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Abstract. The Boxdot Conjecture is shown to hold for a novel class
of modal systems. Each system in this class is K plus an instance of a
natural generalization of the McKinsey axiom.

1. The Conjecture

In modal logic, the following translation, t, is the boxdot translation,

tp = p
t� = �
t(φ→ ψ) = (tφ→ tψ)
t ◻ φ = (◻tφ ∧ tφ)
The name derives from the use of ⊡φ as a symbol for ◻φ∧φ in Boolos [1].

We continue the use of this symbol, and also use ⟐φ for ◇φ ∨ φ.
Where K is the minimal normal modal logic, K⊕φ is the smallest normal

modal logic containing φ. KT is K⊕ ◻φ→ φ. In [3], French and Humberstone
conjectured that, for all normal modal logics L:

if (∀ψ) ( L ⊢ tψ if and only if KT ⊢ ψ ),
then L ⊆ KT.

This is the Boxdot Conjecture. French and Humberstone laid groundwork
for future discussion and showed that the conjecture holds for all K⊕φ with
φ of modal degree 1. As the authors point out, it is not difficult to show
the converse of the conjecture is true, and also not difficult to show the
conjecture holds for any extension of KT, yet it seems there is no clear path
toward dealing with all other cases of the conjecture. In Steinsvold [4], the
conjecture was shown to hold for all K⊕Ghijk, where h, i, j, k ∈ N, and

Ghijk : ◇h ◻i p→ ◻j ◇k p

We use Ghijk as an arbitrary instance of this axiom schema (an instance
of the schema is given by a specific h, i, j, k). The ‘G’ is for Geach. Here we
show the conjecture holds for K⊕Mlmno where l,m,n, o ∈ N, and

Mlmno : ◻l ◇m p→◇n ◻o p

We use Mlmno as an arbitrary instance of this axiom schema (an instance
of the schema is given by a specific l,m,n, o). The ‘M’ is for McKinsey, as
M1111 is the McKinsey axiom,
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M : ◻◇ p→◇◻ p
KM is K⊕M1111. See Goldblatt and Hodkinson [2] for more information

on this axiom. As there are infinitely many Mlmno ∈ KT, we show:

for all Mlmno ∉ KT, (∃ψ)( K⊕Mlmno ⊢ tψ and KT/⊢ ψ)
This is our main result. The paper is organized as follows. We conclude

this section with a description of our overall strategy. In Section 2 we use
KM as an example to illustrate our method. In Section 3 we present various
preliminary results. In Section 4, we present the models which will aid
our strategy. The following sections deal with the essential cases, and we
conclude with our main result in Section 7.

A formula is a boxdot formula if it is the translation of some formula. We
use φ⊡ and ψ⊡ for arbitrary boxdot formulas.

The following definition is novel and we use it to explain our strategy.
The definition is a generalization of the notion of a surrogate (from [4]).

Definition 1.1. Call φ⊡ → ψ⊡ an exterpolant for α → β, if

(A) K ⊢ φ⊡ → α
(B) K ⊢ β → ψ⊡

It follows that an exterpolant for α → β is a theorem of K⊕ α → β. Call an
exterpolant trivial if it is a theorem of K. Note that there is a single trivial
exterpolant for every conditional α → β, namely � → ⊺ (as K ⊢ � → α,
K ⊢ β → ⊺, t� = �, and t⊺ = ⊺). Our interest here lies with non-trivial
exterpolants. As for the name ‘exterpolant’ itself, the informal idea is that
an exterpolant seems like the opposite of an interpolant. Conditions (A)
and (B) of definition 1.1 are the informal justification for our use of the
word ‘exterpolant’ (in loose contrast to an interpolant, I, for C →D, where
C → I and I →D are theorems)).

Our strategy is to construct exterpolants for each Mlmno(∉ KT) and then
show these exterpolants are not theorems of K. Using the following Lemma,
we can then conclude the conjecture holds for each K⊕Mlmno(/⊆ KT).

