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Abstract

This paper shows that model structures for R+, the system of positive
relevant implication, can be constructed from ordered geometries. This ex-
tends earlier results building such model structures from projective spaces.
A final section shows how such models can be extended to models for the
full system R.

1 Introduction

This paper is a sequel to an earlier paper by the author [6] showing how to
construct models for the logic KR from projective spaces. In that article, the
logical relation Rabc is an extension of the relation Cabc, where a, b, c are points
in a projective space and Cabc is read as “a, b, c are distinct and collinear.”

In the case of the projective construction, the relation Rabc is totally sym-
metric. This is of course not the case in general in R models, where the first
two points a and b can be permuted, but not the third. For the third point, we
have only the implication Rabc⇒ Rac∗b∗.

On the other hand, if we read Rabc as “c is between a and b”, where we
are operating in an ordered geometry, then we can permute a and b, but not
b and c, just as in the case of R. Hence, these models are more natural than
the ones constructed from projective spaces, from the point of view of relevance
logic. In the remainder of the paper, we carry out the plan outlined here, by
constructing models for R+ from ordered geometries. This confirms the earlier
intuitions of J.M. Dunn, who dubbed one of the crucial postulates of R model
structures the “Pasch Law.”

2 Ordered Geometry

The system of ordered geometry, originally due to Moritz Pasch [3] and sim-
plified by Veblen [9], is formulated as a system involving a non-empty universe
of points and a ternary relation Babc between the points, to be read as “b is
between a and c.” Here we follow the exposition of Coxeter [2, Chapter 12].

Before stating the axioms, we introduce some useful definitions. For a, b
distinct points, the segment (ab) is the set of points p for which Bapb. The
interval [ab] is the set (ab) ∪ {a} ∪ {b}. The ray a/b is the set of points p for
which Bpab. The line Lab is a/b ∪ [ab] ∪ b/a. A point c is on the line Lab if
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c ∈ Lab. Points lying on the same line are said to be collinear. Three non-
collinear points determine a triangle abc, consisting of these three points, called
vertices, together with the three segments (ab), (ac) and (bc), called sides. If
a1, . . . , ak are points, then we write #a1 . . . ak to denote that all of the points
are pairwise distinct.

There are seven axioms, adapted from §12.2 of Coxeter’s text [2]. We omit
Coxeter’s remaining three axioms, two dealing with the third dimension, the
third stating a continuity postulate.

Axiom 1: ∃ab(a 6= b);

Axiom 2: a 6= b⇒ ∃c(Babc);

Axiom 3: Babc⇒ a 6= c;

Axiom 4: Babc⇒ (Bcba ∧ ¬Bbca);

Axiom 5: (a 6= b ∧ c 6= d ∧ c, d ∈ Lab)⇒ a ∈ Lcd;

Axiom 6: a 6= b⇒ ∃c(c 6∈ Lab);

Axiom 7: (acd is a triangle ∧Bacb ∧Bced)⇒ ∃f(f ∈ Lbe ∧Bafd).

We now list some theorems of this system; for proofs, the reader can consult
§12.2 of Coxeter’s monograph [2], or the chapter [9] by Oswald Veblen.

Theorem 1: Babc⇒ ¬Bcab;

Theorem 2: Babc⇒ #abc;

Theorem 3: a, b 6∈ (ab);

Theorem 4: (c 6= d ∧ c, d ∈ Lab)⇒ Lab = Lcd;

Theorem 5: (#abc ∧ ∃de(a, b, c ∈ Lde)⇒ (Babc ∨Bbca ∨Bcab);

Theorem 6: a 6= b⇒ ∃c(Bacb);

Theorem 7: (acd is a triangle ∧Bacb ∧Bced)⇒ ∃f(Bafd ∧Bbef);

Theorem 8: (Babc ∧Bbcd)⇒ Babd;

Theorem 9: (Babc ∧Babd ∧ c 6= d)⇒ [(Bbcd ∨Bbdc) ∧ (Bacd ∨Badc)];

Theorem 10: (Babd ∧Bacd ∧ b 6= c)⇒ (Babc ∨Bacb);

Theorem 11: (Babc ∧Bacd)⇒ (Bbcd ∧Babd).
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3 R+-frames and geometry

3.1 Model theory of R+

The logic R+ is the positive fragment of the relevant logic R, that is to say, it is
the family of all theorems of R that do not involve negation. In this subsection,
we give the basic model theory for this system.

