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Abstract

On some views, we can be sure that parties to a dispute over the logic of ‘exists’ are not
talking past each other if they can characterise ‘exists’ as the only monadic predicate up
to logical equivalence obeying a certain set of rules of inference. Otherwise, we ought
to be suspicious about the reality of their disagreement. This is what we call a proof-
theoretic argument. Pace some critics, who have tried to use proof-theoretic arguments
to cast doubts about the reality of disagreements about the logic of ‘exists’, we argue
that proof-theoretic arguments can be deployed to establish the reality of several such
disagreements. Along the way, we will also utilise this technique to establish similar
results about some disagreements over the logic of identity.
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1 Introduction

Whether or not an expression of the logical vocabulary obeys a certain law is often
contentious. Perhaps the most well-known examples concern ‘not’ and ‘if... then...’ -
does, e.g., ‘not’ obey Double Negation? But similar contentious issues have arisen, to
our knowledge, for virtually every other standard logical expression. So too, there are
disagreements about the logic of ‘exists’. Such disagreements are the focus of this paper.

When theorising about the logic of ‘exists’, what needs to be decided, amongst other
things, is whether anyone knowing that something has a property can safely infer that it
thereby exists. What is at stake in this question is a putative principle of the logic of ‘exists’,
dubbed by Williamson (1988) Existence Principle (EP), according to which something can
have a property only if it exists. That ‘exists’ obeys EP is moot.

To delineate better the camps of friends and enemies of EP, we thought it useful to
borrow from Berto (2013) the labels of Parmenidean and Meinongians theorists. The former,
in line with the Quinean ruling that the ontological question - ‘what is there?’ (1948: 21) - is
‘everything’, have typically found EP an obviously correct principle of ‘exists’. Meinongian
theorists, by contrast, are in disagreement with Quine on his ruling about the ontological
question. Many of them, unsurprisingly, have found that EP incurs counterexamples.
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Of course, a number of distinctions need to be drawn within each camp. Thus for
example, some Parmenideans have an account of ‘exists’ that is liberal enough to encom-
pass things like Zeus, Vulcan and their ilk in its extension (Van Inwagen (1977), Braun
(2005)). Other Parmenideans will disagree. Similarly, Meinongians of the positive free logic
tradition have maintained that quantification always has an existential import (Leblanc
and Thomason (1972), Bencivenga (2002: §7)). Meinongians of the noneist tradition, by
contrast, have rejected a similar view (Routley (1980), Priest (2016), Berto (2013)).

Although it is important to be aware of these differences amongst Parmenideans and
Meinongians, they will not particularly concern us here. All that matters for our purposes
is that the validity of EP is not uncontroversial. And as such, at least prima facie, there
would seem to be worthwhile debates to be had about the validity of EP. But though
intuitive, this claim too is not beyond dispute. Indeed, Williamson (1988) has found it
false: on Williamson’s view, there cannot be genuine disagreements over the validity of
EP. Williamson derives this conclusion from the alleged impossibility for proponents
and opponents of EP to characterise ‘exists’ as the only monadic predicate up to logical
equivalence obeying a certain set of rules of inference; a fact which, for Williamson,
indicates that what one party means by ‘exists’ is not equivalent to what the other does.
This is a concrete example of what we will call hereafter proof-theoretic argument.

This paper shows that Williamson’s proof-theoretic argument concerning disagree-
ments about EP fails: given Williamson’s standards for real disagreement, and contrary to
what Williamson predicted, there are genuine disagreements about EP. For, it is shown in
§4 that if proponents and opponents of EP accept the equivalence of existence and self-
identity, they can characterise ‘exists’ as Williamson demands. What is more, it is shown
in §5 that, in these disagreements, the parties will also be able to prove an analogous result
for identity. The next two sections illustrate the applicability of proof-theoretic arguments
to the present (§3) and other (§2) disputes. Over the course of the paper, we will introduce
three logical systems; the soundness of which is established in a Technical Appendix.

2 Background

On Williamson’s telling, proof-theoretic arguments are a “technique for arguing that
an apparent conflict is a real one” (1988: 110). They take off from results, known at least
since Carnap (1943), which often go by the name of collapse theorems. Consider two logics,
L1 and L2, differing only in that L1 includes a logical constant c1 in its vocabulary and L2
a logical constant c2, possibly obeying different rules of inference. Consider then a logic
L3 whose vocabulary includes both c1 and c2. A collapse theorem for c1 and c2, in L3, is a
proof that they are deductively equivalent. That is, let A be a formula containing some
occurrence of c1 and let B be the result of replacing every occurrence of c1 in A with c2; c1
and c2 are deductively equivalent just in case A ↔ B is provable in L3. In that case, c1 and
c2 are said to collapse.

With this in mind, an example of the effectiveness of proof-theoretic arguments, con-
sidered by Williamson (1988: 110-114), concerns the disagreement, between classical and
intuitionist logicians, about whether negation obeys Double Negation (DN). On the face
of it, the parties here would seem to express genuinely contradictory views. But could
it not be that, as Quine (1970: 81) would have it, their disagreement turns in fact on an
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equivocation about the meaning of the word ‘not’, meaning one thing in the classicist’s
mouth, and another in the intuitionist’s? A proof-theoretic argument, says Williamson,
will rule this possibility out.

First, as Harris (1982) showed, in a system of natural deduction with two negation
operators, one classical (¬) and one intuitionist (⇁), ¬A ↔⇁ A becomes provable, for any
formula A. Thus, ¬ and ⇁ collapse. To get the proof-theoretic argument going, we now
ought to ask ourselves whether: (i) there are rules of inference governing both ¬ and ⇁,
and (ii) whether such rules could allow classical and intuitionist logicians to characterise
negation as the unique operator, up to logical equivalence, obeying those rules. For a start,
the answer to (i) is yes: both ¬ and ⇁ obey Ex Falso Quodlibet (EFQ) and the standard
Introduction Rule for Negation, N-In. Let A,B be any formulae, and Γ ,∆ sets of formulae.
A monadic operator ⊗ obeys EFQ, N-In and N-El just in case the following two schemata
are valid:

A ⊗A
EFQ

B

(n)

A
...
⊥

(n) N-In
⊗A

The vertical dots
... indicate a derivation from an assumption or set of assumptions,

whereas bracketed numerals (n) are used to mark discharged assumptions and indicate at
which point in the derivation they are discharged.

The answer to (ii) is also yes: EFQ and N-In, it turns out, are strong enough to define
up to logical equivalence any monadic operator obeying them. For, let ⊗1 and ⊗2 be any
two monadic operators obeying those rules. The following derivation establishes the
deductive equivalence of ⊗1 and ⊗2: ⊢ ⊗1 P ↔ ⊗2P. There is only one monadic operator,
up to logical equivalence, obeying EFQ and N-In1.

(1)

P
(2)

⊗1 P
EFQ

P

(1)

P
(2)

⊗1 P
EFQ

⊗2P
EFQ

⊥
(1)N-In

⊗2P
(2) → I

⊗1 P → ⊗2P

(3)

P
(4)

⊗2 P
EFQ

P

(3)

P
(4)

⊗2 P
EFQ

⊗1P
EFQ

⊥
(3)N-In

⊗1P
(4) → I

⊗2 P → ⊗1P
↔ I

⊗1 P ↔ ⊗2P

As the answer to (i) and (ii) was positve, Williamson (1988: 111) proposes a proof-
theoretic argument to the effect that the disagreement about DN, between classical and
intuitionist logicians, is real and not merely verbal. If there is only one monadic operator,
up to logical equivalence, obeying EFQ and N-In, surely this rules out that classical and
intuitionist logicians are talking past each other when disagreeing about whether it obeys

1Over the course of the derivation, the classical Conditional Introduction rule is applied twice - namely,
where assumptions (2) and (4) are discharged. Moreover, the classical Biconditional Introduction rule is
applied in the last step of the derivation. Hence, strictly speaking, the result applies to any language equipped
with these rule of inference.
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DN. Either the intuitionist is right and the classicist wrong; or vice versa, the classicist is
right and the intuitionist wrong. Either way, there cannot be a logic with two negation
operators - one classical, one intuitionist - only one of which obeys DN2.

This proof-theoretic argument says something important about Williamson’s views on
logical disagreement. Specifically, that a sufficient condition for deeming real a disagree-
ment about whether a logical constant obeys a rule of inference is the possibility for the
parties to characterise such logical constant up to logical equivalence. For our purposes,
however, the most interesting claim is the converse. This amounts to the claim that the
impossibility for the parties to characterise up to logical equivalence a logical constant is a
sufficient condition for deeming any disagreement they may have about it not real (but
merely verbal). Any two logicians who were to find themselves in a situation of this sort
will not be able to come to a principled refutation that their disagreement is merely verbal,
unless another method could help them achieve that much. Without any such method,
Williamson says,

any remaining belief in the non-equivocality of the dispute [...] would be little
better than blind faith: for although there may well be an initial presumption
that we mean the same by same-sounding words, a given instance of such
a presumption hardly deserves to survive the failure to find evidence in its
favour, if we have looked in earnest. (1988: 119)

Briefly, suppose the parties to a dispute, similar to the one described in this section,
cannot establish the reality of their disagreement by a proof-theoretic argument. Absent
alternative methods, it would be irrational to believe that they are not talking past each
other3.

What we have sketched just here very much corresponds to Williamson’s verdict about
disagreements over the validity of the Existence Principle (EP), the putative principle of
‘exists’ under focus in this paper. As anticipated, we have found that Williamson’s conclu-
sion is incorrect. But before presenting our reasons, we will have to present Williamson’s
reasons in the first place. The next section takes up this task.

3 Failure of Collapse

In this section we will first elaborate a bit on the positions at play over the validity of
EP; then, we will get into the detail of Williamson’s reasons for thinking that such positions
are not genuinely in conflict.

