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Abstract

G. Genzten’s 1938 proof of the consistency of pure arithmetic was
hailed as a success for finitism and constructivism, but his proof re-
quires induction along ordinal notations in Cantor normal form up
to the first epsilon number, ε0. This left the task of giving a finitisi-
cally acceptable proof of the well-ordering of those ordinal notations,
without which Gentzen’s proof could hardly be seen as a success for
finitism. In his seminal book Proof Theory G. Takeuti provides such
a proof. After a brief philosophical introduction, we provide a re-
construction of Takeuti’s proof including corrections, comments, re-
organization and notational adjustments for the sake of clarity. The
result is a much longer, but much more tractable proof of the well-
ordering of ordinal notations in Cantor normal form less than ε0, that
nevertheless follows Takeuti’s strategy closely. We end with some
more general comments about that proof strategy and the notion of
accessibility more generally.

1 Introduction

In 1938 Gerhard Gentzen published a consistency proof of pure arithmetic,
or what we today call first-order Peano arithmetic [9]. This was particularly
important at the time because, despite Kurt Gödel’s proof of the incomplete-
ness of pure arithmetic at the beginning of that same decade [11], David
Hilbert and Paul Bernays maintained a commitment to their finitist pro-
gram [see 12]. The central aim of Hilbert’s program was to show that there
are finitistic consistency proofs for important mathematical theories, thus a
fintistically acceptable consistency proof for pure arithmetic would be a key
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victory for finitism. Bernays certainly thought Gentzen’s first consistency
proof [8] fit the bill, stating in the final paragraph of [4]

During the printing of this report the proof for the consistency
of the full number theoretic formalism has been presented by
G. Gentzen, using a method that conforms to the fundamental
demands of the finite standpoint.

Presumably, this would have carried over to the second proof, as the most
significant difference between the two proofs is the choice of ordinal nota-
tion systems. Notably, in fact, Akiyoshi & Takahashi [3] use modern proof-
theoretic techniques to show that the second proof is a special case of the first.
Nevertheless, the question of the finitistic acceptability of Gentzen’s proofs
was (and still is) in doubt. The reason for this is that Gentzen’s proofs re-
quire induction on ordinal notations for ordinals less than the first epsilon
number, ε0. In the 1938 proof, Gentzen uses ordinal notations in Cantor
normal form, thus what is at issue from a finitist perspective is whether the
well-ordering of the ordinal notations in Cantor normal form for ordinals less
than ε0 can be established in a finitistically acceptable manner.

In his 1975 book Proof Theory, Gaisi Takeuti attempts to establish just
that. That proof, and Takeuti’s finitistic position and related consistency
proofs, have recently been the subject of significant renewed interest. Dar-
nell & Thomas-Bolduc [6] discuss whether and from which conceptions of
finitism Takeuti’s well-ordering proof is finitistically acceptable. They argue
that Takeuti’s proof conforms to what Takeuti himself terms the “Hilbert-
Gentzen finitist standpoint”, but that the finitistic acceptability of the proof
ultimately depends on the philosophical motivations behind a given finitist
standpoint. The Hilbert-Gentzen standpoint, very roughly, is a “natural ex-
tension” of Hilbert’s standpoint [20, pp 100-101] that allows for operations
on operations or Gendakenexperimente, so long as those operations are ulti-
mately grounded in the concrete [6, p 177].

That standpoint is arguably close to Takeuti’s own view, although pinning
down Takeuti’s philosophical position is a more complex task. However, that
task has been taken on by Akiyoshi & Arana [1], who argue that Takeuti’s
philosophical standpoint was highly influenced by Nishida and the Kyoto
school. Bringing in concepts related to that school, they have clarified the
relationship between Takeuti’s position and the positions of Hilbert, Bernays
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and Gentzen.1 In particular, it appears that Takeuti’s position is more liberal
with respect to which operations are finitistically acceptable than Hilbert or
more recent standpoints such as that of Tait [15, 16]. This is due to a different
understanding, on Takeuti’s part, of the relationship between the finite and
the infinite.

The goal of this paper is to provide a reconstruction of Takeuti’s well-
ordering proof, which although interesting and original, is difficult to read,
and contains a number of small errors and omissions.2 In order to make the
proof as clear as possible, we’ve renamed some variables to reduce ambigu-
ity, and reordered some steps in the proof. This latter was needed because
Takeuti has the habit, in this proof, of ordering the induction steps somewhat
haphazardly. Additionally, we have filled in a couple of steps that Takeuti
omitted in the original version. We indicate our own additions and correc-
tions to the proof in footnotes and remarks. All of this has resulted in our
version of the proof taking up roughly three times more space than the orig-
inal, but we hope the increase in length brings with it an increase in clarity
and makes the proof more accessible. In turn, we hope that this will help
fuel progress on research related to Gentzen and Takeuti’s consistency proofs
in the vein of the papers just discussed.

Before diving into the proof in §3, we review the ordinal notation system,
and the relevant aspects of Gentzen’s consistency proof. At the end we briefly
discuss a couple of comments Takeuti makes directly after his proof.

2 Induction on Ordinal Notations3

Georg Cantor [5] proved that every ordinal can be written as a sum of 0 and
exponents of ω in the following way. For any ordinal, α,

1Akiyoshi and Arana indicate that they intend to further explore Takeuti’s philosophi-
cal commitments in that regard and we are hopeful that such investigations will contribute
to both our understanding of Takeuti’s thought, as well as the space of modern construc-
tivist positions more generally.

2It appears that [2] also contains a reconstruction or reformulation of Takeuti’s well-
ordering proof using modern techniques, however that paper is written in Japanese (which
we are regrettably unable to read), and approaches the reconstruction from a different
perspective than the present paper.

3This section has been adapted from §3 of Darnell & Thomas-Bolduc [6]. For an
introduction to these methods and proofs requiring little background in proof theory, see
[14].
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α = ωβ1 + ωβ2 + ωβ3 + ωβ4 + . . .

α, β ordinals, the βs either in this form, or 0s, and

β1 ≥ β2 ≥ β3 ≥ . . .

Since we need only consider ordinals less the ε0, and ε0 is the first ordinal
such that ωα = α (i.e. it is the first epsilon number), it is guaranteed that
α > ωβi for all i > 1, and α = ωβ1 only in the case where the ωβi>1 are empty.

An ordinal expressed in this way is in Cantor normal form. For ease
of notation we can write ω0 as 1, ω0 + ω0 as 2, and so on for the natural
numbers.4 One further condition, that any ‘+0’ terms are deleted, guarantees
that each notation is unique.

We can then define the natural sum of two ordinals, expressed α#µ, as
a (possibly) new ordinal in Cantor normal form found by interleaving the
monomials (terms of the form ωβi) so that the β’s are decreasing.5 It is
the well-ordering of these notations that Gentzen used for the transfinite
induction steps in his consistency proof for pure arithmetic.

Gentzen’s general strategy6 is to take an arbitrary proof in the sequent
calculus with arithmetical initial sequents and the inference rule for (full)
arithmetical induction (i.e. first-order Peano Arithmetic formulated in the
sequent calculus) of the empty sequent and show that such a proof cannot
exist.

To do this the ‘end-part’ of a proof is defined as the largest segment of
the proof, looking up from the end-sequent, that contains only structural
rules or inductions. The end-part is then pushed to the top of the proof,
which can be done because the end-sequent contains no connectives, so any
complex formulae will have to have been removed with a cut.

All inductions in the end part of the proof are replaced with sequences
of cuts, and all inessential cuts (cuts on complex formulae) are reduced to
essential cuts (cuts on atomic formulae). All of this is done in a principled
way to a regular proof.7

4Gentzen includes only ‘1’, but Takeuti makes use of this obvious notational extension
so we have included it here for completeness.

