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Abstract

It is well known that the relevant arithmetic R# admits finite mod-
els whose domains are the integers modulo n rather than the expected
natural numbers. Less well appreciated is the fact that the logic of
these models is much more subtle than that of the three-valued struc-
ture in which they are usually presented. In this paper we investigate
the propositional structure of relevant arithmetic over finite domains
by considering the De Morgan monoids in which R# can be modelled,
deriving a fairly complete account of those modelling the stronger
arithmetic RM# modulo n and a partial account for the case of R#

modulo a prime number. The more general case in which the modulus
is arbitrary is shown to lead to infinite propositional structures even
with the additional constraint that ‘0 = 1’ implies everything.

1 Introduction

The relevant arithmetic R# [6, 9] is obtained by adding some very natural
versions of the Peano-Dedekind axioms for natural number theory to a basis
not of classical logic but of the relevant logic R. The result is a first order
theory of the natural numbers, but, as has often been observed [6, 9, 10, 13],
relevant arithmetic is not classical arithmetic. In particular, the paraconsis-
tency of R allows it to have inconsistent models, the most startling of which
have finite domains. Classically, a false equation such as 0 = 3 implies ev-
erything, because one of the axioms says 0 6= 3 so the equation is contrary to
the theory and there is no more to be said. Relevantly, however, we may ask
what is really involved in supposing 0 to equal 3 and what is not. According
to R#, if 0 were equated with 3, numerical identity would be indistinguish-
able from with congruence modulo 3. That would be inconsistent, but not
trivial. A model in the integers modulo 3 satisfies the equation 12 + 7 = 1,
for instance, but it is easily seen not to satisfy 12 + 7 = 26. In the same
way, models can be constructed to show in a purely finitary way—Gödel
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notwithstanding—that relevant number theory is reliable in the sense that it
never delivers a wrong result of any calculation.

As axioms for R# we may add to first order relevant logic1 the following:

∀x(x = x)

∀x∀y∀z(x = y→ (x = z→ y = z))

∀x∀y(x = y→ s(x) = s(y))

∀x∀y(s(x) = s(y)→ x = y)

¬∃x(s(x) = 0)

∀x(x+ 0 = x)

∀x(x+ s(y) = s(x+ y))

∀x(x× 0 = 0)

∀x(x× s(y) = (x× y) + x)

(Ax←0∧∀x(A→Ax←s(x)))→∀xA

That is, we take numerical equality to be an axiomatised arithmetical re-
lation, not a logical constant: the first two axioms make it an equivalence
relation, while the third ensures that it is a congruence with respect to the
function symbols and the fourth that the successor function is injective. The
last “axiom” is actually an axiom scheme delivering induction for all prop-
erties expressible in the notation of the theory. Note that negation occurs
only in the axiom saying that zero is not a successor; the result of dropping
that axiom and removing negation from the underlying logic is the positive
arithmetic R#

+.
As noted, R# may be nontrivially extended by adding an axiom 0 = n,

conflating equality with congruence modulo n. We shall refer to such an
extension as R# modulo n.

A model of relevant arithmetic requires not only a domain and an inter-
pretation of function symbols defined on it, but also a reading of the predicate
symbol ‘=’ and of the logical connectives and quantifiers. As an example—
almost the only example in most of the literature on R#, in fact2—here is a
picture of R# modulo 2 in the three-valued structure characteristic for the

1The model theory of first order relevant logic is problematic in general [4, 5, 7] be-
cause the “obvious” axioms are incomplete for the “obvious” semantics. That kind of
incompleteness, however, is not germane to the present paper, which is concerned with
relevant Peano arithmetic rather than the pure logic, and with algebraic models rather
than Routley-Meyer frames. Moreover, the focus here is on finite models, in which quan-
tifiers play no essential part.

2The 1984 paper of Meyer and Mortensen [10] is an honourable exception, including
discussion of some larger cases and even one non-idempotent model.
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logic RM3. The three values are T (just true), F (just false) and c (true
and false, or confused). The matrices for the connectives are:

A ¬A
T F
c c
F T

∧ T c F
T T c F
c c c F
F F F F

→ T c F
T T F F
c T c F
F T T T

The domain over which the quantifiers range is {0, 1}. Equations t = u
are assigned the value c if t and u designate the same element, and F if
they are different. All theorems of R# take values in {T, c}, but 0=1 (for
instance) does not. Evidently, this construction may be carried out with any
modulus, showing that no false ground equations are provable in R#.

