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ABSTRACT. Situation theory in general, and channel theory in particular, have
been used to provide motivational accounts of the ternary relation semantics of
relevant, substructural, and various non-classical logics. Among the constraints
imposed by channel-theory, one must posit a certain existence criterion for sit-
uations which result from the composites of multiple channels (this is used in
modeling information flow). In logics obeying a certain associativity condition, it
is relatively straightforward to show that a certain such condition is met, but the
problem is trickier in non-associative logics. Following Tedder (2017), where it
was shown that the conjunction-conditional fragment of the logic B admits the
existence of composite channels, I present a generalised version of the previous ar-
gument, appropriate to logics with disjunction, using the neighbourhood ternary
relation semantic framework. I close by suggesting that the logic BB+

(∧I), which

falls in between Lavers’ system BB+ and the standard ‘minimal’ relevant logic B+,
satisfies the conditions for the general argument to go through.

1. INTRODUCTION

The tradition of situation semantics, coming out of work of Barwise and Perry
in the early 80s, most famously [7], has long provided the means to interpret and
motivate the ternary relation semantics for relevant and substructural logics. This
connection, noted even in 1985 by Barwise and Perry [7, p.xvii], was discussed by
relevant logicians in [1, p.333]. Since then, something like the situation-theoretic
reading has been widely adopted for FDE, where the major departure from clas-
sical logic is in permitting both incomplete theories and non-trivially inconsistent
theories.1 Extensions of the situation-theoretic picture with conditional information
have been used to motivate/interpret the distinctive truth conditions for condi-
tional formulas used in the ternary relation semantics. Most notable is the tradition
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of channel theory, introduced by Barwise [4], which seeks to explain conditional in-
formation in terms of channels. These are objects (perhaps more situations, perhaps
not) which form connections between pairs of situations, allowing information to
flow from one to the other. Barwise along with a number of co-authors, and many
in the relevant logic tradition, have sought to adapt channel theory or some other
kind of situation-theoretic account of conditional information (such as Israel and
Perry’s theory) to the relational semantics of relevant and substructural logics – for
examples, see [6, 22, 23, 29].

Among the features of such accounts of conditional information are various con-
straints on channels, or situations supporting conditional information. For my pur-
poses here, the most salient property concerns the serial composition of conditional-
supporting channels/situations. Barwise [4] introduces the constraint that for any
two channels, there exists a channel composing them, which must satisfy certain
properties. Tedder [39] proved that the weak relevant logic B∧ is complete with re-
spect to those of its ternary relation models in which such composites exist, using
some machinery developed by [2], but the method used there does not extend to
B+, because of the interaction between disjunction and the conditional.

There are two aims of this paper. The first is to provide a more general version of
the argument of [39] using the Neighbourhood Ternary relation (NTR) semantics
developed by Sylvan (née Routley) and Meyer [32, 33]. This will provide a collec-
tion of sufficient conditions for a logic to be complete with respect to the class of its
NTR models satisfying a strong composites-existence property. For this purpose, I’ll
first present those elements of the NTR semantics which are needed for this pur-
pose (alongside the usual TR semantics for comparison) and briefly discuss some
of the existing work on how to understand composition (and a related principle) in
the TR semantic framework. In so doing, I’ll argue that we should not, pace Restall
[29], require frames to satisfy the defining condition for the axiom form of suffix-
ing.2 Then, I’ll discuss a logic BB+

(∧I), extending B∧ by slightly weaker disjunction
principles than B+, and present some evidence that it satisfies the sufficient condi-
tions for completeness with respect to its NTR models in which channel composites
exist. The upshot will be that there are reasons to think that logics in the vicinity
of BB can be endowed with NTR frames appropriate to model the interaction be-
tween channels and situations, at least as concerns serial composition.

2. TERNARY RELATION SEMANTICS: TWO DIFFERENT ONES

2.1. Languages. I’ll be working throughout in a small handful of propositional
languages, since I’ll be discussing properties of logics which are sensitive to lan-
guage extensions. To that end, the following definition is general, but basically
standard.

• P is a set of atomic sentence letters – these are represented by lower-case
letters of the Latin alphabet.

2Similar reasoning applies to the constraint defining the axiom form of prefixing, though I won’t
dwell on that.
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• The basic set of connectives C has the elements ∧,→, each of arity 2. C[∨]
extends this by the binary connective ∨, and similar naming conventions
apply for ◦,←,¬ (arity 2, 2, 2, and 1, respectively) where they come up.

L0 is the set constructed from P and C in the usual manner, and L[∨] substitutes
C[∨] for C, and similarly for other sets of connectives. When context will distin-
guish, or where the differences between these various languages don’t matter, I’ll
use L as a variable over these. Throughout, I’ll use & and ⇒ as metalinguistic
connnectives – these will behave as classical conjunction and material implication
– and furthermore all uses of quantifiers are metalinguistic. Universally quantified
metalanguage expressions will usually just be written with bald variables. Finally,
∧,∨ bind more strongly than→.

2.2. Ternary Relation (TR) Semantics. Introduced by Sylvan (née Routley) and
Meyer in [31], following on earlier work by Sylvan and Plumwood (née Routley)
[36] and further developed in [35, 12] among other places, the ternary relation (or
“Routley-Meyer”) semantics operates on frames of the following type (I omit the ∗
used in interpreting negation):

F = 〈W, N, R〉
where these elements are:.

• ∅ 6= N ⊆W
• R ⊆W3

In addition to these, an order ≤ ⊆W2 is defined:
α ≤ β := ∃γ ∈ N(Rγαβ)

and frame elements are subject to the following constraints:
• 〈W,≤〉 is a partially ordered set
• N ∈ ℘(W)↑ = {X ⊆W | (α ∈ X & α ≤ β)⇒ β ∈ X}
• (Rαβγ & α′ ≤ α & β′ ≤ β & γ ≤ γ′)⇒ Rα′β′γ′

Intuitively a frame includes a set of situations, a some of which, N, support all
the logical truths, and a ternary R which interprets the implication – I’ll get into
this shortly. The defined order ≤ expresses containment between situations – i.e.
whenever α ≤ β, β will support any proposition supported by α, similarly to the
heredity constraint in the frame semantics for intuitionist logic. The elements of
℘(W)↑, upward closed sets of situations, model propositions.