5Note that it may be that βi = βi+1 = . . . = βi+n for some i, n > 0.
6See [13], and publications deriving therefrom for an expansion and other uses of these

methods.
7A regular proof is one in which all of the non-eigen variables have been replaced with
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The key to the proof, and the part that we are here interested in, is show-
ing that the procedure terminates. Gentzen does this by assigning ordinal
notations to each sequent and inference, and showing that each reduction
step decreases the ordinal notation assigned to the end-sequent of the proof.
Although the procedures for assigning ordinal notations to inductions and
cuts are necessarily quite complex, the operations involved are just the stack-
ing of finitely many ω exponents, the taking of natural sums, and ordinary
arithmetical subtractions. What is left to prove, from a finitistic perspective,
is the well-ordering of the ordinal notations.8

3 Takeuti’s Proof

Takeuti proposes a concrete method for demonstrating that the ordinal nota-
tions in Cantor normal form (henceforth just ordinals) <ε0 are well-ordered
[20].9 His demonstration consists in applications of a series of concrete meth-
ods, which he calls “eliminators”. Eliminators are methods for taking any
(concretely) given strictly decreasing sequence of ordinals and (concretely)
constructing a new strictly decreasing sequence of ordinals such that if the
latter contains no infinitely descending chains, neither does the former. Using
eliminators, Takeuti gives a proof that the ordinals <ε0 are well-ordered.

3.1 Introducing “Eliminators”

Takeuti begins his proof by supposing that the natural numbers are well-
ordered. That is, for any strictly decreasing sequence of ordinals, S, that
begins with some natural number n, the length of S is, at most, n + 1
[20, pp. 92–3].10 Takeuti’s eliminators capitalize on the well-ordering of the
naturals and enable him to demonstrate that strictly decreasing sequences of
ordinals beginning with any ordinal less than ε0 must be finite.

0s and the eigenvariables have been replaced with appropriate arithmetic terms.
8From outside the finite standpoint it can easily be seen that these notations are

well-ordered, because they are unique, and ε0 is well-ordered by definition.
9All references are to the second edition.

10Takeuti takes this assumption to be uncontroversial because he sees it as an obvious
consequence of his definitions of ordinals and interpretation of, ‘=’, ‘+’, and ‘<’ between
the ordinals [20, pp. 90–1].

Australasian Journal of Logic (19:1) 2022, Article no. 1



6

The first eliminator that Takeuti introduces is the 1-eliminator [20, p. 93]:11

the (concrete) method he uses to show the well-ordering of ordinal notations
< ω2. In order to introduce the 1-eliminator, we require two key notions.
Let ai be an arbitrary ordinal <ε0. In Cantor normal form, the form of ai is:

ωµ
i
1 + ωµ

i
2 + ...+ ωµ

i
ni + ki

where each µim > 0, µim−1 > µim, and ki is a natural number (the i’s are
simply meant to index the given ordinal notations to ai).

Definition 3.1. [Adapted from 20, p. 93.] For any ordinal ai <ε0, the 1-
major part of ai is the part of the Cantor normal form of ai that does not
contain ki,

ωµ
i
1 + ωµ

i
2 + ...+ ωµ

i
ni︸ ︷︷ ︸

1-major part of ai

+ki.

For every ordinal ai <ε0, we write a∗i for the 1-major part of ai.

Definition 3.2. [Adapted from 20, p. 93.] For any strictly decreasing se-
quence of ordinals a0 > a1 > ..., the sequence a∗0 > a∗1 > ... is the 1-sequence
corresponding to a0 > a1 > ..., just in case for any i ≥ 0, every a∗i in
a∗0 > a∗1 > ... is the 1-major part of ai in a0 > a1 > ....

For any strictly decreasing sequence of ordinals Sj, we write S∗j for the 1-
sequence corresponding to Sj. For any strictly decreasing sequence of ordinals
S, we say that S is a 1-sequence just in case there is a strictly decreasing
sequence of ordinals Sj such that S = S∗j (i.e., S is the 1-sequence corre-
sponding to Sj).

In accordance with Definitions 3.1 and 3.2, Takeuti introduces the 1-
eliminator.

Definition 3.3. [Adapted from 20, p. 93.] A 1-eliminator is a (concrete)
method for constructing a 1-sequence, S∗j from a (concretely) given decreasing
sequence of ordinals Sj, such that the first ordinal in S∗j is the 1-major part
of the first ordinal in Sj, and if S∗j is finite, then (it can be concretely shown
that) Sj is also finite.

11 All subsequent eliminators (and their associated terminology) are analogous to the
1-eliminator.
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Takeuti explains Definition 3.3 of the 1-eliminator by way of an illustration.
Let,

(S0) a0 > a1 > ...

be a strictly decreasing sequence of ordinals such that, each ai in (S0) is
written Cantor normal form and a0 is not a natural number. By Definition
3.3, a 1-eliminator is a method for taking (S0) and (concretely) producing a
decreasing 1-sequence:

(S∗0) b0 > b1 > ...

that satisfies each of the following conditions:

b0 = a∗0 (i.e., b0 is the 1-major part of a0).(CI1)

If (S∗0) is finite, then (it can be concretely shown that)(CII1)

(S0) is finite also.

Remark 3.1. It is important to emphasize Takeuti’s use of ‘>’ in (S∗0). This
indicates that applying the 1-eliminator to (S0) produces a strictly decreasing
1-sequence. Hence, (S∗0) may not be the very same sequence as the sequence
that would be produced simply by removing each ki from every ai = ωµ

i
1+ωµ

i
2+

...+ωµ
i
ni +ki in (S0). (S∗0) does not contain multiple occurrences of identical

ordinals, whereas simply removing each ki from every ai in (S0) may result
in a sequence that contains multiple occurrences of identical ordinals. This
feature of the decreasing sequences constructed with eliminators is extremely
important for Takeuti’s argument.

Proposition 3.1. The 1-sequence (S∗0) that is produced by applying the 1-
eliminator to (S0) satisfies conditions (CI1) and (CII1).

Proof Sketch. [Adapted from 20, p. 93.] By stipulation and Definition 3.1,
each ordinal notation in (S0) is identical with its 1-major part plus a given
natural number. That is, ai = a∗i + ki for every ai in (S0). Hence, (S0) can
be written as:

a∗0 + k0 > a∗1 + k1 > ...

Applying a 1-eliminator to this sequence still produces the 1-sequence, (S∗0)
which satisfies (CI1) by Definition 3.2. To show that (S∗0) satisfies (CII1),
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take some finite part of (S∗0), say the sequence:

b0 > b1 > ... > bm

where, b0 = a∗0 and bm = a∗i , for some i. So, either a∗i = a∗i+1 = ... = a∗i+p for
some p and ai+p is the last term in (S0) with a 1-major part, or a∗i+p > a∗i+p+1.
If the former is the case, then stop. If the latter is the case, then make
bm+1 = a∗i+p+1 and repeat. If one arrives at a sequence of a∗i ’s such that
bm = a∗i and a∗i = a∗i+1 = ... = a∗i+p = ..., it follows that (S0) must be finite.
Since (S0) is a strictly decreasing sequence, a∗i = a∗i+1 = ... = a∗i+p = ...
entails that ki > ki+1 > ... > ki+p > .... Given the well-ordering of the
natural numbers, the latter sequence must be finite. Hence, (S0) must be
finite. (S∗0) is a strictly decreasing 1-sequence corresponding to (S0) and so
by Definition 3.2, if (S∗0) is finite, then there is a (last) term, bm in (S∗0) such
that bm = a∗i and a∗i = a∗i+1 = ... = a∗i+p = .... Therefore, if (S∗0) is finite, so
is (S0).

Takeuti uses the 1-eliminator to show that,

Theorem 3.1. All decreasing sequences of ordinals that begin with an ordinal
< ω2 must be finite.