2 The algebra of relevant arithmetic

The algebraic structures modelling R are De Morgan monoids (DMMs) [3,
11]3 which may be presented as sextuples 〈A, ◦ , ∧ , ∨ , , t〉 where 〈A, ◦ , t〉
is a commutative monoid with identity t, 〈A, ∧ , ∨〉 is a distributive lattice
defining a lattice order ≤ on the elements, is an involutive dual automor-
phism on the lattice, and for all elements a, b, etc.:

a ≤ a ◦ a
a ◦ (b∨ c) = (a ◦ b)∨ (a ◦ c)
a ◦ b ≤ c iff a ◦ c ≤ b

It is usual, and helpful, to make use of some definitions:

f =df t

a→ b =df a ◦ b
a2 =df a ◦ a

A modelM of R on a DMM D is an epimorphism4 in the obvious sense from
the formula algebra of R onto D. That is, if the formula t is present, it is
mapped to the monoid identity t, and for all formulae A and B:

3Many of the facts about DMMs noted below may be found in the recent paper of
Moraschini, Raftery and Wannenburg [11] which is to be credited with sharpening my
interest in these questions. They are reproduced here to make the present paper more
self-contained.

4More usually, any homomorphism is allowed to count as an interpretation, but for the
purposes of this paper it is convenient to take the mapping to be surjective. For example,
it is simpler to refer to the greatest element of D, rather than that of the subalgebra of D
constituted by the range of M.
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M(¬A) = M(A)
M(A∧B) = M(A)∧M(B)
M(A∨B) = M(A)∨M(B)
M(A→B) = M(A)→M(B)

It is easy to see that in any DMM

a ≤ b iff t ≤ a→ b

and in fact that t→ a = a, and a→ f = a. A formula A is true on inter-
pretation M iff t ≤ M(A). The formulae true on all interpretations on all
DMMs are exactly the theorems of R [2].

It is useful to note the notion of a Dunn monoid : the {∧ , ∨ , ◦ , → , t}
reduct of a DMM. For this purpose, the third postulate defining DMMs must
be replaced by the residuation equivalence

a ◦ b ≤ c iff a ≤ b→ c.

In a good sense, Dunn monoids capture the positive fragment of the theory
of De Morgan monoids, and it is well known [2] that they correspond to the
negation-free fragment of R.

A DMM is said to be prime iff the element t is join-irreducible (i.e. iff
there are no elements a and b both strictly below t such that a∨ b = t). A
DMM is finitely subdirectly irreducible iff it is prime, and since in this paper
we are concerned mainly with finite DMMs, the prime ones here are exactly
the subdirectly irreducible ones. Every De Morgan monoid considered here
is thus a subdirect product of prime ones.

Although a ≤ a2 generally, the converse is not the case. We say that an
element a is idempotent if a2 = a, and that a DMM is idempotent iff every
element is.

Fact 1. A DMM D with identity t is idempotent iff the element f is idem-
potent.

Proof. By residuation, f 2 = f iff f ≤ f→ f , but f→ f = t so f is idem-
potent iff f ≤ t. If f ≤ t then f ◦ a ≤ t ◦ a. But a ◦ a ≤ f and t ◦ a = a,
so if f ≤ t then a ◦ a2 ≤ a. By square-increasing, a ≤ a2, so a ◦ a ≤ a ◦ a2.
Hence if f is idempotent then a ◦ a ≤ a, whence by the third postulate listed
in the definition of a DMM, a2 ≤ a = a.

Moraschini et al [11] define a Sugihara monoid to be an idempotent DMM.
Here we define a Sugihara chain to be a structure isomorphic to the integers
or the integers omitting zero, or to a bounded subset [−n,+n], again with
or without zero. To construe a Sugihara chain as a DMM, identify the
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lattice operations with numerical minimum and maximum, the De Morgan
complement with additive inverse, and t with 0 if that is present or with +1
if it is not. a ◦ b is then a∧ b if it is false (i.e. if a ≤ −b) and a∨ b otherwise.

The logic RM is R with the additional axiom A→ (A→A) correspond-
ing to the idempotence of fusion.

Fact 2. RM is modelled by Sugihara chains.

Proof. See Dunn’s seminal work on RM [2] or Meyer’s account in Anderson
and Belnap’s first volume on relevant logic [1].

A bounded DMM is one with top and bottom elements > and ⊥ re-
spectively. Obviously, all finite DMMs are bounded. As a consequence of
residuation, in any bounded DMM, ⊥ ◦ a = ⊥ for every element a. If in
addition, for any a 6= ⊥, > ◦ a = > then the DMM is said to be rigorously
compact.

Fact 3 ([11], Thm 5.3). Every prime, bounded DMM is rigorously compact.