Given a frame F, the full complex algebra on F is defined:
〈℘(W)↑, N,∩,∪,→,←, ◦〉

where for all X, Y ⊆W:
• X → Y = {α ∈W | ∀β, γ ∈W((Rαβγ & β ∈ X)⇒ γ ∈ Y)}
• X ← Y = {α ∈W | ∀β, γ ∈W((Rβαγ & β ∈ Y)⇒ γ ∈ X)}
• X ◦Y = {α ∈W | ∃β, γ ∈W(Rβγα & β ∈ X & γ ∈ Y)}

The following results are standard:

Proposition 2.1. When X, Y ∈ ℘(W)↑, so is X⊗Y for ⊗ ∈ {→,←, ◦}.
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Proposition 2.2. For X, Y ∈ ℘(W)↑, N ⊆ X → Y ⇐⇒ X ⊆ Y

A model M on a frame F is a valuation function V : P −→ ℘(W)↑ – when
M is on frame F, elements of F are picked out by WM, NM, RM as needed (where
context makes this obvious, the convention of explicitly noting the model may be
dropped). This is extended to a valuation on the full language J·KM : L −→ ℘(W)↑

as follows:

• JpKM = V(p) for p ∈ P

• JA ∧ BKM = JAKM ∩ JBKM
• JA ∨ BKM = JAKM ∪ JBKM
• JA⊗ BKM = JAKM ⊗ JBKM for ⊗ ∈ {→,←, ◦}

α ∈ JAKM is often written as M, α  A, or some variation thereon. Finally, A is
true-in-M if and only if NM ⊆ JAKM. A is furthermore valid-in-F iff true-in-M for
every M on F, and where F is a set of frames, A is valid-in-F iff it is valid in all the
frames in F . These are written �† A where † is the name of a model, frame, or set
of frames.3

2.3. Neighbourhood Ternary Relation (NTR) Semantics. The Neighbourhood TR
semantics can be understood as capitalising on the central feature that N ⊆ X →
Y ⇐⇒ X ⊆ Y, while generalising the TR framework. Some of the complexity
of the TR semantics arises from treating of this feature via situations, as it were.
By generalising just a bit, it can be captured more directly and simply. Sylvan
and Meyer introduced this framework in [32, 33] (a particularisation of yet more
general semantics [34]) in order to provide a general account of implication con-
nectives. I’ll consider the framework as also incorporating the connectives ∧,∨ (in
their ‘normal’ varieties as per [32]).4 Here an NTR frame is a structure:

F = 〈W, N, R, Prop〉
where W, N are as before, and furthermore:

• Prop ⊆ ℘(W)
• R ⊆W × ℘(W)× ℘(W)

satisfying the constraints:
(C0) Prop is closed w.r.t. ∩,∪, and→, where

X → Y = {α ∈W | RαXY}
(C1) N ⊆ X → Y ⇐⇒ X ⊆ Y, for all X, Y ∈ Prop
(C2) X = X′, Y = Y′ only if X → Y = X′ ⇒ Y′

3There are a number of options available for defining relations of consequence (Tarski, Scott, or oth-
erwise) of relevant logics, but some are better than others, depending on the purpose – see [1, p.169]
for some discussion. For the sake of simplicity, I’ll deal here just with theoremhood, and leave con-
siderations of the correct notion of relevant logical consequence to the side.
4Goble [17] further developed (a variant on) the NTR framework, proving adequacy and decidability
results for a number of systems similar to those discussed in this paper.
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The inclusion of Prop is not strictly necessary, and involves a bit of additional com-
plexity in the definitions – having said that, it makes the canonical model construc-
tion part of the completeness argument simpler, so I’ll keep it.

Here, (C1) is the only substantial constraint – reflecting this basic commitment
concerning conditionals encoded in Prop 2.2. In fact, this is closely connected to
the justification of the basic properties of conditionals given by Sylvan and Meyer
[32] (following a comment from Suszko).

A model M on an NTR frame is a V : P −→ ℘(W), with J·KM being defined as
before, excepting that now:

JA→ BKM = JAKM → JBKM = {α | RαJAKMJBKM}

The definition of the various �’s are as before. The basic NTR logic F is axioma-
tisable as follows – I shall use an “r” to distinguish the rules from the axioms, as
similar names will recur again in the next section.5 TheV used in the statement of
the rules should be understood to express the fact that these are rules of proof – i.e.
A1, . . . , An V B reads “from derivations of A1, . . . , An, one may derive B.”

(Id) A→ A
(∧E) A ∧ B→ A, A ∧ B→ B
(∨I) A→ A ∨ B, B→ A ∨ B

(Dist) A ∧ (B ∨ C)→ (A ∧ B) ∨ (A ∧ C)

(rMP) A→ B, AV B
(rAdj) A, BV A ∧ B

(r∧I) A→ B, A→ CV A→ B ∧ C
(r∨E) A→ C, B→ CV A ∨ B→ C

(rWB) A→ B, B→ CV A→ C
(rCong) A′ ↔ A, B′ ↔ BV (A→ B)→ (A′ → B′)

Given a logic L defined by some axiomatic presentation, let `L express theorem-
hood of that logic as usual – i.e. every axiom of L is a theorem of L, and any
formula obtained from theorems of L by the use of rules of L is a theorem of L.

2.4. Some NTR Frame Constraints. A key part of this semantics, as in all frame
semantics, is the association between valid axioms/rules, and frame constraints,
closely tying logics to certain NTR frames (for our purposes, the one which most
matters is that of the canonical model).

In the NTR semantics, this is pretty trivial, at least as concerns the usual ax-
iomatic extensions of the basic relevant logics. One need only rewrite the formula
you want in the language of the frame, and F will be extended to obtain the logic

5The name F is used in [32]. This system is called Min by Goble [17], and a closely related system is
discussed under the name “B” in [9, p. 93].
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of those frames by the addition of the axiom matching the condition. Logics result-
ing from F by extensions by the following axioms and rules are important for our
purposes.6

(rB) A→ BV (C → A)→ (C → B)
(rB′) A→ BV (B→ C)→ (A→ C)
(∧I) (A→ B) ∧ (A→ C)→ (A→ B ∧ C)

(∨E) (A→ C) ∧ (B→ C)→ (A ∨ B→ C)
(WB) (A→ B) ∧ (B→ C)→ (A→ C)

(B) (A→ B)→ ((C → A)→ (C → B))
(B′) (A→ B)→ ((B→ C)→ (A→ C))

In keeping with the triviality claim, here are two examples of NTR frame con-
straints defining these rules/axioms (the others follow the same pattern):

(rB) X ⊆ Y ⇒ Z → X ⊆ Z → Y
(∧I) (X → Y) ∩ (X → Z) ⊆ X → (Y ∩ Z)

The basic idea here is that, as generally holds in relevant logics and their NTR
models, a conditional formula A→ B is valid just in case every element of an NTR
model will satisfy A (or “is a member of A’s proposition”) only if it satisfies B.
That is, A→ B will be valid iff for every M, JAKM ⊆ JBKM, as set out in (C1). So in
order to guarantee that (∧I) is valid, we can just ensure that whenever α ∈ J(A →
B) ∧ (A → C)KM then α ∈ JA → B ∧ C KM, which is what the homophonic NTR
frame constraint delivers. In the case of rules, the only difference is that we have to
consider (meta-level) implications between inclusions to model rules allowing us
to infer implication formulas from other implication formulas. So the NTR frame
constraint for (rB) just recapitulates that rule at the level of implications between
inclusion statements between propositions.

The logic resulting from adding the first four principles listed above, i.e. (rB)–
(∨E), to F is B, the logic of all TR frames and the ‘basic affixing system’.7 The
addition of only the first two is BB, a logic motivated by Peter Lavers [20, 21] as a
particularly nice extension of FDE better capturing tautological entailments, as orig-
inally presented by Anderson and Belnap. I’ll write the name of a logic with a
subscripted name of one of these axioms in order to name a system of interest – for
my purposes, the most important one here is BB(∧I).