Proof. [Adapted from 20, p. 93.] Let,

(S1) a0 > a1 > ...

be a strictly decreasing sequence of ordinals such that a0 < ω2. Applying a
1-eliminator to (S1) enables the construction of the 1-sequence:

(S∗1) b0 > b1 > ...

such that (S∗1) satisfies conditions (CI1) and (CII1)
12 and where a0 ≥ b0.

Since a0 < ω2, b0 < ω2. It follows that each ordinal bi in (S∗1) has the form
ω · ki (where ki is a natural number).13 Accordingly, since a0 is not a natural
number, each bi in (S∗1) will be of the form ω · ki (where ki is a natural
number). Hence, (S∗1) can be written as:

ω · k0 > ω · k1 > ...

12Where (CI1) and (CII1) are amended such that (S0) is changed to (S1) and (S∗0 ) is
changed to (S∗1 ).

13This is clear because ω · ω = ω2 and any ordinal < ω is a natural number.
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It must then be the case that k0 > k1 > .... Given the well-ordering of the
natural numbers, k0 > k1 > ... must be finite. Therefore, b0 > b1 > ... must
be finite. Since (S∗1) satisfies (CI1) and (CII1), (S1) must be finite. (S1) was
arbitrary, so this result generalizes which means that any decreasing sequence
of ordinals which begins with an ordinal < ω2 must be finite.

The proof of Theorem 3.1 nicely illustrates Takeuti’s overall proof strat-
egy for demonstrating the well-ordering of the ordinals <ε0. However, the
demonstration becomes significantly more complex as we progress through
its successive stages. As such, it will be instructive to briefly recap. Takeuti
begins by assuming the well-ordering of the ordinals less than ω (the natu-
rals). He then defines an eliminator which, when combined with the already
established well-ordering of the natural numbers, enables him to show that
the sequence of ordinals whose limit is ω2 is also well-ordered. Takeuti con-
tinues with this strategy such that, with each new eliminator, combined with
the well-ordering of the sequences of ordinals already established, he is able
to show that sequences of ordinals with higher and higher limits must be
well-ordered, ending with a demonstration of the well-ordering of the ordi-
nals <ε0.

3.2 Proving the Ordinals < ωω are Well-Ordered

Takeuti extends the above result to show that eliminators can be used to es-
tablish the well-ordering of the ordinals < ωω. To do this, Takeuti introduces
a new (concrete) method which he calls the n-eliminator. The n-eliminator
is an analogue of the 1-eliminator and is introduced using the relevant ana-
logues of the notions given in Definitions 3.1 and 3.2.

Definition 3.4. [Adapted from 20, p. 94.] For any ordinal ai <ε0 such that,

ai = ωµ
i
1 + . . . + ωµ

i
mi + ωµ

i
mi+pi + . . . + ωµ

i
mi+pi+li where, µi1 > . . . > µimi

>
. . . > µimi+pi

> . . . > µimi+pi+li
> 0, and for any natural number n ≥ 1, the

n-major part of ai is the part of the Cantor normal form of ai that contains
no monomial < ωn:

ωµ
i
1 + ...+ ωµ

i
mi︸ ︷︷ ︸

n-major part of ai

+ωµ
i
mi+pi + ...+ ωµ

i
mi+pi+li

where, ωµ
i
1 ≥ ωn, . . . , ωµ

i
mi ≥ ωn and ωµ

i
mi+pi < ωn, . . . , ωµ

i
mi+pi+li < ωn.
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For every ordinal ai <ε0, and for any given natural number n ≥ 1, we write
a′i for the n-major part of ai.

Definition 3.5. [Adapted from 20, p. 94.] For any strictly decreasing se-
quence of ordinals a0 > a1 > . . ., the sequence a′0 > a′1 > . . . is the n-
sequence corresponding to a0 > a1 > . . ., just in case for any i ≥ 0, every a′i
in a′0 > a′1 > . . . is the n-major part of ai in a0 > a1 > . . ..

For any decreasing sequence of ordinals Sj and any given n ≥ 1, we write S ′j
for the n-sequence corresponding to Sj. For any strictly decreasing sequence
of ordinals S, and any n ≥ 1, we say that S is an n-sequence just in case
there is a decreasing sequence of ordinals Sj such that, S = S ′j (i.e., S is the
n-sequence corresponding to Sj for the given number n ≥ 1).

Where the 1-eliminator is a method for producing a 1-sequence (a strictly
decreasing sequence of ordinals where each ordinal in the sequence is ≥ ω1),
the n-eliminator is a method for producing an n-sequence (i.e. a strictly
decreasing sequence of ordinals where each ordinal in the sequence is ≥ ωn).

Definition 3.6. [Adapted from 20, p. 94.] For any n ≥ 1, an n-eliminator
is a (concrete) method for constructing an n-sequence, S ′j from a (concretely)
given decreasing sequence of ordinals Sj, such that, the first ordinal in S ′j is
the n-major part of the first ordinal in Sj, and if S ′j is finite, then (it can be
concretely shown that) Sj is also finite.

Takeuti gives Definition 3.6 by way of an illustration. Choose n ≥ 1 and let,

(Sn) a0 > a1 > ...

be a (strictly) decreasing sequence of ordinals such that, every ai in (Sn) is
of the form, a′i + ci, and ai is of the form

ωµ
i
1 + ...+ ωµ

i
mi︸ ︷︷ ︸

a′i/n-major part of ai

+ωµ
i
mi+pi + ...+ ωµ

i
mi+pi+li︸ ︷︷ ︸

ci

only if,

ωµ
i
1 ≥ ωn, . . . , ωµ

i
mi ≥ ωn and ωµ

i
mi+pi < ωn, . . . , ωµ

i
mi+pi+li < ωn.

The n-eliminator is a method that takes (Sn) and concretely produces an
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n-sequence:

(S ′n) b0 > b1 > ...

such that (S ′n) satisfies each of the following conditions:

b0 = a′0 (i.e., b0 is the n-major part of a0).(CIn)

If (S ′n) is finite, then (it can be concretely shown that)(CIIn)

(Sn) is finite also.

Proposition 3.2. The n-sequence (S ′n) that is produced by applying the n-
eliminator to (Sn) satisfies conditions (CIn) and (CIIn).

The demonstration of Proposition 3.2 proceeds in a manner similar to that
of Proposition 3.1; however, demonstrating that the n-eliminator will pro-
duce an n-sequence that satisfies (CIn) and (CIIn) requires introducing an
induction hypothesis. Takeuti [20, p. 94] gives the following:

(IH) Any descending sequence d0 > d1 > ..., with d0 < ωn is finite.

Remark 3.2. Takeuti does not include a demonstration in his original proof
that for any given n ≥ 1, the sequence d0 > d1 > ... with d0 < ωn is fi-
nite; however, strictly speaking, it is needed given that the purpose of the
proof is a demonstration of concreteness.14 Demonstrating (IH) is not diffi-
cult. In a manner analogous to the proof sketch for Proposition 3.1 that the
1-eliminator satisfies (CI1) and (CII1), show that the 2-eliminator satisfies
conditions (CI2) and (CII2) (where, (CI2) and (CII2) are the respective ap-
propriate analogues of (CI1) and (CII1)) by appealing to the well-ordering
of the ordinals < ω2. Then use the 2-eliminator to prove the well-ordering
of the ordinals up to ω3. Next, show that the 3-eliminator satisfies (CI3)
and (CII3) (where, (CI3) and (CII3) are the respective appropriate analogues
of (CI1) and (CII1)) by appealing to the well-ordering of the ordinals up to
ω3, and likewise for ω4. Continue in this way until reaching the (n − 1)-
eliminator. Use the established well-ordering of the ordinals up to ωn−1 to
show that the (n − 1)-eliminator satisfies (CIn−1) and (CIIn−1). Then use

14We suspect that Takeuti does not include the relevant demonstration because he takes
it to be obvious.
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the (n− 1)-eliminator to prove the well-ordering of the ordinals < ωn. This
procedure establishes that the induction hypothesis holds for any value of n
in n− 2 steps. For any n, n− 2 is finite and so there is a concrete procedure
for demonstrating that d0 > d1 > ..., with d0 < ωn is finite.15

