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1 Introduction

Kubyshkina and Zaitsev [16] have recently presented the Logic of Rational Agent LRA. It is a
four-valued logic with one designated value and it is a member of the family of logics of generalized
truth values (see, for example, Shramko and Wansing’s book [36] about them). One may treat it as a
truth-functional epistemic logic. LRA has two different negations (called ontological and epistemic
ones) which due to the interpretation of the truth values of LRA model the behavior of an epistemic
operator “the agent A knows that X ”. The truth values are as follows: T1 (the proposition is true
and its value is known to the agent), T0 (the proposition is true and its value is not known to the
agent), F1 (the proposition is false and its value is known to the agent), F0 (the proposition is false
and its value is not known to the agent). The only designated value is T1, i.e. the propositions
that are true and the agent knows their values are tautologies of this logic. As Kubyshkina and
Zaitsev have shown, LRA avoids the well-known knowability paradox (Church-Fitch’s paradox).
They have presented an adequate axiomatization of their logic and have supplied it with necessity
and possibility operators defined by S5-style Kripke relational semantics.

In this paper, we introduce the logic LIRA (Logic of Internal Rational Agency)1 which is
a modification of LRA. It has the same set of truth values, but with a different interpretation, a
different set of designated values, the same negations, but different conjunction and disjunction. This
logic was inspired by a situation, when from an agent’s (internal) point of view her/his reasoning
is rational, while from an external point of view it might not the case. One may use this logic
to reconstruct an agent’s way of thinking, compare it with respect to the real state of affairs, and
understand why an agent thought in this or that way. Following Zaitsev and Shramko [42], we
interpret the truth components 1 and 0, respectively, as “the agent accepts the proposition” and
“the agent rejects the proposition”. All the values, except F0 (the proposition is false and the agent
rejects it), are designated. Hence, the valid propositions of LIRA are either true or accepted by

1I would like to thank Petr Cintula who suggested this name during the conference ManyVal 2019.
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the agent. The logic LRA allows us to analyse an agent’s knowledge about the real state of affairs,
but it is not precise enough with respect to the situations when an agent is mistaken. Our logic
allows us to investigate how an agent accepts or rejects the real state of affairs taking into account
the fact that an agent can be aberrant (e.g., because of an incompleteness of her/his knowledge or
using unreliable sources of information).

We present Jaśkowski-Fitch-style natural deduction for the negation fragment of LIRA and all
its truth-functional n-ary extensions, including LIRA itself, by Kooi and Tamminga’s machinery
of correspondence analysis [18]. Moreover, we consider a K-style modal extension of LIRA and a
natural deduction system for it. Let us point out an interesting feature of LRA and LIRA: since
each of these logics has two negations, so we have three distinct possibility operators for one necessity
operator, by the standard definition of possibility operator via necessity and negation.

The structure of this paper is as follows. In Section 2, we describe the semantics of LRA. In
Section 3, we introduce the logic LIRA. In Section 4, by correspondence analysis, we formalize
via natural deduction systems the negation fragment of LIRA and all its truth-functional n-ary
extensions (and, as a particular case, LIRA itself). In Section 5, we discuss the correspondence
analysis for LRA from [27] and generalize it for a larger class of logics. In Section 6, we discuss some
four-valued connectives already mentioned in the literature which may be added to LRA or LIRA
and formalized via correspondence analysis. In Section 7.1, we discuss Kubyshkina and Zaitsev’s
modal operators for LRA and introduce two new possibility operators. In Section 7.2, we provide
alternative modal operators for LIRA. In Section 7.3, we develop a natural deduction system for
K-style modal logic based on LIRA. Section 8 contains a description of future research.

2 The semantics of LRA

LRA [16] is build over a propositional language L the alphabet of which contains propositional
variables p, q, r, s, p1, . . ., two negations (¬ and ∼), conjunction (∧), disjunction (∨) as well as left
and right parentheses. Let P be the set of all propositional variables. The set F of all formulas
of the language L is defined in the standard inductive way. A valuation is a function V such that
V (P ) ∈ V4, for each P ∈ P, and the values of V (¬A), V (∼A), V (A ∧ B), and V (A ∨ B), for each
A,B ∈ F , are defined as follows:

A ¬ ∼
T1 F1 T0
T0 F0 T1
F1 T1 F0
F0 T0 F1

∧ T1 T0 F1 F0
T1 T1 T0 F1 F0
T0 T0 T0 F1 F0
F1 F1 F1 F1 F1
F0 F0 F0 F1 F0

∨ T1 T0 F1 F0
T1 T1 T1 T1 T1
T0 T1 T0 T0 T0
F1 T1 T0 F1 F0
F0 T1 T0 F0 F0

The elements of the set V4 = {T1, T0, F1, F0} of truth values are interpreted as follows, where V
is a valuation and A ∈ F :

• V (A) = T1 — A is true and is known by the agent,

• V (A) = T0 — A is true and is not known by the agent,

• V (A) = F1 — A is false and is known by the agent,

• V (A) = F0 — A is false and is not known by the agent.

The components T and F of truth values are ontological truth and falsehood, respectively. The
components 1 and 0 are epistemic states of an agent, known and unknown, respectively. The negation
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¬ is said to be ontological one, since it changes the components T and F of truth values. The negation
∼ is said to be epistemic one, since it changes epistemic states of the agent (1 and 0).

Kubyshkina and Zaitsev [16] do not mention which order relation can be defined on the set V4.
However, in an earlier paper [41], Zaitsev considers the {¬,∧,∨}-fragment of LRA and gives the
following ordering: F1 6 F0 6 T0 6 T1. As we can see, conjunction and disjunction are minimum
and maximum operations, respectively, according to this order relation.

The entailment relation in LRA is defined as follows, for any Γ ⊆ F and A ∈ F :

Γ |=LRA A iff V (G) = T1, for any G ∈ Γ, implies V (A) = T1, for any valuation V .

If Γ = ∅, then A is called a tautology or a valid formula. Clearly, in LRA, the set of designated
values is {T1}. The tautologies of LRA are those formulas which are true and the agent knows it.

3 The semantics of LIRA

In this section, we semantically present our own logic, LIRA. First of all, LIRA has the same
language and truth values as LRA. However, the interpretation of these truth values is different (V
is a valuation and A ∈ F ):

• V (A) = T1 — A is both ontologically and epistemically true, i.e. it is objectively true and
accepted by the agent;

• V (A) = T0 — A is ontologically, but epistemically false, i.e. it is objectively true, but rejected
by the agent;

• V (A) = F1 — A is ontologically false and epistemically true, i.e. it is objectively false, but
accepted by the agent,

• V (A) = F0 — A is both ontologically and epistemically false, i.e. it is objectively false and
rejected by the agent.

This interpretation of truth values was used by Zaitsev and Shramko [42] for their bi-facial truth
logic.

The ordering of truth values also differs from the case of LRA: F0 6′ F1 6′ T0 6′ T1. Both
negations are defined in the same way as in LRA, while conjunction and disjunction are different
(they are minimum and maximum, respectively, according to 6′).

∧ T1 T0 F1 F0
T1 T1 T0 F1 F0
T0 T0 T0 F1 F0
F1 F1 F1 F1 F0
F0 F0 F0 F0 F0

∨ T1 T0 F1 F0
T1 T1 T1 T1 T1
T0 T1 T0 T0 T0
F1 T1 T0 F1 F1
F0 T1 T0 F1 F0

The definition of the entailment relation is yet another distinction between LRA and LIRA:

Γ |=LIRA A iff V (G) 6= F0, for any G ∈ Γ, implies V (A) 6= F0, for any valuation V .

Let us say a few more words about the truth values and the entailment relation of LIRA.
Ontological components of truth values (T and F) are independent from the epistemic ones (1 and
0). Thus, for example, the following situation is possible: a statement is ontologically false, but
an agent accepts it as a true (e.g., because of an incompleteness of her/his knowledge). So, a
statement can be ontologically false, but epistemically true. For example, Ptolemy accepted an
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ontologically false proposition “the sun revolves around the earth”. At the same time an agent can
accept some other ontologically true statement and there can be a situation such that an agent
infers an ontologically false proposition from an ontologically true one, because both of them are
accepted by her/him. The agent just does not know their ontological values and believes that these
statements are true and that her/his reasoning is right. As observers we have more information and
know that agent’s reasoning is not correct.

We believe that LIRA might be useful, if we want to reconstruct an agent’s reasoning (even
if it is mistaken from an ontological point of view) and to try to understand how the agent has
thought, why the agent has thought in this or that way. The epistemic components of truth values
can represent an agent’s truth value assignment of propositions. The ontological ones can represent
the real state of affairs. It allows us to check the relevancy of agent’s knowledge with respect to the
actuality.

4 Natural deduction for LIRA

In this section, using correspondence analysis we formalize LIRA itself as well as a large class
of related logics. Correspondence analysis was developed by Kooi and Tamminga [18] in order to
formalize some three-valued logics. One may find in [19, 20] a survey of the current stage of the
development of correspondence analysis. We just mention that for LRA it was applied in [27].
However, LRA itself has been already axiomatized in [16].