Proposition 2.3. If L extends BB in the language {→,∧} and has (∧I), then for any
NTR frame for L, and {Xi}i∈I , {Yi}i∈I ⊆ Prop (for finite I):⋂

i∈I
(Xi → Yi) ⊆

⋂
i∈I

Xi →
⋂
i∈I

Yi

6It should be noted that I include the combinator names because they are commonly used in the
literature on relevant and substructural logics, but that I don’t mean by their inclusion to suggest
anything deeper about the logics (for instance, I don’t mean to claim that they include ◦ in the lan-
guage, or can otherwise represent the central application operation of combinatory logic).
7Whenever I write generally about logics, I’ll always mean extensions of F.
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Proof. Note that
⋂
i∈I

(Xi → Yi) ⊆ Xj → Yj for each j ∈ I, and furthermore Xj → Yj ⊆⋂
i∈I

Xi → Yj follows from (∧E) and (rB′) when j ∈ I, so
⋂
i∈I

(Xi → Yi) ⊆
⋂
i∈I

Xi → Yj

for each Yj. It follows that
⋂
i∈I

(Xi → Yi) ⊆
⋂
j∈I

(
⋂
i∈I

Xi → Yj), and so
⋂
i∈I

(Xi → Yi) ⊆⋂
i∈I

Xi →
⋂
i∈I

Yi follows by (∧I).

�

As a final note, while the first four axioms/rules are valid in all TR frames, the
others are not. To state their TR frame correspondents, it is easiest to employ the
following standard notational conventions:

Rαβγδ := ∃ε(Rαβε & Rεγδ)
Rα(βγ)δ := ∃ε(Rβγε & Rαεδ)

Then the corresponding TR frame constraints are:
• (B) Rαβγδ⇒ Rα(βγ)δ
• (B′) Rαβγδ⇒ Rβ(αγ)δ

For further details on frame correspondence in TR semantics, see [35, 30], and for
NTR see [32, 33, 17].

2.5. Canonical NTR Models. Below I’ll be working with the prime theories of var-
ious logics, squeezed into an NTR structure – i.e. I’ll be working with the canonical
models of these logics. This section collects some important facts about these struc-
tures.

Definition 2.1. α is an L-theory iff
• `L A→ B and A ∈ α imply B ∈ α
• A, B ∈ α implies A ∧ B ∈ α

α is prime iff A ∨ B ∈ α only if one of A, B is in α.
α is normal iff `L A implies A ∈ α.

Given a set of formulas Γ and a logic L, let Γ’s theory-extension be:
[Γ) = {B | ∃A1, . . . , An ∈ Γ(`L

∧
1≤i≤n

Ai → B)}

Note that [Γ) is always at least an L-theory, but there is no guarantee of prime-
ness or normality. The NTR canonical model of a logic L is a tuple

ML = 〈WL, NL, RL, PropL, VL〉
where:
• WL is the set of theories of L – when the language of L includes disjunction,

it is the set of all prime theories of L.8

• NL ⊆WL is the set of normal elements of WL.

Definition 2.2. Given an ML, JAKL := {α ∈WL | A ∈ α}.

8Note that in the terminology of [32, 33] it is only logics with normal disjunction that are considered
here.
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• RLαXY ⇐⇒ ∃B, C(X = JBKL & Y = JCKL & B→ C ∈ α)
• PropL = {X ⊆WL | ∃A(X = JAKL)}
• VL(p) = JpKL

Proposition 2.4. The following facts are true of canonical NTR models – the proofs
are either available in [32] or are immediate:

• ∀A∃X ∈ PropL(X = JAKL)
• ∀X ∈ PropL∃A(X = JAKL)
• `L A→ B ⇐⇒ JAKL ⊆ JBKL

The next fact is important for later:

Proposition 2.5. The following are equivalent, for any formulas A, B and any (prime)
theories α, β:

• ∃C ∈ L(A→ C ∈ α & C → B ∈ β)
• ∃X ∈ PropL(RLαJAKLX & RLβXJBKL)

As a shorthand, I’ll write the latter as RLβ(αJAKL)JBKL, following the pattern of
Rα(βγ)δ in the TR semantics.

Finally, the key result is the following.

Proposition 2.6 (Adequacy). If L is any logic extending F by any of the axioms/rules
listed above, then:

�ML A iff `L A.

A more general result is proved in [32] (they consider more frame correspon-
dents, as well as logics with negation).

3. CHANNEL COMPOSITION

Barwise and co-auathors, in a couple of papers in the early 90s [4, 6], developed
channel theory in terms of a ternary relation semantics which is, more or less, an
extension of TR semantics. So the central ingredient is the relation Rαβγ repre-
senting the state of affairs that α is a channel from β to γ, though he represents
this ternary relation using (some variation on) the notation β

α→ γ. In particular,
he stipulates the existence of two kinds of composite channels, though I’ll only be
discussing serial composition. The serial composite of channels α, β is a channel α; β
such that, for any situations γ, δ:

R(α; β)γδ ⇐⇒ Rβ(αγ)δ

This is meant to represent/simulate the effect of linking two channels up in se-
ries, and allowing information to flow along the first, and then the second, from
the input situation to the output. Given the shorthand above, this does seem to be
capturing something like the right idea – there is some situation ε such that α is a
channel from γ to ε, and furthermore β is a channel from ε to δ.

In light of this development, both Barwise (and his co-authors Gabbay and Har-
tonas) [6] and Restall [29] (in the same volume) note that the work of serial com-
position is easily modeled by the twisted associativity principle (B′) when in this
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framework, we identify the serial composition of α with β with the result of ap-
plying binary ‘operation’ encoded by the ternary relation to them.9 This cannot
behave simply functionally, if situations are to be modeled by prime theories, for
well known reasons having to do with combining relevant conditionals with dis-
tributive lattice operations. So instead we have to understand Rαβγ as the image of
the operation which, at the level of propositions, is represented by A ◦ B. Following
Restall [29], I’ll write this ‘operation’ on α, β as:

α ◦ β = {γ | Rαβγ}
and say that α ◦ β satisfies a formula A when α ◦ β ⊆ JAK (and the appropriate
analogue for any X ⊆ ℘(W)↑).

Noteworthy about α ◦ β is that, given the truth condition for→, we more or less
immediately have:

α ∈ X → Y, β ∈ X ⇒ α ◦ β ⊆ Y
Suggesting that ◦ is a natural candidate for modeling the result of applying the
conditional information supported by the channel α to that information supported
by β.10 A central insight of Barwise, Gabbay, Hartonas, and Restall, is that under
the various associativity assumptions (which are desirable for some other reasons),
it is a sensible strategy to identify α; β with α ◦ β. It can be shown:

Proposition 3.1. If L is complete w.r.t. some class of TR frames satisfying (B′), then
for any model M and any X, Y ∈ ℘(WM)↑:

α ∈ X → Z, β ∈ Z → Y ⇒ α ◦ β ⊆ X → Y

Proof. Suppose that Rαβγ, and furthermore that Rγδε and δ ∈ X. Thus Rαβδε, so
by (B′), Rβ(αδ)ε, and thus there is a ζ such that Rαδζ and Rβζε. The former implies
that ζ ∈ Z and the latter thus implies that ε ∈ Y. So γ ∈ X → Y.