Proof Sketch. [Adapted from 20, p. 94.] For the purposes of demonstrating
Proposition 3.2, (IH) does the work that the well-ordering of N does in the
demonstration of Proposition 3.1 and so, we proceed (roughly) as before. By
Definition 3.5, b0 = a′0 and a′0 is the n-major part of a0 in (Sn). Thus, (S ′n)
satisfies (CIn). Suppose (S ′n) is finite:

b0 > b1 > . . . > bm

Make bm = a′i (for some i). If a′i = a′i+1 = . . . = a′i+p (for some p) and ai+p is
the last term in (Sn) with a non-empty n-major part (i.e. ai+p = a′i+p + ci+p
but possibly ai+p+1 = ci+p+1), then stop. If a′i+p > a′i+p+1 (for some p), then
make bm = a′i+p+1. Since (S ′n) is a strictly decreasing sequence of ordinals
constructed from the n-major parts of (Sn),16 and (by supposition) (S ′n) is
finite, one must arrive at some string of a′is such that bm = a′i and a′i = . . . =
a′i+l where ai+l is the last term in (Sn) with a non-empty n-major part. Since
(Sn) is a strictly decreasing sequence, if a′i = . . . = a′i+l and ai+l is the last
term in (Sn) with a non-empty n-major part, then

ci > . . . > ci+l > . . . .

By supposition and Definition 3.5,

ci < ωn, . . . , ci+l < ωn, . . . .

Hence, by (IH), the sequence ci > . . . > ci+l > . . . must be finite. Hence,
(Sn) is finite. Therefore, if (S ′n) is finite, then so is (Sn). Therefore, (S ′n)
satisfies (CIIn).

Given Proposition 3.1, Takeuti uses the n-eliminator to prove that,

Lemma 3.2. All decreasing sequences of ordinals that begin with an ordinal
< ωn+1 are well-ordered.

15See [6] for further discussion of this addition to Takeuti’s proof.
16That is, (S′n) is a decreasing sequence constructed by taking all and only the n-major

parts of the ordinals in (Sn) and removing multiple occurrences of identical n-major parts.
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Proof. [Adapted from 20, p. 94.] Let,

(Sn1) a0 > a1 > . . .

be a decreasing sequence of ordinals such that a0 < ωn+1. Applying the
n-eliminator to (Sn1) produces an n-sequence,

(S ′n1) b0 > b1 > . . .

such that (S ′n1) satisfies both (CIn) and (CIIn).17 Each ai in (Sn1) has the
form a′i + ci (where a′i is the n-major part of ai). Hence, a0 has the form
a′0 + c0. (S ′n1) satisfies (CIn) and (CIIn) and so, b0 = a′0. Therefore, a0 ≥ b0,
which entails that b0 < ωn+1. Hence, each bi in (S ′n1) must have the form
ωn · ki where ki is a natural number.18 Thus, (S ′n1) can be written as:

ωn · k0 > ωn · k1 > . . .

Since ωn = ωn, it must be the case that,

k0 > k1 > . . . .

Given that the natural numbers are well-ordered, k0 > k1 > . . . must be
finite. Therefore, (S ′n1) must be finite. Therefore, (Sn1) is finite (because
(S ′n1) satisfies condition (CIIn)). Since (Sn1) was arbitrary, this result gener-
alizes.

It is a consequence of Lemma 3.2 that,

Theorem 3.3. All decreasing sequences of ordinals that begin with an ordinal
< ωω are well-ordered.

Proof. [Adapted from 20, p. 94.] From Lemma 3.2, any (strictly) decreasing
sequence of ordinals that begins with an ordinal < ωn+1 must be finite. Since
any decreasing sequence of ordinals that begins with an ordinal < ωn+1 is
finite, any decreasing sequence of ordinals which begins with an ordinal < ωn

is finite. Given any decreasing sequence of ordinals, a0 > a1 > . . ., if a0 < ωω,
then (by definition of ωω) it follows that a0 < ωn for some natural number n.

17That is, b0 = a′0 where a′0 is the n-major part of a0 and if (S′n1) is finite, then (it can
be concretely shown that) (Sn1) is finite also.

18See footnote 13
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Hence, a0 > a1 > . . . must be finite. Therefore, all decreasing sequences of
ordinals that begin with an ordinal < ωω are finite. Therefore, the ordinals
< ωω are well-ordered.

3.3 Proving that the Ordinals <ε0 are Well-Ordered

Next, Takeuti argues that eliminators can be used to demonstrate that the
ordinals <ε0 are well-ordered [20, pp. 94–5]. Specifically, through the use
of (α, n)-eliminators. (α, n)-eliminators are like the eliminators above, only
they are defined for all ordinals <ε0. The α is meant to range over all ordinals
<ε0 and the n is meant to range over all natural numbers > 0. Hence, (α,
n)-eliminators are eliminators for all ordinals of the form:

ωα · n

Associated with (α, n)-eliminators are analogues of the concepts given in
Definitions 3.1 and 3.4, and Definitions 3.2 and 3.5.

Definition 3.7. [Adapted from 20, p. 94.] For any ordinal ai, such that, ai
of the form ωα · n where, α is an ordinal <ε0 and n is a natural number,
the (α, n)-major part of ai is the part of the Cantor normal form of ai that
contains no monomial < ωα · n,

ωµ
i
1 · k1i + ...+ ωµ

i
mi · kmi︸ ︷︷ ︸

(α, n)-major part of ai

+ωµ
i
mi+pi · km+p

i + ...+ ωµ
i
mi+pi+li · km+p+l

i

where, ωµ
i
1 · k1i ≥ ωα · n, . . . , ωµimi · kmi ≥ ωα · n and ωµ

i
mi+pi · km+p

i < ωα ·
n, . . . , ωµ

i
mi+pi+li · km+p+l

i < ωα · n.

For every ordinal ai <ε0, and for any given ordinal α <ε0 and any given
number n ≥ 1, we write a†i for the (α, n)-major part of ai.

Definition 3.8. [Adapted from 20, p. 94.] For any strictly decreasing se-
quence of ordinals a0 > a1 > . . ., the sequence a†0 > a†1 > . . . is the (α,
n)-sequence corresponding to a0 > a1 > . . ., just in case for any i ≥ 0, every
a†i in a†0 > a†1 > . . . is the (α, n)-major part of ai in a0 > a1 > . . ..

For any strictly decreasing sequence of ordinals Sj and any given α <ε0 and

n ≥ 1, we write S†j for the (α, n)-sequence corresponding to Sj. For any
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strictly decreasing sequence of ordinals S, and any ordinal α <ε0 and n ≥ 1,
we say that S is an (α, n)-sequence just in case there is a decreasing sequence
of ordinals Sj such that S = S†j (i.e., S is the (α, n)-sequence corresponding
to Sj for the given ordinal α <ε0 and number n ≥ 1).

Definition 3.9. [Adapted from 20, pp. 94–95.] For any ordinal α <ε0 and
any natural number n ≥ 1, an (α, n)-eliminator is a (concrete) method
for constructing an (α, n)-sequence S†j from a (concretely) given strictly de-

creasing sequence of ordinals Sj, such that the first ordinal in S†j is the (α,

n)-major part of the first ordinal in Sj, and if S†j is finite, then Sj is also
finite.

Takeuti gives Definition 3.9 by way of illustration. Choose an ordinal α <ε0
and an n ≥ 1, and let,

(Sα) a0 > a1 > ...

be a strictly decreasing sequence such that, for any i ≥ 0, every ai in (Sα) is
of the form a†i + ci, and

ωµ
i
1 · k1i + ...+ ωµ

i
mi · kmi︸ ︷︷ ︸

a†i=(α, n)-major part of ai

+ωµ
i
mi+pi · km+p

i + ...+ ωµ
i
mi+pi+li · km+p+l

i︸ ︷︷ ︸
ci

only if,
ωµ

i
1 · k1i ≥ ωα · n, . . . , ωµimi · kmi ≥ ωα · n

and
ωµ

i
mi+pi · km+p

i < ωα · n, . . . , ωµ
i
mi+pi+li · km+p+l

i < ωα · n.