Proof. Let a be an element of such a DMM. By primeness, either t ≤ > ◦ a
or else > ◦ a ≤ f . In the former case, > ◦ t ≤ > ◦ > ◦ a, but > ◦ t = >
because t is the identity, and > ◦ > ◦ a = > ◦ a because > is idempotent. In
the latter case, by residuation a ≤ >→ f = > = ⊥.

Fact 4. Let D1 and D2 be bounded DMMs generated by subsets G1 and G2

of their elements respectively. Let R be a doubly serial relation between G1

and G2—i.e. ∀x∈G1∃y∈G2Rxy and ∀y∈G2∃x∈G1Rxy. Then the direct
product D1 × D2 is generated by R (i.e. by {〈x, y〉 : Rxy}) iff the extreme
pairs 〈>,⊥〉 and 〈⊥,>〉 are so generated.

Proof. This is a simple fact about any algebraic structures with lattice op-
erations. Consider any elements a and b of D1 and D2 respectively. The
pair 〈a,>〉 is generated, as it is 〈a, x〉∨ 〈⊥,>〉 for some x, and similarly
〈>, b〉 is 〈x, b〉∨ 〈>,⊥〉 for some x. Then 〈a, b〉 is the meet of these two
〈a,>〉∧ 〈>, b〉.

In what follows, we do not discuss DMMs in general, but focus on those
modelling R#. Since R# is a special theory rather than a logic, we should
begin by noting that the basic constructions required for such modelling and
the simple completeness results extend from R to R#. We take an R#

theory to be a set of formulae in the language of R# closed under a simple
consequence relation: we say Γ `R# A iff there exist formulae B1, . . . , Bn

such that (B1∧ . . . ∧Bn)→A is a theorem of R#. An R# theory is regular
iff it contains all theorems of R#, and prime iff it does not contain any
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disjunction without also containing one of its disjuncts. Two formulae A
and B are equivalent under a theory T iff both A→B and B→A are in
T . It is easy to see that if T is a regular R# theory then this is indeed an
equivalence relation, and moreover a congruence on the formula algebra since
all connectives respect it. Fairly clearly, the quotient under such a congruence
is a DMM, and the function mapping each formula to its equivalence class
is a model of R# on which the formulae mapped into the positive cone are
exactly the members of T .

For a slightly more informative completeness theorem, note that where
A is any non-theorem of R#, there is a regular R# theory θ which is max-
imal under the constraints of being an R# theory and excluding A. This
version of Lindenbaum’s lemma may be established by the standard Henkin
construction, or in two lines by Zorn’s lemma. Such a maximal A-consistent
theory is prime, since if neither B nor C is in θ, then by maximality there
is a formula D in θ such that both B,D `R# A and C,D `R# A; but then
B ∨C,D `R# A so B ∨C is also not in θ. It follows that any non-theorem of
R# is refuted by a model in some prime DMM. R itself satisfies the stronger
condition that every non-theorem is refuted in a DMM which is prime and
consistent. This, however, is not true of R#, as was shown by Meyer and
Friedman [6], though their result is not germane to the present paper which
concerns inconsistent extensions of R#.

Without loss of generality, we can take any DMM modelling R# to be
generated by the elements taken as values by equations a = b where a and
b are numerals. We call these the equational elements of the DMM on the
model in question. Again without loss of generality, we may confine attention
to equations of the form 0 = c, since any a = b is equivalent to one such
just by subtracting |a − b| from both sides. It will be convenient to have
a notation for the element M(0 = n) where M is a given interpretation.
We shall refer to this element as ⊥Mn , or, whereM is understood, simply as
⊥n. Of particular importance in what follows is the element ⊥1. While we
are fixing notation, let >n be defined as ⊥n→⊥n. Again, >1 is particularly
significant.

In some, but not all, DMM models of R#, ⊥1 is the bottom element ⊥, in
which case >1 is the top element >. We say that such a model is equationally
bounded (EB). In any case:

Fact 5. Let M be a model of R# on a DMM D. Then D is bounded with

bottom element ⊥1→⊥1 and top element ⊥1
2
.

Proof. The interval [⊥1→⊥1,⊥1
2
] obviously contains all elements ⊥n and is

closed under the lattice operations and . It is also closed under ◦ : where a
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and b are in the interval, (⊥1→⊥1)
2 ≤ a ◦ b ≤ ⊥1

4
, but both ⊥1→⊥1 and

⊥1
2

are idempotent.

To model R# generally, the algebra is expected to be complete as a lattice:
at least it needs the infinite meets and joins corresponding to quantified
formulae if both A and the numerical domain are infinite. This restricts
the class of DMMs somewhat, but not in a way that changes the set of
propositional formulae true in all models. The models in the integers modulo
n, of course, have finite domains (even if the algebras are infinite), and so
for those the universal and existential quantifiers amount just to certain
conjunctions and disjunctions, making the theory essentially propositional
rather than first order.