We must say that correspondence analysis is not the only method of construction of natural
deduction systems for many-valued logics. For example, Baaz, Fermüller, and Zach [6] provide the
technique of automated generation of labeled natural deduction systems for many-valued logics which
is based on their earlier work on sequent and tableau calculi [5]. However, we are interested in the
development of the non-labeled, purely syntactic calculi, so we will not follow Baaz, Fermüller, and
Zach’s manner. Yet another way to obtain a natural deduction system for a many-valued logic is
to present a sequent calculus for this logic, following Avron’s [3] approach (see also a later paper by
Avron, Ben-Naim, and Konikowska [4]) and transform this sequent calculus to the natural deduction
system. A comparison of correspondence analysis and Avron, Ben-Naim, and Konikowska’s method
one may find in [26].

The idea of the technique of correspondence analysis is as follows. We consider a functionally
incomplete set of connectives and present a natural deduction system for it (a basic system). Then
using these connectives we show how to rewrite semantical conditions for the other truth-functional
connectives into inference rules. Here are some examples. Kooi and Tamminga [18, 39] dealt with
the {¬,∧,∨}-language for the basic system which was supplied with unary operations ∼1, . . . ,∼m
and binary ones ◦1, . . . , ◦n. In [28], it was shown that for the same logics (and some others) it is
enough to consider the {¬}-language for the basic system. In [27], basic systems were built in the
{¬,∼,∧,∨}-language. In our case, the {¬,∼}-language (which is obviously functionally incomplete)
is powerful enough to be the language of the basic system.2 In Section 5, we show that it is powerful
enough for the case of LRA as well (thus, the results from [27] can be generalized).

How to rewrite the semantical conditions, for example, for a binary truth-functional operator
◦ into an inference rule? Kooi and Tamminga suggest to find an inference scheme Γ/A such that
Γ |= A iff x ◦ y = z, where x, y, z are truth values. If one finds such inference schemes for all the
possible equations of the form x ◦ y = z, then one gets a set of sound and complete inference rules

2The reasons to choose this fragment are as follows. First, we need negations to define the notion of a canonic
valuation in our completeness proof. Second, the rules for all other connectives can be obtained by correspondence
analysis with the help of negations.
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for ◦. In the case of our logic, we will need to consider proof construction rules of the following
form: if B1, . . . , Bm,Γ1/A1, . . . ,Γl/Al is provable, then C is provable as well. Moreover, we will deal
with n-ary operators }1, . . . ,}k. In contrast to [18, 39, 28, 26], we present all the rules in a general
way, i.e. we introduce one equivalence from which all the rules for all the equations of the form
}(x1, . . . , xn) = y are extracted.

First, we introduce a natural deduction system ND¬∼LIRA for the {¬,∼}-fragment of LIRA.
Second, we present a natural deduction system ND¬∼}LIRA for each extension of the {¬,∼}-fragment
of LIRA by any truth-functional n-ary operators }1, . . . ,}k (we denote such an extension by
LIRA(})k). As a particular case, we obtain a natural deduction system for LIRA itself. Let L(})k
be an extension of L by n-ary operators }1, . . . ,}k. Let F(})k be the set of all formulas of the
language L(})k .

Let us introduce the natural deduction system ND¬∼LIRA which has the following inference and
proof construction rules:

(EM 1)

[A] [¬A]

B B

B
, (EM 2)

[A] [∼A]

B B

B
, (EM 3)

[A] [∼¬A]

B B

B
, (EM 4)

[¬A] [∼A]

B B

B
,

(EFQ)
A ¬A ∼A ∼¬A

B
, (¬¬I) A

¬¬A
, (∼∼I) A

∼∼A
,

(∼¬¬I) ∼A
∼¬¬A

, (¬∼∼I) ¬A
¬∼∼A

, (¬∼I) ∼¬A
¬∼A

, (∼¬I) ¬∼A
∼¬A

.

Definition 4.1. The notion of an inference of a formula C from a set of formulas Γ in ND¬∼LIRA is
understood in the spirit of [11, p. 366] and [35] as a finite non-empty sequence of formulas which
satisfies the following conditions:

• all formulas are premises (elements of Γ) or assumptions or follow from the previous ones via
ND¬∼LIRA-inference rules,

• by applying the rule (EM i) each formula starting from the assumption A′ until the formula
B, inclusively, as well as each formula starting from the assumption A′′ until the formula B,
inclusively, is discarded from the inference, where i ∈ {1, . . . , 4} and A′ = A for i ∈ {1, 2, 3},
A′ = ¬A for i = 4, A′′ = ¬A for i = 1, A′′ = ∼A for i ∈ {2, 4}, and A′′ = ∼¬A for i = 3.

A proof of a formula C is its inference from the empty set of premises.

An example of an inference in ND¬∼LIRA is presented in Figure 1.

Proposition 4.2. The following inference rules are derivable in ND¬∼LIRA:

(¬¬E)
¬¬A
A

, (∼∼E)
∼∼A
A

, (∼¬¬E)
∼¬¬A
∼A

, (¬∼∼E)
¬∼∼A
¬A

.

Proof. As an example, we show the derivability of (∼∼E) in Figure 1.

Definition 4.3. For each formula A and each X ∈ V4, AX and AX , respectively, are called X– and
X–images of A and are defined as follows:

AX =


A iff X = T1;

∼A iff X = T0;

¬A iff X = F1;

∼¬A iff X = F0;

AX =


A iff X = F0;

∼A iff X = F1;

¬A iff X = T0;

∼¬A iff X = T1.
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1 ∼∼p premise

2 p assumption

3 ¬p assumption

4 ¬∼∼p (¬∼∼I): 3

5 ∼¬∼p (∼¬I): 4

6 p assumption

7 ∼p assumption

8 p assumption

9 ∼¬p assumption

10 ¬∼p (¬∼I): 9

11 p (EFQ): 7, 10, 1, 5

12 p (EM 3): 8, 11 [8], [9–11]

13 p (EM 2): 6, 12 [6], [7–12]

14 p (EM 1): 2, 13 [2], [3–13]

Figure 1: An inference of p from ∼∼p in ND¬∼LIRA.

The subsequent corollaries follow from Definition 4.3.

Corollary 4.4. For each formula A, each valuation V , and each X ∈ V4, it holds that V (AX) = T1

iff V (A) = X.

Corollary 4.5. For each formula A, each valuation V , and each X ∈ V4, it holds that V (AX) = F0

iff V (A) = X.

Definition 4.6 (An auxiliary entailment relation). For each formulas A1, . . . , Am, B1, . . . , Bl, C it
holds that

A1, . . . , Am, B1 ⇒ C, . . . , Bl ⇒ C |= C iff

if V (Ai) 6= F0 and it holds that V (Bj) 6= F0 implies V (C) 6= F0, then V (C) 6= F0, for each
i ∈ {1, . . . ,m} and j ∈ {1, . . . , l}.

Remark 4.7. An inference scheme A1, . . . , Am, B1 ⇒ C, . . . , Bl ⇒ C/C produces the following proof
construction rule:

[B1] . . . [Bl]

A1 . . . Am C . . . C

C
.

Let us introduce an adaptation for our case of a generalized version [28, Definition 4.1] of Kooi
and Tamminga’s original definition of single entry correspondence [18, 39, Definition 2.1, Definition
1].
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Definition 4.8 (Generalized single entry correspondence). Let L = LIRA(})k , A1, . . . , Am, B1, . . . , Bl,
C1, . . . , Cj ∈ F(})k , x1, . . . , xn, y ∈ V4, and 1 6 i 6 j. Let Ii/Ci be an inference scheme of
the type A1, . . . , Am, B1 ⇒ Ci, . . . , Bl ⇒ Ci/Ci or A1, . . . , Am/Ci. Then a truth table entry
}(x1, . . . , xn) = y is characterized by inference schemes I1/C1, . . . , Ij/Cj , if

}(x1, . . . , xn) = y if and only if I1 |=L C1, . . . , Ij |=L Cj .

Theorem 4.9. Let L = LIRA(})k . For each X1, . . . , Xn, Y ∈ V4, it holds that

}(X1, . . . , Xn) = Y iff
}(A1, . . . , An)Y , AX1

1 ⇒ B, . . . , AXn
n ⇒ B |=L B,

for each formulas A1, . . . , An, B.

Proof. Suppose there are formulas A1, . . . , An, B such that }(A1, . . . , An)Y , AX1
1 ⇒ B, . . . , AXn

n ⇒
B 6|= B. Then there is a valuation V such that V (}(A1, . . . , An)Y ) 6= F0 and it holds that V (AX1

1 ) 6=
F0 implies V (B) 6= F0, . . . , V (AXn

n ) 6= F0 implies V (B) 6= F0, while V (B) = F0. Then V (AX1
1 ) = F0,

. . . , V (AXn
n ) = F0. By Corollary 4.5, V (A1) = X1, . . . , V (An) = Xn, and V (}(A1, . . . , An)) 6= Y .