The (α, n)-eliminator is a method that takes (Sα) and concretely produces
an (α, n)-sequence,

(S†α) b0 > b1 > ...

such that (S†α) satisfies each of the following conditions:

b0 = a†0 (i.e., b0 is the (α, n)-major part of a0).(CIα)
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If (S†α) is finite, then (it can be concretely shown that)(CIIα)

(Sα) is finite also.

3.4 Defining an (α, n)-eliminator for all Ordinals <ε0

If we assume that there is an (α, n)-eliminator for every ordinal <ε0, it
is relatively straightforward to demonstrate that the ordinals <ε0 are well-
ordered.

Lemma 3.4. If for every ordinal ωα <ε0, an (α, n)-eliminator is concretely
defined, then for every strictly decreasing sequence of ordinals a0 > a1 . . . such
that, a0 < ωα+1 it can be concretely shown that a0 > a1 . . . is well-ordered.

Proof Sketch. Assume that for every ordinal ωα <ε0, there is an (α, n)-
eliminator. Let,

(Sa0) a0 > . . . > ah > . . .

be an arbitrary strictly decreasing sequence of ordinals such that, a0 < ωα+1.
Apply the appropriate (α, n)-eliminator to (Sa0) to produce the (α, n)-
sequence,

(S†a0) b0 > . . . > bh > . . . .

For any i ≥ 0, every ai in (Sa0) has the form a†i + ci (where, a†i is the (α,
n)-major part of ai). Hence, a0 is of the form a†0+c0. By Definition 3.9, (S†a0)

satisfies (CIα) and so, b0 = a†0. By Definition 3.7, b0 ≤ a0 and so, b0 < ωα+1.
Hence, for any i ≥ 0, every bi in (S†a0) has the form ωα ·ki where ki is a natural
number. Thus, (S†a0) can be written as, ωα · k0 > . . . ωα · kh > . . .. Since
ωα = ωα, k0 > . . . > kh > . . .. Since N is well-ordered, k0 > . . . > kh > . . . is
finite. Therefore, (S†a0) is finite. Since (S†a0) satisfies (CIIα), (Sa0) is finite.

Theorem 3.5. If for every ordinal <ε0 an (α, n)-eliminator can be con-
cretely defined, it can be concretely shown that the ordinals <ε0 are well-
ordered.

Proof. Assume that an (α, n)-eliminator can be concretely given for every
ordinal <ε0. For any given decreasing sequence of ordinals a0 > a1 > . . ., if
a0 <ε0, then (by definition of ε0) a0 < ωα for some ordinal α <ε0. Choose α.
It follows from Lemma 3.4 that every strictly decreasing sequence of ordinals

Australasian Journal of Logic (19:1) 2022, Article no. 1



17

that begins with an ordinal < ωα+1 is well-ordered. Hence, every strictly
decreasing sequence of ordinals that begins with an ordinal < ωα is well-
ordered. Therefore, a0 > a1 > . . . is well-ordered. Since α was arbitrary, the
result generalizes: every strictly decreasing sequence of ordinals a0 > a1 > . . .
such that a0 <ε0 is well-ordered.

Remark 3.3. We use ‘α-eliminator’ and ‘(α, 1)-eliminator’ interchangeably
(for ordinals α <ε0) below. It is a consequence of Definition 3.9 that for every
α <ε0, an (α, 1)-eliminator and an α-eliminator are the same eliminator
(Takeuti makes this point in [20, p. 95.]).

In order to demonstrate the antecedent of Theorem 3.5, Takeuti estab-
lishes four main preliminary results. First, that an (α, 1)-eliminator can be
defined for all α <ε0 where a θ-eliminator has been defined for every θ < α
(Lemma 3.6, below). Second, for all α and any (given) n, an (α, n)-eliminator
can be defined if a (θ, n)-eliminator has been defined for every θ < α (Lemma
3.7, below). Third, that an (α · ω, n)-eliminator (i.e., for ωα+1 · n) can be
defined from a given (α, n)-eliminator (Lemma 3.8, below). Fourth, that for
any α <ε0 and any n ≥ 1, an (α, n + 1)-eliminator can be defined from a
given (α, n)-eliminator (Lemma 3.9, below).

Lemma 3.6. For any ordinal α <ε0, if for every ordinal θ < α, a (θ,
1)-eliminator is concretely given, an (α, 1)-eliminator can concretely con-
structed from the given (θ, 1)-eliminators.

Proof Sketch. [Adapted from 20, p. 95–6.] For every i ≥ 0, let mi < ω. Let,

(θm) ... < θmi
< ... < θ

be an increasing sequence of ordinals with limit θ such that, for every mi,
there is a concrete method for obtaining θmi

. Suppose that, for every mi,
there is a θmi

-eliminator, gmi
. Let,

(Sθ) a0 > a1 > ...

be a (concretely given) strictly decreasing sequence of ordinals <ε0. By
Definition 3.9, a θ-eliminator is a method for (concretely) producing the θ-
sequence,

(S†θ) b0 > b1 > ...
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from (Sθ) such that, (S†θ) satisfies both (CIα) and (CIIα) (where ‘α’ is replaced
with ‘θ’). Takeuti gives the following multi-step procedure for (concretely)
producing (S†θ) from (Sθ) such that (S†θ) satisfies (CIα) and (CIIα).

Step 1: A method for producing b0 in (S†θ). It is possible to write a0 as

a†0 + c0 where a†0 is the θ-major part of a0.
19 From this and Definition 3.7, it

follows that there is an mk such that, c0 < ωθmk . Choose mk. By Definition
3.7, if ai has the form a†i + ci, each monomial in ci is < ωθmk , and each
monomial in a†i is ≥ ωθmk , then a†i is the θmk

-major part of ai. Hence, every
ai in (Sθ) can be written as a†i + ci, where a†i is the θmk

-major part of ai.
From this and by supposition, applying gmk

to (Sθ) (concretely) produces a
θmk

-sequence:

(S†θ1) b1,0 > b1,1 > b1,2 > ...

such that (S†θ1) satisfies both (CIα) and (CIIα) where, ‘α’ is replaced with

‘θmk
’.20 Given (CIα), b1,0 = a†0. Since a†0 is the θ-major part of a0, the first

ordinal in (S†θ) is b1,0. Therefore, we let b0 = b1,0.

Step 2: A method for producing b1 in (S†θ). Consider the sequence b1,1 >
b1,2 > ... and suppose that b1,1 ≥ ωθ.

Remark 3.4. Takeuti does not explicitly justify the supposition that b1,1 ≥
ωθ. The supposition is justified and motivated by the fact that if b1,1 � ωθ,
then the θ-sequence constructed from (Sθ) would contain only b0. Given that
each ai in (Sθ) is in Cantor normal form, either the θ-major part of a0 is
greater than the θm-major part of a1 (i.e. b1,1) or they are identical. If the
latter, then b1,0 = b1,1 and so, b1,1 ≥ ωθ. If the former, then either b1,1 ≥ ωθ

or b1,1 � ωθ. If b1,1 ≥ ωθ, then the supposition is true. If b1,1 � ωθ, then each

monomial in b1,1 is < ωθ. Hence, b1,1 is not in (S†θ). Moreover, since (S†θ1)
is a strictly decreasing sequence, if b1,1 � ωθ, then for all b1,i < b1,1, b1,i � ωθ.

From this it follows that only b1,0 is in (S†θ). Hence, if the supposition that

b1,1 ≥ ωθ is false, then (S†θ) would contain only b0 and there is no need to
proceed to Step 2.