�

Of course, this point can be seen just by working with Barwise’s original defi-
nition, assuming that ; is functional. With that definition B′ and its converse dual
combinator b′ provide the desired equivalence:

Rαβγδ ⇐⇒ Rβ(αγ)δ

The imposition of these structural rules also provides Barwise et al the means to
build their target information network structures out of algebraic models of the asso-
ciative Lambek calculus.

9The reason why it is B′ and not B here is that I employ the convention that in the truth condition for
→ using the ternary R, the situation at which the conditional formula is evaluated appears in the first
argument position. If one instead uses the middle argument position (reserving the first position for
that at which the antecedent of the conditional is evaluated), then the transitivity principle at work
here is B. There is no substantial difference between these options, and I use the convention I do as it
is more standard in the relevant logic literature.
10A natural upshot of the failure of the semilattice semantics of [40] is that in the usual TR setting,
these sorts of actions on prime theories do not, generally, produce more prime theories.
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3.1. Some Reasons to Dislike (B) and (B′). As we’ve seen, in Restall and Bar-
wise’s work the axioms (B) and (B′) play a substantial role. The corresponding
frame constraints allow channel composition to be modeled along the same lines
as application of a channel to a site. I want to survey some reasons to think that,
on the channel-theoretic story, these axioms, and their corresponding frame con-
straints, are theoretically undesirable.

These axioms, and their corresponding frame constraints, have been criticised
in some recent work by Sebastian Sequoiah-Grayson providing epistemic inter-
pretations of the TR semantic framework and closely related structures [37, 38].
His reasons may also, to an extent, be extended to provide reasons to reject them
in this setting. Indeed, the idea, pursued below, of considering actions on chan-
nels/situations is influenced by Sequoiah-Grayson’s notion of an epistemic action.
For the most part, he considers abstract counterexamples, but I also think we might
be able to get some traction with more concrete counterexamples.

To aid in this, I’ll use some diagrams. I’ll represent Rαβγ, following Barwise
[4, 6], as an indexed arrow β

α−→ γ, representing the fact that α is a channel between
situations β, γ. Using this, we can represent the defined combination Rαβγδ with
the following diagram – using ‘·’ to pick out the existentially quantified position
(in this case, the arrow (channel) itself):

γ δ
·

β

α

and we can represent Rα(βγ)δ as:

γ ·
β

δ
α

This makes it clear how this latter kind composition of ternary relations models
composition of arrows. So the frame constraint for (B) allows one to infer the latter
from the former, and that for (B′) allows us to infer from the former the variation
on the latter where the positions of α, β are permuted. For the second, note that
we must treat β as behaving like a site in the first diagram, but as a channel in the
second. It has come under some discussion [6, 29] whether we should understand
channels as separate kinds of thing from sites. Treating them as separate would
seem to me to provide good reason to rule out (B′) immediately.

However, even if we take channels and sites just to all be situations, it is still
substantial to posit these systematic interactions between situations. On a plausible
way of understanding versions of the account where channels and sites are of the
same kind, we should talk of situations acting as a channel in some circumstance
(as, for instance, when we discuss applying conditional information holding in that
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situation to some other situation) or talk of them acting as sites – the context will de-
termine what situation plays what role where. Positing (B′) amounts to demanding
that whenever α, acting as a channel, applied to β produces some situation which
acts as a channel from γ to δ, it must also be that β and α, acting as channels, can be
serially composed to get from γ to δ. Perhaps there’s some argument to think that
situations must behave this way, but it strikes me as very far from obvious.

I take it that the proponent of (B′) has the onus to justify the inclusion of their
desired principle, but it would still be nice to have a compelling counterexample.
To that end, consider the following:

Counterexample Consider a cable α taking some instructions β to a
motor which, upon receiving them, will open a window, thus form-
ing a channel allowing for information from the situation immedi-
ately outside the window γ to flow into the room δ. This is a con-
nection of of the form Rαβγδ.

Question: if we take the instructions β and compose them with
the cable α, do we get a channel taking γ to δ? In other words, if we
apply (the conditional information) in β to any appropriate informa-
tion in γ, and take the resulting situation and apply the conditional
information in α to it, do we get just δ? That is, does it follow that
Rα(βγ)δ?

One consideration in favour of ‘No’ is that it’s not obvious what it would mean
to compose some instructions and a cable which carries those instructions. One can
consider the result of applying α to β by sending β to the resulting channel, but this
doesn’t seem to involve conditional information supported by β at all, as composing
seems to call for. The connection Rαβγδ makes perfect sense, but, on the face of
it, the connection Rβ(αγ)δ doesn’t make sense, without filling in more information
about the information supported by β. The important point is just that the latter
doesn’t follow from the former.

3.2. Another Way to Proceed. The method in [39] suggests another way to charac-
terise channel composition – in terms of the conditional information supported by
channels, rather than by relations among channels themselves.

Definition 3.1. L admits channel composition just in case for any pair α, β of (prime)
L-theories, there is another, γ, such that for any formulas A, B:

A→ B ∈ γ ⇐⇒ ∃C(A→ C ∈ α & C → B ∈ β)

Note that if L admits channel composition, then while not all of its models must
include composite points, it is complete with respect to the set of its models which
do.

Note that this definition is stronger than that initially proposed in [4], where only
the right-to-left condition is required. However, it seems to me natural to make this
Australasian Journal of Logic (18:1) 2020, Article no. 1
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more stringent demand, as if such γ’s can be shown to exist, then we’ll have pinned
down something closer to the channel composites of the various α, β.11

4. SOME SUFFICIENT CONDITIONS FOR CHANNEL COMPOSITION

In this section, I’ll display two sufficient conditions for a logic L to admit channel
composition in the sense of § 3.2.12

4.1. Bubbling. The first is that the logic satisfy the Bubbling Lemma, initially proved
[2] for B∧>, the extension of B∧ by the addition of the propositional constant >, as
discussed in [30]. This lemma is property-ified as follows:

Definition 4.1. A logic L (whose language extends {→,∧}) bubbles iff whenever

`L
∧
i∈I

(Ai → Bi)→ (C → D)

(and 0L > → D, if the language of L contains >) then there is a non-empty J ⊆ I
such that:

`L C → ∧
j∈J

Aj and `L
∧
j∈J

Bj → D.