Lemma 1.2. If L ⊢ tφ and K /⊢ tφ, then (∃γ)( L ⊢ tγ and KT/⊢ γ).
Proof. Assume L ⊢ tφ and K /⊢ tφ. As mentioned in [3], for all ψ,

K ⊢ tψ iff KT ⊢ ψ
Thus KT /⊢ φ. Thus, (∃γ)( L ⊢ tγ and KT/⊢ γ) �

To utilize an example from [4], consider

(¬p ∧⟐p)→ [(q → p)→ ⊡(q → p)]
This sentence is an exterpolant for ◇p → ◻p. The antecedent and conse-

quent are boxdot formulas, and

(A) K ⊢ (¬p ∧⟐p)→◇p
(B) K ⊢ ◻p→ [(q → p)→ ⊡(q → p)]
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Furthermore,

(1) K ⊕ ◇p→ ◻p ⊢ (¬p ∧⟐p)→ [(q → p)→ ⊡(q → p)]
(2) K /⊢ (¬p ∧⟐p)→ [(q → p)→ ⊡(q → p)]

Thus by Lemma 1.2, the Boxdot Conjecture holds for K⊕◇p→ ◻p.
Our overall strategy is similar to that of [4], and the work there simplifies

the work here, as there are infinitely many Mlmno which are instances of
Ghijk. For instance, M1002 =G0120(= ◻p → ◻ ◻ p). Thus, our strategy is as
follows. For each Mlmno ∉ KT, and also not an instance of some Ghijk, we
construct an exterpolant for Mlmno which is not a theorem of K, then apply
Lemma 1.2 to K⊕Mlmno.

A frame F is a pair ⟨W,R⟩ where W is a non-empty set and R ⊆W ×W .
Members of W are worlds or points. A valuation V is a function from the
set of propositional variables into the power set of W . M = ⟨W,R,V ⟩ is a
model. We define truth in a model at a world as follows:

M,w ⊧ p iff w ∈ V (p)
M,w ⊧ � iff 0=1
M,w ⊧ φ→ ψ iff if M,w ⊧ φ then M,w ⊧ ψ
M,w ⊧ ◻φ iff (∀x)( if wRx then M,x ⊧ φ)
φ is valid in the model M iff φ is true at every world in M . φ is valid in

the frame F iff φ is valid in every model based on F .

2. KM

We use KM ( K⊕ ◻ ◇ p → ◇ ◻ p ) as an example. First, observe that
⟐(p ∧ q1) ∧ ¬q1 implies ◇p. For ⟐(p ∧ q1) is ◇(p ∧ q1) ∨ (p ∧ q1), and so if
¬q1 is true, the disjunct (p ∧ q1) must be false. With this in mind consider
the following theorem of K,

(A) K ⊢ ⊡[(⟐(p ∧ q1) ∧ ¬q1) ∨ (⟐(p ∧ q2) ∧ ¬q2)]→ ◻◇ p

The antecedent implies (though is not equivalent to) the claim that at
all possible worlds, either p and q1 are both possible or p and q2 are both
possible, thus, either way, at all possible worlds p is possible (the conse-
quent). Significantly, the antecedent is a boxdot formula which implies the
antecedent of the McKinsey axiom. Now, take the contraposition of the
theorem of K in (A), put in ¬p for p, r1 for q1, and r2 for q2. This yields:

(B) K ⊢ ◇◻ p→ ¬ ⊡ [(⟐(¬p ∧ r1) ∧ ¬r1) ∨ (⟐(¬p ∧ r2) ∧ ¬r2)]
Significantly, the consequent is a boxdot formula which is implied by the

consequent of M. Since KM ⊢ M, from (A) and (B) we have:

KM ⊢ ⊡[(⟐(p ∧ q1) ∧ ¬q1) ∨ (⟐(p ∧ q2) ∧ ¬q2)]→
¬ ⊡ [(⟐(¬p ∧ r1) ∧ ¬r1) ∨ (⟐(¬p ∧ r2) ∧ ¬r2)]

Call this theorem of KM: eM (‘e’ for exterpolant). To complete our strat-
egy with this example, we need to show K /⊢ eM. To see this, consider the
following frame (arrows depicting the relation R),
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1 → 2
↗ ↗↘

0 → 1 → 2

And consider the model M on the frame above with the valuation:

V (p) = {1,2}, V (q1) = {1}, V (q2) = {2}, V (r1) = {1}, V (r2) = {2}
The antecedent of eM is true at 0. That is,

M,0 ⊧ ⊡[(⟐(p ∧ q1) ∧ ¬q1) ∨ (⟐(p ∧ q2) ∧ ¬q2)]
For consider the disjunction within the scope of ⊡ in the antecedent,