To begin with, here is, formally, how Williamson (1988: 115) formulates EP. Where t is
any term (open or closed), P any monadic predicate and E! a monadic predicate standing
for ‘exists’, EP is the schema:

Pt
EP

E!t
2See Hossack (1990), Hand (1993), Raatikainen (2008), Murzi & Hjortland (2009) and especially Schechter

(2011) for relevant discussion.
3Williamson’s describing the belief in question as being “little better than blind faith” seems to point to

its lack rational basis; whence the irrationality of holding this belief.
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Informally, the principle allows one to infer that t exists, provided it enjoys a property
expressed by a monadic predicate. More succinctly: having a property is sufficient to exist.

The validity of EP, we said, is a contentious matter. To see why, it is probably helpful
to consider a vernacular instance of the principle, such as I1 below:

I1. Vulcan is an object of erroneous scientific theorising. Therefore, Vulcan exists.

The premise of I1 attributes a property to Vulcan; specifically, that of being an object
of erroneous scientific theorising. Meinongians will typically take this premise at face
value whilst rejecting the conclusion of I1: Vulcan is an object of erroneous scientific
theorising and lacking existence. Consequently, I1 is invalid. Parmenideans by contrast
balk at the idea of an object lacking existence. Their view can of course be made compatible
with treating the conclusion of I1 as a falsehood, as ‘Vulcan’ may refer to nothing at all.
Presumably then, the premise of the inference should also be taken as false; if ‘Vulcan’
does not refer to anything, for no property F could we truthfully say that Vulcan is F4.
Thus, on this account I1 comes out valid, but unsound. Alternatively, Parmenideans may
regard the conclusion of I1 as expressing a truth - in that case, a rather generous account of
‘exists’ would seem to be required. Such Parmenideans will regard the premise of I1 as
true as well; the consequence being, that on their telling I1 would be both valid and sound.

The Meinongian reasoning leading to the invalidity of I1 may be seen as ruling out
EP as a candidate principle governing ‘exists’: Vulcan has at least one monadic property,
despite being a non-existent. The two Parmenidean lines of reasoning, by contrast, would
seem to rule EP in: if no object as such lacks existence, then no object having a monadic
property does. Meinongians and Parmenideans would appear to be in stark contrast over
the validity of EP.

In a disagreement over the validity of EP, Williamson (1988: 118) asks, is what one
party asserts really what the other side denies? A negative answer, for Williamson, seems
to be a live possibility. As Williamson puts it:

Both [parties] are likely to claim that they are using their words - in particular,
the word ‘exist’ -in their everyday senses; but even if no unconscious philo-
sophically motivated semantic change has occurred, the word ‘exist’ may have
more than one everyday sense; these senses may vary in relative salience from
one idiolect to another. It is certainly not clear that ordinary usage returns
unequivocal answers to questions such as [‘is it possible to have properties
without existing?’]. For part of what needs to be explained is how some in-
telligent people can find it a blindingly obvious piece of common sense that
what doesn’t exist just isn’t there to have properties, while others can find it
a blindingly obvious piece of common sense that the dead have the property
of being dead and therefore don’t exist, or that fictional characters have the
property of being fictional characters and therefore don’t exist. We can be sure
that ‘exist’ will not turn out to have two wholly unrelated senses, in the way

4It needs to be observed that a similar line of thought is also available to Meinongians as well. For,
Meinongianism is simply the view that an object may well be non-existent. As such, Meinongianism per se
does not commit one to the view that any specific object (e.g. Vulcan) should be taken as a non-existent, as
opposed to nothing at all. Similarly, some Meinongians and some Parmenideans may regard the premise of
I1 as truth-valueless. I would like to thank Brian Ball for calling my attention on all these matters.
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that ‘bank’ has, but may it not turn out to have senses as different as those of
‘true’ in ‘true statement’ and ‘true friend’? (1988: 118)

Proponents and opponents of the validity of EP, Williamson argues, will claim that their
usage of ‘exists’ is the one corresponding to our ordinary usage. However, Williamson
notices, there may well not be one true ordinary usage of ‘exists’ and, accordingly, no single
truly commonsensical answer to the question whether it is possible to have properties
without existing5. Perhaps then, Williamson goes on to suggest, friends of EP are using
‘exists’ in one sense; opponents of EP, in another.

If Williamson’s suggestion were correct, it would be plausible to think that Par-
menideans and Meinongians are talking past each other when disagreeing, for example,
about whether ‘exists’ obeys EP. For surely, if there were two equally correct uses of
‘exists’, one Meinongian and one Parmenidean, then their disagreement would only have
the appearance of a disagreement. The question, then, is whether Parmenideans and
Meinongians really use ‘exists’ in the same sense. On the Williamsonian account illustrated
in the previous section, they do just in case they could run a proof-theoretic argument.
For this to happen, as we know, they will have to (i) agree on some rules of inference
governing ‘exists’; and (ii) show that such rules are strong enough to characterise ‘exists’
as the only monadic predicate up to logical equivalence obeying them.

For Williamson however, the possibility of their satisfying (i) and (ii) seems to be a
remote one:

[i]t does not seem likely that the proponent and the opponent of EP will share
other assumptions about the logic of ‘exist’ of a kind that would allow them to
agree on a unique characterization of it (up to logical equivalence) in terms of
its logical properties (1988: 119-120).

It is unclear whether Williamson is claiming that the proponent and the opponent of
EP do not share any other rule governing ‘exists’, or whether the rules they share are
simply not strong enough to bring about the desired characterisation of ‘exists’ up to
logical equivalence. But either way, the upshot is the same: it does not seem possible
for the parties, so it is said, to establish the reality of their disagreement by means of a
proof-theoretic argument. Williamson’s conclusion is the one we would expect given the
foregoing discussion: we have a case for thinking that “parties to a dispute over EP are
characteristically using ‘exists’ in different and non-equivalent senses” (1988: 122).

The next section argues that Williamson’s conclusion should be resisted. If proponents
and opponents of EP were to share certain realistic assumptions about ‘exists’, they will
be able to characterise it as the only monadic predicate obeying a certain set of rules of
inference. Given the standards which Williamson has set, it follows that there can be
genuine disagreements over the validity of EP.

4 Collapse and Unequivocation

Here is how we will reach the conclusion just mentioned. First, we will start in §4.1 by
presenting a case of logical disagreement about ‘exists’ between two systems validating EP:

5See Williamson (1998: 259) and Williamson (2013: 22-25) for similar versions of this point.
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classical logic “on its Parmenidean interpretation” (more on this shortly), and negative free
logic. Importantly, existence in each of those systems is treated as equivalent to identity,
in the sense that it is a theorem of both systems that anything exists if, and only if, it is
self-identical. However, the equivalence between existence and self-identity is a neutral
principle in the dispute between Parmenideans and Meinongians, which both parties are
entitled to accept. For the latter, in particular, the result is a form of Meinongianism on
which non-existents are taken as lacking self-identity.

We will consider three ways in which this form of Meinongianism may be further
construed. The first (§4.2), sharing in part an intuition often associated with negative free
logic, evaluates as false any atomic formula containing a term denoting a non-existent. The
remaining two (§4.3) do not share a similar assumption. The systems of logic corresponding
to these three forms of Meinongianism have striking consequences for our discussion.
The former system validates EP: what is usually thought of as a Parmenidean principle
of ‘exists’ actually turns out to be compatible with a Meinongian account thereof. The
latter two systems do not validate EP. Nonetheless, crucially, they validate other principles
which ‘exists’ also obeys in classical logic on its Parmenidean interpretation, as well as
in negative free logic. And those principles are strong enough to provide the required
proof-theoretic argument for ‘exists’. Thus, one might be tempted to draw, at this point,
the obvious conclusion that pace Williamson, proponents and opponents of EP can in
some cases come to a principled refutation that they are talking past each other. We will,
eventually, draw that conclusion; but not at the end of §4.3. For, we will first need to solve
a pressing objection, which we will formulate in the next section. And since, in the next
section, we will be able to solve that objection, we will, at that point, thereby draw the
conclusion just mentioned.

4.1 Negative Free Logic

Classical logic on its Parmenidean interpretation is just the classical predicate calculus
with the Quinean assumption that the quantifier ∃ is taken to express existence6. If one
wanted, one could unproblematically make such existentially loaded account of ∃ explicit
by adding to the language an ‘exists’ predicate E!Q and stipulate that, for any term t,
E!Qt =Def ∃x(x = t) - the superscript ‘Q’ is an abbreviation for ‘Quine’. Existence, on the
Parmenidean account, reduces to a combination of quantification and identity. Of course,
E!Q obeys EP. But to be sure, several additional principles are part of the logic of E!Q,
such as for instance the one we will call Logical Necessity of Existence (LNE) - for which the
existence of an arbitrary thing is a logical theorem. Where t is any term, LNE is simply the
following schema:

LNE
E!Qt

Given that, classically, any term has a denotation in the domain of ∃, and given that
such a domain is co-extensive with the range of E!Q, the Parmenidean interpretation of
classical logic entails that there must exists at least one thing.

6It is therefore important, in this context, to specify that it is not classical logic per se that yields an account
of ∃ as existentially loaded. There are indeed also non-Parmenidean, viz. Meinongian, interpretations of
classical logic. See on this Routley (1980: 74-75) and Priest (2008). Hereafter, unless otherwise specified, by
‘classical logic’ we will always mean to refer to classical logic on its Parmenidean interpretation.
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Of course, one may accept that ‘exists’ ought to obey EP but have serious reservations
that it also ought to obey the more suspicious LNE7. If so, a possibility would be to
maintain that the correct usage of ‘exists’ is captured by negative free logic. Whilst free
logic in general is concerned with revising logic so as to detach it from its existential
presuppositions8, distinctive of the negative school of free logic are three philosophical
ideas. First, that anything exists just in case it is self-identical. Second, that terms not refer-
ring to existents lack reference altogether. And third, that any atomic formula containing
occurrences of such terms needs to be evaluated as false9.

All this is achieved by requiring that, in the definition of a model, the valuation function
from terms to the possibly empty domain of quantification is partial instead of total. The
truth-condition for atomics is modified accordingly by imposing that P(t1, . . . , tn) is false
when either the n-tuple ⟨t1, . . . , tn⟩ is not in the extension of P or at least some of its
members are not in the domain of the valuation function. The truth-condition for the
‘exists’ predicate, E!N, simply stipulates that to exist is equivalent to being denoted by a
term in the domain of the valuation function.