Briefly, when L bubbles, one can decompose certain validities containing nested
conditionals into other validities containing at least one fewer such nesting. This
is a very nice property which provides the grist for natural theory constructions.
The canonical application of the bubbling lemma for B∧> is in providing nice filter
models of the λ-calculus (with intersection types) and combinatory logic. In the
relevant logic literature, Meyer and a number of co-authors over the years (see
[16, 14, 28]) used this fact to build nice ternary relation models of combinatory
logic.13

4.2. ECP.

Definition 4.2. A logic L in a language extending {→,∧,∨} has the entailment-
consequent-primeness property (or ECP) just in case whenever:

`L
∧
i∈I

(Ai → Bi)→
∨
j∈J

(Cj → Dj)

then there is a j ∈ J s.t.
`L

∧
i∈I

(Ai → Bi)→ (Cj → Dj)

This property is a special instance of a more natural property delivered by the
combination of the disjunction property:

11Restall [29] obtains a similar ‘as unique as possible’ construction for channel composites (that is,
unique with respect to the theory, though not necessarily with whatever prime theories extend that
theory) in the context with associativity.
12For my purposes the logics of interest from here on all extend B∧, so I take L to range over just
those axiomatic extensions.
13Note that in [3, p.624], bubbling logics are called β-sound.
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Whenever `L A ∨ B, either `L A or `L B
and the admissibility of a rule familiar from Harrop [18] (where A is required to
contain no relevant instance of disjunction):

A→ B ∨ CV (A→ B) ∨ (A→ C)

4.3. Putting the Sufficient Conditions to Work.

Theorem 4.1. Let L be a logic extending B∧ with (possibly) a larger set of connec-
tives. Then if L bubbles, then for any pair of L-theories α, β (prime if the language
of L extends L[∨]), there is a theory α; β such that:

A→ B ∈ α; β ⇐⇒ RLβ(αJAKL)JBKL

Proof. Define (α; β)0 := {A → B | RLβ(αJAKL)JBKL}, and let α; β = [(α; β)0). It is
immediate that α; β is a theory, and furthermore if RLβ(αJAKL)JBKL, then A→ B ∈
α; β, so I prove the converse.

Suppose that A → B ∈ α; β. Then there are formulas C′1, . . . , C′n ∈ (α; β)0 such
that `L

∧
i∈I

C′i → (A→ B) where I = {1, . . . , n}. By definition, each C′i is of the form

Ci → Di where RLβ(αJCiKL)JDiKL. Thus, since L bubbles, there is a non-empty
J ⊆ I such that:

`L A→ ∧
j∈J

Cj and `L
∧
j∈J

Dj → B

It follows that JAKL ⊆ J
∧
j∈J

CjKL =
⋂
j∈J

JCjKL and also that
⋂
j∈J

JDjKL = J
∧
j∈J

DjKL ⊆ JBKL.

Furthermore, for every Cj → Dj there is an Ej such that Cj → Ej ∈ α and Ej →
Dj ∈ β. By Prop 2.3, and the adequacy theorem, α ∈ ⋂

j∈J
JCjKL →

⋂
j∈J

JEjKL and

β ∈ ⋂
j∈J

JEjKL →
⋂
j∈J

JDjKL. Let X =
⋂
j∈J

JEjKL. Since JAKL ⊆
⋂
j∈J

JCjKL, by (rB′):

⋂
j∈J

JCjKL → X ⊆ JAKL → X

Similarly, since
⋂
j∈J

JDjKL ⊆ JBKL, by (rB):

X → ⋂
j∈J

JDjKL ⊆ X → JBKL

Thus, α ∈ JAKL → X and β ∈ X → JBKL, and thus RLβ(αJAKL)JBKL.
�

Theorem 4.2. Let L be a logic in a language expanding L[∨], and furthermore sup-
pose that L bubbles and has ECP. Then there is a prime theory (α; β)′ such that:

A→ B ∈ (α; β)′ ⇐⇒ RLβ(αJAKL)JBKL

Proof. We can use the construction of the previous theorem to build a theory α; β
satisfying the target property. Now to obtain a prime (α; β)′ ⊇ α; β, we can employ
Belnap’s Pair Extension lemma (details are available in [30]). For note that the
following is an independent pair of sets of formulas:
Australasian Journal of Logic (18:1) 2020, Article no. 1
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〈α; β, {C → D | RLβ(αJCKL)JDKL}〉
For suppose that there were A′1, . . . , A′m′ ∈ α; β and C1 → D1, . . . , Cn → Dn such

that `L
∧

1≤i≤m′
A′i →

∨
1≤j≤n

(Cj → Dj). By construction, each A′i is entailed by a finite

conjunction of conditionals, so using (rB), (rB′), it follows that:

`L
∧

1≤i≤m
(Ai → Bi)→

∨
1≤j≤n

(Cj → Dj)

By ECP, there is a j ∈ J such that `L
∧

1≤i≤m
(Ai → Bi) → (Cj → Dj), and thus

Cj → Dj ∈ α; β and so, by Theorem 4.1, RLβ(αJCjKL)JDjKL, contrary to the assump-
tion. Therefore, the above pair is a pair, and so by the pair extension lemma, can
be extended to a full pair with the left element (α; β)′ a prime theory extending α; β

but containing no C → D such that RLβ(αJCKL)JDKL. So (α; β)′ is the desired prime
theory.

�

Theorem 4.3. The following hold of the construction of α; β from Thm 4.1:
(1) If α, β ∈ N then α; β ∈ N
(2) If A→ B ∈ α and β ∈ N then A→ B ∈ α; β

(2a) If α ∈ N and A→ B ∈ β then A→ B ∈ α; β
(3) A→ B ∈ α; (β; γ) iff A→ B ∈ (α; β); γ

Proof. (1) For this, note that if α, β ∈ N, then if ` A → B then A → B ∈ α and
B→ B ∈ β, and thus A→ B ∈ α; β.
(2), (2a) are left to the interested reader to verify.
(3) For this, we show that (α; (β; γ)0)0 = ((α; β)0; γ)0. This follows from the fol-
lowing sequence of equivalences – recall that we have shown A → B ∈ α; β ⇐⇒
A→ B ∈ (α; β)0.

A→ B ∈ α; (β; γ) ⇐⇒ A→ B ∈ (α; (β; γ))0
⇐⇒ ∃C(A→ C ∈ α & C → B ∈ β; γ)
⇐⇒ ∃C(A→ C ∈ α & C → B ∈ (β; γ)0)
⇐⇒ ∃C, D(A→ C ∈ α & C → D ∈ β & D → B ∈ γ)
⇐⇒ ∃D(A→ D ∈ (α; β)0 & D → B ∈ γ)
⇐⇒ ∃D(A→ D ∈ α; β & D → B ∈ γ)
⇐⇒ A→ B ∈ ((α; β); γ)0
⇐⇒ A→ B ∈ (α; β); γ

In short, while it may not be that α; (β; γ) and (α; β); γ agree on every formula,
they do agree everywhere we care about – in the implication formulas.

�

5. CANDIDATE CHANNEL-ADMITTING LOGICS

This leaves the question of which logics satisfy these sufficient conditions. Sadly
there are almost none that do, but I’ll present some evidence (though not a proof)
that there really are almost none. For indeed, there is one promising candidate!
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5.1. BB+
(∧I). Recall that BB+

(∧I) extends BB+ by the axiom (∧I), and so extends the
basic logic F+ by this axiom, as well as by (rB) and (rB′).

Theorem 5.1. BB+
(∧I) has ECP.

Proof. By an application of the method of metavaluations [24, 13], it can be shown
that BB+

(∧I) is metacomplete, and thus has the disjunction property.14 It suffices, then,
to show that the following rule is admissible in BB+

(∧I):∧
i∈I

(Ai → Bi)→
∨
j∈J

(Cj → Dj)V
∨
j∈J

(
∧
i∈I

(Ai → Bi)→ (Cj → Dj))

To that end, let E =
∧
i∈I

(Ai → Bi), and suppose that there is a BB+
(∧I) model M

such that 2M
∨
j∈J

(E → (Cj → Dj)). So then where M = 〈W, N, R, Prop, V〉, we

have some α1, . . . , αn ∈ JEKM (J = {1, . . . , n}) where αj /∈ JCj → DjKM holds for
each j ∈ J. The aim is to build a model M′ with a point α such that α ∈ JEKM′ and
α /∈ ⋃

j∈J
JCj → DjKM′ , hence showing that E→ ∨

j∈J
(Cj → Dj) is not a BB+

(∧I)-theorem.

