive element (elliptic plane of order 0).
The proof of (118) shows that Fig. 56 satisfies the negation of (3).
The proof of (120) shows that Fig. 121 satisfies the negation of
(119).
But their image trivially satisfies (3) and (119).
neither 8f + ~(3) nor 8f + ~(119) can be axiomatized by

any modal formulae,

Corollary. The class of 12g-models satisfying the negation of (3) is not
modally axiomatizable.
The class of 12g-models satisfying the negation of (119) is not

modally axiomatizable.
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Axiom (3) is obviously of basic importance in plane geometry. This
failure of the modal language to cope with (3) deals a severe blow to any hope

that an extension of 12g might shed much light on projective or elliptic planes.

VIIT, EXTENSIONS, AND OPEN QUESTIONS

The following sections briefly sketch various possible meodifications

of the theory.

Affine planes.

Parallel lines (not related by I%) can be admitted if (1) and (2)

are replaced by:
(123)  (Va,b)(aI®p => aId)
(124)  (Va,b) (al®b v aI'*p) .

Then theorems like (8) to (12) show that 1I%* is an equivalence relation giving
two classes.  But other axioms must distinguish the class of points {(over which
I2 is universal) from the class of lines. There is no technical reason against
this, but the lack of duality perhaps makes such a one-sorted theory seem rather

artificial,

Spaces of higher dimension.

The axioms of Winternitz [11] suggest a one-sorted theory of projective
3-space, in which each variable may be interpreted as either a point or a plane.
(2) and (95) can remain, but (1), {3} and (4) are replaced by (125), (126) and a

more elaborate non—triviality condition.
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(125)  (Va,b,c)((aI?bI%c) => (3d)(ald A bId A dIc))
(126) (Va,b,c,d,e,f) ((albIcIidIa A alelc A bIfid) => (a=c V b=d Vv eIf))

It appears possible to extend this idea to higher finite dimensions, although
many of the formulae would become obscure if written in primitive notation.

Elliptic spaces could be treated in a similar way.

Simplification of axioms.

In Chapter IV, the non-triviality axiom (4) was replaced by the shorter
(79) for elliptic planes. This suggests the question whether some of the other
axioms (notably Desargues, etc., mentioned in Chapter VI)} could be shortened for
elliptic planes. The Kordos elliptic theory might allow simplifications not
possible in the general projective context where these axioms have chiefly been

studied. TFor example, it might

#
j’)qx"’{z
sometimes be possible to replace
a general triangle (Fig. 127) by
a self-polar triangle (Fig. 128),

thus eliminating three variables.

Figure 127. Figure 128.

Theory of incompleteness degree 2.

Every model of the theory of Chapter I satisfies either (95) or its
negation, and is thereby either a projective or an elliptic plane. Hence (1),
(2), (3) and (4) do in fact axiomatize the theory common to projective and
elliptic planes. This common ground might be explored in more detail. In
particular, Dr. L.W. Szczerba has suggested adding something like Hilbert's
completeness axiom schema, in order to obtain the theory common to the real

projective and elliptic planes.
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The appropriate modal system.

Despite the damage done by Chapter VII, there is a well-defined system
comprising the modal formulae valid in all projective and elliptic planes.
Dr. K. Prazmowski has suggested the problem of axiomatizing this system. If
it is stronger than 12g, the additional axioms are not of the form Ap o Bp
investigated in Chapter III. Many known modal systems have proper axioms more
complicated than these, but there is mo general method of finding them.  The

search might require more effort tham it is worth.

Finite elliptic planes.

The digression at the end of Chapter IV perhaps indicates the best way
forward. The study of finite elliptic planes may be assisted by techniques of
graph theory more than by those of modal logic, despite the graph theorists'
apparent distaste for loops (reflexive elements). A set with a single binary
relation seems a fairly primitive object, but quite different aspects of its
theory have been developed by modal logicians and by graph theorists. It appears
that some of these geometrical aspects are different again. Tdeas from these

three disparate sources may well interact fruitfully in the future.
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