An R+-frame (or R+ model structure) is a triple 〈0,K,R〉, where K is a
set, 0 ∈ K, and R is a ternary relation on K, satisfying the postulates:

P 1: R0aa,

P 2: Raaa,

P 3: (Rabc ∧Rcde)⇒ ∃f(Radf ∧Rfbe),

P 4: (R0da ∧Rabc)⇒ Rdbc,

for a, b, c, d ∈ K. J.M. Dunn dubbed P 3 Pasch’s Law because of its similarity
in form to the famous postulate introduced by Pasch into geometry (reading
Rabc, ‘c is between a and b’). Axiom 7 and Theorem 7 above are an expression
of Pasch’s Law. In the following subsection, we shall show that the similarity
observed by Dunn can be strengthened to an identity in models constructed
from ordered geometries.

If we define a ≤ b as R0ab, then it is not hard to show that the relation
≤ is reflexive and transitive – in fact, we can assume in addition that it is a
partial ordering, though this is not necessary for soundness. A subset S of K is
increasing if it satisfies the condition: (a ∈ S ∧ a ≤ b)⇒ b ∈ S.

A valuation in an R+-frame assigns an increasing subset Φ(P ) ⊆ K to each
propositional variable P . Given a valuation in an R+-frame, the forcing relation
|= for elements of K and formulas of R+ is defined by:

1. a |= P ⇔ a ∈ Φ(P ),

2. a |= A ∧B ⇔ a |= A and a |= B,

3. a |= A ∨B ⇔ a |= A or a |= B,

4. a |= A→B ⇔ ∀bc((b |= A ∧Rabc)⇒ c |= B).

A formula A is valid in an R+-frame if 0 |= A for all valuations in the frame.
Routley and Meyer [4, §10] gave a completeness proof for R+ relative to this
semantics, proved by a canonical model construction.

Theorem 3.1 A formula is a theorem of R+ if and only if it is valid in all
R+-frames.
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Figure 1: The Pasch axiom

3.2 Constructing R+-frames from ordered geometries

This subsection contains the main construction, showing how, starting from an
ordered geometry, we can define an R+-frame.

Definition 3.2 Let G = 〈S,B〉 be an ordered geometry, where S is the set of
points, and B the betweenness relation on S. The structure F(G) = 〈S,R〉 is
defined by R = {(a, b, c) : Bacb} ∪ {(a, a, a) : a ∈ S}.

Lemma 3.3 If G is an ordered geometry, then F(G) satisfies postulates P 2
and P 3 in the definition of an R+-frame.

Proof. The postulate P 2 holds by the definition of F(G). It remains to prove
P 3, or Pasch’s Law. Accordingly, let us assume that Rabc and Rcde; we aim
to show that there is an f ∈ S so that Radf and Rfbe. Various cases arise. In
the proofs below, uses of Axiom 4 are mostly tacit.

Case 1.1: The points a, c, d form a triangle, Bacb and Bced. By Theorem
7, there is a point f so that Bafd and Bbef , so that Radf and Rfbe. Figure 1
illustrates this case.

Case 1.2: The points a, c, d are collinear, Bacb and Bced. By Theorem 2,
#abc and #cde; hence, by Theorem 4, the points a, b, c, d, e are all collinear. For
this case, we shall assume that #abcde; we deal with the case of coincidences
below. Various cases now arise, depending on the positions of d and e relative
to a, b and c. Since d ∈ Lab, it follows by Theorem 5 that either Bbad, Badb or
Babd.