But then }(X1, . . . , Xn) 6= Y .
Suppose }(X1, . . . , Xn) 6= Y . Then there are formulas A1, . . . , An and a valuation V such that

V (A1) = X1, . . . , V (An) = Xn while V (}(X1, . . . , Xn)) 6= Y . By Corollary 4.5, V (AX1
1 ) = F0, . . . ,

V (AXn
n ) = F0, V (}(A1, . . . , An)Y ) 6= F0. Let B be a formula such that V (B) = F0. Thus, it holds

that AX1
1 ⇒ B, . . . , AXn

n ⇒ B. Then }(A1, . . . , An)Y , AX1
1 ⇒ B, . . . , AXn

n ⇒ B 6|= B.

Remark 4.10. Theorem 4.9 produces proof construction rules of the following form:

R}(X1, . . . , Xn, Y )

[AX1
1 ] . . . [AXn

n ]

}(A1, . . . , An)Y B . . . B

B
.

In order to obtain the definition of an inference of a formula C from a set of formulas Γ in
ND¬∼}LIRA one should extend Definition 4.1 by the following point:

• by applying the rule R}(X1, . . . , Xn, Y ) each formula starting from the assumption AXi
i (1 6

i 6 n) until the formula B, inclusively, is discarded from the inference.

Let us mention one strange feature of Theorem 4.9: it produces elimination rules only. It raises a
question: what to do, if one wants to introduce the formula }(A1, . . . , An)? The answer is to use the
rules (EM1)–(EM4) or (EFQ). These rules are two-faced: on the one hand, they eliminate formulas
with negations, on the other hand, they introduce the formula B which, in particular, can be of the
form }(A1, . . . , An). Let us remark that one may find examples of sequent calculus with the left
rules only (which are sequent-style versions of natural deduction elimination rules) for some of their
connectives. Negri and Von Plato [25] provide the method of the transformation of the axioms into
sequent rules. Being applied to a particular logic this method may produce the left rules only, as it
was, for example, in the case of Suszko’s [38] logic SCI which was considered by Chlebowski [10].
Interestingly, Chlebowski presented also a version of sequent calculus for SCI with the right rules
only. But in contrast to the calculus with the left rules, this one does not enjoy cut elimination
theorem.

Theorem 4.11 (Soundness). Let L = LIRA(})k . For each set of formulas Γ and each formula A,
it holds that Γ `L A implies Γ |=L A.
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Proof. By induction on the depth of derivation. In the case of the rules for } use Theorem 4.9.

Definition 4.12. A set of formulas Γ is said to be an LIRA(})k -theory iff the following conditions
hold, for each X,X1, . . . , Xn ∈ V4 and each formulas A,A1, . . . , An:

(Γ1) Γ 6= F(})k ;
(Γ2) Γ `L A implies A ∈ Γ, where L = LIRA(})k ;
(Γ3) A ∈ Γ or ¬A ∈ Γ;
(Γ4) A ∈ Γ or ∼A ∈ Γ;
(Γ5) A ∈ Γ or ∼¬A ∈ Γ;
(Γ6) ¬A ∈ Γ or ∼A ∈ Γ;

(Γ7) if }(A1, . . . , An)X ∈ Γ and }(X1, . . . , Xn) = X, then AX1
1 ∈ Γ or . . . or AXn

n ∈ Γ.

Definition 4.13. An interpretation function of a formula A in a set of formulas Γ is defined as
follows:

I(A,Γ) =



T1 iff A ∈ Γ,¬A ∈ Γ,∼A ∈ Γ,∼¬A 6∈ Γ;

T0 iff A ∈ Γ,¬A 6∈ Γ,∼A ∈ Γ,∼¬A ∈ Γ;

F1 iff A ∈ Γ,¬A ∈ Γ,∼A 6∈ Γ,∼¬A ∈ Γ;

F0 iff A 6∈ Γ,¬A ∈ Γ,∼A ∈ Γ,∼¬A ∈ Γ;

∅ otherwise.

Lemma 4.14. For each LIRA(})k-theory Γ and each formulas A,A1, . . . , An, the following equations
hold :

(1) I(A,Γ) 6= ∅;
(2) I(¬A,Γ) = ¬I(A,Γ);
(3) I(∼A,Γ) = ∼I(A,Γ);
(4) I(}(A1, . . . , An),Γ) = }(I(A1,Γ), . . . , I(An,Γ)).

Proof. (1) Suppose I(A,Γ) = ∅. Suppose A ∈ Γ, ¬A ∈ Γ, ∼A ∈ Γ, and ∼¬A ∈ Γ. Then, by the rule
(EFQ), B ∈ Γ. Thus, Γ = F(})k which contradicts (Γ1). Suppose A 6∈ Γ and ¬A 6∈ Γ. However,
by (Γ3), A ∈ Γ or ¬A ∈ Γ. Contradiction. The other cases are considered similarly. Use (Γ4)–(Γ6).
Thus, I(A,Γ) 6= ∅.

(2) Suppose I(A,Γ) = T1. Then A ∈ Γ,¬A ∈ Γ,∼A ∈ Γ,∼¬A 6∈ Γ. By (Γ6), ¬¬A ∈ Γ or
∼¬A ∈ Γ. Since ∼¬A 6∈ Γ, ¬¬A ∈ Γ. By (Γ3), ∼¬A ∈ Γ or ¬∼¬A ∈ Γ. Since ∼¬A 6∈ Γ,
¬∼¬A ∈ Γ. By the rule (∼¬I), ∼¬¬A ∈ Γ. Thus, I(¬A,Γ) = F1 = ¬T1 = ¬I(A,Γ).

Suppose I(A,Γ) = T0. Then A ∈ Γ,¬A 6∈ Γ,∼A ∈ Γ,∼¬A ∈ Γ. By (Γ3), ¬A ∈ Γ or
¬¬A ∈ Γ. By (Γ5), ¬A ∈ Γ or ∼¬¬A ∈ Γ. Since ¬A 6∈ Γ, ¬¬A ∈ Γ and ∼¬¬A ∈ Γ. Thus,
I(¬A,Γ) = F0 = ¬T0 = ¬I(A,Γ).

Suppose I(A,Γ) = F1. Then A ∈ Γ,¬A ∈ Γ,∼A 6∈ Γ,∼¬A ∈ Γ. By the rule (¬¬I), ¬¬A ∈ Γ.
Suppose ∼¬¬A ∈ Γ. By the rule (EFQ), B ∈ Γ, i.e. Γ = F(})k , which contradicts (Γ1). Hence,
∼¬¬A 6∈ Γ. Thus, I(¬A,Γ) = T1 = ¬F1 = ¬I(A,Γ).

Suppose I(A,Γ) = F0. ThenA 6∈ Γ,¬A ∈ Γ,∼A ∈ Γ,∼¬A ∈ Γ. By the rule (∼¬¬I), ∼¬¬A ∈ Γ.
Suppose ¬¬A ∈ Γ. By the rule (EFQ), B ∈ Γ, which contradicts (Γ1). Hence, ¬¬A 6∈ Γ. Thus,
I(¬A,Γ) = T0 = ¬F0 = ¬I(A,Γ).

(3) Suppose I(A,Γ) = T1. Then A ∈ Γ,¬A ∈ Γ,∼A ∈ Γ,∼¬A 6∈ Γ. By (Γ6), ¬∼A ∈ Γ or
∼∼A ∈ Γ. Since ∼¬A 6∈ Γ, ∼∼A ∈ Γ. By the rule (¬∼∼I), ¬∼∼A ∈ Γ. By the rule (∼¬I),
∼¬∼A ∈ Γ. Thus, I(∼A,Γ) = T0 = ∼T1 = ∼I(A,Γ).

Suppose I(A,Γ) = T0. Then A ∈ Γ,¬A 6∈ Γ,∼A ∈ Γ,∼¬A ∈ Γ. By the rule (∼∼I), ∼∼A ∈ Γ.
By the rule (EFQ), ∼¬∼A 6∈ Γ. Thus, I(∼A,Γ) = T1 = ∼T0 = ∼I(A,Γ).
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Suppose I(A,Γ) = F1. Then A ∈ Γ,¬A ∈ Γ,∼A 6∈ Γ,∼¬A ∈ Γ. By (Γ4), ∼A ∈ Γ or ∼∼A ∈ Γ.
Thus, ∼∼A ∈ Γ. By the rules (¬∼∼I) and (∼¬I), ∼¬∼A ∈ Γ. Thus, I(∼A,Γ) = F0 = ∼F1 =
∼I(A,Γ).

Suppose I(A,Γ) = F0. Then A 6∈ Γ,¬A ∈ Γ,∼A ∈ Γ,∼¬A ∈ Γ. By the rules (¬∼∼I) and
(∼¬I), ∼¬∼A ∈ Γ. By the rule (EFQ), ∼∼A 6∈ Γ. Thus, I(∼A,Γ) = F1 = ∼F0 = ∼I(A,Γ).