Formally, let IN = ⟨D, v⟩ be a model where D is a possibly empty set, v is a valuation
function, and Dom is the domain of v such that: for each individual constant c, if c ∈
Dom(v), then v(c) ∈ D and for each n-place predicate Pn, v(Pn) ⊆ Dn. Given a variable
assignment g based on IN, the valuation function is extended to a function vg whose
domain is a subset of the union of the set of variables and the set of constants such that:
for any constant c, vg(c) = v(c) if c ∈ Dom (v); and for any variable u vg(u) = g(u) if
u ∈ Dom (v). Moreover, for each n-place predicate Pn, v(Pn) = vg(Pn) ⊆ Dn. Satisfaction
relative to a model IN and assignment g based on that model is defined as follows for
atomics, E!N, = and ∀ - the remaining clauses are as obvious:

IN, vg ⊨ P(t1, ..., tn) iff t1, . . . , tn ∈ Dom(v) and ⟨vg(t1), . . . , vg(tn)⟩ ∈ vg(P).

IN, vg ⊨ E!Nt iff t ∈ Dom (vg).

IN, vg ⊨ t = u iff t,u ∈ Dom(vg) and vg(t) = vg(u).

IN, vg ⊨ ∀xA iff IN, vg[d/x] ⊨ A for each d ∈ D.

Three remarks are now in order.

Remark 1. On the semantics just presented, it can be shown that, for any t, the formula
E!Nt ↔ t = t is a logical truth. Thus, given that to say that t exists is equivalent
to saying that t is identical to itself, existence and self-identity are, on this account,
treated as equivalent. To establish the left-to-right part of the biconditional, we
proceed as follows. Gratzl (2010) has provided a proof-theory which is sound and
complete with respect to the semantics just presented. In this system, one is allowed
to infer, from the premise that t exists, that t is identical to itself. That is, where t

is any term, we have E!Nt ⊢ t = t as a rule. Whence, because the system also has
the classical Conditional Introduction, we can get ⊢ E!Nt → t = t. Thus, by the
soundness theorem, it follows that ⊨ E!Nt → t = t. For the right-to-left part, the

7See Oliver and Smiley (2013: 182-188) and Bencivenga (2002) for discussion.
8Such as that there must exist at least one thing, as per LNE.
9See Morscher & Simons (2001) and Lambert (2001) for philosophical discussion of negative free logic.
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reasoning goes like this. Let IN be a model and vg a value assignment such that
IN, vg ⊨ t = t. By the semantic clause for identity, we have t ∈ Dom(vg). Therefore,
by the semantic clause for ‘exists’, it follows that IN, vg ⊨ E!Nt. Accordingly, since IN

and vg were arbitrarily taken, it follows that ⊨ E!Nt ↔ t = t.

Remark 2. LNE is clearly unsound with respect to the semantics given, and therefore
E!N does not obey LNE: for some model IN, value assignment vg and term t, E!Nt
may fail. Indeed, if t /∈ Dom(vg), then IN, vg ̸⊨ E!Nt.

Remark 3. EP is sound with respect to the semantics given, and therefore EN obeys
this rule. Take any model IN and value assignment vg such that IN, vg ⊨ Pt. By the
semantic clause for atomics, one gets t ∈Dom(vg). Thus, by the semantics clause for
E!N, it follows that IN, vg ⊨ E!Nt.

In negative free logic and classical logic, therefore, ‘exists’ is taken to obey EP. And,
it turns out, EP characterises ‘exists’ up to logical equivalence. For, consider a language
containing two predicates, say F and G, obeying EP. What we get is ⊢ ∀x(Fx ↔ Gx): any
two predicates obeying EP are logically equivalent. The proof is immediate:

(1)

Ft
EP

Gt
(1) → I

Ft → Gt

(2)

Gt
EP

Ft
(2) → I

Gt → Ft
↔ I

Gt ↔ Ft
∀I

∀x(Fx ↔ Gx)

Thus, by a proof-theoretic argument à la Williamson, proponents of the two systems
of logic discussed in this sub-section can therefore exclude that they are using ‘exists’ in
different senses. Their disagreement about whether ‘exists’ obeys LNE, for example, is a
genuine disagreement.

Having laid out the formal details of negative free logic, let us now observe how
some of its main intuitions can generate the first form of Meinongianism discussed in this
section.

4.2 Negative Free Logic, Meinongian Style

The gist of the negative free logic account revolves around three main tenets. First, the
logical equivalence between existence and self-identity, as observed earlier in Remark 1.
Second, the evaluation of any atomic formula containing a term referring to no existent as
false. Third, the principle that any such term lacks reference altogether: terms can only
refer to existents.

That terms can only refer to existents seems hard to accept from a Meinongian point
of view. The whole point of Meinongianism is that objects non-trivially divide into two
classes: those that exist, and those, such as Vulcan, Holmes, Zeus and the like, that do
not. On this view, ‘Vulcan’ does get a referent: it is Vulcan10! On the contrary, nothing,

10Sainsbury (2009: 57-63) has argued that Meinongians face pressing problems when trying to fix reference
to non-existents. Attempts to solve the puzzle raised by Sainsbury can be found in Priest (2016: §11.4) and
Berto (2012; 2013: §9.4).
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as far as we can see, should prevent a Meinongian from subscribing to the remaining
two principles of negative free logic. The resulting form of Meinongianism is one for
which non-existents are taken as objects lacking absolutely every property and standing in
absolutely no relation, including self-identity11. In this subsection, we will make this idea
precise by providing the semantics corresponding to such an account, and some rules of
inference adequate with respect to the semantics. We will call the resulting Meinongian
system LM1 - ‘M’ for Meinongian.

The language of LM1 comprises: individual constants a,b, c... and variables x,y, z...
(countably many); n-place predicates P,Q,R... (countably many); the five connectives, the
universal quantifier ∀; and the ‘exists’ predicate E!M. The set of wffs is defined as usual.
A model I = ⟨DO,DI, v⟩ for LM1 is a structure where: DO (outer domain) is a non-empty
set; DI (inner domain) is a possibly empty set such that DI ⊆ DO; and v is a total function
such that, for each individual constant c, v(c) ∈ DO and for each n-place predicate Pn,
v(Pn) ⊆ Dn

O. Logical consequence is defined as in classical logic, so that a formula φ is a
logical consequence of a possibly empty set of formulae Γ just in case every model of Γ is a
model of φ.

Given a variable assignment g based on I, the valuation function is extended to a
function vg whose domain is the union of the set of variables and the set of constants such
that: for any constant c, vg(c) = v(c); and vg(u) = g(u) for any variable u. Moreover, for
each n-place predicate Pn, v(Pn) = vg(Pn) ⊆ Dn

O. Satisfaction relative to a model I and
assignment g based on that model is defined as usual for the five connectives. The clauses
for atomics, E!M, = and ∀ are defined as follows:

I, vg ⊨L
M1 (P(t1, ..., tn)) iff vg(t1), ..., vg(tn) ∈ DI and ⟨vg(t1), ..., vg(tn)⟩ ∈ vg(P).

I, vg ⊨L
M1 E!Mt iff vg(t) ∈ DI.

I, vg ⊨L
M1 t = u iff vg(t), vg(u) ∈ DI and vg(t) = vg(u).

I, vg ⊨L
M1 ∀xA iff I, vg[d/x] ⊨L

M1 A for each d ∈ DO.

The clause for atomics deserves consideration. There are two ways for an atomic
P(t1, . . . , tn) to come out false. One, of course, is when not all the referents of ⟨t1, . . . , tn⟩
fall under the extension of P. Yet another is when not all of t1, . . . , tn are in the inner
domain. In this case case, however, those member(s) of t1, . . . , tn not in the inner domain
do not lack reference, as per negative free logic. For, vg provides referent(s) to those terms
in the outer domain.

The clause for identity deserves comment too. Since this implies that t ̸= t is true
when the referent of t is not in the inner domain, identity here receives a non-standard
treatment - just as it does in negative free logic. As a consequence, the proof theory of
LM1 can only admit a restricted form of Identity Introduction, as per rule RII below. (This
fact is important, and will give rise to an objection against our main result, which we will
discuss in §5). Importantly, also, self-identity and existence are here treated as equivalent
in the sense that anything has the former just in case it has the latter - the inner domain
comprises exactly those things which exist and are self-identical.

11An anonymous referee, whom I thank for pressing me on this point, has suggested that the view is best
described as a form of epiphenomenalism about non-existents.
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Proof-theoretically, the usual rules of inference for the five connectives are clearly
adequate to semantics just provided, as are the classical Introduction and Elimination
rules for ∀, i.e. ∀I and ∀E respectively - soundness for LM1 is established in the Technical
Appendix:

Γ
...

A[t/x]
∀ I∀xA

Provided t does not appear in Γ or
A

Γ
...

∀xA ∀E
A[t/x]

In addition, given the equivalence between existence and self-identity, LM1 will have
two further rules. One of them, corresponding to a restricted Identity Introduction (RII),
allows one to infer that, for arbitrary t, t is self-identical provided it exists. The other
one restricts the introduction of an existential claim of the form Et to those cases where
we are in possession of a premise that t is self-identical - we call this second rule REI,
which abbreviates ‘Restricted Existential Introduction. RII and REI are thus the following
schemata:

E!Mt
RIIt = t

t = t
REI

E!Mt

Importantly, another rule of inference sound with respect to the semantics of LM1

is the classical Indiscernibility of Identicals (Ind.Id.) - sometimes known as ‘Identity
Elimination’. That is:

Rtu A
Ind. Id.

A ′

A ′ is obtained from A by replacing one or more occurrences of t with u, or vice versa.
Moreover, EP is sound with respect to the Meinongian semantics for LM1 . Indeed, Pt is

always false if t is a non-existent, and so truth would be trivially preserved if one were
to infer E!Mt from it. As far as we know, this represents a novelty: no other Meinongian
system we are aware of can accommodate EP as a valid rule of inference. The fact that
Meinongianism is compatible with a use of ‘exist’ obeying EP, we think, is a significant
contribution of the present paper. One, however, could turn the point on its head: the
fact that EP is sound with respect to the semantics for LM1 actually shows that the system,
contrary to what has just been said, is not Meinongian in spirit.