Case 1.2.1: Bbad. Since Bbca and Bbad, by Theorem 11, we have Bcad.
Because a 6= e and Bced, it follows by Theorem 10 that either Bcae or Baec.

In the first case, by Theorem 6, there is a point f so that Bdfe; from Bcae
and Bced, we infer by Theorem 11 that Baed. Hence, from Bdfe and Bdea,
we infer Bdfa, that is, Radf . By Theorem 11 again, from Bdfe and Bdea, we
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have Bfea. Since Bdea and Bdac, by Theorem 11, we have Beac; since Bacb,
by Theorem 8, we have Beab. From Bfea and Beab, by Theorem 8 again, we
deduce Bfeb, that is to say, Rfbe, concluding the first case.

In the second case, we have Baec. By Theorem 6, there is an f so that
Bafd, so that Radf . Since Baec and Bacb, by Axiom 11, we have Baeb. Again
by Axiom 11, from Bdfa and Bdab we infer Bfab. By Axiom 4, we have Bbea
and Bbaf , so by Axiom 11, Bbef , that is, Rfbe, completing the proof of the
second case.

Case 1.2.2: Badb. Since Bacb, by Theorem 10, either Bacd or Badc.
In the first case, by Theorem 6, there is a point f so that Bcfe. Since Bced,

by Theorem 11, Bcfd; we have Bacd, so by Theorem 11 again, Bafd, that is
to say, Radf . We have Bafd and Badb, so by Theorem 11, Bfdb. From Bcfe
and Bced, we deduce Bfed by Theorem 11; from Bfdb and Bfed, we obtain
by Theorem 11 again Bfeb, that is, Rfbe.

In the second case, by Theorem 6, there is a point f so that Bafd, so that
Radf . Repeatedly applying Axiom 4 and Theorem 11, from Bafd and Badc,
we deduce Bfdc; from Bced and Bcdf we deduce Bfec. From Bafd and Badc
we have Bafc; hence using Bacb we infer Bfcb. Finally, from Bfec and Bfcb,
we obtain Bfeb, that is, Rfbe.

Case 1.2.3: Babd. Applying Theorem 11, from Bacb and Babd we infer
Bcbd. Since Bced, by Theorem 10, we have Bcbe or Bceb.

In the first case, we have Bcbe. By Theorem 6, there is a point f so that
Befd. As in the cases above, we apply Axiom 4 and Theorem 11. From Bcbe
and Bced, we deduce Bcbd; then from Bacb and Bcbd by Theorem 8, we infer
Bdca. We deduce Bdfc from Bdfe and Bdec; combining this with Bdca, we
conclude Bdfa, or Radf . From Bcbe and Bced, we get Bdeb, hence, using Bdfe,
we obtain Bfeb, that is, Rfbe.

In the second case, we have Bceb. By Theorem 6, there is a point f so that
Bcfe. From Bcfe and Bceb, we infer Bfeb, that is, Rfbe. From Bcfe and
Bced, we deduce Bcfd, and from Bcfe and Bceb, we deduce Bcfb. Bbfc and
Bbca imply Bfca; from Bcfd and Bfca, we conclude Bdfa by Theorem 8, that
is to say, Radf . This concludes Case 1.2.

Case 1.3: In this case, we assume Bacb and Bced, but do not assume
#abcde, so that coincidences can occur.

We start by analysing which coincidences are possible. In view of the con-
ditions #abc and #cde, the possible identifications are: a = d, a = e, b = d and
b = e. The joint coincidences a = d ∧ a = e, a = d ∧ b = d, a = e ∧ b = e, and
b = d∧ b = e are all ruled out either by #abc or #cde. This leaves two possible
joint coincidences.

First, if a = d and b = e, then Bacb is equivalent to Bdce; by Axiom 4,
this contradicts Bced. Second, if a = e and b = d, then Bacb implies Becd,
contradicting Bced, again by Axiom 4. Thus we have ruled out the remaining
possible joint coincidences, showing that only single coincidences can occur.