The equations 0 = n exhibit some regularities.

Fact 6. The relation of implication in R# orders equations by divisibility:
0 = i provably implies 0 = j if and only if i divides j [9, 13].

Proof. The implication a = b→ na = nb is easily proved5 in R# by induction
on n. For any a < b and n > 1, the converse implication is refuted by the
RM3 model in the integers modulo n(b− a).

In particular 0 = 1 implies every equation, and every equation implies 0 = 0.
Fact 6 can be strengthened, following a couple of observations:

Observation 1. Let S be a set of natural numbers with at least one mem-
ber greater than 0, and let S be closed under absolute difference. Then the
smallest non-zero member of S divides every member of S.

Proof. Let a be the smallest positive number in S and suppose b is the
smallest member of S which is not a multiple of a. Then b is ka + c for
some k > 0 and 0 < c < a. But b − a is in S, which is to say (k − 1)a + c
is in S; but this is smaller than b and not a multiple of a, contrary to the
supposition.

Observation 2. For any filter F of a DMM modelling R#, the set of k such
that ⊥k ∈ F is closed under absolute difference.

Proof. ((0 = a)∧ (0 = b))→ (a = b) is a theorem of R#, but a = b is
equivalent to 0 = |a− b|.

5This proof relies critically on contraction (the square increasing postulate). In the
analogous arithmetic based on relevant logic without contraction, it does not hold [13].
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Theorem 1. Let D be a DMM modelling R#. Let F be any filter of D.
Then the set of numbers k such that ⊥k ∈ F is either empty or consists of
all and only the multiples of some number. Equivalently, for any numbers i
and j, and for any model on a DMM, ⊥i ∧⊥j = ⊥gcd(i,j).

Proof. Immediate from the two observations above.

A corollary of Theorem 1 is that ⊥i ≤ ⊥j iff k divides j where k is the
smallest number such that ⊥i = ⊥k. A corollary of that is that whenever
⊥i ≤ ⊥j, we must have ⊥i = ⊥gcd(i,j).

Another consequence, sufficiently useful to be a Fact in its own right, is:

Fact 7. In any model M of R# on a DMM, for any number n > 0, the
number of equational elements x such that x ≤ ⊥Mn is finite.

Proof. Every such equational element is ⊥Mk for some k which divides n, and
n has only finitely many divisors.

A few more well known facts are worth noting at this point:

Fact 8. In the DMM generated by the values of equations, ⊥0 is the identity
t. It follows that >0 is also t.

Proof. The identity of any DMM is the generalised lattice meet of all elements
of the form a→ a. The meet of the g→ g for generators g is below a→ a
for any other a, as can be verified by easy induction on the the generation
of a. 0 = 0 implies (0 = a)→ (0 = a) for every a, by the transitivity and
symmetry of identity, so the result is immediate.

Fact 9. All elements ⊥i (on any model) are idempotent.

Proof. All such elements satisfy x ≤ t, and any element below t is idempotent
because x ◦ x ≤ t ◦ x = x.

Fact 10. Although A→ (B→A) is not, of course, a theorem scheme of R
the special case A→ (a = b→A) is provable in R#.

Proof. In R, A implies t→A, and in R# as just noted, a = b implies t, so
t→A implies a = b→A.

Fact 11. For any interpretation M of R# on a DMM D and any numeral
n, the relation λx, y (⊥Mn ≤ (x→ y)∧ (y→ x)) is a congruence on D.
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Domain = {0, 1, 2, 3, 4, 5}

= 0 1 2 3 4 5
0 5 1 2 3 2 1
1 1 5 1 2 3 2
2 2 1 5 1 2 3
3 3 2 1 5 1 2
4 2 3 2 1 5 1
5 1 2 3 2 1 5

A ¬A
0 d
1 c
2 b
3 a
4 9
5 8
6 7
7 6
8 5
9 4
a 3
b 2
c 1
d 0

→ 0 1 2 3 4 5 6 7 8 9 a b c d

0 d d d d d d d d d d d d d d
1 0 6 6 6 6 6 6 c c c c c c d
2 0 3 6 3 6 6 6 b b b c b c d
3 0 2 2 6 6 6 6 a a a a c c d
4 0 1 2 3 6 6 6 9 9 9 a b c d
5 0 1 2 3 4 5 6 7 8 9 a b c d
6 0 1 2 3 4 4 6 7 7 9 a b c d
7 0 0 0 0 0 0 0 6 6 6 6 6 6 d
8 0 0 0 0 0 0 0 4 5 6 6 6 6 d
9 0 0 0 0 0 0 0 4 4 6 6 6 6 d
a 0 0 0 0 0 0 0 3 3 3 6 3 6 d
b 0 0 0 0 0 0 0 2 2 2 2 6 6 d
c 0 0 0 0 0 0 0 1 1 1 2 3 6 d
d 0 0 0 0 0 0 0 0 0 0 0 0 0 d