19That is, each monomial in a†0 is ≥ ωθ.
20This is a consequence of the supposition that, for every mi, there is a θmi

-eliminator,
gmi

and of Definition 3.9. θmk
is an ordinal <ε0 and so gmk

is the (α, n)-eliminator for:

α = θm and n = 1. Hence, (S†θ1) must satisfy both (CIα) and (CIIα), where α is replaced
with θm, by Definition 3.9 (or more accurately, from the definition of the α-sequence
produced by an application of an α-eliminator).
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Repeat the procedure from Step 1 on the sequence b1,1 > b1,2 > .... Write b1,1
as b†1,1 + c1,1 where, b†1,1 is the θ-major part of b1,1. From this and Definition
3.7, it follows that there must be some ml such that, c1,1 < ωθml . Hence,
there is a θml

-eliminator, gml
which when applied to b1,1 > b1,2 > ... produces

the θml
-sequence:

(S†θ2) b2,1 > b2,2 > b2,3 > ...

such that, (S†θ2) satisfies both (CIα) and (CIIα). By Definition 3.9, b2,1 = b†1,1.
Hence, make b2,1 = b1.

Remark 3.5. The portion of Takeuti’s [20] proof that corresponds to the
above Step 2 makes b1,0 = b†1,0 + c1,0 where, b†1,0 is the θ-major part of b1,0.
Takeuti states that there must be an ml < ω such that c1,0 < ωθml , and defines
gml

accordingly [20, p. 95]. This is an error. Since b1,0 just is the θ-major

part of a0, every monomial in b1,0 is ≥ ωθ. By definition b1,0 = b†1,0, hence
c1,0 must be empty.

Step 3: A method for producing b2 in (S†θ). Consider the sequence, b2,2 >
b2,3 > . . .. As before, suppose that b2,2 ≥ ωθ (for a justification and moti-
vation for this supposition see, Remark 2). Repeat the procedure given in
Steps 1 and 2 on the sequence, b2,2 > b2,3 > ... to concretely produce the
sequence:

(S†θ3) b3,2 > b3,3 > b3,4 > ...

such that it follows that b3,2 = b2. Continuing this procedure (i.e., succes-
sively executing Steps appropriately analogous to the above) will eventually
produce the target θ-sequence,

(S†θ) b0 > b1 > . . .

Takeuti’s multi-step procedure for (concretely) producing (S†θ) from (Sθ)

constitutes the target θ-eliminator g, if (S†θ) satisfies both (CIα) and (CIIα).
The direct outcome of Step 1 is that b0 is the θ-major part of a0 in (Sθ)
and so, (S†θ) satisfies (CIα). To show that (S†θ) satisfies (CIIα), suppose that

(S†θ) is finite:
b0 > b1 > ... > bj
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where, bj = bj+1,j (given the method by which (S†θ) was constructed). From
this it follows that the sequence which would have been created at Step
j + 1:

(S†θj + 1) bj+1,j > bj+1,j+1 > bj+1,j+2 > ...

is such that bj+1,j+1 < ωθ.21 It follows that, bj+1,j+1 < ωθm′ for some m′.
Hence, it is possible to construct a θm′-eliminator, gm′ . Applying gm′ to
(S†θj + 1) produces the finite θm′-sequence:

b†j+1,j > . . .

which satisfies both (CIα) and (CIIα) and where bj+1,j ≥ b†j+1,j.
22 Hence, by

Definition 3.8, (S†θj + 1) must be finite. Likewise, the sequence:

(S†θj) bj,j−1 > bj,j > bj,j+1 > ...

must be finite. These implications continue backwards for each sequence
introduced at each step in Takeuti’s multi-step procedure for (concretely)
producing (S†θ) until it is demonstrated that (Sθ) a0 > a1 > ... is finite.

Therefore, if (S†θ) is finite, then (it can be concretely shown that) (Sθ) is

finite also. Therefore, (S†θ) satisfies (CIIα). Therefore, Takeuti’s multi-step

procedure for (concretely) producing (S†θ) from (Sθ) constitutes the target
θ-eliminator g. Since the original increasing sequence of ordinals (θm) was
arbitrary, the above result generalizes: for any α <ε0, an (α, 1)-eliminator
can be concretely defined if an eliminator has been defined for ordinals <
α.

Next, Takeuti demonstrates Lemma 3.7 to show that the preceding result
(Lemma 3.6) can be generalized for any given α <ε0 and n ≥ 1. To do this,
Takeuti uses following notion.

Definition 3.10. [Adapted from 20, p. 95.] For any ordinal β <ε0 and
any n ≥ 0, a (β, n + 1)-eliminator is a method for taking any given (α,
n)-eliminator and (concretely) constructing an (α · ωβ, n)-eliminator.

21This is because, if bj+1,j+1 ≥ ωθ, then bj+1 would be the last ordinal in (S†θ).
22Note: this diverges slightly from Takeuti’s original [20, p. 96], but the result is the

same.
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Lemma 3.7. For any n ≥ 1 and for every α <ε0, if for every θ < α, a (θ,
n)-eliminator is concretely given, then an (α, n)-eliminator can be concretely
constructed using the given (θ, n)-eliminators.

Proof Sketch. [Adapted from 20, p. 96.] For every i ≥ 0, let m∗i < ω. Let,

(θm∗) . . . < θm∗i < . . . < θ

be an increasing sequence of ordinals with limit θ <ε0 and such that for every
m∗i , there is a concrete method for obtaining θm∗i . Further, suppose that there
is a concretely given (θm∗i , j + 1)-eliminator (gm∗i ) for every θm∗i < θ. From
this, it is possible to define a (θ, j + 1)-eliminator, g, by induction on j.
Takeuti considers three cases:

(Case 1) j = 0.

Since j = 0, n = 1 and g is a (θ, 1)-eliminator. Hence, g is defined in a
manner exactly analogous to that developed in the proof sketch of Lemma
3.6.

(Case 2) j = l + 1

where, l is a natural number ≥ 0 and l is substituted for j in g. That is,
make g a (θ, l+ 1)-eliminator or, in other words, g is a (θ, j)-eliminator and
n = j.

Remark 3.6. The need for (Case 2) may not be immediately obvious; how-
ever, (Case 2) is needed. It behaves like an induction hypothesis that will
allow for the construction of the (θ, j + 1)-eliminator needed in (Case 3)
below.23

Takeuti shows that g can be defined for j = l + 1 as follows. Again, con-
sider the increasing sequence of ordinals (θm∗), with limit θ. By the original
supposition, there is a concretely given (θm∗i , j + 1)-eliminator gm∗i for every
θm∗i < θ in (θm∗). Since ‘j’ was an arbitrary natural number, we can say
that there is a concretely given (θm∗i , l + 1)-eliminator for every θm∗i < θ.
Hence, there is a concretely given (θm∗i , j)-eliminator g′m∗i , for every θm∗i < θ.

23Note that more (or more detailed) steps are needed than might have been expected
to ensure that the demonstration is concrete.
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Takeuti claims that there is, therefore, an operation, kn such that applying
kn to g′m∗i concretely produces the target (θ, j)-eliminator, g.

Remark 3.7. Takeuti does not describe kn in any more detail than this.
Constructing the operation kn is analogous to the procedure outlined in the
proof sketch of Lemma 3.6.

Since the sequence (θm∗) was arbitrary, this conclusion generalizes.