(⟐(p ∧ q1) ∧ ¬q1) ∨ (⟐(p ∧ q2) ∧ ¬q2)
The left disjunct is true at 0. For M,0 ⊧ ¬q1, and since 0R1 and p∧ q1 is

true at 1, M,0 ⊧ ◇(p ∧ q1) (and thus M,0 ⊧ ⟐(p ∧ q1)). Furthermore, the
right disjunct is true at both 1 and 1. For q2 is false at both 1 and 1, and
since both 1 and 1 relate to 2 and p∧q2 is true at 2, ◇(p∧q2) is true at both
1 and 1 (and thus ⟐(p ∧ q2) is true at both 1 and 1). Thus the antecedent
of eM is true at 0. Yet the consequent of eM is false at 0. That is,

M,0 ⊧ ⊡[(⟐(¬p ∧ r1) ∧ ¬r1) ∨ (⟐(¬p ∧ r2) ∧ ¬r2)]
For consider the disjunction,

(⟐(¬p ∧ r1) ∧ ¬r1) ∨ (⟐(¬p ∧ r2) ∧ ¬r2)
The left disjunct is true at 0. For r1 fails at 0, and since 0R1 and ¬p∧ r1

is true at 1, ⟐(¬p ∧ r1) is true at 0. Furthermore, the right disjunct is true
at 1 and 1. For r2 fails at 1 and 1, and since both worlds relate to 2, and
¬p∧ r2 is true at 2, ⟐(¬p∧ r2) is true at both 1 and 1. Thus the consequent
of eM is false at 0. Thus,

M,0 ⊧ ¬eM

Thus K /⊢ eM. By Lemma 1.2, the Boxdot Conjecture holds for KM.
Where Mlmno ∉ KT, our strategy is to find exterpolants for each Mlmno

which are not theorems of K. Naturally, we use models to show these exter-
polants are not theorems of K. Considering strategy, (it seems) there was a
choice between complex models and simple exterpolants, or simple models
and complex exterpolants. We go with the latter choice. We use a single
frame for all models, and the models only differ in where p is true.

eM is an exterpolant for M, and the exterpolants we use for other Mlmno

are variations on eM. We used five propositional variables to construct eM

(viz. p, q1, q2, r1, and r2). Due to our strategy, the larger the value of
l, the larger the number of propositional variables we use to construct the
antecedent of the exterpolant. Thus, consider M2100, i.e. ◻ ◻◇p → p. The
following is a theorem of K⊕M2100:

⊡ ⊡ [(⟐(p ∧ q1) ∧ ¬q1) ∨ (⟐(p ∧ q2) ∧ ¬q2) ∨ (⟐(p ∧ q3) ∧ ¬q3)]→ p

By our method, this is the exterpolant we construct for M2100.
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3. Preliminary Theorems

The proofs of our first two Lemmas are left for the reader.

Lemma 3.1. If K ⊢ φ→ ψ then K ⊢ ⊡zφ→ ⊡zψ, all z ≥ 0.

Lemma 3.2. t ◻z φ = ⊡ztφ, all z ≥ 0.

From Lemma 3.2 we have:

Corollary 3.3. t◇z φ =⟐ztφ, all z ≥ 0.

Lemma 3.4. K ⊢ t◇z φ↔ (◇ztφ ∨◇z−1tφ ∨ ... ∨◇tφ ∨ tφ), all z ≥ 0.

Proof. This is Lemma 4.8 of [4]. �

Corollary 3.5. K ⊢ ⟐ztφ↔ (◇ztφ ∨⟐z−1tφ), all z ≥ 1.

Proof. Assume z ≥ 1.
1) K ⊢ ⟐ztφ↔ (◇ztφ ∨◇z−1tφ ∨ ... ∨ tφ), from Lem. 3.4 & Cor. 3.3.
2) K ⊢ ⟐z−1tφ↔ (◇z−1tφ ∨ ... ∨ tφ), from Lem. 3.4 & Cor. 3.3.
3) K ⊢ ⟐ztφ↔ (◇ztφ ∨⟐z−1tφ), from 1 and 2, replacement. �

The following is very useful.

Lemma 3.6. K ⊢ (⟐z(p ∧ qg) ∧ ⊡z−1¬qg)→◇zp, for all z ≥ 1.