The best answer to this objection is to point to one fact about LM1 , namely, that ∀xEM!x
is not a theorem of the system: not everything exists. Quantification, therefore, is taken as
lacking existential import; a consequence which only Meinongian systems have12. That

12Which is not to say that all Meinongian systems take quantification as not existentially loaded. The
school of positive free logic, for instance, despite maintaining that terms may refer to non-existents, still
maintains that quantification is existentially loaded. Various systems of positive free logics can be found in
Leblanc & Thomason (1972), Grandy (1972) and Cocchiarella (1966).
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LM1 has this consequence is a striking result. Indeed, given the validity of EP, one would
have expected ∀xE!Mx to be a theorem - as per classical logic and negative free logic. What
makes ∀xE!Mx fail is the combination of three features. First, that terms may refer to
non-existents; second, that the domain of ∀ is the outer domain; third, that any atomic
formula containing an occurrence of any such term gets evaluated as false. The result is
that any model containing non-existents is a countermodel to ∀xE!Mx.

The attractiveness of this result is that it shows how a use of ‘exists’ obedient to EP can
be demarcated from a use of ‘exist’ entailing that ‘everything exists’ is a theorem. In LM1 ,
one has the former but not the latter. Meinongians and Parmenideans, therefore, need not
disagree over the validity of EP. LM1-Meinongians will still disagree with Parmenideans,
however, over whether ‘everything exists’ is a theorem, as well as over the validity of
LNE. Yet, due to their accepting EP, they will also be in a position to define ‘exists’ as the
only monadic predicate up to logical equivalence obeying this principle - as pointed out at
the end of §4.1. By now familiar Williamsonian procedures, they can thereby come to a
principled establishment of the reality of their disagreement.

We have seen how LM1 is built around the equivalence of existence and self-identity.
However, accepting this principle does not perforce commit one to the validity of EP.
Meinongians could very well retain the former and reject the latter. And if they did,
they would share with proponents of any other system discussed in this section enough
rules of inference to characterise ‘exists’ up to logical existence. To these new accounts of
non-existents, we now turn.

4.3 Collapse without the Existence Principle

The previous sub-section showed that Meinongians willing to subscribe to the equiv-
alence of self-identity and existence can do so by accepting the validity of EP. What
this section adds to the foregoing discussion is that the equivalence of existence and
self-identity does not mandate acceptance of EP. EP might be thought of having intuitive
counterexamples: Vulcan has the property of being an object of erroneous scientific theo-
rising, but does not exist. Meinongians willing to hold on to this intuition may freely do so
and treat existence and self-identity as equivalent.

Given the assumption that anything exists if, and only if, it is self-identical, there are
two ways to make EP fail; each one resulting in a system differing from LM1 only with
respect to the semantic clause for atomics. One system, call it LM2 , will deliver an account
of non-existents as having some properties (of course, other than existence) and standing in
some relations (other than identity). The other system, call it LM3 , will deliver an account
of non-existents as having every property (of course, other than existence) and standing in
any relation (other than identity). So let us now inspect LM2 and LM3 in turn.

Let the language of LM2 and LM3 be that of LM1 . LM2 and LM3-models are defined
exactly in analogy with and LM1 models, namely, as triples I = ⟨DO,DI, v⟩ whose elements
are defined exactly as before. Logical consequence, as per LM2 and LM3 , is classical.

In LM2 and LM3 , satisfaction relative to a model and value assignment based on that
model is defined as per LM1 for the five connectives, the ‘exists’ predicate, = and ∀.

In LM2 , the semantic clause for atomics is classical:

I, vg ⊨L
M2 P(t1, ..., tn) iff ⟨vg(t1), ..., vg(tn)⟩ ∈ vg(P).
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Three remarks about LM2 are in order:

Remark 4. EP is unsound with respect to the semantics of LM2 . Let I be a model and
vg an assignment such that I, vg ⊨L

M2 Pt. Nothing prevents that vg(t) /∈ DI. If so,
then I, vg ̸⊨L

M2 E!Mt.

Remark 5. Existence is equivalent to self-identity. First, let I be a model and vg an
assignment such that I, vg ⊨L

M2 t = t. Then, vg(t) ∈ DI. And because any term
t such that vg(t) ∈ DI refers to an existent, we have I, vg ⊨L

M2 E!Mt. Let now I

be a model and vg be an assignment such that I, vg ⊨L
M2 t ̸= t. Then, vg(t) ̸∈ DI.

And because any term t such that vg(t) /∈ DI refers to a non-existent, we have
I, vg ̸⊨L

M2 E!Mt. Hence, for any model I, assignment vg, and term t, we have
I, vg ⊨L

M2 t = t ↔ E!Mt.

Remark 6. ‘Everything exists’ is not a logical truth, and so quantification is not
existentially loaded. Let I be a model and vg an assignment such that vg(t) ̸∈ DI.
Then, I, vg ̸⊨L

M2 E!Mt. By the semantic clause for ∀, it follows that I, vg ̸⊨L
M2 ∀xE!Mx.

Thus, as promised, in LM2 EP is unsound (Remark 4), and existence and self-identity
are treated as logically equivalent (Remark 5). Moreover, importantly, quantification is not
existentially loaded (Remark 6).

Let us now turn to LM3 , where the clause for atomics is defined as follows:

I, vg ⊨L
M3 P(t1, ..., tn) iff vg(t1), ..., vg(tn) ∈ DI and ⟨vg(t1), ..., vg(tn)⟩ ∈ vg(P) or, for

some ti ∈ ⟨t1, ..., tn⟩, vg(ti) /∈ DI.

Informally, an atomic formula P(t1, . . . , tn) is true just in case either all the referents
of ⟨t1, . . . , tn⟩ are in the inner domain and in the extension of P, or else some of them are
simply not in the inner domain. In other words, LM3 implements the assumption that
any atomic formula containing a term referring to a non-existent is evaluated as true13.
Notice that by ‘atomic formula’ here we mean any atomic formula not of the form t = t or
E!Mt. Indeed, by the semantic clauses for = and E!M, t = t and E!Mt are evaluated as false
whenever t is not in the inner domain.

It is routine to check that Remarks 4-6 carry over, mutatis mutandis, to LM3 : Existence is
equivalent to self-identity, EP is unsound, and quantification not existentially loaded. It is
also important to note that, although EP is unsound with respect to the semantics for LM3 ,
its negative version, call it NEP, is not. In other words, where P is any monadic predicate
other than E!M, and t any term, the following inference schema is valid on the semantics
for LM3 - a formal proof can be found in the last section of the Technical Appendix:

¬Pt
NEP

E!Mt

That ‘exist’ is governed by NEP in LM3 is an obvious consequence of the account of
non-existents delivered by this systems. If non-existents are precisely those objects that

13LM1 and LM3 , therefore, are built on contrary assumptions about whether all atomics containing some
terms referring to non-existents are true.
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enjoy any property, then knowing that something lacks a property is sufficient ground to
infer that it exists.

Moreover, as argued in the Technical Appendix, all the previous rules for ∀ and =,
sound with respect to the semantics for LM1 , are also sound with respect to the semantics
of LM2 and LM3 . And crucially, given that, just like LM1 , LM2 and LM3 too treat existence
and self-identity as equivalent, rules RII and REI will be sound in LM2 and LM3 as well.

The equivalence between existence and self-identity thus holds in each one of the sys-
tems discussed in this section: classical logic, negative free logic, and the three Meinongian
systems presented. Thus, ‘exists’ in each one of those systems will obey RII and REI.
This common ground on the logic of ‘exists’ is strong enough to ensure the key result we
promised at the beginning of this section. In any logic in which the introduction rules for
→,↔ and ∀ are classical, there is only one monadic predicate up to logical equivalence
obeying RII and REI, as per Theorem 1.

Theorem 1. Let L be any logic with classical Introduction rules for →, ↔ and ∀. Moreover, let P
and Q be two monadic predicates of the language of L obeying RII and REI. Then, ⊢L ∀x(Px ↔
Qx).

The following simple derivation establishes Theorem 1.

(1)

Pt
RII

t = t
REI

Qt
(1) → I

Pt → Qt

(2)

Qt
RII

t = t
REI

Pt
(2) → I

Qt → Pt
↔ I

Pt ↔ Qt
∀I

∀x(Px ↔ Qx)

In virtue of Theorem 1, it looks as though, prima facie, theorists willing to accept a use
of ‘exists’ as obeying RII and REI will be able to characterise it as the monadic predicate
obeying those rules (at least for logics of the sort described by Theorem 1). Some such
theorists, as we know, will disagree about whether ‘exists’ also obeys EP. But in virtue of
Theorem 1, it might be said, they will be able to provide a principled refutation that they
are talking past each other. Hence, given the standards for genuine logical disagreement
under assumption, it looks as though there are real disputes to be had about the validity
of EP.

There is, however, a complication concerning the rules for identity, which are crucially
required to successfully exploit Theorem 1 in the way just illustrated. This complication
gives rise to a serious objection which, if successful, might block the claim just made. We
thus conclude by illustrating, and solving, this objection.

5 An Objection about Identity

Objection. Theorem 1 might be used to run a proof-theoretic argument concluding that
‘exists’, in classical logic, LM1 , LM2 and LM3 is not equivocal. Such a conclusion can be
resisted by reasoning as follows. Consider, for example, a classical logician and an LM1-
Meinongian. A corollary of Theorem 1, it was argued, is that they can define ‘exists’ as the
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only monadic predicate up to logical equivalence obeying RII and REI. But these rules,
besides existence, can also be thought of as governing identity. And identity, as we know,
receives different treatments in classical logic and LM1 . For example, in LM1 , identity is
not taken as a reflexive relation in that, as per Remarks 5-6, ̸⊨L

M1 ∀x(x = x). Therefore,
the classical logician and the LM1-Meinongian might be using identity in different senses.
Theorem 1, by contrast, requires an unequivocal use of identity. Which, therefore, must
be established14. Exactly analogous considerations apply to the remaining two systems
presented earlier, LM2 and LM3 . For, also in these systems identity receives a non-standard
treatment. Hence, the problem under discussion here carries over to those systems as well.
In sum, any two parties willing to exploit Theorem 1 to characterise ‘exists’ up to logical
equivalence, must also necessarily prove that they can characterise identity up to logical
equivalence.