Case 1.3.1: a = d and #abce. Set f = a = d, so that Radf . We have Bfec
and Bfcb, so by Theorem 11, Bfeb, that is, Rfbe.
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Case 1.3.2: a = e and #abcd. By Theorem 6, there is a point f so that
Bdfe, so that Radf . From Bdfe and Bdec, we deduce Bfec. Then Bfec and
Becb imply that Bfeb, that is to say, Rfbe.

Case 1.3.3: b = d and #abce. Set f = c. Since Bdec, we have Bbef , or
Rfbe; since Bacb, we have Bafd, or Radf .

Case 1.3.4: b = e and #abcd. Set f = b = e. Then Rfbe by definition.
Since Bacb and Bcbd, we have Bacd. From Bdfc and Bdca, we infer Bdfa, that
is to say, Radf , concluding Case 1.3.

Case 1.4: In this last case, we have a = b = c or c = d = e.
In the first case, Raaa and Baed. By Theorem 6, there is a point f so that

Bdfe. From Bdfe and Bdea, we infer Bdfa, or Radf . Since Bdfe and Bdea,
we have Bfea, or Rfbe.

In the second case, Bacb and Rccc. By Theorem 6, there is a point so that
Bafc, so that Radf . From Bafc and Bacb we infer Bfcb, or Rfbe, concluding
Case 1.4 and the proof of Pasch’s Law. 2

The preceding lemma supplies us with the basic material for our construc-
tion; to complete it, we need to show how to add a a zero point to the frame.

Definition 3.4 Let F = 〈S,R〉 be a structure consisting of a non-empty set S
with a ternary relation on S. Let 0 be an element not in S. Then the structure
F + 0 = 〈K,R0〉 is defined as follows:

1. K = S ∪ {0};

2. R0 = R ∪ {(0, a, a), (a, 0, a) : a ∈ K}.

The relation R0 can be decomposed into four mutually exclusive parts, namely:

1. {(a, b, c) : a, b, c ∈ S};

2. {(0, a, a) : a ∈ S};

3. {(a, 0, a) : a ∈ S};

4. {(0, 0, 0)}.

This decomposition is useful in the case distinctions of the following theorem.

Theorem 3.5 1. If F = 〈S,R〉 satisfies postulates P 2 and P 3 in the
definition of an R+-frame, then F + 0 is an R+-frame.

2. If G = 〈S,B〉 is an ordered geometry, then F(G) + 0 is an R+-frame.

Proof. Assume that F = 〈S,R〉 satisfies postulates P 2 and P 3 in the
definition of an R+-frame. By construction, F(G) + 0 satisfies the postulates P
1 and P 2. If R00ad, then a = d, so P 4 holds as well. It remains to show that
F(G) + 0 satisfies P 3 as well.

Assume that R0abc and R0cde, where a, b, c ∈ K. We aim to show that
there is an f ∈ K so that R0adf and R0fbe.
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(1) Assume that c = 0. In that case, a = b = c = 0, and R0cde has the form
R00dd, for d ∈ K. Set f := d, so that R00dd and R0d0d, that is, R0adf and
R0fbe.

(2) Assume that a, b, c ∈ S. If c, d, e ∈ S, then ∃f(R0adf ∧ R0fbe) holds
because F satisfies P 3. On the other hand, if 0 ∈ {c, d, e}, then R0cde must
have the form R0c0c, so d = 0 and e = c. Set f := a, so that R0a0a and R0abc,
that is, R0adf ∧R0fbe.

(3) Assume that c, d, e ∈ S, but 0 ∈ {a, b, c}. If a = 0, then b = c. Set
f := d, so that R00dd ∧ R0dce, that is to say, R0adf ∧ R0fbe. If b = 0, then
a = c. Set f := e, so that R0cde ∧R0e0e, that is, R0adf ∧R0fbe.