So, let’s build M′ out of M as follows:
• W ′ = W ∪ {α}
• N′ = N

The other elements of M′ will have to be defined inductively.
Let V ′ be the least function of type P −→ ℘(W ′) such that:

(a) For β ∈W, β ∈ V ′(p) if β ∈ V(p)
(b) α ∈ V ′(p) if ∀j ∈ J(αj ∈ V(p))

Now the trick is to build R′ and Prop′ to ensure that these satisfy the model con-
straints, and have a couple extra properties. These we construct by induction.

Fix Prop′0 = {X ⊆W ′ | X = V ′(p)}.
Fix 〈β, X, Y〉 ∈ R′0 if X, Y ∈ Prop′0 (so fix X = JpKM′ and Y = JqKM′) and either:

(c) β ∈W and RβJpKMJqKM
(d) β = α and ∀j ∈ J(RαjJpKMJqKM)

Then, fix:

Prop′n+1 = Prop′n ∪ {X ⊆W ′ | ∃Y, Z ∈ Prop′n(X = Y ∪ Z, Y ∩ Z, or Y → Z)}
and further, let 〈β, X, Y〉 ∈ R′n+1 if X, Y ∈ Prop′n (so there are A, B ∈ L such that

X = JAKM′ , Y = JBKM′) and either:
(c’) β ∈W and RβJAKMJBKM
(d’) β = α and ∀j ∈ J(RαjJAKMJBKM)

14While BB+
(∧I) is not among the systems directly covered in [24], it is straightforward to adapt the

arguments to show that it is metacomplete – the only rule not accounted for there is (r∨E), but the
argument needed for this rule is similar to those given in Meyer’s paper.
Australasian Journal of Logic (18:1) 2020, Article no. 1



16

and set Prop′ =
⋃

n∈N

Prop′n, R′ =
⋃

n∈N

R′n.

Note that it follows immediately that V ′ : P −→ Prop′ and that Prop′ is closed
w.r.t. ∪,∩,→. So (C0) is satisfied. Furthermore, we have the following lemmata
more or less immediately.

Lemma 5.2. ∀X ∈ Prop′∃A ∈ L(X = JAKM′)

Lemma 5.3. If β ∈W then β ∈ JAKM′ ⇐⇒ β ∈ JAKM

Proof. From the definition of V ′ it follows that β ∈ V ′(p) ⇐⇒ β ∈ V(p) for all
p ∈ P. Furthermore, note that β ∈ JA → BKM′ ⇐⇒ R′βJAKM′JBKM′ , which holds
only in case R′nβJAKM′JBKM′ , and thus RβJAKMJBKM. These are the two cases of an
induction which pose any problem – the inductive hypothesis takes care of the rest.

�

Lemma 5.4. α ∈ JAKM′ ⇐⇒ ∀j ∈ J(αj ∈ JAKM)

Proof. As before, we can prove this by induction. The base case is taken care of by
the definition of V ′, and the case where A is a conditional formula is taken care of
by the definition of R′. The other cases are similar.

�

With these, we turn to the rest of the verification of the model constraints. For
(C1) – N′ ⊆ X → Y ⇐⇒ X ⊆ Y for all X, Y ∈ Prop′ – note that if X, Y ∈ Prop′
there are A, B ∈ L such that X = JAKM′ , Y = JBKM′ . First, suppose that JAKM′ ⊆
JBKM′ . In this case, by Lem. 5.2, it follows immediately that JAKM ⊆ JBKM, and so
N ⊆ JA→ BKM. But if β ∈ N′ then β ∈ N, so then β ∈ JA→ BKM ⇐⇒ β ∈ JA→
BKM′ = JAKM′ → JBKM′ , as desired.

Next, suppose that N′ ⊆ JA → BKM′ , and let β ∈ JAKM′ . Again, we have for
all γ ∈ N, that γ ∈ N′ and that γ ∈ JA → BKM ⇐⇒ γ ∈ JA → BKM′ . Thus,
N ⊆ JA → BKM′ and so JAKM′ ⊆ JBKM′ . Suppose that β ∈ W, then the result is an
immediate consequence of Lem. 5.2. Suppose β = α, then by Lem 5.4, it follows
that:

β ∈ JAKM′ ⇐⇒ ∀j ∈ J(αj ∈ JAKM)⇒ ∀j ∈ J(αj ∈ JBKM) ⇐⇒ β ∈ JAKM′

and the result follows.
What remains are the constraints specific to BB+

(∧I). These are (rB), (rB′), and (∧I).
The first two are similar, so I’ll only present one of those, and sketch the argument
for the third.

For (rB), suppose that X, Y, Z ∈ Prop′, so that there are A, B, C ∈ L such that
X = JAKM′ , Y = JBKM′ , and Z = JCKM′ . Suppose JAKM′ ⊆ JBKM′ , and let β ∈
JC → AKM′ . If β ∈ W, this holds iff β ∈ JC → AKM, and thus β ∈ JC → BKM
since M is a BB+

(∧I) model, which in turn holds iff β ∈ JC → BKM′ . If β = α, then
β ∈ JC → AKM′ iff ∀j ∈ J(αj ∈ JC → AKM), in which case ∀j ∈ J(αj ∈ JC → BKM),
and thus β ∈ JC → BKM′ , as desired.
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Finally, for (∧I), suppose that X, Y, Z are as before, and furthermore that β ∈
(X → Y) ∩ (X → Z). As before, if β ∈ W, then β ∈ X → (Y ∩ Z) can be obtained
by Lem 5.2, and if β = α the result follows by Lem 5.4.

So M′ is a BB+
(∧I) model, and furthermore the construction guarantees that α ∈

JEKM′ and α /∈ ⋃
j∈J

JCj → DjKM′ , so 2M′
∧
i∈I

(Ai → Bi)→
∨
j∈J

(Cj → Dj). So the desired

rule is indeed admissible in BB+
(∧I).

It follows from this and the fact that BB+
(∧I) has the disjunction property that

BB+
(∧I) has ECP.

�

This leaves the last part, which is still open:

Conjecture 5.5. BB+
(∧I) bubbles.

I don’t have a proof to provide here, but I will provide some reasons to think that
this conjecture is true.