(4) SupposeX,X1, . . . , Xn ∈ V4 and}(X1, . . . , Xn) = X. Suppose I(A1,Γ) = X1, . . . , I(An,Γ) =

Xn. As follows from Definitions 4.3 and 4.13, I(C,Γ) = Y iff CY 6∈ Γ, for each formula C and each
Y ∈ V4. Therefore, AX1

1 6∈ Γ, . . . , AXnn 6∈ Γ. Suppose }(A1, . . . , An)X ∈ Γ. Then, by (Γ7), AX1
1 ∈ Γ

or . . . or AXn
n ∈ Γ. Contradiction. Thus, }(A1, . . . , An)X 6∈ Γ. Then I(}(A1, . . . , An),Γ) = X.

Hence, I(}(A1, . . . , An),Γ) = }(X1, . . . , Xn) = }(I(A1,Γ), . . . , I(An,Γ)).

Definition 4.15. For each LIRA(})k -theory Γ and each P ∈ P, a function V c
Γ is said to be a

canonic valuation iff V c
Γ (P ) = I(P,Γ).

Lemma 4.16. For each LIRA(})k-theory Γ, each formula A, and each canonic valuation V c
Γ , it

holds that V c
Γ (A) = I(A,Γ).

Proof. By induction on A, using Lemma 4.14.

Lemma 4.17 (Lindenbaum). Let L = LIRA(})k . For each set of formulas Γ and each formula A,
it holds that if Γ 6`L A, then there is an LIRA(})k-theory ∆ such that Γ ⊆ ∆ and ∆ 6`L A.

Proof. In the standard way. See, for example, [18].

Theorem 4.18 (Completeness). Let L = LIRA(})k . For each set of formulas Γ and each formula
A, it holds that Γ |=L A implies Γ `L A.

Proof. By contraposition. Suppose Γ 6`L A. Then, by Lemma 4.17, there is an LIRA(})k -theory ∆
such that Γ ⊆ ∆ and ∆ 6` A. By Lemma 4.16, V c

∆(G) 6= F0 (for each G ∈ Γ), while V c
∆(A) = F0,

where V c
∆ is a canonic valuation. Thus, Γ 6|=L A.

Corollary 4.19 (Adequacy). Let L = LIRA(})k . For each set of formulas Γ and each formula A,
it holds that Γ |=L A iff Γ `L A.

Proof. Follows from Theorems 4.11 and 4.18.

5 Generalized formalization of LRA

The first axiomatization of LRA was presented by Kubyshkina and Zaitsev [16] in the {¬,∼,∧,∨}-
language in the form of binary consequence system. In [27], correspondence analysis was applied
for LRA. As a result two natural deduction systems were obtained. The former one is built in
the {¬,∼,∧,∨}-language for LRA itself. The latter one is developed in the {¬,∼,∧,∨, ?1, . . . , ?m,
◦1, . . . , ◦l}-language for the extension of LRA by tabular unary operators ?1, . . . , ?m and binary ones
◦1, . . . , ◦l. In this section, we generalize this result. First, we consider n-ary operators }1, . . . ,}k
(not only unary and binary ones as in [27]). Second, we supply the {¬,∼}-fragment of LRA with
them (not LRA itself as in [27]). Thus, more logics are covered. The extension of the {¬,∼}-
fragment of LRA by n-ary operators }1, . . . ,}k will be denoted by LRA(})k .

Inference and proof construction rules of a natural deduction system ND¬∼LRA for the {¬,∼}-
fragment of LRA are as follows: (¬¬I), (∼∼I), (∼¬¬I), (¬∼∼I), (¬∼I), (∼¬I) as well as the
subsequent ones
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(EM )

[A] [¬A] [∼A] [∼¬A]

B B B B

B
, (EFQ1)

A ¬A
B

,

(EFQ2)
A ∼A
B

, (EFQ3)
A ∼¬A

B
, (EFQ4)

¬A ∼A
B

.

Proposition 5.1. The rules (¬¬E), (∼∼E), (∼¬¬E), and (¬∼∼E) are derivable in ND¬∼LRA.

Proof. Left for the reader.

Theorem 5.2. Let L = LRA(})k . For each X1, . . . , Xn, Y ∈ V4, it holds that

}(X1, . . . , Xn) = Y iff
AX1

1 , . . . , AXnn |=L }(A1, . . . , An)Y ,

for each formulas A1, . . . , An.

Proof. Suppose there are A1, . . . , An ∈ F(})k such that AX1
1 , . . . , AXnn |=L }(A1, . . . , An)Y . Then

there is a valuation V such that V (}(A1, . . . , An)Y ) 6= T1 and V (AX1
1 ) = T1, . . . , V (AXnn ) =

T1. By Corollary 4.5, V (A1) = X1, . . . , V (An) = Xn, and V (}(A1, . . . , An)) 6= Y . But then
}(X1, . . . , Xn) 6= Y .

Suppose }(X1, . . . , Xn) 6= Y . Then there are formulas A1, . . . , An and a valuation V such that
V (A1) = X1, . . . , V (An) = Xn while V (}(X1, . . . , Xn)) 6= Y . By Corollary 4.5, V (AX1

1 ) = T1, . . . ,
V (AX1

n ) = T1, V (}(A1, . . . , An)Y ) 6= T1. Then AX1
1 , . . . , AXnn 6|=L }(A1, . . . , An)Y .

Remark 5.3. Theorem 5.2 produces inference rules of the following form:

R}(X1, . . . , Xn, Y )
AX1

1 . . . AXnn
}(A1, . . . , An)Y

In contrast to Theorem 4.9, Theorem 5.2 produces introduction rules only. To eliminate the
formulas of the form }(A1, . . . , An) one may use the rules (EM ) and (EFQ1)–(EFQ4).

ND¬∼LRA should be extended by the rules based on the inference schemes from Theorem 5.2 to
obtain natural deduction system ND¬∼}LRA for LRA(})k . The notion of inference in these systems is
defined similarly to the case of ND¬∼LIRA and ND¬∼}LIRA (see Definition 4.1).

Theorem 5.4 (Adequacy). Let L = LRA(})k . For each set of formulas Γ and each formula A, it
holds that Γ |=L A iff Γ `L A.

Proof. Similarly to Theorems 4.11 and 4.18. Use the following definition of an interpretation function
of a formula A in a set of formulas Γ:

I(A,Γ) =



T1 iff A ∈ Γ,¬A 6∈ Γ,∼A 6∈ Γ,∼¬A 6∈ Γ;

T0 iff A 6∈ Γ,¬A 6∈ Γ,∼A ∈ Γ,∼¬A 6∈ Γ;

F1 iff A 6∈ Γ,¬A ∈ Γ,∼A 6∈ Γ,∼¬A 6∈ Γ;

F0 iff A 6∈ Γ,¬A 6∈ Γ,∼A 6∈ Γ,∼¬A ∈ Γ;

∅ otherwise.
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6 Some possible truth-functional extensions of LRA and LIRA

In this section, we describe several truth-functional operators which can be added to LRA or LIRA
themselves or to their {¬,∼}-fragments. To be sure, the resulting logics can be formalized via
correspondence analysis.

Since LIRA and LRA have two negations, conjunction, and disjunction, it is natural to think
about an implication for them. We suggest the class of implications which may be added to these
logics. This class consists of four-valued versions of Tomova’s [40, 15] three-valued natural implica-
tions.3

Definition 6.1. An implication → is said to be natural iff the following conditions hold, for each
x, y ∈ V4:

(1) (a) → coincides with classical implication on the set {T1, F1} (for the case of LRA);
(b) → coincides with classical implication on the set {T1, F0} (for the case of LIRA);

(2) → satisfies the modus ponens principle, i.e.

(a) x = T1 and x→ y = T1 implies y = T1 (for the case of LRA),
(b) x 6= F0 and x→ y 6= F0 implies y 6= F0 (for the case of LIRA).

(3) (a) x 6 y implies x→ y = T1 (for the case of LRA),
(b) x 6′ y implies x→ y 6= F0 (for the case of LIRA).

Thus, for the case of LRA and LIRA, respectively, we have 576 and 34992 natural implications
which are as follows:

LRA LIRA
→ T1 T0 F0 F1
T1 T1 C1 C2 F1
T0 T1 T1 A1 A2

F0 T1 T1 T1 A3

F1 T1 T1 T1 T1

→ T1 T0 F1 F0
T1 T1 A1 A2 F0
T0 D1 D2 A3 F0
F1 D3 D4 D5 F0
F0 T1 D6 D7 T1

where A1, A2, A3 ∈ V4 where A1, A2, A3 ∈ V4 and
and C1, C2 ∈ {T0, F1, F0}. Di ∈ {T1, T0, F1}, 1 6 i 6 7.

Let us stress that inference rules for all these implications can be found due to correspondence
analysis. In the rest of this section, we are going to discuss in more details several well-known
implications. We start with the ones which could be added to LRA (all of them, except →3, are
natural).