Reply. The answer to the objection is that such a proof can be produced. To be clear, the
claim is that there are enough shared rules of inference governing identity, in classical
logic and the three Meinongian systems considered here, to allow for a characterisation of
identity as the only dyadic relation up to logical equivalence obeying those rules.

For a start, RII and REI will not be of any help here. For, such rules involve an ‘exists’
predicate. And, for all we know at this point, there may be many non-equivalent such
predicates. Thus, RII and REI are not going to get us anywhere.

By contrast, Ind.Id. does not suffer from this problem. The vocabulary required to
formulate such a rule, other than identity itself, is not at risk of equivocation in the way
‘exists’ is. Thus, relying on Ind.Id. to obtain the desired proof is certainly a good idea. The
problem is, that Ind.Id. alone does not appear to be strong enough for our purposes. In
other words, there may be many, not deductively equivalent dyadic relations obeying
Ind.Id. Of course, it is pretty straightforward to prove that there can be only one dyadic
and reflexive relation up to logical equivalence obeying Ind.Id. But this is irrelevant here
since identity in LM1 , LM2 and LM3 is not taken to be a reflexive relation. Thus, we will
proceed on the assumption that Ind.Id. alone is not strong enough to deliver our desired
result. If we are wrong, and it can be proven that there is in fact only one dyadic relation
up to logical equivalence obeying Ind.Id., then this is welcome news. For, this would
show that the result presented here can be even generalised.

An intuitive idea would be to help ourselves to the converse principle of Ind.Id.,
namely, the Identity of Indiscernibles (Id.Ind.), and see whether this principle (together
with Ind.Id.) could be a step in the right direction. But here we run into a problem, having
to do with the fact that Id.Ind. may not be expressible as a rule of inference in any of the
languages considered here. For, the standard formulation of Id.Ind. requires a higher-
order language, allowing for quantification into predicate position. In a higher-order
language, Id.Ind. can be expressed as follows:

14If they wanted, classical logicians and LM1 -Meinongians could avoid the present objection by reasoning
as follows. ‘Exists’, in classical logic and LM1 , obeys EP. And, as pointed out at the end of §4.1, there is
only one monadic predicate up to logical equivalence obeying EP. Therefore, the classical logician and
the LM1-Meinongian may just as well agree to define ‘exists’ as that predicate, and thereby overcome the
complications involving identity raised by the present objection. Still, given the importance of the present
objection, it is important to show that it can also be directly refuted. That is, it is important to show that the
classical logician and the LM1 -Meinongian have the resources to define identity up to logical equivalence.
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Id. Ind. ∀X∀x∀y((Xx ↔ Xy) → x = y),

where X and Y are predicate variables.
Given that none of the languages under consideration here contains predicate variables

or quantifiers bounding such variables, there is first of all a question as to how we could
adequately represent Id.Ind. in a first-order language, if at all.

However, Read (2016: 416) has shown that there is a rule expressible in a first-order
language, called by Read = I ′, which adequately captures Id.Ind. To begin with, = I ′ is
the following schema, where F is a predicate variable ranging over monadic predicates,
and δ1, δ2 derivations of Fu from Ft and of Ft from Fu respectively.

[Ft]

... δ1

Fu

[Fu]

... δ2

Ft
= I′

t = u

provided over the course of δ1 and δ2 F does not occur in any side premises.

Informally, the rule says that, if we are in possession of a proof that t is F only if u is,
and also of a proof that u is F only if t is, where F is an arbitrary monadic predicate (i.e.
not occurring in any side premises), then we are entitled to infer that t is identical to u.

Even commentators such as Griffiths and Ahmed (2021: 1454) - who criticised Read’s
proposal for orthogonal reasons to the present issue15 - are in agreement with Read that the
predicate variables in the formulation of Read’s = I ′ do not take us beyond the resources
available in a first-order language. For, only instances of F can appear within proofs, and
so any concrete application of = I ′ only relies on first-order resources.

Now, Read (2012), adapting a proof originally due to Kremer (2007), showed that a
stronger version of = I ′, call it S= I ′ is sound with respect to the standard semantics for
classical logic. Unlike = I ′, the stronger S= I ′ licenses the following reasoning: given just
a derivation of Fu from Ft and possibly some side premises where F does not occur, infer
t = u and discharge Ft16. Given that S= I ′ is sound in classical logic, so is a fortiori = I ′.

The problem is that, although weaker than S= I ′, = I ′ is still too strong for the semantics
of LM1 , LM2 and LM3 . For, whilst none of their semantics validates the formula ∀x(x = x),
by applying = I ′ first, and then ∀I, one could immediately prove ⊢ ∀x(x = x). Indeed,
consider the deductively weakest of LM1 , LM2 and LM3 , namely, LM2 ; given that Ft ⊢L

M2

15The bone of contention in the disagreement between Read and Griffiths & Ahmed is, roughly, whether
the rules Ind.Id. and = I ′ are harmonious in the sense of Dummett (1991). Informally, the question revolves
around whether Ind.Id., which can be taken as an elimination rule for identity, allows us to infer no more
and no less than can be deduced directly from the premises of = I ′ (which can be taken as an introduction
rule for identity). Similar issues are completely tangential to the one pursued here.

16Read’s S= I ′ is thus the following rule (where again, F cannot occur in any side premises):

[Ft]

...
Fu

S= I′
t = u

Australasian Journal of Logic (20:1) 2023, Article no. 1



17

Ft and Ft ⊢L
M2 Ft, it follows by = I ′ that one can discharge Ft and derive t = t, whence

one can derive ∀x(x = x) by ∀I. Thus, ∀x(x = x) would be a theorem of LM2 . Given that
anything deducible in LM2 is also deducible in LM1 and LM3 , the result just established
carries over to those two systems as well. Read’s = I ′, therefore, needs to be weakened to
ensure that one cannot prove more than the semantics of LM1 , LM2 and LM3 validate.

To this end, there are many restrictions which one could introduce in = I ′, capable of
blocking the proof of ⊢∀x(x = x) in LM1 , LM2 and LM3 . But not all of them will deliver
the categorical result, sought after in this section, that any two dyadic relations, R1 and R2,
obeying Ind.Id. and the still to be determined restricted version of = I ′, are deductively
equivalent - i.e. a proof of ⊢ ∀x∀y(R1xy ↔ R2xy). For example, to block the derivation of
⊢ ∀x(x = x), one could weaken = I ′ by requiring two additional premises, t = t and u = u,
which remain undischarged when the rule is applied. The resulting restricted version of
= I ′, call it R = I ′, has thus the following form17. Provided that, as with = I ′, over the
course of δ1 and δ2 F does not occur in any side premises, R = I ′ is:

[Ft]

... δ1

Fu

[Fu]

... δ2

Ft t = t u = u
R = I′

t = u

With R = I ′ in place, the proof of ⊢∀x(x = x) is no longer possible (thanks to the two
additional premises). Whilst this is certainly welcome news, the restriction introduced by
means of the two additional premises appears to be too severe for our goals. Specifically,
given that the two additional premises do not get discharged in an application of R = I ′,
it does not seem possible to establish the desired categorical result that ⊢ ∀x∀y(R1xy ↔
R2xy), for any two dyadic relations R1,R2 obeying Ind.Id. and R = I ′. In case our prediction
turned out to be wrong, and the categorical result could actually be established, this would
be very welcome news; for, this would show that the restrictions introduced with R = I ′

are fit for our goals, and that no further search is needed for an alternative restricted form
of = I ′. But in what follows, we will proceed on the assumption that such a result is not
available with R = I ′. Thus, Read’s = I ′ needs to be restricted in other ways.

The challenge is to single out which conditions, if any, could enable one to exploit the
force of the derivations of Fu from Ft and Ft from Fu, in order to safely infer t = u without
the need of additional premises t = t and u = u.

To this end, we can build upon the following result established by Griffiths (2014) in
the context of a discussion of Read’s S= I ′. Where Γ is a possibly empty set of premises
not containing F, and t and u are distinct terms, Griffiths showed that, in classical logic, the
kinds of situations in which a derivation of Fu from the set {Ft}∪ {Γ } is available reduce to
exactly the following two18.

(I) The first is when = occurs in Γ in such a way as to allow a derivation of t = u.
Consider, e.g., Ex. 1. below:

17The new additional premises of R = I ′ are very much in the spirit of Milne (2007: 39), who restricted
Read’s S= I ′ similarly to obtain a sound rule for the system of free logic presented by Tennant (1978: Ch. 7).

18Griffiths established the result both semantically (pp. 502-503) and syntactically (pp. 507-509).
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(1)
Ft

(2)
t = zEx. 1. Ind.Id.

Fz
(3)

z = u
Ind.Id.

Fu
(1)S= I′

t = u

Notice, however, that the last step of the inference is an application of S= I ′, and this
rule is unsound in LM1 , LM2 and LM3 . Therefore, the above derivation is disallowed
in those systems, and so this example will not be particularly insightful for our goals.
However, there are other derivations, not involving S= I ′, which satisfy the condition set
out in (I). Ex. 2. below is one:

(1)
t = z

(2)
z = uEx. 2. Ind.Id.

t = u
(3)
Ft

Ind.Id.
Fu

This derivation, as we can see, contains only reasoning valid in LM1 , LM2 and LM3 .

(II) The second kind of situation singled out by Griffiths is when the set {Ft}∪ {Γ } contains
a contradiction not involving the predicate F (given that Γ does not contain F); so that
{Ft}∪ {Γ } ⊢ ⊥. When this situation obtains, indeed, Fu could be derived from {Ft}∪ {Γ } by
Ex Falso Quodlibet.