(4) Assume that c ∈ S, but 0 ∈ {a, b, c} and 0 ∈ {c, d, e}. If a = 0 then b = c,
d = 0 and e = c. Set f := 0, so that R0000 and R00cc, so that R0adf ∧R0fbe.
If b = 0, then a = c = e and d = 0. Set f := c, so that R0c0c ∧ R0c0c, that is
to say, R0adf ∧R0fbe, completing the proof that F(G) + 0 satisfies P 3. 2

The R+-frame F(G) + 0 constructed in Theorem 3.5 has a rich geometrical
structure, since the geometry G can be recovered from it by a restriction to
the non-zero points. It is the geometrical structure of certain R+-frames that
accounts for the undecidability of the principal relevant logics [7].

4 R-frames and geometry

4.1 Model theory of R

An R-frame (or R model structure) is a quadruple 〈0,K,R, ∗〉, where K is a set,
0 ∈ K, R is a ternary relation on K, and ∗ is a function defined on K satisfying
the postulates:

P 1: R0aa,

P 2: Raaa,

P 3: (Rabc ∧Rcde)⇒ ∃f(Radf ∧Rfbe),

P 4: (R0da ∧Rabc)⇒ Rdbc,

P 5: Rabc⇒ Rac∗b∗,

P 6: a∗∗ = a.

for a, b, c, d ∈ K.
As in §3.1, we define a ≤ b as R0ab. A subset S of K is increasing if it

satisfies the condition: (a ∈ S ∧ a ≤ b) ⇒ b ∈ S. A valuation in an R-frame
assigns an increasing subset Φ(P ) ⊆ K to each propositional variable P . Given
a valuation in an R-frame, the forcing relation |= for elements of K and formulas
of R is defined by:

1. a |= P ⇔ a ∈ Φ(P ),
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2. a |= A ∧B ⇔ a |= A and a |= B,

3. a |= A ∨B ⇔ a |= A or a |= B,

4. a |= A→B ⇔ ∀bc((b |= A ∧Rabc)⇒ c |= B),

5. a |= ¬A⇔ a∗ 6|= A.

A formula A is valid in an R-frame if 0 |= A for all valuations in the frame.
Routley and Meyer [4, §7] provide a completeness proof for R relative to this
semantics, proved by a canonical model construction.

Theorem 4.1 A formula is a theorem of R if and only if it is valid in all
R-frames.

4.2 Model theory of KR

The logic KR results by adding to R the axiom ex falso quodlibet, that is to
say, (A ∧ ¬A)→ B. The model theory for KR is elegantly simple. The usual
ternary relational semantics for R includes an operation ∗ designed to deal with
the truth condition for negation

x |= ¬A⇔ x∗ 6|= A.

The effect of adding ex falso quodlibet to R is to identify x and x∗; this in turn
has a notable effect on the ternary accessibility relation. The postulates for an
R model structure include the following implication:

Rxyz ⇒ (Ryxz &Rxz∗y∗).

The result of the identification of x and x∗ is that the ternary relation in a KR
model structure (KRms) is totally symmetric. A KR-frame K = 〈S,R, 0〉 is a
3-place relation R on a set containing a distinguished element 0, and satisfying
the postulates:

1. R0ab⇔ a = b;

2. Raaa;

3. Rabc⇒ (Rbac&Racb) (total symmetry);

4. (Rabc&Rcde)⇒ ∃f(Radf &Rfbe) (Pasch’s Law).

Although KR contains the irrelevant axiom (A∧¬A)→B, it is more closely
related to the relevant logic R than might be thought initially. Define an R-
frame F to be order-trivial if it satisfies the first postulate for a KR-frame, that
is, ∀ab(R0ab⇔ a = b).

We define a homomorphism to be a morphism in the category of ternary
relational structures with 0, that is to say, a function ϕ from M1 = 〈S1, R1, 0〉
to M2 = 〈S2, R2, 0〉 satisfying the conditions

ϕ(0) = 0, and ∀x, y, z ∈ S1[R1xyz ⇒ R2ϕ(x)ϕ(y)ϕ(z)].