First, an alternative axiomatisation of BB+
(∧I) is helpful. The system is a binary

assertional system in the terminology of [15] or a FMLA-FMLA system in that of
[19]. A sequent here is a pair 〈A, B〉 ∈ L2, which I’ll write A ≤ B. I’ll occasionally
refer to formula in the position of A as the ‘precedent’ and that in the position of B
as the ‘succedent.’ The following system is adapted from that for ITD/B∧> given
in [2, 14] and elsewhere. It consists of axioms (A1)–(A5) and rules (R1)–(R6):

(A1) A ≤ A
(A2) A ∧ B ≤ A, A ∧ B ≤ B
(A3) (A→ B) ∧ (A→ C) ≤ A→ B ∧ C
(A4) A ≤ A ∨ B, B ≤ A ∨ B
(A5) A ∧ (B ∨ C) ≤ (A ∧ B) ∨ (A ∧ C)

(R1) A ≤ C, C ≤ BV A ≤ B
(R2) A ≤ A′, B ≤ B′ V A ∧ B ≤ A′ ∧ B′
(R3) A ≤ A′, B ≤ B′ V A ∨ B ≤ A′ ∨ B′
(R4) A′ ≤ A, B ≤ B′ V A→ B ≤ A′ → B′
(R5) A ≤ B, A ≤ CV A ≤ B ∧ C
(R6) A ≤ C, B ≤ CV A ∨ B ≤ C
I’ll write `BA A ≤ B to indicate that there is a proof of the sequent from the above

proof system (“BA” for “binary assertional”). The following result is straightfor-
ward.

Proposition 5.6. `BA A ≤ B iff `BB+
(∧I)

A→ B.

This fact, in addition to the following:
• `BB+

(∧I)
A ∧ B ⇐⇒ `BB+

(∧I)
A and `BB+

(∧I)
B

• `BB+
(∧I)

A ∨ B ⇐⇒ `BB+
(∧I)

A or `BB+
(∧I)

B
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shows that the binary assertional system captures the same theorems as the Hilbert
system. This is because any theorem is either a conditional formula (which is cov-
ered by the proposition) or is a conjunction or disjunction thereof, which we can
simulate, via the above facts, by collections of provable implication formulas. Fi-
nally, we can characterise bubbling in this system as the property that whenever:∧

i∈I
(Ai → Bi) ≤ C → D

then there is a nonempty J ⊆ I such that:
C ≤ ∧

j∈J
Aj and

∧
j∈J

Bj ≤ D

While I won’t prove this result (for lack of such a proof), I will provide some
evidence which, I suspect, when assembled the right way does provide a proof.
On its own, I take the following facts as evidence that BB+

(∧I) bubbles.

Proposition 5.7. No instance of any axiom of the binary assertional system is a
counterexample to bubbling.

Proof. By inspection.
�

Proposition 5.8. No application of (R2)–(R6) produces a counterexample to bub-
bling.

Proof. This takes a bit more spelling out, but is mostly by inspection. First note
that (R2), (R3), (R5), and (R6) have conclusion sequents which have no instances of
the form

∧
i∈I

(Ai → Bi) ≤ C → D, so none of these can produce counterexamples.

As for (R4), we can obtain something of the right form, but where I is a singleton:
A → B ≤ C → D, and we can only get there when we’ve proved C ≤ A and
B ≤ D, which works.

�

So, as usual, (R1) is the troublemaker. It seems that some kind of cut-elimination
style argument is called for here, but the details seem to be devilish. What I’ll
present here are some ‘low-in-the-induction’ cases, showing that very shorts proof
in the binary assertional system don’t produce counterexamples to bubbling. I’ll
consider, first, the application of (R1) to a pair of instances of axioms, showing that
no counterexample can arise there, and then go on to consider a case where one of
the premises to (R1) is the result of applying (R1) to axioms, and so that also there
no counterexamples can arise.

In order to state these results more clearly, I’ll need some notation. We are after
applications of (R1) which can produce conclusions of the form (Con)

∧
i∈I

(Ai →

Bi) ≤ C → D, so we are interested in a left premise (Lp), a right premise (Rp), cut
together on a cut formula, as below:

(Lp)
∧
i∈I

(Ai → Bi) ≤ E and (Rp) E ≤ C → D
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Proposition 5.9. Wherever (Lp) and (Rp) are both instances of axioms, no coun-
terexample to bubbling is provable.

Proof. Cases are numbered by pairs 〈i, j〉 where 1 ≤ i, j ≤ 5, and these numbers
stand in for the similarly numbered axiom. So, for instance 〈4, 5〉 provide premises
for (R1) where Lp is an instance of (A4) and Rp an instance of (A5).

First note that merely in virtue of the forms that we need for Lp and Rp, a num-
ber of cases are ruled out. For instance, (A4) has a succedent where the main con-
nective is a disjunction, but the only right premises we are concerned with have a
conditional as the main connective. Hence 〈1, 4〉 is of the wrong form as (A4) has
succedents of the form A1 ∨ B1 whereas our Rp must have a succedent in which
the main connective is a conditional. Another way for a pair of axioms to be ruled
out is that they could not form an instance of cut, because E could not have both
of the forms required. Hence, 〈3, 2〉 is ruled out, as then E would have to be both
of the form A1 → (B1 ∧ C1) for (A3) and of the form A2 ∧ B2 for (A2), and these
are incompatible. These two considerations – having the wrong form to produce
an instance of (Con), which cases I’ll call (WF), or having no cut formula, which I’ll
call (NCF) – rule out of the following cases:

• WF: 〈1, 4〉, 〈1, 5〉, 〈2, 4〉, 〈2, 5〉, 〈4, 4〉 and 〈5, n〉 for any 1 ≤ n ≤ 5.
• NCF: 〈3, 2〉, 〈3, 3〉, 〈3, 5〉, 〈4, 3〉, 〈4, 5〉

I’ll briefly consider some of the remaining cases, to show that no counterexample
can arise (the others are similar to those considered here).

〈1, 1〉 In this case, both the left and right premise must be C → D ≤ C → D, and
we have that C ≤ C and D ≤ D.

〈1, 2〉 In this case, the right premise has the form A′ ∧ (C → D) ≤ C → D and
in order for the left premise to have the desired form, it must be that A′
is a conjunction of conditionals. So the left premise must be of the form∧
i∈I′

(Ai → Bi) ∧ (C → D) ≤ ∧
i∈I′

(Ai → Bi) ∧ (C → D) and the right premise

the form
∧

i∈I′
(Ai → Bi) ∧ (C → D) ≤ C → D. Note in this case, again, that

C ≤ C and D ≤ D.
〈1, 3〉 In order for C → D to be the succedent of the right premise, it must be that

D = E ∧ F, so the right premise of the form (C → E) ∧ (C → F) ≤ C →
E ∧ F. But then, the left premise is still an instance of (A1), in which case
note that C ≤ C ∧ C and E ∧ F ≤ E ∧ F.

〈2, 1〉 Lp must be of the form
∧

i∈I′
(Ai → Bi) ∧ (C → D) ≤ C → D, and the right

premise the correct instance of (A1) for this to fit the desired pattern. In this
case, C ≤ C and D ≤ D suffice again.

〈2, 2〉 To fit the required form, we would need for the left premise to be of the
form

∧
i∈I

(Ai → Bi) ∧ (C → D) ≤ ∧
i∈I′

(Ai → Bi) ∧ (C → D) and for the right

premise to be
∧

i∈I′
(Ai → Bi) ∧ (C → D) ≤ C → D, where I′ ⊂ I, in which

case, we have that C ≤ C and D ≤ D.
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〈2, 3〉 In order for the right premise to fit the form, we would need that D = E∧ F,
to obtain (C → E) ∧ (C → F) ≤ C → E ∧ F. In this case, the left premise
would have to be of the form

∧
i∈I

(Ai → Bi) ∧ (C → E) ∧ (C → F) ≤ (C →

E) ∧ (C → F). But we know that C ≤ C ∧ C and E ∧ F ≤ E ∧ F.
〈3, 1〉 Similar to 〈1, 4〉.