Griffiths’ result thus establishes that, in classical logic, there is no derivation of Fu from
{Ft}∪ {Γ }, for t and u distinct terms, if (I) identity does not occur in Γ and (II) {Ft}∪ {Γ } ̸⊢ ⊥.
Now, classical logic is of course an extension of all of LM1 , LM2 and LM3 , given that all
the rules of the latter remain valid in classical logic, but not vice versa. As such, Griffiths’
result will carry over to LM1 , LM2 and LM3 as well. This means that, in LM1 , LM2 and
LM3 , there is no derivation of Fu from {Ft}∪ {Γ }, for t and u distinct terms, if (I) identity
does not occur in Γ and (II) {Ft}∪ {Γ } ̸⊢ ⊥. Equivalently: if there is a derivation of Fu from
{Ft}∪ {Γ }, then either {Ft}∪ {Γ } ⊢ ⊥ or identity does occur in Γ .

Now, consider again LM2 . Of course, if {Ft} ∪ {Γ } ⊢L
M2 ⊥, it follows, by Ex Falso

Quodlibet, that {Ft} ∪ {Γ } ⊢L
M2 Fu. So in this case the derivation of Fu from {Ft} ∪ {Γ } is

rather trivial. On the other hand, if {Ft}∪ {Γ } ̸⊢L
M2 ⊥, then there is a derivation of Fu from

{Ft}∪ {Γ } only if the identity symbol occurs in Γ . And the identity symbol must occur in Γ

in such a way as to allow for a derivation of t = u, as per our previous Ex. 2. For otherwise,
the occurrence of the identity symbol in Γ is completely idle.

Putting all these considerations together, we obtain the following restriction of Read’s
= I ′, whose soundness in LM1 , LM2 and LM3 is established in the Technical Appendix.
The label we have chosen for the rule is Id.Ind.⋆, as it is a restricted version of the Identity
of Indiscernibles Principle, from which it descends - again, F here is a monadic predicate:

[Ft]

... δ1

Fu

[Fu]

... δ2

Ft
Id.Ind.⋆

t = u
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provided over the course of δ1 and δ2 F does not occur in any side premises, and t and u

are distinct.

As can be seen, the key constraint here, which was absent in Read’s = I ′, is that t and u

must be distinct. In this way, there is no risk that, in LM1 , LM2 and LM3 , Id.Ind.⋆ could
ever allow us to prove ⊢ t = t, for arbitrary t; nor therefore ⊢ ∀x(x = x). Moreover, it is
thanks to the constraint that t and u must be distinct, that we are allowed not to require
anymore the two additional premises t = t, u = u. For, by Griffiths’ result, we can be
sure that a derivation of Fu from {Ft} ∪ {Γ } will only be possible when = occurs in Γ so
as to allow for a derivation of t = u. And this, in turn, guarantees that if were to derive
t = u by an application of Id.Ind.⋆, and from there proceed to derive t = t (or u = u),
we would do so on the assurance that t = t (or u = u) could already be derived, without
the detour through Id.Ind.⋆, from some of the grounds for the application of Id.Ind.⋆. A
consequence of this fact is the admissibility of Id.Ind.⋆ (in LM1 , LM2 and LM3 and classical
logic): although Id.Ind.⋆ cannot be derived using the other rules, its addition does not
result in an expansion of what can be proven without it in each one of those systems.

Now for the crucial fact. It is provable that, in any logic in which the introduction rules
for →,↔ and ∀ are classical, any two dyadic relations obeying Ind.Id. andId.Ind.⋆ are
deductively equivalent (Theorem 2 below). In other words, in such logics, there is one
dyadic relation up to logical equivalence obeying Ind.Id. and Id.Ind.⋆. There are strong
enough rules governing identity, in classical logic, LM1 , LM2 and LM3 to characterise
identity up to logical equivalence. So let us prove Theorem 2.

Theorem 2. Let L be any logic with classical Introduction rules for →, ↔ and ∀. Moreover,
let R1,R2 be two dyadic relations of the language of L obeying Ind.Id. and Id.Ind.⋆. Then
⊢L ∀x∀y(R1xy ↔ R2xy).

(1)
R1xy

(2)
Fx

Ind.Id.
Fy

(1)
R1xy

(3)
Fy

Ind.Id.
Fx

(2), (3)Id.Ind.⋆

R2xy
(1) → I

R1xy → R2xy

(4)
R2xy

(5)
Fx

Ind.Id.
Fy

(4)
R2xy

(6)
Fy

Ind.Id.
Fx

(5), (6)Id.Ind.⋆

R1xy
(4) → I

R2xy → R1xy
↔ I

R1xy ↔ R2xy
∀I

∀y(R1xy ↔ R2xy)
∀I

∀x∀y(R1xy ↔ R2xy)

Let us take stock of what has just been shown. At the end of the previous section, we
provided a result to the effect that ‘exists’ could be characterised, in sufficiently strong
logics, as the only monadic predicate up to logical equivalence obeying RII and REI

(Theorem 1). However, as we noted in this section, any two theorists willing to take
Theorem 1 as a refutation that they are equivocating on the meaning of ‘exists’ must
be able to prove that they can also characterise identity up to logical equivalence. Our
Theorem 2 above shows that classical logicians and proponents of LM1 , LM2 and LM3 can
characterise identity as the only dyadic relation up to logical equivalence obeying Ind.Id.
and Id.Ind.⋆. As such, they could legitimately take Theorem 1 as a principled refutation
that they are talking past each other in their disagreements on the logic of ‘exists’. So in
particular, in those disagreements on the validity of EP.
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Technical Appendix

Three Lemmata

This appendix provides soundness proofs for the systems LM1 , LM2 and LM3 . We will
give the full proof only for the deductively weakest of the three, namely, LM2 . Indeed,
whilst all the valid principles of LM2 remain valid in LM1 and LM3 , the converse is not
true: there are principles valid in LM1 which are invalid in LM2 (for example, EP), and
there are principles valid in LM3 which are invalid in LM2 (for example, NEP). Thus, our
soundness proof for LM1 will reduce to proving that EP is valid, and our soundness proof
for LM3 will reduce to proving that NEP is valid.

It is useful to start by establishing three lemmata which will be invoked over the course
of the soundness proofs.

To begin with, notice that models for LM1 , LM2 and LM3 are defined in exactly the
same way. Any such model is a structure I = ⟨DO,DI, v⟩, where: DO (outer domain)
is a non-empty set; DI (inner domain) is a possibly empty set such that DI ⊆ DO; and
v is a total function such that, for each individual constant c, v(c) ∈ DO and for each
n-place predicate Pn, v(Pn) ⊆ Dn

O. In LM1 , LM2 and LM3 , logical consequence is classical:
a formula φ is a logical consequence of a possibly empty set of formulae Γ just in case
every model of Γ is a model of φ.

Given a variable assignment g based on I, the valuation function is extended to a
function vg whose domain is the union of the set of variables and the set of constants such
that: for any constant c, vg(c) = v(c); and vg(u) = g(u) for any variable u. Moreover,
for each n-place predicate Pn, v(Pn) = vg(Pn) ⊆ Dn

O. Notice also that Id.Ind.⋆, whose
soundness in LM1 , LM2 and LM3 will be established in this appendix, is formulated by
resorting to a predicate variable, F, ranging over monadic predicates. Therefore, we will
say that, if Xn is a predicate variable of arity n, then v(Xn) = vg(Xn) ⊆ Dn

O.
Satisfaction relative to a model I of any one of the three systems and assignment g

based on that model is defined as usual for the five connectives. The clauses for E!M, =
and ∀ are defined as follows in all three systems:

I, vg ⊨ E!Mt iff vg(t) ∈ DI.

I, vg ⊨ t = u iff vg(t), vg(u) ∈ DI and vg(t) = vg(u).

I, vg ⊨ ∀xA iff I, vg[d/x] ⊨L
M1 A for each d ∈ DO.

The LM1 clause for atomics is the following:

I, vg ⊨L
M1 P(t1, ..., tn) iff vg(t1), ..., vg(tn) ∈ DI and ⟨vg(t1), ..., vg(tn)⟩ ∈ vg(P).

The LM2 clause for atomics is the following:

I, vg ⊨L
M2 P(t1, ..., tn) iff ⟨vg(t1), ..., vg(tn)⟩ ∈ vg(P).

The LM3 clause for atomics is the following:

I, vg ⊨L
M3 P(t1, ..., tn) iff vg(t1), ..., vg(tn) ∈ DI and ⟨vg(t1), ..., vg(tn)⟩ ∈ vg(P) or, for

some ti ∈ ⟨t1, ..., tn⟩, vg(ti) /∈ DI.
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Lemma 1. Let I be a model, t and t ′ terms, and vg an assignment based on I. Let vg
′

be
just like vg except that vg

′
(x) = vg(t ′). Then: vg(t[t ′/x]) = vg

′
(t).

Proof. By induction on t.

If t is a constant, say c, then t[t ′/x] = c and vg(c) = cI = vg
′
(c) (by definition of vg

′
).

If t is a variable other than x, say y, then t[t ′/x] = y and vg(y) = vg
′
(y) (by definition

of vg
′
).

If t is x, then t[t ′/x] = t ′ and vg
′
(x) = vg(t ′) (by definition of vg

′
).

Lemma 2. Let I be a model, A a formula, t a term, and vg an assignment based on I. Let vg
′

be just like vg except that vg
′
(x) = vg(t). Then: I, vg ⊨ A[t/x] iff, I, vg

′
⊨ A - where A[t/x]

is the result of replacing each free occurrence of x in A by t.

Proof.

For the base case, where A is atomic, A can be either of the form: P(t1, ..., tn), for P an
n-place predicate and t1, ..., tn terms; or of the form t = u, for t,u terms; or of the form
E!Mt.

Suppose A is P(t1, ..., tn), so that A[t/x] is P(t1[t/x], ..., tn[t/x]). Then, there are three cases
to check, in that the truth-conditions for atomics in LM1 , LM2 and LM3 differ.