Proof. Assume z ≥ 1.
1) K ⊢ (p ∧ qg)→ p.
2) K ⊢ ◇z(p ∧ qg)→◇zp, from 1.
3) K ⊢ (◇z(p ∧ qg) ∧ ⊡z−1¬qg)→◇zp, strengthening the antecedent of 2.
4) K ⊢ ¬qg → (¬p ∨ ¬qg).
5) K ⊢ ⊡z−1¬qg → ⊡z−1(¬p ∨ ¬qg), from 4 and Lemma 3.1.
6) K ⊢ (⟐z−1(p ∧ qg) ∧ ⊡z−1¬qg)→ �,
from 5 using: if K ⊢ φ→ ψ, then K ⊢ (¬ψ ∧ φ)→ �.
7) K ⊢ (⟐z−1(p ∧ qg) ∧ ⊡z−1¬qg)→◇zp, from 6 and K ⊢ �→◇zp.
8) K ⊢ [(◇z(p ∧ qg) ∧ ⊡z−1¬qg) ∨ (⟐z−1(p ∧ qg) ∧ ⊡z−1¬qg)]→◇zp,
from 3 & 7, if K ⊢ α → φ and K ⊢ β → φ, then K ⊢ (α ∨ β)→ φ.
9) K ⊢ [[(◇z(p ∧ qg) ∨⟐z−1(p ∧ qg)] ∧ ⊡z−1¬qg]→◇zp,
from 8 and K ⊢ [[α ∨ β] ∧ φ]↔ [(α ∧ φ) ∨ (β ∧ φ)].
10) K ⊢ ⟐z(p ∧ qg)↔ [◇z(p ∧ qg) ∨⟐z−1(p ∧ qg)], instance of Cor. 3.5.
11) K ⊢ (⟐z(p ∧ qg) ∧ ⊡z−1¬qg)→◇zp, from 9 and 10, replacement. �

Corollary 3.7. K ⊢ (⟐z(p ∧ qg) ∧ ⊡z−1¬qg)→◇z(p ∧ qg), for all z ≥ 1.

Proof. Assume z ≥ 1.
1) K ⊢ (⟐z((p ∧ qg) ∧ qg) ∧ ⊡z−1¬qg)→◇z(p ∧ qg), instance of Lem. 3.6.
2) K ⊢ (⟐z(p ∧ qg) ∧ ⊡z−1¬qg)→◇z(p ∧ qg), from 1, idempotence. �

Lemma 3.8. K ⊢ ⊡np→ ◻np, all n ≥ 0.

Proof. 1) K ⊢ t ◻n p→ ◻np, all n ≥ 0, Lemma 4.4 of [4].
2) K ⊢ ⊡np→ ◻np, all n ≥ 0, from 1 and Lemma 3.2. �
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From Lemma 3.8 we have:

Corollary 3.9. K ⊢ ◇np→⟐np, for all n ≥ 0.

The following Theorem is useful for each case. Note how the number
of propositional variables (and disjuncts) increases in the antecedent as l
increases. Thus, the number of propositional variables used is relevant to
our strategy. Furthermore, which propositional variables used will also be
relevant to our strategy (and is relative to the size of m). Exactly why
this is strategic won’t be clear until the next section. Suffice it to say, this
minor complication will ultimately make it easier to uniformly show our
exterpolants are not theorems of K.

Theorem 3.10. For all l ≥ 0 and m ≥ 1,

K ⊢ ⊡l[ ⋁
m≤g≤m+l

(⟐m(p ∧ qg) ∧ ⊡m−1¬qg)]→ ◻l ◇m p

Proof. Assume l ≥ 0 and m ≥ 1.

1) K ⊢ [ ⋁
m≤g≤m+l

(⟐m(p ∧ qg) ∧ ⊡m−1¬qg)]→◇mp,

using Lemma 3.6 l + 1 times together with repeated use of:
if K ⊢ α → φ and K ⊢ β → φ, then K ⊢ (α ∨ β)→ φ.

2) K ⊢ ⊡l[ ⋁
m≤g≤m+l

(⟐m(p ∧ qg) ∧ ⊡m−1¬qg)]→ ⊡l ◇m p,

from 1 and Lemma 3.1.
3) K ⊢ ⊡l ◇m p→ ◻l ◇m p, instance of Lemma 3.8.