�

Finally, I present one more suggestive preliminary result.

Proposition 5.10. There can be no counterexample to bubbling resulting from the
application of (R1) to a pair Rp, Lp where Rp is an instance of an axiom and Lp is
the result of applying (R1) to axioms.

Proof. Suppose that E ≤ C → D is the result of applying some rule to axioms, and
that

∧
i∈I

(Ai → Bi) ≤ E is an axiom. I’ll employ the same naming convention for

cases as before, but now the right index of 〈i, j〉 is the number of an axiom, while
the left is that of a rule, and the cases will index the application of (R1) to obtain
(Con) by means of the pair of first the axiom of which Rp is an instance, and the
rule the application of which Lp is a result.

As before, we can immediately cut down the search space by structural consid-
erations. In particular, we can remove any pair 〈5, n〉 for 1 ≤ n ≤ 6, as (A5) has
a precedent of which

∧
i∈I

(Ai → Bi) cannot be an instance. Furthermore, we can

ignore any pair whose left element is between 2 and 6, as all of these rules result in
sequents with succedents which cannot have C → D as instances. So that leaves
eight cases to consider: those 〈m, n〉 where 1 ≤ m ≤ 4 and n = 1 or n = 4.

Consider those cases of the form 〈m, 4〉. For one of these to obtain, it must be
that E is of the form C1 → D1, where C ≤ C1 and D1 ≤ D. But note then that for
(R1) to apply to Lp and Rp, it must be that

∧
i∈I

(Ai → Bi) ≤ C1 → D1 is an axiom,

and so we know that C1 ≤
∧
j∈J

Aj and
∧
j∈J

Bj ≤ D1 for some nonempty J ⊆ I. From

this it follows that C ≤ ∧
j∈J

Aj and
∧
j∈J

Bj ≤ D, as desired.

Finally, we must consider those cases of the form 〈m, 1〉, and so we must concern
ourselves with axiom-pairs which can be cut together to obtain a sequent of the
form E ≤ C → D. Let us call E ≤ F LRp, and F ≤ C → D LLp. The only axioms
which fit the desired form for LRp are (A1), (A2), and (A3). I’ll consider these cases
in turn.

Case: LRp is an instance of (A1) – i.e. is C → D ≤ C → D. Now we must
move down a step again and consider subcases according to the axioms of which
E ≤ C → D could be an instance, again showing in all that the cut on Lp and Rp
cannot be a counterexample to bubbling.

(1) LLp is an instance of (A1). Immediate.
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(2) LLp is an instance of (A2). In this case E is of the form G ∧ (C → D), in
which case Rp is

∧
i∈I

(Ai → Bi) ≤ G ∧ (C → D). This can only happen

when Rp is an instance of (A1) or (A2). Let us consider the latter. If Rp is an
instance of (A2), then F = Ak → Bk, C = Al , and D = Bl for some k, l ∈ I,
but then there’s no counterexample.

(3) LLp is an instance of (A3). In this case D = D1 ∧ D2 and E = (C → D1) ∧
(C → D2), but this can only happen if Rp is (A1) or (A2), and the former
case is trivial. As for the latter, then C = Ak = Al , D1 = Bk, and D2 = Bl for
some k, l ∈ I, and once again we’re done.

Case: LRp is an instance of (A2) with the form G ∧ (C → D) ≤ C → D. This
argument again proceeds by considering what LLp could be, and hence what Rp
could be, and is similar to previous arguments.

Case: LRp is an instance of (A3) with the form (C → D1) ∧ (C → D2) ≤ C →
D1 ∧ D2. If this is the case, then LLp could be (A1), in which case we’re done, or it
could be (A2). In this case, Rp can either be (A1) or (A2), and in either case we’re
done.

�

It is tedious, but not difficult, to prove the natural partner to Prop 5.10, that
no counterexample to bubbling can result from an application of (R1) to Lp (an
instance of an axiom) and Rp (the result of applying some rule to axioms). These
results display some nice patterns which could, it seems, be made to coagulate into
an inductive argument, but I don’t, at the time of writing, see how to do it. So I’ll
leave off with the conjecture that BB+

(∧I) bubbles, and this some evidence for it.
It also seems that the extension of BB+

(∧I) by weak DeMorgan negation, that is
a connective just satisfying double negation equivalence and the rule form of con-
traposition, shouldn’t pose substantial further difficulties. So if the bubbling ar-
gument can be made to go through, the result of extending the system with such a
negation would seem to also succumb to such an argument. Call this system BB(∧I)
– this is another seemingly good candidate for composition admission.

5.2. Almost No Logics Bubble. It is known that B∧ bubbles, there is reason to
think that BB+

(∧I) bubbles, and to suspect that BB(∧I) does as well. This leads to a
natural further question: which other logics bubble? Sadly the title of this section
gives away the answer. The following list of axioms (and one rule) have instances
(produce conclusions) which counterexemplify bubbling:

(∨E) (A→ C) ∧ (B→ C)→ (A ∨ B→ C)
(Cont) (A→ B)→ (¬B→ ¬A)

(WB) (A→ B) ∧ (B→ C)→ (A→ C)
(WI) (A→ B ∧ A)→ B
(CI) A→ ((A→ B)→ B)
(B) (A→ B)→ ((C → A)→ (C → B))
(K) A→ (B→ A)
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(◦I) A→ (B→ (A ◦ B))
(r←) A→ (B→ C)WV B→ (C ← A)

I’ll fill in the details for counterexamples fitting a couple of the above axioms,
leaving the others for the interested reader. For (∨E), note that 0 p ∨ q → p, so
0 p ∨ q→ p ∧ q, though with this axiom we have ` (p→ r) ∧ (q→ r)→ (p ∨ q→
r). For (◦I), note that while ` (p → q) → (r → ((p → q) ◦ r)), in no reasonable
logic do we have ` r → p. As for (r←), the extension of BB+ by this rule has (∨E)
as a theorem.

So while it seems highly likely that BB+
(∧I) bubbles, it seems that almost no other

logics bubble. So this rare, fragile property, while useful for performing surgery on
prime theories, is really not to be looked for outside of very minimal extensions to
distributive lattice logic.

6. CONCLUSION

In this paper I have provided a collection of reasonably simple and natural suf-
ficient conditions for a logic extending B∧ to admit channel composition. In ad-
dition, I have suggested that the logic BB+

(∧I) is an obvious candidate for a system
admitting channel composites, by means of this argument. Should it turn out that
BB+

(∧I) bubbles, this provides a new, interesting motivation for a potentially inter-
esting logic; one not, to my knowledge, picked out for attention in the past.

The results here suggest a potential unexplored avenue for constructing models
of combinatory logics in logics with disjunction. It has long been known that the set
of all B+> theories does not form a model of combinatory logic. In the past, such
models have been constructed using Harrop theories in place of prime theories
[14]. Should BB+

(∧I) prove to bubble, it seems highly likely that one will be able
to find, among (a nice subset of) its prime theories, a model of combinatory logic,
enriched with union types. This is just a guess, but it strikes me as a potentially
interesting avenue for new research on this topic.
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