(Case 3) j > 0

In order to show that g can be defined for j > 0, Takeuti makes use of the
(β, n+ 1)-eliminator. For for every i ≥ 0, let mi < ω. Let,

(βm) . . . < βmi
< . . . < β

be an increasing sequence of ordinals such that the limit of (βm) is β. As
in (Case 2), Takeuti supposes that there is a (βmi

, j + 1)-eliminator gmi

concretely given for every βmi
< β in (βm). Let p be a (concretely) given

(α, n)-eliminator for some α < θ. By Definition 3.10, gmi
can be applied

to p and will concretely produce an (α · ωβmi , j)-eliminator, gmi
(p). The

sequences (θm∗) and (βm) are arbitrary and so, Takeuti sets α · ωβmi as θm∗i
(for every βmi

and θm∗i ) and α · ωβ as θ, which makes gmi
(p) the same as the

eliminator g′m∗i from (Case 2). Hence, applying the earlier operation kn (from

(Case 2)) to each concretely given g′m∗i for the sequence (θm∗) is a method

which constitutes (or defines) an (α · ωβ, j)-eliminator, q.24. By Definition
3.10, the method outlined above for constructing q from p constitutes a (β,
n+ 1)-eliminator. More specifically, the method defines the target (θ, j+ 1)-
eliminator, g. Therefore, for any n ≥ 1 and any given α <ε0, if a (θ,
n)-eliminator is concretely given for every θ < α, an (α, n)-eliminator can
be concretely constructed from the given (θ, n)-eliminators.

Lemma 3.8. For any ordinal α <ε0 and any number n ≥ 1 such that an
(α, n)-eliminator has been concretely given, an (α · ω, n)-eliminator can be
concretely constructed from the concretely given (α, n)-eliminator.

Proof Sketch. [Adapted from 20, p. 96.] Let,

(θω) . . . < θ < . . . < θ · ω
24This is because that same method defines a (θ, n)-eliminator, and θ = α · ωβ .
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be an increasing sequence of ordinals such that the limit of (θω) is θ · ω and
where, for every ordinal θ′ < θ · ω in (θω), there is a concrete method for
obtaining θ′. For some θ < θ · ω in (θω) and a given n ≥ 0, assume that g
is a (θ, n + 1)-eliminator that has been concretely given. Takeuti offers the
following two stage method for constructing a (θ · ω, n+ 1)-eliminator from
the given (θ, n+ 1)-eliminator, g.
Stage 1: From g, concretely construct a (θ · m, n + 1)-eliminator for all
m < ω. To do this, first suppose that for some α < θ, an (α, n)-eliminator,
f , has been concretely given. By Definition 3.10, g is a (β, n+ 1)-eliminator
and so, applying g to f (concretely) gives the (α · ωθ, n)-eliminator, g(f).
By Definition 3.9, g(f) is an (α, n)-eliminator and so, g can be applied to
g(f). By Definition 3.10, applying g to g(f) concretely gives the (α · ωθ · ωθ,
n)-eliminator, g(g(f)). By Definition 3.9, g(g(f)) is an (α, n)-eliminator and
so, g can also be applied to g(g(f)). By Definition 3.10, applying g to g(g(f))
concretely gives the (α ·ωθ ·ωθ ·ωθ, n)-eliminator, g(g(g(f))). For any m < ω,
by Definitions 3.9 and 3.10, this procedure can be iterated m many times to
concretely give the:

(α · ωθ · ωθ · ... · ωθ︸ ︷︷ ︸
m

, n)− eliminator.

For all m < ω,
α · ωθ · ωθ · ... · ωθ︸ ︷︷ ︸

m

= α · ωθ·m.

Therefore, for all m < ω, the

(α · ωθ·m, n)− eliminator

can be concretely constructed from g.
Stage 2: Generalize this result to show that for every θ′ < θ · ω, a (θ′,
n+ 1)-eliminator can be concretely constructed.

Claim 3.1. For any ordinal θ < θ · ω and any n ≥ 1, if an (θ, n)-
eliminator can be concretely constructed, then for any ordinal θ∗ < θ, a
(θ∗, n)-eliminator can be concretely constructed.

Remark 3.8. For brevity, we do not provide a detailed demonstration of
Claim 3.1 here. However, the method for demonstrating Claim 3.1 is straight-
forward. Choose an ordinal α <ε0 such that an (α, n)-eliminator can be
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concretely constructed and such that it has been established that an (α′, n)-
eliminator can be concretely constructed for any α′ < α (given Propositions
3.1 and 3.2, methods outlined above, etc.). From Lemma 3.6 or Lemma 3.7,
and α and the concretely given (α, n)-eliminator (and (α′, n)-eliminators),
construct an (αS, n)-eliminator for the relevant successor of α, αS. Repeat
this process in a manner analogous to the procedure outlined in Remark 3.2
until the relevant (θ∗, n)-eliminator is concretely constructed.

If θ = θ′, it follows trivially by our initial assumption that a (θ′, n + 1)-
eliminator can be concretely constructed from g. Now consider the remaining
two cases.

(Case 1) θ < θ′ < θ · ω.

Since θ′ < θ · ω, it follows (by definition of θ · ω that for some m < ω and
α < θ, there is an α · ωθ·m < θ · ω such that θ′ < α · ωθ·m. From Claim 3.1,
an (α, n)-eliminator can be concretely constructed for all α < θ. Since the
original choice of α < θ was arbitrary, the above result can be generalized
to: for every α < θ and for all m < ω, an (α · ωθ·m, n)-eliminator can be
concretely constructed from g. From this and Claim 3.1, it follows that a (θ′,
n)-eliminator can be concretely constructed.

Remark 3.9. The relevant (θ′, n)-eliminator can be constructed directly from
g using the procedure outlined in Remark 3.8.

Remark 3.10. For all m < ω, an (α · ωθ·m, n)-eliminator can be concretely
constructed from g. The original sequence (θω) was arbitrary. Thus, a proce-
dure analogous to the one that Takeuti gives for (Case 3) in the proof sketch
of Lemma 3.7 could be used (instead of appealing to Claim 3.1) to construct
the relevant (θ′, n)-eliminator from g.

(Case 2) θ′ < θ < θ · ω

By assumption, for a given n ≥ 0, g is a concretely given (θ, n+1)-eliminator.
Hence, from Claim 3.1, there is an 1 ≤ n′ = (n + 1), such that a (θ′, n′)-
eliminator can be concretely given.

It follows from the initial assumption that g is concretely given and
(Case 1) and (Case 2) that a (θ∗, n)-eliminator can be concretely constructed
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for every θ∗ < θ · ω. Hence, Lemmas 3.6–3.7 entail that it is possible to con-
struct a (θ · ω, n+ 1)-eliminator from g. Since our initial sequence (θω) was
arbitrary, this result generalizes. An (α · ω, n)-eliminator can be concretely
constructed from a concretely given (α, n)-eliminator.

Lemma 3.9. For any n ≥ 1 and any ordinal α <ε0 such that an (α, n)-
eliminator has been concretely given, an (α, n + 1)-eliminator can be con-
cretely constructed from the concretely given (α, n)-eliminator.

Proof Sketch. Takeuti demonstrates Lemma 3.9 by showing that a (1, m+1)-
eliminator can be constructed for all m ≥ 0. He proceeds by induction on
m. Consider the following three cases:

(1) m = 0

Takeuti stipulates that the 1-eliminator can be taken as a (1, 1)-eliminator.
Hence, it has already been shown that a (1, m + 1)-eliminator can be con-
structed, where m = 0.

(2) m = 1

Takeuti reduces the construction of a (1, 2)-eliminator to the construction of
an (α + α)-eliminator from an (α, 1)-eliminator.25 An (α + α)-eliminator is
a method for constructing, from a given decreasing sequence of ordinals S,
an (α + α)-sequence, Sαα satisfying an analogue of Definition 3.8. That is,
the first ordinal in Sαα, is the (α+ α)-major part26 of the first ordinal in S,
and if Sαα is finite, then (it can be concretely shown that) S is also finite.

Takeuti’s task now is to give a method for generating an (α+α)-sequence
(that satisfies (CIαα) and (CIIαα)) from an α-eliminator. He begins by con-
sidering a given decreasing sequence of ordinals:

(Sm) a0 > a1 > ...