4) K ⊢ ⊡l[ ⋁
m≤g≤m+l

(⟐m(p ∧ qg) ∧ ⊡m−1¬qg)]→ ◻l ◇m p, 2 and 3. �

We give three instances of Theorem 3.10 to illustrate how m and l deter-
mine which and how many propositional variables are used. If l = 0 then
our instance is Lemma 3.6 where m = z = g. If l = 2 and m = 1 we have,

K ⊢ ⊡2[(⟐(p ∧ q1) ∧ ¬q1) ∨ (⟐(p ∧ q2) ∧ ¬q2) ∨ (⟐(p ∧ q3) ∧ ¬q3)]→ ◻2 ◇ p

And if l = 1 and m = 4 we have,

K ⊢ ⊡[(⟐4(p ∧ q4) ∧ ⊡3¬q4) ∨ (⟐4(p ∧ q5) ∧ ⊡3¬q5)]→ ◻◇4 p

The following will be useful for our first case. Essentially we are taking
the contraposition of Theorem 3.10 and replacing the occurrences of qg with
ri, and changing a number of other variables as well.

Corollary 3.11. For all n ≥ 0 and o ≥ 1,

K ⊢ ◇n ◻o p→ ¬ ⊡n [ ⋁
o≤i≤o+n

(⟐o(¬p ∧ ri) ∧ ⊡o−1¬ri)]

Proof. Take the contraposition of Theorem 3.10, then substitute ¬p for p
and rm, ... , rm+l for qm, ... , qm+l, and then change l to n, m to o, and g
to i. �
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4. The Frame and the Models

We use one frame for all cases. The models only differ in where p is true,
and where p is true depends on m. An illustration of the frame, Ḟ = ⟨Ẇ , Ṙ⟩,
is given below the following definition of the frame,

Definition 4.1. Let N = { z ∣ z ∈ N }
Let Ẇ = N ∪ (N − {0})
Let R = { < x, y > ∣ x + 1 = y and x, y ∈ Ẇ }
Let R = { < x, y > ∣ x + 1 = y and x, y ∈ Ẇ }
Let R↗ = { < x, y > ∣ x + 1 = y and x, y ∈ Ẇ }
Let R↘ = { < x, y > ∣ x + 1 = y and x, y ∈ Ẇ }
Let Ṙ = R ∪R ∪R↗ ∪R↘
Let Ḟ = ⟨Ẇ , Ṙ⟩
Each world in Ẇ bears Ṙ to exactly two worlds. Ḟ = ⟨Ẇ , Ṙ⟩ has a trellis-

like structure, exhibited as follows (arrows depicting Ṙ),

1 → 2 → 3 → 4 → 5 → 6 → ...
↗ ↗↘ ↗↘ ↗↘ ↗↘ ↗↘ ↗↘

0 → 1 → 2 → 3 → 4 → 5 → 6 → ...

We now define models for the frame. Models are defined relative to m.
The intention is to falsify the relevant formula (the exterpolant) at 0. Note
that, for all of the following, the propositional variables in {q1, q2, ...} are
treated differently than the ones in {r1, r2, ...}. Officially, the complete set
of propositional variables is,

{p} ∪ {q1, q2, ...} ∪ {r1, r2, ...}

Definition 4.2. Where m ≥ 1,

Let V̇ m(qg) = {g}, for all g ∈ N − {0}.

Let V̇ m(ri) = {i}, for all i ∈ N − {0}.

Let V̇ m(p) = { z ∈ N ∣ m ≤ z }
Let Ṁm = ⟨Ẇ , Ṙ, V̇ m⟩.
Thus in Ṁm, each ri is true at one and only one world (namely i), and

each qg is true at one and only one world (namely g). Thus the valuation
of each ri and each qg is the same for all models (that is, regardless of the
value of m). The valuation of p, in contrast, depends on m.

The following two Lemmas are simple and useful.

Lemma 4.3. For any m ≥ 1, and any x ∈ Ẇ ,

Ṁm, x ⊧◇φ iff Ṁm, x ⊧◇φ
Proof. Assume Ṁm, x ⊧ ◇φ. Thus φ is true at either x + 1 or x + 1, and x
relates to both. Thus Ṁm, x ⊧◇φ. The converse is similar. �
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Lemma 4.4. For all m,z ≥ 1, and all w ∈ Ẇ ,

If Ṁm,w ⊧◇zqg, then Ṁm,w ⊧ ⊡z−1¬qg
Proof. Assume Ṁm,w ⊧◇zqg (m,z ≥ 1).