→1 T1 T0 F0 F1

T1 T1 T0 F0 F1

T0 T1 T1 T0 F0

F0 T1 T1 T1 T0

F1 T1 T1 T1 T1

→2 T1 T0 F0 F1

T1 T1 T0 F0 F1

T0 T1 T1 F0 F1

F0 T1 T1 T1 F1

F1 T1 T1 T1 T1

→3 T1 T0 F0 F1

T1 T1 F1 F1 F1

T0 T1 T1 F1 F1

F0 T1 F1 T1 F1

F1 T1 T1 T1 T1

3It were Méndez and Robles [24] who first adapted Tomova’s definition for the four-valued case. They dealt with
the only designated value (as in the case of LRA), but with partially ordered truth values (recall that in our case they
are linearly ordered). As a result, Méndez and Robles [24] obtained 2304 natural implications. Let us mention their
recent papers [31, 30], where they present Hilbert-style calculi and Routley-Meyer semantics for Tomova’s three-valued
natural logics. Some of Tomova’s three-valued natural implications are natural in the sense of Avron’s paper [2] as
well.
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→4 T1 T0 F0 F1

T1 T1 F1 F1 F1

T0 T1 T1 F1 F1

F0 T1 T1 T1 F1

F1 T1 T1 T1 T1

→5 T1 T0 F0 F1

T1 T1 F1 F1 F1

T0 T1 T1 T1 T1

F0 T1 T1 T1 T1

F1 T1 T1 T1 T1

→6 T1 T0 F0 F1

T1 T1 T0 F0 F1

T0 T1 T1 T1 T1

F0 T1 T1 T1 T1

F1 T1 T1 T1 T1

The implication →1 is  Lukasiewisz’s [23, 22], from his logic  L4. The implication →2 is Gödel’s,
from his logic G4 [13].4 The implication →3 is Smiley’s. He found a characteristic matrix for
Anderson and Belnap’s Efde and sent in the mail correspondence to Anderson and Belnap. Then this
matrix was published by Anderson and Belnap in [1] with the reference to personal communication
with Smiley. The connective →4 is a four-valued version of Rescher’s three-valued implication
[29]. The implication →5 is due to Sette and Carnielli and their four-valued logic I14 which is
a generalization of their logic I1 [34]. The implication →6 satisfies Rosser and Turquette’s [32]
conditions of the classicality of the implication in the four-valued case with one designated value.5

Let us consider some remarkable natural implications which could be added to LIRA.

→7 T1 T0 F1 F0

T1 T1 T0 F1 F0

T0 T1 T1 F1 F0

F1 T1 T1 T1 F0

F0 T1 T1 T1 T1

→8 T1 T0 F1 F0

T1 T1 F0 F0 F0

T0 T1 T1 F0 F0

F1 T1 T1 T1 F0

F0 T1 T1 T1 T1

→9 T1 T0 F1 F0

T1 T1 T1 T1 F0

T0 T1 T1 T1 F0

F1 T1 T1 T1 F0

F0 T1 T1 T1 T1

→10 T1 T0 F1 F0

T1 T1 T0 F1 F0

T0 T1 T0 F1 F0

F1 T1 T0 F1 F0

F0 T1 T1 T1 T1

The implication →7 is yet another version of Gödel’s from G4. In contrast to the case of LRA
(see footnote 4), now we associate 1/3 with F1 and 0 with F0. Similarly, →8 is yet another version
of Rescher’s implication. The implication →9 is from Carnielli and Lima-Marques’ [9] four-valued
logic P1

4 which is a modification of Sette’s three-valued logic P1 [33]. The implication →10 satisfies
Rosser and Turquette’s conditions of the classicality of the implication in the four-valued case with
three designated values.

7 Modal extensions of LIRA

7.1 Kubyshkina and Zaitsev’s modal operators for LRA

Kubyshkina and Zaitsev [16] consider relational models of the form 〈W,R, V 〉, where W is a non-
empty set of worlds, R is a reflexive, transitive, and symmetric (viz., universal) binary relation on

4Notice that  L4 and G4 have the following truth values: 1, 2/3, 1/3, 0. We associate 1 with T1, 2/3 with T0, 1/3 with
F0, and 0 with F1.

5Let D be the set of designated values. Rosser and Turquette [32] showed that the set of tautologies of the many-
valued logic coincides with the set of tautologies of classical logic, if the connectives of a many-valued logic satisfies
the following conditions: V (¬A) ∈ D iff v(A) 6∈ D , V (A → B) 6∈ D iff v(A) ∈ D and v(B) 6∈ D , V (A ∧ B) ∈ D iff
v(A) ∈ D and V (B) ∈ D , V (A ∨B) 6∈ D iff v(A) 6∈ D and V (B) 6∈ D .
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W , and V is a valuation defined as a function from6 LM ×W into V4 such that it preserves the
above mentioned conditions for the truth-functional operators and, for any A ∈ FM and x ∈ W ,
we have:

• V (2A,w) = T1 iff ∀u∈R[w]V (A, u) = T1,
• V (2A,w) = T0 iff ∀u∈R[w](V (A, u) = T1 or V (A, u) = T0) and ∃u∈R[w]V (A, u) = T0,
• V (2A,w) = F1 iff ∃u∈R[w]V (A, u) = F1,
• V (2A,w) = F0 iff ∀u∈R[w]V (A, u) 6= F1 and ∃u∈R[w]V (A, u) = F0;

◦ V (♦¬A,w) = T1 iff ∃u∈R[w]V (A, u) = T1,
◦ V (♦¬A,w) = T0 iff ∀u∈R[w]V (A, u) 6= T1 and ∃u∈R[w]V (A, u) = T0,
◦ V (♦¬A,w) = F1 iff ∀u∈R[w]V (A, u) = F1,
◦ V (♦¬A,w) = F0 iff ∀u∈R[w](V (A, u) = F1 or V (A, u) = F0) and ∃u∈R[w]V (A, u) = F0.

Kubyshkina and Zaitsev use the name LRA♦2 for an extension of LRA by these operators.
Let us use the abbreviation LRAK for the logic which has an arbitrary accessibility relation R. As
they notice, ♦¬A is equivalent to ¬2¬A. Moreover, it is easy to show that 2A is equivalent to
¬♦¬¬A. It is possible to introduce two new possibility operators as follows: ♦∼A := ∼2∼A and
♦CA := ∼¬2∼¬A (C stands for classical, since a combination of ∼ and ¬ is classical negation):

• V (♦∼A,w) = T1 iff ∀u∈R[w](V (A, u) = T1 or V (A, u) = T0) and ∃u∈R[w]V (A, u) = T1,
• V (♦∼A,w) = T0 iff ∀u∈R[w]V (A, u) = T0,
• V (♦∼A,w) = F1 iff ∀u∈R[w]V (A, u) 6= F0 and ∃u∈R[w]V (A, u) = F1,
• V (♦∼A,w) = F0 iff ∃u∈R[w]V (A, u) = F0.

◦ V (♦CA,w) = T1 iff ∀u∈R[w](V (A, u) 6= T0) and ∃u∈R[w]V (A, u) = T1,

◦ V (♦CA,w) = T0 iff ∃u∈R[w]V (A, u) = T0,

◦ V (♦CA,w) = F1 iff ∀u∈R[w](V (A, u) = F1 or V (A, u) = F0) and ∃u∈R[w]V (A, u) = F1,

◦ V (♦CA,w) = F0 iff ∀u∈R[w]V (A, u) = F0.

By a routine check, we obtain the following propositions which hold for LRAK and LRA♦2.

Proposition 7.1. For each A ∈ FM , it holds that

(1) 2A = ¬♦¬¬A = ∼♦∼∼A = ∼¬♦C∼¬A;

(2) ♦¬A = ∼¬♦∼∼¬A = ∼♦C∼A;

(3) ♦∼A = ∼¬♦¬∼¬A = ¬♦C¬A;

(4) ♦CA = ∼♦¬∼A = ¬♦∼¬A.
Proposition 7.2. For each A ∈ FM , it holds that

(1) ¬2A = ♦¬¬A, ∼2A = ♦∼∼A, ∼¬2A = ♦C∼¬A;

(2) 2¬A = ¬♦¬A, 2∼A = ∼♦∼A, 2∼¬A = ∼¬♦CA;

(3) ∼♦¬A = ♦C∼A, ¬♦∼A = ♦C¬A, ¬♦CA = ♦∼¬A, ∼♦CA = ♦¬∼A;

(4) ∼¬♦¬A = ♦∼∼¬A, ∼¬♦∼A = ♦¬∼¬A.
6We write LM for an extension of L by 2. The operator ♦¬ can be introduced as ¬2¬ (for this reason we also

change its original denotation, i.e. ♦, which has a sense, since LRA has several negations). We denote via FM the
set of all LM -formulas. We will also use notation LM