The case for LM1 is as follows:

I, vg
′
⊨L

M1 P(t1, ..., tn) ⇔ vg
′
(t1), ..., vg

′
(tn) ∈ DI and ⟨vg

′
(t1), ..., vg

′
(tn)⟩ ∈ vg

′
(P)

⇔ vg(t1[t/x]), ..., vg(tn[t/x]) ∈ DI and ⟨vg(t1[t/x]), ..., vg(tn[t/x])⟩
∈ vg(P) (By Lemma 1)

⇔ I, vg ⊨L
M1 P(t1[t/x], ..., tn[t/x])

The case for LM2 is as follows:

I, vg
′
⊨L

M2 P(t1, ..., tn) ⇔ ⟨vg
′
(t1), ..., vg

′
(tn)⟩ ∈ vg

′
(P)

⇔ ⟨vg(t1[t/x]), ..., vg(tn[t/x])⟩ ∈ vg(P) (By Lemma 1)
⇔ I, vg ⊨L

M2 P(t1[t/x], ..., tn[t/x])

Finally, here is the case for LM3 :

I, vg
′
⊨L

M3 P(t1, ..., tn) ⇔ vg
′
(t1), ..., vg

′
(tn) ∈ DI and ⟨vg

′
(t1), ..., vg

′
(tn)⟩ ∈ vg

′
(P) or, for

some ti ∈ ⟨t1, ..., tn⟩, vg
′
(ti) /∈ DI

⇔ vg(t1[t/x]), ..., vg(tn[t/x]) ∈ DI and ⟨vg(t1[t/x]), ..., vg(tn[t/x])⟩
∈ vg(P) or, for some ti ∈ ⟨t1[t/x], ..., tn[t/x]vg(ti[t/x])⟩ /∈ DI

(By Lemma 1)
⇔ I, vg ⊨L

M3 P(t1[t/x], ..., tn[t/x])
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Suppose A is t = u, so that A[t/x] is t[t/x] = u[t/x]. Then,

I, vg
′
⊨ t = u ⇔ vg

′
(t), vg

′
(u) ∈ DI and ⟨vg

′
(t)⟩ = ⟨vg

′
(u)⟩

⇔ vg(t[t/x]), vg(u[t/x]) ∈ DI and ⟨vg(t[t/x])⟩ = ⟨vg(u[t/x])⟩
(By Lemma 1)

⇔ I, vg ⊨ t[t/x] = u[t/x]

Suppose A is E!Mt, so that A[t/x] is E!Mt[t/x]. Then, the case is in all similar to the previous
one.

Now for the inductive step. Assume that I, vg ⊨ B[t/x] iff, I, vg
′
⊨ B holds for all formulae

B less complex than A. The induction step proceeds by cases determined by the main
operator of A.

Suppose A is ¬B. Then,

I, vg
′
⊨ A ⇔ I, vg

′
̸⊨ B

⇔ I, vg ̸⊨ B[t/x] (By Induction Hypothesis)
⇔ I, vg ⊨ A[t/x]

Suppose A is B&C. Then,

I, vg
′
⊨ A ⇔ I, vg

′
⊨ B and I, vg

′
⊨ C

⇔ I, vg ⊨ B[t/x] and I, vg ⊨ C[t/x] (By Induction Hypothesis)
⇔ I, vg ⊨ A[t/x]

The cases for ∨,→,↔ are as obvious. The case for ∀ is as follows:

Suppose A is ∀xB. Then,

I, vg
′
⊨ ∀xB ⇔ I, vg

′
[d/x] ⊨ B for eachd ∈ DO

⇔ I, vg
′
[d ′/x] ⊨ B

⇔ I, vg[d ′/x] ⊨ B[t/x] (By Induction Hypothesis)
⇔ I, vg[d/x] ⊨ B[t/x] for eachd ∈ DO (Because d ′ was arbitrarily chosen)
⇔ I, vg ⊨ ∀xB[t/x]

Lemma 3. Let A be a formula, I, I ′ two models with DI
O = DI ′

O, and vg a variable assign-
ment on DI

O = DI ′
O. Suppose that tI = tI

′
for every object in DI

O = DI ′
O, and every term

t occurring in A. Moreover, suppose that RI = RI ′ for every n-tuple in DIn

O = DI ′n
O and

n-place predicate R occurring in A. Then, I, vg ⊨ A iff I ′, vg ⊨ A.
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Proof. We write the assignment vg based on I as vgI , and first prove that, for every term t, it
holds that vgI (t) = v

g
I ′(t). The proof is by induction on t.

Suppose t is a constant, say c. Then v
g
I (t) = cI = cI

′
= v

g
I ′(t).

Suppose t is a variable, say x, and let xIvg be the object in DI
O denoted by x under

assignment vg, based on I. Then, vgI (x) = xIvg = xI
′

vg = v
g
I ′(x).

We now prove Lemma 3 by induction on A.

For the base case, where A is atomic, A can be of the form: P(t1, ..., tn), for P an n-place
predicate and t1, ..., tn terms; or of the form t = u, for t,u terms; or of the form E!Mt.

Suppose A is P(t1, ..., tn). Then, there are three cases to check, in that the truth-
conditions for atomics in LM1 , LM2 and LM3 differ.

The case for LM1 is as follows:

I, vg ⊨L
M1 P(t1, ..., tn) ⇔ v

g
I (t1), ..., vgI (tn) ∈ DI and ⟨vgI (t1), ..., vgI (tn)⟩ ∈ v

g
I (P)

⇔ v
g
I (t1) = v

g
I ′(t1), ..., vgI (tn) = v

g
I ′(tn) (By the first part of

Lemma 3)
⇔ v

g
I ′(t1), ..., vg

I ′(tn) ∈ DI and ⟨vg
I ′(t1), ..., vg

I ′(tn)⟩ ∈ v
g
I ′(P)

⇔ I ′, vg ⊨L
M1 P(t1, ..., tn)

The case for LM2 is as follows:

I, vg ⊨L
M2 P(t1, ..., tn) ⇔ ⟨vgI (t1), ..., vgI (tn)⟩ ∈ v

g
I (P)

⇔ v
g
I (t1) = v

g
I ′(t1), ..., vgI (tn) = v

g
I ′(tn) (By the first part of

Lemma 3)
⇔ ⟨vg

I ′(t1), ..., vg
I ′(tn)⟩ ∈ v

g
I ′(P)

⇔ I ′, vg ⊨L
M2 P(t1, ..., tn)

The case for LM3 is as follows:

I, vg ⊨L
M3 P(t1, ..., tn) ⇔ v

g
I (t1), ..., vgI (tn) ∈ DI and ⟨vgI (t1), ..., vgI (tn)⟩ ∈ v

g
I (P), or

for some ti ∈ ⟨t1, ..., tn⟩, vgI (ti) /∈ DI.
⇔ v

g
I (t1) = v

g
I ′(t1), ..., vgI (tn) = v

g
I ′(tn) (By the first part of

Lemma 3)
⇔ v

g
I ′(t1), ..., vg

I ′(tn) ∈ DI and ⟨vg
I ′(t1), ..., vg

I ′(tn)⟩ ∈ v
g
I ′(P) or

for some ti ∈ ⟨t1, ..., tn⟩, vgI ′(ti) /∈ DI.
⇔ I ′, vg ⊨L

M3 P(t1, ..., tn)
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Suppose A is t = u. Then,

I, vg ⊨ t = u ⇔ v
g
I (t), v

g
I (u) ∈ DI and ⟨vgI (t)⟩ = ⟨vgI (u)⟩

⇔ v
g
I (t) = v

g
I ′(t), v

g
I (u) = v

g
I ′(u) (By the first part of Lemma 3)

⇔ v
g
I ′(t), v

g
I ′(u) ∈ DI and ⟨vg

I ′(t)⟩ = ⟨vg
I ′(u)⟩

⇔ I ′, vg ⊨ t = u

Suppose A is E!Mt. Then, the case is in all similar to the previous one.

Now for the inductive step. Assume that I, vg ⊨ A iff I ′, vg ⊨ A holds for all formulae
B less complex than A. The induction step proceeds by cases determined by the main
operator of A.

Suppose A is ¬B. Then,

I, vg ⊨ A ⇔ I, vg ̸⊨ B

⇔ I ′, vg ̸⊨ B (By Induction Hypothesis)
⇔ I ′, vg ⊨ A

Suppose A is B&C. Then,

I, vg ⊨ A ⇔ I, vg ⊨ B and I, vg ⊨ C

⇔ I ′, vg ⊨ B and I ′, vg ⊨ C (By Induction Hypothesis)
⇔ I ′, vg ⊨ A

The cases for ∨,→,↔ are as obvious. The case for ∀ is as follows:

I, vg ⊨ ∀xB ⇔ I, vg[d/x] ⊨ B for eachd ∈ DO

⇔ I, vg[d ′/x] ⊨ B

⇔ I ′, vg[d ′/x] ⊨ B (By Induction Hypothesis)
⇔ I ′, vg[d/x] ⊨ B for eachd ∈ DO (Because d ′ was arbitrarily chosen)
⇔ I ′, vg ⊨ ∀xB

Having established these three lemmata for LM1 , LM2 and LM3 we now establish their
soundness.
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Soundness of LM2

Theorem 5. (Soundness of LM2). If Γ ⊢L
M2 φ, where Γ is a set of undischarged assump-

tions, then Γ ⊨L
M2 φ.

Proof. Let δ be a derivation of φ in LM2 . The proof is by induction on the number of
inferences in δ. For the induction basis, suppose the number of inferences is 0. In this
case, δ consists only of a single sentence φ, i.e., an assumption. That assumption is
undischarged, since assumptions can only be discharged by inferences, and there are none.
So, any structure I and assignment vg that satisfy all of the undischarged assumptions of
the proof also satisfy φ.

Now for the inductive step. By Induction Hypothesis, the premises of the lowermost
inference follow from the undischarged assumptions of the sub-derivations ending in
those premises. We have to show that the conclusion φ follows from the undischarged
assumptions of the entire proof. We only consider the following cases: 1. where the
lowermost inference is ∀E; 2. where it is ∀I ; 3. where it is REI; 4. where it is RII; 5. where it
is Ind.Id.; 6. where it is = I ′. It is routine to check that the classical rules for the connectives
are sound with respect to the semantics of LM2 .

Case 1. Suppose the lowermost inference is ∀E. Then, δ has the following form:

Γ
... δ1

∀xA ∀E
A[t/x]

Let I be an LM2 model and vg an assignment such that I, vg ⊨L
M2 φ, for each φ ∈ Γ .