Australasian Journal of Logic (16:8) 2019, Article no. 1



350

The notion of homomorphism given here is weaker than that of “frame mor-
phism” (corresponding to the concept of “p-morphism” in modal logic) as de-
fined (for example) in [8].

Definition 4.2 Let F = 〈0,K,R, ∗〉 be an order-trivial R-frame. The relational
structure [F ] = 〈[K], [R], {0}〉 is defined as follows:

1. [K] = {{a, a∗} : a ∈ K};

2. For α, β, γ ∈ [K], [R]αβγ holds if and only if for some a ∈ α, b ∈ β, c ∈ γ,
Rabc.

Theorem 4.3 Let F = 〈0,K,R, ∗〉 be an order-trivial R-frame. Then [F ] is a
KR-frame that is a homomorphic image of F = 〈0,K,R〉 under the mapping
r(x) = {x, x∗}.

Proof. The first, second and fourth postulates for a KR-frame follows im-
mediately from the corresponding postulates for the R-frame F and its order-
triviality. Hence, we only need to check the third.

Assume that [R]αβγ holds in [F ]. Thus there are a, b, c ∈ K so that a ∈ α,
b ∈ β, c ∈ γ and Rabc. Then [R]βαγ holds since Rbac holds in F . Since Rabc,
we have Rac∗b∗. Since a ∈ α, c∗ ∈ γ and b∗ ∈ β, we have [R]αγβ, showing that
the third postulate holds in [F ].

The fact that [F ] is a homomorphic image of F = 〈0,K,R〉 under the map-
ping r(x) = {x, x∗} follows by the definition of [F ]. 2

4.3 Constructing R-frames from KR-frames

Theorem 4.3 shows that there is a canonical way to associate a KR-frame with
any order-trivial R-frame. The linear subspaces of a KR-frame form a modular
lattice, so this construction also associates a modular lattice with any order-
trivial R-frame. Conversely [5], any modular lattice gives rise to a KR-frame.
Thus, we can classify order-trivial R-frames by their associated modular lattices
– which we can consider as generalized geometries. These order-trivial R-frames
are of course not uniquely determined by the associated modular lattices; we
discuss this problem in more detail in what follows.

If F is an order-trivial R-frame, then the KR-frame [F ] is a homomorphic
image of F under the map ϕ(x) = {x, x∗} – taking the image of the ∗ function
in F to be the identity on [F ].

Following up the thoughts on classification above, we might ask :“What can
we say about the R-frames that are inverse images of a given KR-frame?” This
seems to be a rather difficult problem in general, but we can say a few things
about it.

Starting from a KR-frame F = 〈S,R, 0〉, let S] be a set of points disjoint
from S; we assume a bijection x 7→ x] between S and S]. Let P be a set of
points in S where 0 6∈ P ; these are the points in S that we choose to split. That
is to say, if a point x is in P , then we replace x by r(x) = {x, x]}, while if
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x 6∈ P , then we replace x by r(x) = {x}. Let r(S) be the set resulting from
these replacements, and define S(P ) to be

⋃
r(S).

Definition 4.4 The structure Fr is defined as 〈r(S), Rr, {0}〉, where the ternary
relation Rr on r(S) is defined as follows:

Rrαβγ ⇔ ∃abc ∈ S [r(a) = α ∧ r(b) = β ∧ r(c) = γ ∧Rabc].

Lemma 4.5 If F is a KR-frame, then the map r is an isomorphism between
F and Fr, so that Fr is also a KR-frame.

Proof. The map r is a bijection between S and r(S), and r(0) = {0}. If Rabc,
then by definition, Rrr(a)r(b)r(c). Conversely, if Rrαβγ then by definition
there are a, b, c ∈ S so that Rabc, where r(a) = α, r(b) = β, r(c) = γ, so that
Rr−1(α)r−1(β)r−1(γ), completing the proof that r is an isomorphism. 2

On the set S(P ), define a ∗-structure by setting x∗ = x if x 6∈ P , and for
x ∈ P , x∗ = x] and (x])∗ = x. The result 〈S(P ), ∗〉 of this construction we call
the ∗-structure determined by S and P .