(})k
and FM

(})k
when we enrich the language L(})k by 2. We

put R[w] := {u ∈W | wRu}.
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7.2 Modal operators for LIRA

Let us consider the following rule:

(2I)
Γ ` A

2Γ ` 2A

It is a standard introduction rule for 2 in linear-type natural deduction systems. One may consult
Garson’s book [12] for its usage in the modal logics which have classical logic as its propositional basis.
If Γ = ∅, then it is just the well-known Gödel’s rule. Unfortunately, if we enrich LIRA by Kubyshkina
and Zaitsev’s 2, then (2I) is not valid.7 It is not surprising and it is not a drawback of Kubyshkina
and Zaitsev’s 2, since their definition of 2 was designed for LRA and its entailment relation,
while LIRA has a different set of designated values. Let us pinpoint the case V (2A,w) = F1.
Then V (A, u) = F1, for some u ∈ R[w]. It is possible that in some other element of R[w], say z,
V (A, z) = F0. It is not a problem for LRA, since both F1 and F0 are not designated values. But
in LIRA, F1 is designated, while F0 is not. We think that this fact has made it possible to find a
countermodel for (2I) in LIRA extended by 2 (see a footnote 7). Thus, in order to have a necessity
operator in LIRA with the standard introduction rule for it we need to change the clause for F1 in
Kubyshkina and Zaitsev’s definition of 2. We need to require that V (A, z) 6= F0, for all z ∈ R[w].
As a consequence, we need to change the clause F0 as well, where it is required that V (A, z) 6= F0,
for all z ∈ R[w]. As a result, we have a new necessity operator, let us call it � (do not confuse it
with Boolos’ [7] ‘boxdot’ operator understood as ‘provable and true’), which truth conditions are as
follows:

• V (�A,w) = T1 iff ∀u∈R[w]V (A, u) = T1,

• V (�A,w) = T0 iff ∀u∈R[w](V (A, u) = T1 or V (A, u) = T0) and ∃u∈R[w]V (A, u) = T0,

• V (�A,w) = F1 iff ∀u∈R[w]V (A, u) 6= F0 and ∃u∈R[w]V (A, u) = F1,

• V (�A,w) = F0 iff ∃u∈R[w]V (A, u) = F0.

We introduce the possibility operators, using the equations �¬A := ¬�¬A, �∼A := ∼�∼A, and
�CA := ∼¬�∼¬A as follows:

◦ V (�¬A,w) = T1 iff ∀u∈R[w]V (A, u) 6= T0 and ∃u∈R[w]V (A, u) = T1,

◦ V (�¬A,w) = T0 iff ∃u∈R[w]V (A, u) = T0,

◦ V (�¬A,w) = F1 iff ∀u∈R[w]V (A, u) = F1,

◦ V (�¬A,w) = F0 iff ∀u∈R[w](V (A, u) = F1 or V (A, u) = F0) and ∃u∈R[w]V (A, u) = F0.

• V (�∼A,w) = T1 iff ∀u∈R[w](V (A, u) = T1 or V (A, u) = T0) and ∃u∈R[w]V (A, u) = T1,

• V (�∼A,w) = T0 iff ∀u∈R[w]V (A, u) = T0,

• V (�∼A,w) = F1 iff ∃u∈R[w]V (A, u) = F1,

• V (�∼A,w) = F0 iff ∀u∈R[w]V (A, u) 6= F1 and ∃u∈R[w]V (A, u) = F0.

◦ V (�CA,w) = T1 iff ∃u∈R[w]V (A, u) = T1,

◦ V (�CA,w) = T0 iff ∃u∈R[w]V (A, u) = T0 and ∀u∈R[w]V (A, u) 6= T1,

7Consider its particular case, for some A,B ∈ FM : B ` A/2B ` 2A. A countermodel is as follows: 〈W,R, V 〉,
where W = {w, u, z}, wRu, wRz, V (A,w) 6= F0, V (A, u) = F0, V (A, z) = T1, V (B,w) 6= F0, V (B, u) = F0, and
V (B, z) = F1. Then, for each x ∈W , V (B, x) 6= F0 implies V (A, x) 6= F0. But V (2B,w) = F1 and V (2A,w) = F0.

Australasian Journal of Logic (18:2) 2021, Article no. 1



43

◦ V (�CA,w) = F1 iff ∀u∈R[w](V (A, u) = F1 or V (A, u) = F0) and ∃u∈R[w]V (A, u) = F1,

◦ V (�CA,w) = F0 iff ∀u∈R[w]V (A, u) = F0.

Let LIRAK and LIRAK
(})k

, respectively, be extensions of LIRA and LIRA(})k by � such that
there are no restrictions on the relation R. In the other words, LIRAK and LIRAK

(})k
, respectively,

are an LIRA- and LIRA(})k -based versions of the basic normal modal logic K. It is easy to show
that the equalities from Propositions 7.1 and 7.2 hold for �, �¬, �∼, and �C for LIRAK and
LIRAK

(})k
.

7.3 A natural deduction system for K-style modal extension of LIRA

For each Γ ⊆ FM
(})k

, we use the following notation: �Γ = {�G | G ∈ Γ}, ¬�Γ = {¬�G | ¬G ∈ Γ},
and ∼�Γ = {∼�G | ∼G ∈ Γ}. Let us introduce a natural deduction system for LIRAK

(})k
(we

do it in the spirit of one of the approaches to natural deduction systems for classical modal logics
described in, for example, Indrzejczak’s book [14]). It has modal subderivations (�-subderivations)
of the following form:

1 �

2
...

and it extends the natural deduction system for LIRA(})k by the following rules:

(�I)
Γ ` A
�Γ ` �A

, (¬�I)
Γ ` ¬A
�Γ ` ¬�A

, (∼�I)
Γ ` ∼A
�Γ ` ∼�A

,

and the rule (Reit) of reiteration which works as follows:

• each formula which appears in a derivation can be added to its non-modal subderivation;

• each non-modal formula which appears in a derivation can be added to its �-subderivation;

• for each formula of the form �A which appears in a derivation, the formula A can be added
to its �-subderivation.

Let us illustrate these cases as follows (from left to right), where A′ is a non-modal formula:

1 A

2 B

3 A (Reit): 1

1 A′

2 �

3 A′ (Reit): 1

1 �A

2 �

3 A (Reit): 1

Let us illustrate applications of the rules (�I), (¬�I), and (∼�I) as follows:

1 �G

2 �

3 G (Reit): 1

4
...

5 A

6 �A (�I): 2–5

1 �G

2 �

3 G (Reit): 1

4
...

5 ¬A

6 ¬�A (¬�I): 2–5

1 �G

2 �

3 G (Reit): 1

4
...

5 ∼A

6 ∼�A (∼�I): 2–5
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Clearly, by applying the rule (�I) (resp. (¬�I), (∼�I)) all formulas starting from the formula
G until the formula A (resp. ¬A, ∼A), inclusively, are discarded from the inference.

Lemma 7.3. All the rules of a natural deduction system for LIRAK
(})k

are sound.

Proof. As an example, we show the soundness of the rule (¬�I). Consider a relational model
〈W,R, V 〉. Suppose Γ |= ¬A. Then (∗) for each x ∈ W , if V (G, x) 6= F0 (for each G ∈ Γ), then
V (¬A, x) 6= F0. Suppose �Γ 6|= ¬�A. Consider w ∈ W such that V (�G,w) 6= F0 (for each G ∈ Γ)
and V (¬�A,w) = F0. Then (?) for each G ∈ Γ, ∀u∈R[w]V (G, u) 6= F0. Moreover, V (�A,w) = T0.
Thus, ∀u∈R[w](V (A, u) = T1 or V (A, u) = T0) and ∃u∈R[w]V (A, u) = T0. Consider u ∈ W such that
u ∈ R[w] and V (A, u) = T0. Then V (¬A, u) = F0. Using (∗), we have V (G, u) = F0 (for some
G ∈ Γ). However, by (?), V (G, u) 6= F0, for each G ∈ Γ. Contradiction. Thus, �Γ |= ¬�A.

Theorem 7.4. Let L be LIRAK
(})k

. For each Γ ⊆ FM
(})k

and A ∈ FM
(})k

, it holds that if Γ `L A,
then Γ |=L A.

Proof. By induction on the length of the derivation. Use Theorem 4.11 and Lemma 7.3.

Let us present a completeness proof for LIRAK
(})k

(we follow Garson’s book [12], where the
strategy for modal logics with classical propositional basis is described).

Definition 7.5. Let L be LIRAK
(})k

. Then the canonic model for L is a triple 〈WL, RL, VL〉, where

(1) WL is the set of all LIRAL
(})k

-theories,

(2) ΓRL∆ (where Γ,∆ ∈ WL) iff for each A ∈ FM
(})k

, �A ∈ Γ implies A ∈ ∆, ¬�A ∈ Γ implies
¬A ∈ ∆, and ∼�A ∈ Γ implies ∼A ∈ ∆,

(3) for each A ∈ FM
(})k

and Γ ∈ WL, VL(A,Γ) = V c
Γ (A) (see Definition 4.15, note that we extend

the valuation V c
Γ (A) on the set FM

(})k
).