Figure 1: Model of R# mod 6
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Proof. The congruences are determined by the filters containing t, which
includes the principal filter determined by any ⊥n. Clearly the relation is an
equivalence (⊥n ≤ t is necessary here for reflexivity), and that it respects all
of the operations is shown by cases and poses no difficulty. Again, ⊥n ≤ t is
needed for the cases of the lattice operations.

The 3-valued propositional structure used above to model R# modulo 2
is sufficient to make the point about the existence of finite models, but is
hardly typical. Even without a specification of the domain (i.e. with any
modulus or none) it validates such non-theorems as:

0 6= 0→ 0 = 0
¬∃x∃y(x = y)

and indeed all instances of:

0 = 1→A
A→ (A→A)
(A→B)∨ (B→A)
(A∧¬A)→ (B ∨¬B)
A∨ (A→B)

In the interests of a less distorted view of relevant logic and relevant number
theory, Figure 1 shows another propositional structure modelling R# modulo
6. Bold face has been used for the numbers (i.e. the integers modulo 6) in
order to distinguish them from the elements of the De Morgan monoid. The
dotted lines in the table are just for readability. The tables for conjunction
and disjunction (lattice meet and join) can be read off the Hasse diagram in
the usual way. This structure is in fact the smallest prime DMM modelling
R# modulo 6 in such a way that 0 = 1 does not imply everything, ⊥2 and
⊥3 are independent of each other, and 0 = 1→ 0 = 1 is not false.

Notice that the set {1, 2, 3, 4, 5, 6} contains the identity element and is
closed under the lattice operations, ◦ and → . It is therefore a Dunn monoid,
a subalgebra of the positive reduct of the DMM. The positive formulae are all
interpreted in this Dunn monoid, which is generated by the elements assigned
to equations. This is a general feature of models of R#: the equations are
all implied by 0 = 1 and all imply 0 = 0, so their values lie in the interval
between ⊥1 and t, and it is easy to show by induction on structure that
the positive formulae are bounded below by ⊥1 and above by >1. Clearly,
the relation λx, y(⊥1 ≤ x↔ y) is a congruence on any DMM modelling R#

and it sets all of the interval from ⊥1 to >1 congruent to t. If the model is
generated by the equations then the quotient algebra under this congruence
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is generated by the identity alone—i.e. it has no proper subalgebra. It is also
inconsistent, because 0 = 1 is always false. There are, up to isomorphism,
only two inconsistent, 0-generated DMMs: the trivial algebra with only one
element (which is uninteresting) and C4:

s0

s1

s2

s3

⊥
t

f

>
→ 0 1 2 3

0 3 3 3 3
1 0 1 2 3
2 0 0 1 3
3 0 0 0 3

Theorem 2 ([12], p.121). In any EB model (i.e. where ⊥1 is ⊥) the quotient
under the congruence determined by ⊥1 is the trivial algebra, while in all other
cases the quotient is C4.

Fact 12. Any interpretation of R#on a DMM is EB iff ⊥1 is idempotent.

Proof. Half of this equivalence is trivial: if ⊥1 is at the bottom, then ⊥1 is
at the top, so by square-increasing it is idempotent. For the converse, note
that if ⊥1 is idempotent, then ⊥1 ≤ ⊥1→⊥1, which is to say ⊥1 ≤ ⊥1→⊥1

and hence ⊥1 ≤ ⊥1→⊥1, but ⊥1→⊥1 = ⊥ on any interpretation.

DMMs which have C4 as a homomorphic image exhibit some strong reg-
ularities. There is only ever one epimorphism from a DMM D onto C4, and
it often happens, as in Figure 1 above, that the pre-images of 0 and 3 (i.e.
⊥ and >) are singletons. In that case, because its structure is so rigid and
clear, we say that D is “crystalline”.

Theorem 3 ([12], p.122). Every subdirectly irreducible DMM which has C4
as a homomorphic image is crystalline.

Proof. Let h be a homomorphism from a DMM D onto C4, and suppose a
and b are distinct elements of D such that h(a) = ⊥ = h(b). Without loss of
generality, suppose a 6≤ b, so a→ b ≤ f . Then h(a)→ h(b) ≤ h(f), which is
to say ⊥→⊥ ≤ h(f) or > ≤ h(f), whence h(t) = ⊥ which is impossible.