Since g is the only world where qg is true, and w is z worlds away from

g, qg fails at all v and v such that v < z. Thus Ṁm,w ⊧ ⊡z−1¬qg. �

Lemma 4.5. For all m ≥ 1, and all j ∈ N,

Ṁm, j ⊧⟐m(p ∧ qm+j) ∧ ⊡m−1¬qm+j

Proof. By induction on j. Where j = 0, Ṁm,0 ⊧ ◇m(p ∧ qm) because m is

m worlds away from 0, and Ṁm,m ⊧ p ∧ qm. Thus Ṁm,0 ⊧⟐m(p ∧ qm).
Since Ṁm,0 ⊧◇mqm, it follows from Lemma 4.4 that Ṁm,0 ⊧ ⊡m−1¬qm.
For the inductive step we assume the hypothesis holds for c and show it

holds for c + 1 (instead of using the variable n, so that we may avoid any
confusion with the n in Mlmno). Assume

Ṁm, c ⊧⟐m(p ∧ qm+c) ∧ ⊡m−1¬qm+c

By Cor. 3.7, Ṁm, c ⊧◇m(p ∧ qm+c).
Since c is m worlds away from m + c, c must be m + 1 worlds away from

m+c+1 (by construction of the model). And since p is true at m+c, p is true

at all numbers greater than m + c (in N). Thus, Ṁm, c ⊧◇m+1(p ∧ qm+c+1).
Thus, there’s some world w, cṘw and Ṁm,w ⊧◇m(p∧ qm+c+1). w must be
c + 1 or c + 1. Either way, (since m ≥ 1) by Lemma 4.3 ◇m(p ∧ qm+c+1) is

true at c + 1. By Lem. 4.4, Ṁm, c + 1 ⊧⟐m(p ∧ qm+c+1) ∧ ⊡m−1¬qm+c+1. �

Theorem 4.6. For all m ≥ 1 and all l ≥ 0,

Ṁm,0 ⊧ ⊡l[ ⋁
m≤g≤m+l

(⟐m(p ∧ qg) ∧ ⊡m−1¬qg)]

Proof. By induction on l. The base case, l = 0, is

Ṁm,0 ⊧⟐m(p ∧ qm) ∧ ⊡m−1¬qm
This follows from Lemma 4.5, j = 0.
As with the case of the inductive step of Lemma 4.5, we use the variable

c for the inductive step here (instead of the traditional n). Assume that

Ṁm,0 ⊧ ⊡c[ ⋁
m≤g≤m+c

(⟐m(p ∧ qg) ∧ ⊡m−1¬qg)]

To obtain a contradiction, assume that

Ṁm,0 ⊧ ⟐c+1¬[ ⋁
m≤g≤m+c+1

(⟐m(p ∧ qg) ∧ ⊡m−1¬qg)]

Re-arranging the disjunction within the scope of ⟐c+1¬ we have:

Ṁm,0 ⊧
⟐c+1¬[(⟐m(p ∧ qm+c+1) ∧ ⊡m−1¬qm+c+1)∨( ⋁

m≤g≤m+c
(⟐m(p ∧ qg) ∧ ⊡m−1¬qg))]

By DeMorgan we have:
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Ṁm,0 ⊧

⟐c+1[¬(⟐m(p ∧ qm+c+1) ∧ ⊡m−1¬qm+c+1) ∧ ¬( ⋁
m≤g≤m+c

(⟐m(p ∧ qg) ∧ ⊡m−1¬qg))]

Now, consider the sentence above, our induction hypothesis, and the fol-
lowing instance of Lemma 3.6: K ⊢ (⟐c+1(α ∧ β) ∧ ⊡c¬β) → ◇c+1α, where
α is the sentence ¬(⟐m(p ∧ qm+c+1) ∧ ⊡m−1¬qm+c+1) and β is the sentence
¬( ⋁

m≤g≤m+c
(⟐m(p ∧ qg) ∧ ⊡m−1¬qg)). By Modus Ponens we have:

Ṁm,0 ⊧ ◇c+1¬(⟐m(p ∧ qm+c+1) ∧ ⊡m−1¬qm+c+1)

Thus, ¬(⟐m(p ∧ qm+c+1) ∧ ⊡m−1¬qm+c+1) is true at either c + 1 or c + 1,
and from this we will derive a contradiction. By Lemma 4.5, we have:

Ṁm, c + 1 ⊧⟐m(p ∧ qm+c+1) ∧ ⊡m−1¬qm+c+1

Using Cor. 3.7, we have:

Ṁm, c + 1 ⊧◇m(p ∧ qm+c+1)