Lemma 7.6. The canonic model for LIRAK
(})k

is LIRAK
(})k

-model.

Proof. The propositional case follows from lemmas 4.14 and 4.16. Let us consider the case of formulas
of the form �A. We need to prove the following equivalences (where RL[Γ] := {∆ ∈WL | ΓRL∆}):

• VL(�A,Γ) = T1 iff ∀∆∈RL[Γ]VL(A,∆) = T1,

• VL(�A,Γ) = T0 iff ∀∆∈RL[Γ](VL(A,∆) = T1 or VL(A, u) = T0) as well as
∃∆∈RL[Γ]VL(A,∆) = T0,

• VL(�A,Γ) = F1 iff ∀∆∈RL[Γ]VL(A,∆) 6= F0 and ∃∆∈RL[Γ]VL(A,∆) = F1,

• VL(�A,Γ) = F0 iff ∃∆∈RL[Γ]VL(A,∆) = F0.

We need to show the following statements (where ≡df means ‘equivalent by the definition’):

◦ VL(�A,Γ) = T1 ≡df
(
�A ∈ Γ,¬�A ∈ Γ,∼�A ∈ Γ,∼¬�A 6∈ Γ

)
iff

∀∆∈RL[Γ]

(
A ∈ ∆,¬A ∈ ∆,∼A ∈ ∆,∼¬A 6∈ ∆

)
,

◦ VL(�A,Γ) = T0 ≡df
(
�A ∈ Γ,¬�A 6∈ Γ,∼�A ∈ Γ,∼¬�A ∈ Γ

)
iff

∀∆∈RL[Γ]

(
(A ∈ ∆,¬A ∈ ∆,∼A ∈ ∆,∼¬A 6∈ ∆) or (A ∈ ∆,¬A 6∈ ∆,∼A ∈ ∆,∼¬A ∈ ∆)

)
as well

as ∃∆∈RL[Γ]

(
A ∈ ∆, ¬A 6∈ ∆,∼A ∈ ∆,∼¬A ∈ ∆

)
,
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◦ VL(�A,Γ) = F1 ≡df
(
�A ∈ Γ,¬�A ∈ Γ,∼�A 6∈ Γ,∼¬�A ∈ Γ

)
iff

∀∆∈RL[Γ]

(
A ∈ ∆ or ¬A 6∈ ∆ or ∼A 6∈ ∆ or ∼¬A 6∈ ∆

)
as well as ∃∆∈RL[Γ]

(
A ∈ ∆,¬A ∈ ∆,∼A 6∈

∆,∼¬A ∈ ∆
)
,

◦ VL(�A,Γ) = F0 ≡df
(
�A 6∈ Γ,¬�A ∈ Γ,∼�A ∈ Γ,∼¬�A ∈ Γ

)
iff

∃∆∈RL[Γ]

(
A 6∈ ∆,¬A ∈ ∆,∼A ∈ ∆,∼¬A ∈ ∆

)
.

Let us define the following set Φ, for each B ∈ FM
(})k

and the above mentioned Γ:

(Φ1) B ∈ Φ iff �B ∈ Γ,

(Φ2) ¬B ∈ Φ iff ¬�B ∈ Γ,

(Φ3) ∼B ∈ Φ iff ∼�B ∈ Γ.

We put Ψ = �Φ ∪ ¬�Φ ∪ ∼�Φ. Let us prove several auxiliary propositions.

Proposition 7.7. Γ is an extension of Ψ.

Proof. Follows from the definition of Ψ.

Proposition 7.8. Consider the above mentioned A, Γ, and Φ as well as some finite subset Ω of Φ
and an arbitrary C ∈ FM

(})k
. Then:

(1) if �A 6∈ Γ, then Ω ∪ {¬A,∼A,∼¬A} 6` C;

(2) if ¬�A 6∈ Γ, then Ω ∪ {A,∼A,∼¬A} 6` C;

(3) if ∼�A 6∈ Γ, then Ω ∪ {A,¬A,∼¬A} 6` C.

Proof. First of all, we show that the following rules are derivable in the natural deduction system
for LIRAK

(})k
:

(R1)
Ω ∪ {¬A,∼A,∼¬A} ` C

Ω ` A
, (R2)

Ω ∪ {A,∼A,∼¬A} ` C
Ω ` ¬A

,

(R3)
Ω ∪ {A,¬A,∼¬A} ` C

Ω ` ∼A
.

As an example, we present the derivability of (R2) on Figure 2 (in this proof, we assume that
Ω = ∅ for the space reasons only).

(1) Suppose �A 6∈ Γ. Then, since Γ is LIRAK
(})k

-theory, Γ 6` �A. Suppose Ω∪{¬A,∼A,∼¬A} `
C. Then, by the rule (R1), Ω ` A. By the rule (�I), �Ω ` �A. Since Ω ⊆ Φ, �Ω ⊆ �Φ. Moreover,
�Φ ⊆ Ψ. By Proposition 7.7, Γ is an extension of Ψ. Thus, Γ ` �A. Contradiction. Hence,
Ω ∪ {¬A,∼A,∼¬A} 6` C.

(2) Suppose ¬�A 6∈ Γ. Then Γ 6` ¬�A. Suppose Ω∪ {A,∼A,∼¬A} ` C. By the rule (R2), Ω `
¬A. By the rule (¬�I), �Ω ` ¬�A. Thus, Γ ` ¬�A. Contradiction. Hence, Ω∪{A,∼A,∼¬A} 6` C.

(3) Suppose ∼�A 6∈ Γ. Then Γ 6` ∼�A. Suppose Ω∪ {A,¬A,∼¬A} ` C. By the rule (R3), Ω `
∼A. By the rule (∼�I), �Ω ` ∼�A. Thus, Γ ` ∼�A. Contradiction. Hence, Ω ∪ {A,¬A,∼¬A} 6`
C.

Proposition 7.9. Consider the above mentioned Γ, ∆, Φ, and A. Then:

(1) if ∆ is an extension of Φ ∪ {¬A,∼A,∼¬A}, then ΓRL∆;

(2) if ∆ is an extension of Φ ∪ {A,∼A,∼¬A}, then ΓRL∆;
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1 ¬A assumption

2 ∼A assumption

3 ¬A assumption

4 ∼¬A assumption

5 A assumption

6 ¬A by the condition: 2, 4, 5

7 ¬A assumption

8 ¬A (EM 1): 6, 7 [5–6], [7]

9 ¬A (EM 2): 3, 8 [3], [4–8]

10 ¬A (EM 4): 1, 9 [1], [2–9]

Figure 2: An inference of ` ¬A from A,∼A,∼¬A ` C in ND¬∼DLRA.

(3) if ∆ is an extension of Φ ∪ {A,¬A,∼¬A}, then ΓRL∆.

Proof. (1) Suppose ∆ is an extension of Φ ∪ {¬A,∼A,∼¬A}. Then, by the definition RL, we need
to show that �A ∈ Γ implies A ∈ ∆, ¬�A ∈ Γ implies ¬A ∈ ∆, and ∼�A ∈ Γ implies ∼A ∈ ∆.
Suppose �A ∈ Γ. Then A ∈ Φ. Since Φ∪{¬A,∼A,∼¬A} ⊆ ∆, we have A ∈ ∆. Suppose ¬�A ∈ Γ.
Then ¬A ∈ Φ. Thus, ¬A ∈ ∆. Suppose ∼�A ∈ Γ. Then ∼A ∈ Φ. Thus, ∼A ∈ ∆. Therefore, it
holds that ΓRL∆.

The cases (2) and (3) are proved similarly.

Suppose VL(�A,Γ) = T1, i.e. �A ∈ Γ,¬�A ∈ Γ,∼�A ∈ Γ,∼¬�A 6∈ Γ. Consider an arbitrary
∆ such that ΓRL∆. Then, by the definition of RL, we have A ∈ ∆, ¬A ∈ ∆, and ∼A ∈ ∆. By the
rule (EFQ), ∼¬A 6∈ ∆.