This has logical consequences: for instance, R# has as theorems all formulae
of the form (0 = 1→A)∨ (A→B), because in any crystalline model ⊥1 is
the unique atom while in any EB model it is ⊥, so the disjunction is true in
all prime models, and hence in all models.

A subdirect product of DMMs one of which is crystalline obviously also
has C4 as a homomorphic image; we shall refer to such DMMs as “sub-
crystalline”. The Lindenbaum algebra of R#, for example, is sub-crystalline
(though not, of course, crystalline).
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t = ⊥0

f

0 = ⊥1

1

2

0

1

2

⊥2k(2n+1) = k

M(a = b) = ⊥|a−b|

a ◦ b =

{
a∧ b if a ≤ b
a∨ b otherwise

Figure 2: RM# model invalidating ∃x(x > 0∧∀y(y = 0∨ (0 = y→ 0 = x))).
The lower part of the chain consists of the natural numbers N and the upper
part is its mirror image. Every positive natural number p is 2k(2n + 1) for
some (unique) n and k, and the model has ⊥p = k in that case.

3 Models with ⊥1 = ⊥
So prime models in which ⊥1 < ⊥1

2
are crystalline. About EB models, in

which ⊥1 is the bottom element, less is known. In the remainder of this
paper, we open the attack on them by describing the small cases in detail.
The simplest such models are the idempotent ones characterising RM. We
may refer to the arithmetic based upon those as RM#.

As noted, nothing is lost if the prime DMMs modelling the pure propo-
sitional logic RM are taken to be Sugihara chains. The same is not true,
however, of models of RM#. For a counter-example, consider the formula

∃x(x > 0∧∀y(y = 0∨ (0 = y→ 0 = x)))

This is true in every model on a Sugihara chain, since any Sugihara chain
consists of its generators and their De Morgan complements, meaning that
every element below t is equational. This includes the element immediately
below t, which by Fact 7 is of finite height, whence every Sugihara chain
model is finite. It is not a theorem of RM# however (unless per impossibile
the latter is ω-inconsistent) as it fails in the structure shown in Figure 2.
RM# therefore lacks the finite model property. This contrasts sharply with
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RM itself, which has the much stronger Scroggs property: every proper
extension of it has a finite characteristic algebra [2].

Next, in virtue of Theorem 1:

Fact 13. In a totally ordered model of R#, the generating equations form
a discrete sequence 〈⊥k1 , . . . ,⊥ki , . . .⊥0〉, starting at the bottom with k1 = 1
and going up, with 0 = 0 as the identity t. For any i > 1, ki is a proper
multiple of ki−1, and if the domain of the model is finite then each positive
ki divides the modulus.

Fact 13 severely restricts the range of possible models, particularly in the
finite case to which we now turn.

RM# modulo a prime p is essentially RM3: the 3-element Sugihara
algebra is its only non-trivial model. This is immediate from Fact 13 as
clearly there exists no k2 which properly divides p, so all equations 0 = n are
equivalent to 0 = 1 unless n is a multiple of p.

As an example where the modulus is not prime, consider the subdirectly
irreducible models of RM# modulo 12. As noted, these are Sugihara chains
consisting of the elements modelling equations and their negations. Every
equation takes as value ⊥k for some k < 12. Following the prescription of
Fact 13, we know ⊥k = ⊥1 = ⊥ where k is not a multiple of a divisor of
12 (i.e. for k ∈ {5, 7, 11}), that ⊥12−k = ⊥k, and of course ⊥0 = t. For the
other possible generators, there are 6 possibilities:

1. ⊥6 = ⊥4 = ⊥3 = ⊥2 = ⊥; Sugihara chain of order 3.

2. ⊥6 = ⊥4 = ⊥2 > ⊥3 = ⊥; Sugihara chain of order 5.

3. ⊥4 > ⊥6 = ⊥2 > ⊥3 = ⊥; Sugihara chain of order 7.

4. ⊥6 > ⊥4 = ⊥2 > ⊥3 = ⊥; Sugihara chain of order 7.

5. ⊥6 = ⊥3 > ⊥4 = ⊥2 = ⊥; Sugihara chain of order 5.

6. ⊥6 > ⊥3 > ⊥4 = ⊥2 = ⊥; Sugihara chain of order 7.