Next, apply an α-eliminator to Sm to obtain the α-sequence:

(S†m) b0 > b1 > ...

where (S†m) satisfies (CIα) and (CIIα). That is, b0 is the α-major part of a0
and if (S†m) is finite then (it can be concretely shown that) (Sm) is also finite.

25This is because α · 2 = α+ α
26The definition of this is analogous to the definition of an α-major part.
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By Definition 3.8, each monomial in each bi in (S†m) is ≥ α. Thus, each bi in
(S†m) can be written in the form ωα · ci. Since ωα = ωα, if the sequence:

(S∗m) c0 > c1 > ...

is finite, then it follows that (S†m) is finite. Now apply an α-eliminator to
(S∗m) to obtain the α-sequence:

(S∗†m ) d0 > d1 > ...

where (S∗†m ) satisfies both (CIα) and (CIIα)27 From (S∗†m ), it is straightforward
to construct an (α + α)-sequence:

(Sααm ) ωα · d0 > ωα · d1 > ...

Thus, (Sααm ) is the (α + α)-sequence that satisfies (CIαα) and (CIIαα) for
the starting sequence, (Sm). It can be shown that (Sααm ) satisfies condition
(CIαα) for (Sm). In virtue of its construction, d0 is the α-major part of c0.
Hence,

ωα · d0 = ωα·(the α-major part of c0)

By stipulation, b0 = ωα · c0. Hence,

ωα · d0 = the (α + α)-major part of b0

In virtue of its construction, b0 is the α-major part of a0. Thus, a0 = b0 + e0,
where e0 < ωα. Therefore, a0 can be written as, (ωα · c0) + e0. When written
in this way, it is clear that:

ωα · d0 = the (α + α)-major part of a0

Therefore, (Sααm ) satisfies condition (CIαα) for (Sm).
It can also be shown that (Sααm ) satisfies (CIIαα). Suppose (Sααm ) is finite.

It follows that d0 > d1 > ... must be finite. Since d0 > d1 > ... is an α-
sequence which satisfies (CIα) and (CIIα) for c0 > c1 > ..., c0 > c1 > ...
must be finite. By stipulation, every bi in (S†m) is written as ωα · ci. Hence,
it follows from the fact that c0 > c1 > ... is finite that b0 > b1 > ... is
finite. Since b0 > b1 > ... is an α-sequence which satisfies (CIα) and (CIIα)
for (Sm), a0 > a1 > ... must be finite. Therefore, if (Sααm ) is finite, then (it
can be concretely shown that) (Sm) is finite also. Therefore, (Sααm ) satisfies

27That is, b0 is the α major part of c0 and if (S∗†m ) is finite, then so is (S∗m).
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both (CIαα) and (CIIαα) for (Sm), and the above method for constructing
an (α+ α)-sequence constitutes an (α+ α)-eliminator. Hence, a (1, m+ 1)-
eliminator can be constructed, where m = 1.

(3) m > 1

Let f be an (α, m)-eliminator. Since m > 1, m = n + 1 (where n ≥ 1).
Hence, f is an (α, n + 1)-eliminator. As was demonstrated in the proof
sketch of Lemma 3.8, applying f to itself enables the concrete construction
of an (α · ω, m)-eliminator. Takeuti concludes that a (1, m + 1)-eliminator
can be constructed where m > 1. Therefore, (1), (2) and (3) provide a means
to construct a (1, m+ 1)-eliminator for all m ≥ 0.

Theorem 3.10. An (α, n)-eliminator can be concretely constructed for every
ordinal <ε0.

Proof Sketch. [Adapted from 20, p. 97.] From Lemmas 3.6–3.8, Takeuti con-
cludes that an (α, n)-eliminator can be constructed for every α of the form:

ω·
··
ω

}m

The construction of the relevant (α, n)-eliminator is done by induction on
m. This, together with Lemma 3.9 entail that an (α, n)-eliminator can be
constructed for all ordinals <ε0. For instance, where m = 0, α is ω0 (i.e.
α = 1). Let f be a (1, n)-eliminator and let g be an (already defined)
(α, n + 1)-eliminator. Applying g to f (concretely) produces a (1 · ωα, n)-
eliminator, g(f). g(f) is equivalent to the target (ωα, n)-eliminator.

3.5 A Proof that the Ordinals <ε0 are Well-Ordered

Now, it can be concretely shown that,

Theorem 3.11. The ordinals <ε0 are well-ordered.

Proof Sketch. [Adapted from 20, p. 95.] The demonstration is analogous to
the demonstration of Theorem 3.3. Let,

(Sα) a0 > a1 > ...

Australasian Journal of Logic (19:1) 2022, Article no. 1



28

be a decreasing sequence of ordinals such that, a0 < ωα+1. Now apply an (α,
n)-eliminator to Sα to (concretely) construct an α-sequence:

(S†α) b0 > b1 > ...

where (S†α) satisfies both (CIα) and (CIIα). Then, b0 is the α-major part of
a0 and if (S†α) is finite, then (it can be concretely shown that) (Sα) is finite.
Since, b0 is the α-major part of a0, a0 = b0 + e0. Hence, b0 < ωα+1. It follows
that each bi can be written as ωα · ki where ki is a natural number. Thus,
(S†α) can be written as:

ωα · k0 > ωα · k1 > ...

Since ωα = ωα, this sequence is finite if k0 > k1 > ... is finite. Given that the
natural numbers are well-ordered, k0 > k1 > ... must be finite, so b0 > b1 > ...
must be finite. By (CII1), it follows that a0 > a1 > ... must be finite too.
(Sα) is arbitrary so this result generalizes such that any decreasing sequence
of ordinals which begins with an ordinal < ωα+1 must be finite. Therefore,
the ordinals < ωα+1 are well-ordered. From this it trivially follows that the
ordinals < ωα are well-ordered.

The fact that the ordinals < ωα are well-ordered entails that the ordinals
<ε0 are well-ordered. Given any decreasing sequence of ordinals, a0 > a1 >
..., if a0 <ε0, then since α ranges over all ordinals <ε0, it follows that a0 < ωα

for some α. Hence, a0 > a1 > ... must be finite. Therefore, all decreasing
sequences of ordinals which begin with an ordinal <ε0 are finite and thus the
ordinals <ε0 are well-ordered.

This ends (our reconstruction of) Takeuti’s proof of the well-ordering of
the ordinal notations in Cantor normal form <ε0.

4 Final Thoughts

Immediately after the well-ordering proof, Takeuti brings up a couple of
things that are worth briefly mentioning here. The first is that he takes the
method of eliminators to be a precise, concrete way to show that the ordinal
notations for ordinal less than ε0 are accessible. His gloss on accessibility is
the following:

Australasian Journal of Logic (19:1) 2022, Article no. 1



29

We say an ordinal µ is accessible if it has been demonstrated that
every strictly decreasing sequence starting with µ is finite. More
precisely, we consider the notion of accessibility only when we
have actually seen, or demonstrated constructively, that a given
ordinal is accessible. [20, p. 98]

This more common notion is a helpful way to think about which forms
of induction might be acceptable from certain constructive or finitist stand-
points [see 19, for an early discussion].

It is also closely related to Takeuti’s method of ordinal diagrams [see
e.g. 17, 18, 20, Ch. 5] which he uses to establish the accessibility of ordinals
required for consistency proofs, although the question of whether the well-
ordering of ordinal diagrams can be constructively established is much less
certain than in the present case [see 1, p. 5].

In a similar vein, Takeuti asserts that the method of eliminators can
be extended [p. 97]. This suggests that more transfinite induction might
be available to the finitist or constructionist who accepts the proof we’ve
presented. Further such speculation is beyond the scope of this paper, but
we do explore the extent of the applicability of the method of eliminators in
our [7].

As noted above, it is our hope that our presentation of Takeuti’s proof
in this paper facilitates future research around these topics, as well as others
that have not occurred to us.
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