The ∗-structure determined by S and P is sufficient to interpret the “ex-
tensional” connectives ∧,∨,¬, but to deal with implication, we need to add a
ternary relation to the ∗-structure 〈S(P ), ∗〉. Can we always make this exten-
sion so that the result is an R-frame? The answer is “yes!” as follows from the
simple construction given below.

Definition 4.6 Let F = 〈S,R, 0〉 be a KR-frame, P ⊆ S \ {0} and 〈S(P ), ∗〉
the ∗-structure determined by S and P . Let δ be a choice function defined on
r(S) so that for α ∈ r(S), δ(α) ∈ α. Define a ternary relation RδP on S(P ) as
follows:

RδP = {(δ(α), δ(β), δ(γ)) : Rrαβγ ∧ α, β, γ ∈ r(S)},

and define:

RP =
⋃
{RδP : δ a choice function r(S) 7→ S(P )}

The structure F(P ) is defined as 〈0, S(P ), RP ,
∗〉.

Lemma 4.7 Let F = 〈S,R, 0〉 be a KR-frame, P ⊆ S \ {0} and F(P ) the
structure 〈0, S(P ), RP ,

∗〉 defined by F and P . For α, β, γ ∈ r(S) and a, b, c ∈
S(P ), if Rrαβγ, a ∈ α, b ∈ β and c ∈ γ, then RPabc.

Proof. Let α, β, γ ∈ r(S) and a, b, c ∈ S(P ), Rrαβγ, a ∈ α, b ∈ β and c ∈ γ.
Let δ be a choice function on S(P ) so that δ(α) = a, δ(β) = b and δ(γ) = c.
Then by Definition 4.6, RP δ(α)δ(β)δ(γ), that is to say, RPabc. 2

Theorem 4.8 Let F = 〈S,R, 0〉 be a KR-frame, P ⊆ S \ {0} and 〈S(P ), ∗〉
the ∗-structure determined by S and P .

1. F(P ) is an order-trivial totally symmetric R-frame such that
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(a) F(P ) is an expansion of the ∗-structure 〈S(P ), ∗〉;
(b) F is a homomorphic image of F(P ).

2. F(P ) is the largest order-trivial R-frame satisfying these two conditions.

Proof. Part 1(a). Let a be in S(P ), δ a choice function on r(S) where
δ(r(a)) = a. Since Rr0r(a)r(a), it follows that RP 0aa. Conversely, assume that
RP 0ab, for a, b ∈ S(P ). By Definition 4.6, there is a choice function δ on r(S)
and α, β in r(S) so that a = δ(α), b = δ(β) and R{0}αβ. By Lemma 4.5, Fr
is order-trivial, so that α = β; it follows that a = b, showing that F(P ) is also
order-trivial.

If a ∈ S(P ), then by Lemma 4.5, Rr(a)r(a)r(a); setting δ(r(a)) = a, we
have Raaa.

For Pasch’s Law, assume for a, b, c, d, e ∈ S(P ), that RPabc and RP cde, so
that for α, β, γ, δ, ε ∈ r(S), and κ a choice function on S(P ), we have Rrαβγ,
a = κ(α), b = κ(β) and c = κ(γ), and in addition, Rrγδε, d = κ(γ), e = κ(δ)
and c = κ(ε). By Lemma 4.5, there is a ζ ∈ r(S), so that Rrαδζ and Rrζβε.
Now let λ be a choice function on r(S) that agrees with κ on {α, β, δ, ε}, and
set f = λ(ζ). Then we have by Lemma 4.7 that RPadf and RP fbe, completing
the proof of Pasch’s Law.