The direct product of these six is not generated by the equations, as for
instance any formula of RM# whose value in model 5 is ⊥ has the value
⊥ in model 6 as well, because they are both rigorously compact and all
generators with value ⊥ in one have value ⊥ in the other. The equation-
generated subdirect product of models 5 and 6, in fact, consists of the direct
products of their inner subalgebras (i.e. excluding > and ⊥), with the top
and bottom elements added:
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We shall call this algebra A5−6. The equation-generated subdirect prod-
uct A2−4 of models 2, 3 and 4 is likewise the direct product of their inner sub-
algebras with> and ⊥ above and below respectively—since this structure has
77 elements, it is not drawn explicitly here. The direct product A2−4×A5−6
is generated by the equations, as its extreme pairs are ⊥2→⊥3 and ⊥3→⊥2

respectively. Furthermore, the direct product of all of this with model 1 is
equation-generated, with extreme pairs ⊥6→⊥1 and ⊥6 ◦ >1. Hence RM#

modulo 12 has, up to provable equivalence, exactly 77×17×3 = 3927 propo-
sitions.

The number 12 is just an example, of course, but it is reasonably clear
that a similar construction can be applied to any given modulus, so we declare
the finite models of RM# sufficiently analysed for present purposes.

R# is a different matter. As an indication of how little control we have,
consider:

Theorem 4. Let D be a Dunn monoid generated by the two elements t and
⊥. Then D can be embedded in a De Morgan monoid on which there is a
model of R# modulo any prime p.

Proof. The required model of R#
+ is defined by setting M(a = b) = ⊥|a−b|,

where ⊥n = t if n is a multiple of p and ⊥n = ⊥ otherwise. It is easy to
verify that all axioms of R#

+ are true for M. To extend to the whole of
R#, we embed D is a DMM by the construction used by Meyer [8] to show
conservative extension for negation in R. That is, let D consist of elements
d corresponding to the d ∈ D but with the lattice order reversed, let >> and
⊥⊥ be two new elements, and order everything thus:
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a ⊥⊥ a ◦ b a→ b >>

a ⊥⊥ b→ a >> >>

>> ⊥⊥ >> >> >>
(where a and b are elements of D)

The monoid operation is defined on the extended structure as shown in the
table. It is routine to check that the DMM postulates hold, and that all of
R# is modelled by M.

Note that D could be any Dunn monoid generated by the two specified
elements. There are many such structures, some of which are infinite [12].
There is therefore no end to the possibilities for modelling R# modulo a
prime, or indeed to R# with the additional axiom

∀x((0 = x+ 1)→ (0 = 1)).

Those large models, however, are all sub-crystalline. At least in the simple
case of R# modulo a prime, the EB models remain finite.

Since every equation is equivalent in a model of R# modulo a prime either
to t or to ⊥, it is clear that such a model is a DMM generated by those two
elements. As observed in previous work [12] there are only two ways in which
this can happen in a prime DMM: either⊥ is identical with the lowest element
of the subalgebra generated from t alone, or else it is properly below the t-
generated subalgebra (and its negation above) and it generates nothing else
because of rigorous compactness. As noted, there are only two 0-generated
DMMs which are inconsistent and subdirectly irreducible: the trivial algebra
and C4. There are thus only four subdirectly irreducible EB models of R#

modulo a prime: the trivial algebra (which can be disregarded), the 3-element
Sugihara model (which can also be disregarded as it is a homomorphic image
of one of the others) and these two:
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s0

s1

s2

s3

⊥1

⊥0

→ 0 1 2 3

0 3 3 3 3

1 0 1 2 3

2 0 0 1 3

3 0 0 0 3 s0

s1

s2

s3

s4

s5

⊥1

⊥0

→ 0 1 2 3 4 5

0 5 5 5 5 5 5

1 0 4 4 4 4 5

2 0 1 2 3 4 5

3 0 1 1 2 4 5

4 0 1 1 1 4 5

5 0 0 0 0 0 5

The algebra on the left is C4, with ⊥1 set to 0 instead of 1. On the right is
the same extended by the addition of new top and bottom elements. Let us
call the left model C40 and the right one “extended C4”, or eC4.

Theorem 5. The maximal EB model of R# modulo a prime (i.e. the Lin-
denbaum algebra of R# with additional axioms 0 = 1→ (0 6= 1→ 0 = 1) and
0 = p for a prime p) is the direct product C40 × eC4 and so has exactly 24
elements.

Proof. The direct product C40 × eC4 is generated by the two elements 〈t, t〉
and 〈⊥,⊥〉, since the extreme pairs 〈⊥,>〉 and 〈>,⊥〉 are so generated:
(t→ t)→⊥ is 〈>,⊥〉, and 〈⊥,>〉 is its negation. The result then follows by
Fact 4.

There are infinitely many prime crystalline DMMs generated by t and
⊥1, so we cannot display them all in detail, but we know the following:

Theorem 6. There is a crystalline model C such that the direct product
C×C40×eC4 is characteristic for R# with the additional axiom 0 = p where
p is any prime.