Since, by Induction Hypothesis, Γ ⊨L
M2∀xA, we also have I, vg ⊨L

M2∀xA. Let vg(t) = o. If
I, vg ⊨L

M2∀xA, by the semantic clause for ∀, it follows that I, vg[o/x] ⊨L
M2 A. By Lemma

2, I, vg[o/x] ⊨L
M2A iff, I, vg[o/t] ⊨L

M2A[t/x]. So, I, vg ⊨L
M2A[t/x]. Hence, for any model I

and assignment vg, if I, vg ⊨L
M2 Γ ⇒ I, vg ⊨L

M2∀xA, it follows that I, vg ⊨L
M2A[t/x].

Case 2. Suppose the lowermost inference is ∀I. In this case, δ has the following form:

Γ
... δ1

A[t/x]
∀I∀xA

provided t does not appear in Γ or A.

Let I and vg be an LM2 model and an assignment respectively, such that I, vg ⊨L
M2 φ,

for each φ ∈ Γ . Let I ′ be just like I except that vg(t) = vg(x) = oI
′
. Since t does not occur

in Γ , it follows that I ′, vg ⊨L
M2φ, for each φ ∈ Γ . By Induction Hypothesis, Γ ⊨L

M2 A[t/x].

Thus, in particular, I ′, vg[oI
′
/t] ⊨L

M2 A[t/x]. By Lemma 2, I ′, vg[oI
′
/t] ⊨L

M2 A[t/x] iff,
I ′, vg ⊨L

M2 A. Therefore, I ′, vg ⊨L
M2 A. Since t does not occur in A, by Lemma 3,
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I, vg ⊨L
M2A. And since oI

′
was arbitrarily chosen, by the semantic clause for ∀, it follows

that I, vg ⊨L
M2∀xA.

Case 3. Suppose the lowermost inference is REI. In this case, δ has the following form:

Γ
... δ1

t = t
REI

E!Mt

Let I and vg be an LM2 model and an assignment respectively, such that I, vg ⊨L
M2 φ,

for each φ ∈ Γ . Then, by Induction Hypothesis I, vg ⊨L
M2 t = t. Suppose, for reductio,

that I, vg ̸⊨L
M2 E!Mt. Then, by the semantic clause for E!M, it follows that vg(t) /∈ DI;

and therefore, by the clause for identity, it follows that I, vg ̸⊨L
M2 t = t. Against our

initial assumption. Hence, for any model I and assignment vg, if I, vg ⊨L
M2 t = t, then

I, vg ⊨L
M2 E!Mt.

Case 4. Suppose the lowermost inference is RII. In this case, δ has the following form:

Γ
... δ1

E!Mt
RIIt = t

Let I and vg be an LM2 model and an assignment respectively, such that I, vg ⊨L
M2 φ,

for each φ ∈ Γ . Then, by Induction Hypothesis I, vg ⊨L
M2 E!Mt. Suppose, for reductio,

that I, vg ̸⊨L
M2 t = t. Then, by the semantic clause for =, it follows that vg(t) /∈ DI; and

therefore, by the semantic clause for E!M, it follows that I, vg ̸⊨L
M2 E!Mt. Against our

initial assumption. Hence, for any model I and assignment vg, if I, vg ⊨L
M2 E!Mt, then

I, vg ⊨L
M2 t = t.

Case 5. Suppose the lowermost inference is Ind.Id. In this case, δ has the following form:

t = u A
Ind. Id.

A ′

A ′ is obtained from A by replacing one or more occurrences of t with u, or vice versa.

Let I and vg be an LM2 model and an assignment respectively, such that I, vg ⊨L
M2 t =

u, and I, vg ⊨L
M2 A. Suppose, for reductio, that I, vg ̸⊨L

M2 A ′. If I, vg ⊨L
M2 t = u, then by

the semantic clause for identity, it follows that vg(t), vg(u) ∈ DI and vg(t) = vg(u). Thus
in particular, vg(t) = vg(u). Now, consider all the occurrences of u in A ′ which replaced
occurrences of t in A, and let A ′′ be the result of replacing such occurrences of u in A ′

with t. Then, A ′′ is just A. Thus, since vg(t) = vg(u), it follows that I, vg ̸⊨L
M2 A ′′. But

given that A ′′ is just A, it follows that I, vg ̸⊨L
M2 A. Against our initial assumption. Thus,
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for any model I and assignment vg, if I, vg ⊨L
M2 t = u and I, vg ⊨L

M2 A, then I, vg ⊨L
M2 A ′.

Case 6. Suppose the lowermost inference is Id.Ind.⋆. In this case, δ has the following form:

[Ft]

... δ1

Fu

[Fu]

... δ2

Ft
Id.Ind.⋆

t = u

provided over the course of δ1 and δ2 F does not occur in any side premises, and t and u

are distinct.

What we need to show is that if Γ , Ft ⊨L
M2 Fu and ∆, Fu ⊨L

M2 Ft, then Γ ,∆ ⊨L
M2 t = u

- where Γ ,∆ are possibly empty sets of formulae, F does not occur in them, and t and u

are distinct. To simplify the reasoning, we will simply show that if Γ , Ft ⊨L
M2 Fu, then

Γ ⊨L
M2 t = u. For then, a fortiori, it follows that if Γ , Ft ⊨L

M2 Fu, then Γ ,∆ ⊨L
M2 t = u.

Whence, again a fortiori, it follows that if Γ , Ft ⊨L
M2 Fu and ∆, Fu ⊨L

M2 Ft, then Γ ,∆ ⊨L
M2

t = u. Suppose that Γ , Ft ⊨L
M2 Fu and let I be a model and vg an assignment such that

I, vg ⊨L
M2 φ, for each φ ∈ Γ . In particular, given that I makes every formula of Γ true, Γ

does not contain any contradiction. If so, in virtue of the result established by Griffiths
(2014), = must occur in Γ in such a way as to allow for a derivation of t = u. This means
that for some term a, Γ must contain at least a formula of the form t = a. Because every
member of Γ is true in I given vg, it follows that I, vg ⊨L

M2 t = a. Thus, by the truth-
conditions for = in LM2 , it follows that vg(t), vg(a) ∈ DI, and vg(t) = vg(a). Consider
now another model I ′ and assignment vg

′
based on I ′ differing from I at most in that

vg
′
(F) = {vg(t)}. Since F does not appear in Γ , and since I ′ differs from I at most with respect

to the interpretation of F, it follows that I ′, vg
′
⊨L

M2 φ, for each φ ∈ Γ . Now, since we have

that vg(t) = vg
′
(t) ∈ vg

′
(F), it follows that I ′, vg

′
⊨L

M2 Ft; and because we assumed that

Γ , Ft ⊨L
M2 Fu, we also have I ′, vg

′
⊨L

M2 Fu. But then, vg
′
(u) ∈ vg

′
(F) = {vg(t)}; and hence,

vg
′
(u) = vg(u) = vg

′
(t) = vg(t). And because vg(t) ∈ DI, we also have that vg(u) ∈ DI.

Thus, vg(t), vg(u) ∈ DI and vg(t) = vg(u). Consequently, by the semantic clause for =,
it follows that I, vg ⊨ t = u. And since I and vg were arbitrarily chosen, we can infer
that Γ ⊨ t = u. Thus, if Γ , Ft ⊨L

M2 Fu, then Γ ⊨L
M2 t = u. A fortiori, it follows that if

Γ , Ft ⊨L
M2 Fu and ∆, Fu ⊨L

M2 Ft, then Γ ,∆ ⊨L
M2 t = u.

Soundness of LM1

Theorem 6. (Soundness of LM1). If Γ ⊢L
M1 φ, where Γ is a set of undischarged assump-

tions, then Γ ⊨L
M1 φ.

Proof. The induction base is as per the soundness proof for LM2 . As for the induction step,
we only show one case: where the lowermost inference is EP. All the previous cases, which
were shown over the course of the soundness proof for LM2 , carry over to LM1 - given that
LM1 is an extension of LM2 . It is routine to check that the classical rules for the connectives
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are sound with respect to the semantics of LM1 .

Case 1. Suppose the lowermost inference is EP. In this case, δ has the following form:

Γ
... δ1

Pt
EP

E!Mt

Let I and vg be an LM1 model and an assignment respectively, such that I, vg ⊨L
M1 φ,

for each φ ∈ Γ . Then, by Induction Hypothesis, I, vg ⊨L
M1 Pt. By the semantic clause

for atomics in LM1 , it follows in particular that vg(t) ∈ DI. Then, by the semantic clause
for E!M, it follows that I, vg ⊨L

M1 E!Mt. Hence, for any model I and assignment vg if
I, vg ⊨L

M1 Pt, then I, vg ⊨L
M1 E!Mt.

Soundness of LM3

Theorem 7. (Soundness of LM3). If Γ ⊢L
M3 φ, where Γ is a set of undischarged assump-

tions, then Γ ⊨L
M3 φ.

Proof. The induction base is as per the soundness proof for LM2 . As for the induction step,
we only show one case: where the lowermost inference is NEP. All the previous cases,
which were shown over the course of the soundness proof for LM2 , carry over to LM3 -
given that LM3 is an extension of LM2 . Again, it is routine to check that the classical rules
for the connectives are sound with respect to the semantics of LM3 .

Case 1. Suppose the lowermost inference is NEP. Then, δ has the following form:

Γ
... δ1

¬Pt
NEP

E!Mt

Let I and vg be an LM3 model and an assignment respectively, such that I, vg ⊨L
M3 φ,

for each φ ∈ Γ . Then, by Induction Hypothesis, we have I, vg ⊨L
M3 ¬Pt. By the semantic

clause for negation, it follows that I, vg ̸⊨L
M3 Pt. Thus, by the semantic clause for atomics

in LM3 , it follows in particular that vg(t) ∈ DI. Consequently, by the semantic clause for
E!M, we have I, vg ⊨L

M3 E!Mt. Hence, for any model I and assignment vg if I, vg ⊨L
M3 ¬Pt,

then I, vg ⊨L
M3 E!Mt.
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