Suppose VL(�A,Γ) = T0, i.e. �A ∈ Γ,¬�A 6∈ Γ,∼�A ∈ Γ,∼¬�A ∈ Γ. Consider an arbitrary
∆ such that ΓRL∆. Then, by the definition of RL, we have A ∈ ∆ and ∼A ∈ ∆. By the rule (EFQ),
¬A ∈ ∆ implies ∼¬A 6∈ ∆ as well as ∼¬A ∈ ∆ implies ¬A 6∈ ∆. Thus, (A ∈ ∆,¬A ∈ ∆,∼A ∈
∆,∼¬A 6∈ ∆) or (A ∈ ∆,¬A 6∈ ∆,∼A ∈ ∆,∼¬A ∈ ∆). We need also show that ∃∆∈RL[Γ]

(
A ∈

∆,¬A 6∈ ∆,∼A ∈ ∆,∼¬A ∈ ∆
)
. Since ¬�A 6∈ Γ, by Proposition 7.8, Ω ∪ {A,∼A,∼¬A} 6` C. By

Lindenbaum’s lemma (see Lemma 4.17 which holds without any changes for modal extensions of
LIRA(})k), there is an LIRAL

(})k
-theory ∆ such that Ω∪ {A,∼A,∼¬A} ⊆ ∆ and ∆ 6` C. Clearly,

∆ ∈ WL. Since Ω ⊆ Φ, Φ ∪ {A,∼A,∼¬A} ⊆ ∆. By Proposition 7.9, ΓRL∆. Moreover, A ∈ ∆,
∼A ∈ ∆, and ∼¬A ∈ ∆. However, ¬A 6∈ ∆ (by the rule (EFQ)). Thus, we have found ∆ ∈ WL

such that ΓRL∆ and A ∈ ∆,¬A 6∈ ∆,∼A ∈ ∆,∼¬A ∈ ∆.
Suppose VL(�A,Γ) = F1, i.e. �A ∈ Γ,¬�A ∈ Γ,∼�A 6∈ Γ,∼¬�A ∈ Γ. Consider an arbitrary

∆ such that ΓRL∆. Then, by the definition of RL, we have A ∈ ∆. Thus, A ∈ ∆ or ¬A 6∈
∆ or ∼A 6∈ ∆ or ∼¬A 6∈ ∆. Since ∼�A 6∈ Γ, by Proposition 7.8, Ω ∪ {A,¬A,∼¬A} 6` C. By
Lindenbaum’s lemma, there is ∆ ∈ WL such that Ω ∪ {A,¬A,∼¬A} ⊆ ∆ and ∆ 6` C. Moreover,
Φ ∪ {A,¬A,∼¬A} ⊆ ∆. By Proposition 7.9, ΓRL∆. Additionally, A ∈ ∆, ¬A ∈ ∆, and ∼¬A ∈ ∆.
However, ∼A 6∈ ∆ (by the rule (EFQ)).

Suppose VL(�A,Γ) = F0, i.e. �A 6∈ Γ,¬�A ∈ Γ,∼�A ∈ Γ,∼¬�A ∈ Γ. Since �A 6∈ Γ, by
Proposition 7.8, Ω ∪ {¬A,∼A,∼¬A} 6` C. By Lindenbaum’s lemma, there is ∆ ∈ WL such that
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Ω ∪ {¬A,∼A,∼¬A} ⊆ ∆ and ∆ 6` C. Moreover, Φ ∪ {¬A,∼A,∼¬A} ⊆ ∆. By Proposition 7.9,
ΓRL∆. Additionally, ¬A ∈ ∆, ∼A ∈ ∆, and ∼¬A ∈ ∆. However, A 6∈ ∆ (by the rule (EFQ)).

Now we need to show that the equivalences which have been already proved from right to left
are also valid from left to right.

Suppose ∀∆∈RL[Γ]

(
A ∈ ∆,¬A ∈ ∆,∼A ∈ ∆,∼¬A 6∈ ∆

)
. Hence, ∀∆∈RL[Γ]VL(A,∆) = T1. Sup-

pose VL(�A,Γ) 6= T1. Suppose VL(�A,Γ) = T0. Then, in particular, it holds that ∃∆∈RL[Γ]VL(A,∆) =
T0, which cannot be the case, since ∀∆∈RL[Γ]VL(A,∆) = T1. If VL(�A,Γ) = F1, then we have, in par-
ticular, ∃∆∈RL[Γ]VL(A,∆) = F1. Contradiction. If VL(�A,Γ) = F0, then ∃∆∈RL[Γ]VL(A,∆) = F0.
Contradiction. Thus, VL(�A,Γ) = T1.

The other cases are considered similarly.

Theorem 7.10. Let L be LIRAK
(})k

. For each Γ ⊆ FM
(})k

and A ∈ FM
(})k

, it holds that if Γ |=L A,
then Γ `L A.

Proof. By contraposition. Suppose Γ 6`L A. By Lindenbaum’s lemma, there is LIRAL
(})k

-theory ∆

such that Γ ⊆ ∆ and ∆ 6` A. Consider a canonic model 〈WL, RL, VL〉. By Lemma 7.6, it is L-model.
Since ∆ is LIRAL

(})k
-theory, ∆ ∈ WL. Moreover, A 6∈ ∆. By (Γ3), (Γ4), and (Γ5), respectively,

¬A ∈ ∆, ∼A ∈ ∆, and ∼¬A ∈ ∆. Thus, VL(A,∆) = F0. Since Γ ⊆ ∆, G ∈ ∆, for each G ∈ Γ.
Hence, VL(G,∆) 6= F0. Therefore, Γ 6|=L A.

Corollary 7.11. Let L be LIRAK
(})k

. For each Γ ⊆ FM
(})k

and A ∈ FM
(})k

, it holds that Γ |=L A iff
Γ `L A.

Proof. Follows from Theorems 7.4 and 7.10.

8 Conclusion

An obvious task for future research is a formalization of modal extensions of LRA and LRA(})k .
However, it seems that natural deduction systems are not the most suitable framework for it, since
rules of the following form are required in a completeness proof: if Γ,¬A ` B, then Γ ` A or Γ ` ∼A
or Γ ` ∼¬A. Such rules are quite strange for natural deduction systems in contradistinction to
hypersequent calculi. We believe that this topic requires a separate research paper.

Let us mention Kubyshkina’s recent paper [17], where fifteen-valued logic GLRA, a general-
ization of LRA, is presented. The entailment relation is defined via the preservation of the only
designated value. Similarly, we can define logic GLIRA which will have the only non-designated
value.

Yet another topic of further investigations is a presentation of automated proof-searching by the
methods of [26] for LIRA, LIRA(})k , and their modal extensions.

One more topic for further research is an examination of first-order extensions of LRA and
LIRA. It is well-known that modalities and quantifiers have in some sense a similar behavior.
Thus, we can try to define suitable quantifiers for the concerned logics taking into account the above
mentioned modalities. For example, we can define universal quantifier for LIRA as follows:8

• V (∀αA, a) = T1 iff V (Aαβ , a) = T1, for each β ∈ U ,

8To be sure, we need to extend the language of LIRA at least by the set of predicate symbols {Pn | n ∈ N}, the set
of variables {vn | n ∈ N}, and universal quantifier itself. Following Smullyan [37], we consider a model 〈U, J〉, where
U is a universe of individuals (a non-empty set of constants) and J is an interpretation function. For each formula A,
we write Aαβ for the result of substituting β ∈ U for every occurrence of a variable α in A. We write a for a first-order
assignment.
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• V (∀αA, a) = T0 iff V (Aαβ , a) = T1 or V (Aαβ , a) = T0, for each β ∈ U , and V (Aαβ , a) = T0, for some
β ∈ U ,

• V (∀αA, a) = F1 iff V (Aαβ , a) 6= F0, for each β ∈ U , and V (Aαβ , a) = F1, for some β ∈ U ,

• V (∀αA, a) = F0 iff V (Aαβ , a) = F0, for some β ∈ U .

Then one may put ∃¬αA := ¬∀α¬A, ∃∼αA := ∼∀α∼A, and ∃CαA := ∼¬∀α∼¬A. For the case
of LRA this definition of universal quantifier may be adapted as follows (the cases for T1 and T0

are the same):

◦ V (∀αA, a) = F1 iff V (Aαβ , a) = F1, for some β ∈ U .

◦ V (∀αA, a) = F0 iff V (Aαβ , a) 6= F1, for each β ∈ U , and V (Aαβ , a) = F0, for some β ∈ U .
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glish translation: A numerical interpretation of theory of propositions [21, p. 129–130]).
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e-mail: yaroslav.petrukhin@mail.ru

Australasian Journal of Logic (18:2) 2021, Article no. 1

https://doi.org/10.1093/jigpal/jzy019
https://doi.org/10.1080/11663081.2018.1534487
https://doi.org10.1007/BF01053037
https://doi.org/10.21146/2074-1472-2017-23-1-83-104
https://doi.org/10.21146/2074-1472-2017-23-1-83-104
https://doi.org/ 10.1007/978-94-007-0907-2
https://doi.org/10.1007/BFb0064874
https://doi.org/10.21146/2074-1472-2014-20-0-253-266
https://doi.org/10.4467/20842589RM.12.008.0689
https://doi.org/10.21146/2074-1472-2013-19-0-260-272
https://doi.org/10.21146/2074-1472-2013-19-0-260-272
https://doi.org/10.1007/s11225-013-9534-z

	Introduction
	The semantics of LRA
	The semantics of LIRA
	Natural deduction for LIRA
	Generalized formalization of LRA
	Some possible truth-functional extensions of LRA and LIRA
	Modal extensions of LIRA
	Kubyshkina and Zaitsev's modal operators for LRA
	Modal operators for LIRA
	A natural deduction system for K-style modal extension of LIRA

	Conclusion