The remaining postulates for an R-frame are easy to verify. For Postulate
P 4, if RP 0da and RPabc, then d = a, by order-triviality, showing that RP dbc.
For Postulate P 5, if RPabc, then Rrαβγ, where a ∈ α, b ∈ β, c ∈ γ, so
that RP r(a)r(c)r(b), by Lemma 4.5. Since b∗ ∈ β and c∗ ∈ γ, by Lemma 4.7,
RPac

∗b∗. Postulate P 6 follows by construction.
Finally, the fact that RP is totally symmetric follows from the total symme-

try of Fr and Lemma 4.5.
Part1(b). The relational structure [F(P )] is a homomorphic image of F(P ),

by Theorem 4.3. By Definitions 4.2 and 4.6,

[F(P )] = 〈[S(P )], [RP ], {0}〉.

With r(x) = {x, x∗}, [S(P )] = r(S) and [RP ] = Rr. Hence, [F(P )] = Fr.
Lemma 4.5 shows that F is isomorphic to Fr, and hence that F is a homomor-
phic image of F(P ).

Part 2. Let G = 〈0, S(P ), R, ∗〉 be an order-trivial R-frame satisfying the
conditions (a) and (b) in the statement of the theorem, and assume Rabc. Then
[R]ϕ(a)ϕ(b)ϕ(c) holds in [G]. Consequently, [R]rr(ϕ(a))r(ϕ(b))r(ϕ(c)) holds in
[G]r. Let δ be a choice function on r(S) so that δ(r(ϕ(a))) = a, δ(r(ϕ(b))) = b,
δ(r(ϕ(c))) = c. Then by Definition 4.6, RPabc. 2

Theorem 4.8 provides (in a weak sense) a complete description of the R-
frames satisfying the two conditions of Theorem 4.8. Start with the R-frame
F(P ) = 〈0, S(P ), RP ,

∗〉 and a subset T of RP containing {(0, a, a) : a ∈ S(P )}
and {(a, a, a) : a ∈ S(P )} that is closed under the map (a, b, c) 7−→ (a, c∗, b∗).
Then the structure 〈S(P ), T, ∗〉 satisfies all of the postulates for an R-frame,
with the possible exception of P 3 (Pasch’s Law). It is this last postulate that
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makes the problem of describing such extensions difficult. We have to “thin
out” the relation RP while preserving the witnesses for Pasch’s Law, and it is
not clear how to give a general analysis of this process.

The R-frame F(P ) constructed in Theorem 4.8, provided that P 6= ∅, does
not validate ex falso quodlibet (A∧¬A)→B. On the other hand, since the relation
RP is totally symmetric, the condition RPaa0 holds for any a ∈ S(P ), so that
the rather odd-looking (A ◦ A) ∨ (A → B) is valid in the constructed R-frame
F(P ). This is a close cousin of the irrelevant classical tautology A ∨ (A→ B).
For further results involving this principle as well as closely related formulas,
the reader can consult §54 of Volume II of Entailment [1]. In particular, that
section of the book contains a completeness proof for KR→&◦t, that is, the
fragment of KR based on the connectives →,&, ◦ and the constant t.

5 Concluding Remarks

The main construction of this paper is in a sense more natural than the con-
struction based on projective spaces [6], since the relation of betweenness in
an ordered geometry is symmetric in only two of its three places, a property
shared by the ternary relation in models of R. On the other hand, from the
purely mathematical point of view, the construction is much less elegant, since
it involves a plethora of case distinctions, as we saw in §3.2.

Another drawback is the fact that the method does not allow us to construct
finite models, in contrast to the projective case, where we can build finite models
for the logic KR from finite projective spaces. In the proof of Lemma 3.3, the
fact that the betweenness ordering is dense (Theorem 6 of Coxeter’s axiom
system) is used repeatedly. This means that the construction of the lemma can
only produce infinite models.

To conclude, here is a natural open problem.

Problem 5.1 Consider the R+-frame constructed from the betweenness rela-
tion defined on the real ordered plane R2. Can this logic be axiomatized?

My thanks to a referee for suggestions that led to improvements in the
exposition of these results.
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