Proof. Let Σ be a set consisting of one member of each isomorphism class
of subdirectly irreducible non-EB models of R#modulo a prime. Let Σ be
well-ordered somehow,6 and let Π be the direct product of Σ in that order.
The required C is the subalgebra of Π generated by the equations (i.e. by
〈t, . . . , t, . . .〉 and 〈⊥1, . . . ,⊥1, . . .〉). To see this, note first that C is crystalline
because all of the subdirectly irreducible models of which it is a subdirect
product are crystalline; in every case, the generators are in the pre-image of
element 1 on every homomorphism into C4, so every polynomial whose value
maps to 0 on any such homomorphism maps to 0 on all of them. It follows
that the pre-image of 0 on a homomorphism from their product into C4 is
a product of singletons, and so is itself a singleton. Note also that in every

6Since all models are countable, the appeal to choice and well ordering here is not
extreme.
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subdirectly irreducible case, the pre-image of 1 is the interval [⊥1,>1], so
this too is true of C.

The direct product of C with C40 × eC4 is generated by {t,⊥1} in ac-
cordance with Fact 4, because the extreme pairs are so generated: 〈>,⊥〉 is

⊥1
2 ◦ ⊥1 while 〈⊥,>〉 is ⊥1→>1.
Now let A and B be any two formulae which are not equivalent in the

theory R# plus the axiom 0 = p. By the completeness theorem for R# there
is a subdirectly irreducible DMM D in which they have different values on
assigning all equations m = n the element t if m and n are congruent modulo
p and ⊥1 otherwise. This is either EB, in which case A and B are separated
by the order 24 DMM of Theorem 5, or else it is one of the crystalline
structures whose product is Π, in which case A and B are separated by C.
In either case, they are distinct in C × C40 × eC4 as required.

R# modulo a composite number, however, is under less control. In fact,
every such arithmetic has many EB models, some of them infinite, and little
is known about their structure as DMMs. Consider, for example, the simple
case of R# extended with the axiom 0 = 4. We may construct an EB model of
this from any (non-EB) crystalline model of R# satisfying 0 = p for a prime
p. Let P be such a model on a DMM D. Now let the domain of another
model M be the integers modulo 4 and interpret the identity relation thus:

= 0 1 2 3

0 t ⊥ ⊥P1 ⊥

1 ⊥ t ⊥ ⊥P1
2 ⊥P1 ⊥ t ⊥

3 ⊥ ⊥P1 ⊥ t

The successor, addition and multiplication functions, of course, are as stan-
dard in arithmetic modulo 4. We know that D is generated by {⊥P1 , t}, so to
show thatM is a model of R# it suffices that all the postulates are verified.
That all the theorems of R hold is given, and most of the arithmetical axioms
of R# are trivial. That includes the induction axiom, which holds because
the domain is finite. The only axiom really requiring an argument is that
stating the transitivity and symmetry of equality:

a = b→ (a = c→ b = c)

Note that there are only three possible values for an equation, so we may
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write out the table for implications between these:

→ ⊥ ⊥P1 t

⊥ > > >

⊥P1 ⊥ >P1 >P1
t ⊥ ⊥P1 t

Clearly, any possible failure of the above axiom must have a congruent to
b mod 2, and similarly a congruent to c mod 2, since otherwise the whole
formula has value >. Suppose, then, that a, b and c are all congruent mod 2.
The value of a = c→ b = c is ⊥P1 or higher, so the axiom cannot fail unless
a and b are congruent mod 4. Similarly, it cannot fail unless a and c are also
congruent mod 4, which makes a and b congruent mod 4 as well, in which
case the whole has the value t. Therefore the transitivity axiom holds onM,
which is therefore a model of R#.

4 Summary

The models of R# with finite domains are easily described from the purely
arithmetical point of view: they amount simply to the integers modulo n for
any positive n. The propositional structures determining the relevant logic
of such models, however, are harder to describe. As demonstrated above,
the stronger arithmetic RM# is under good control. The insights gained
there extend partially to finite models of R# where the modulus n is prime.
In those cases, the EB models are finite and fully described here, while the
subdirectly irreducible non-EB models are all crystalline and generated by
idempotent elements below the identity t. The good news, however, stops
here. Not only do we know little of such crystalline DMMs, except that they
may be arbitrarily complex and even infinite, but we also find that as soon as
the modulus is composite, even the EB models run similarly out of control.
The present paper has at least exposed the richness of the field, and may
act as a corrective to the idea that finite models of R# can be understood
through acquaintance with a single three-valued structure. 7

7The author wishes to thank the anonymous reviewer for numerous suggestions which
have improved this paper at many points.
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