Since m ≥ 1, by Lemma 4.3, we have:

Ṁm, c + 1 ⊧◇m(p ∧ qm+c+1)

Since m ≥ 1, by Lemma 4.4 (and Cor. 3.9), we have:

Ṁm, c + 1 ⊧⟐m(p ∧ qm+c+1) ∧ ⊡m−1¬qm+c+1

Contradiction. �

5. Case 1: l,m, o ≥ 1 & n ≥ 0.

Where l,m, o ≥ 1 and n ≥ 0, our first case is,

◻l ◇m p→◇n ◻o p

No instance of this case is a theorem of KT. Consider a two world model
where aRa, aRb, bRa, bRb, and V (p) = {a}. For all m,o ≥ 1, ◇mp and ◇o¬p
are both valid in the model. Thus, for all l, n ≥ 0, ◻l◇m p and ◻n◇o ¬p are
valid in the model as well. Since the model is reflexive and KT is the logic
of reflexive frames, no instance of this case is a theorem of KT.

Lemma 5.1. For all l,m, o ≥ 1 and n ≥ 0,

K⊕Mlmno ⊢
⊡l[ ⋁

m≤g≤m+l

(⟐m(p ∧ qg) ∧ ⊡m−1¬qg)]→ ¬ ⊡n [ ⋁
o≤i≤o+n

(⟐o(¬p ∧ ri) ∧ ⊡o−1¬ri)]

Proof. K⊕Mlmno ⊢ ◻l◇m p→◇n◻o p, thus the result follows from Theorem
3.10 and Corollary 3.11. �
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We need to show that the sentence in the above Lemma fails at 0 in Ṁm,
and thus in particular that the consequent is false (by Theorem 4.6, given

m ≥ 1, the antecedent is true for all l ≥ 0 at 0 in Ṁm). Considering the basic
similarity between the antecedent and the negation of the consequent, our
proof of this is not much different than our proof of Theorem 4.6 (as well as
the proof of Lemma 4.5). Thus the proofs we include are quicker.

Lemma 5.2. For all m,z ≥ 1, and all w ∈ Ẇ ,

If Ṁm,w ⊧◇zri, then Ṁm,w ⊧ ⊡z−1¬ri
Proof. ri is true at i and only i, so the proof follows that of Lemma 4.4. �

Lemma 5.3. For all m,o ≥ 1, and all j ∈ N,

Ṁm, j ⊧⟐o(¬p ∧ ro+j) ∧ ⊡o−1¬ro+j
Proof. The base case, j = 0, is: Ṁm,0 ⊧⟐o(¬p∧ ro)∧⊡o−1¬ro. As ro is true

at o and only o, Ṁm, o /⊧ p (because V̇ m(p) ⊆ N), and o is o worlds away
from 0, the base case is clear.

For the inductive step assume that Ṁm, c ⊧ ⟐o(¬p ∧ ro+c) ∧ ⊡o−1¬ro+c.
Using Cor. 3.7, this implies c is o worlds away from o + c, and thus c is
o + 1 worlds away from o + c + 1, and since p is false at all the i worlds,
Ṁm, c ⊧ ◇o+1(¬p ∧ ro+c+1). Thus at either c + 1 or c + 1, ◇o(¬p ∧ ro+c+1) is

true. Either way, Ṁm, c + 1 ⊧ ◇o(¬p ∧ ro+c+1), by Lemma 4.3 (o ≥ 1) . By

Lemma 5.2, Ṁm, c + 1 ⊧ ⊡o−1¬ro+c+1. �

Lemma 5.4. Where m,o ≥ 1 and n ≥ 0,

Ṁm,0 ⊧ ⊡n[ ⋁
o≤i≤o+n

(⟐o(¬p ∧ ri) ∧ ⊡o−1¬ri)]

Proof. By induction on n. The base case n = 0 is,
Ṁm,0 ⊧⟐o(¬p ∧ ro) ∧ ⊡o−1¬ro

This follows from Lemma 5.3 (j = 0). As mentioned, the proof of this
Lemma is not much different than the proof of Theorem 4.6. The inductive
step follows that of Theorem 4.6, using Lemma 5.3 in place of Lemma 4.5
and Lemma 5.2 in place of Lemma 4.4 where needed. �

Theorem 5.5. For all l,m, o ≥ 1 and n ≥ 0,

K /⊢
⊡l[ ⋁

m≤g≤m+l

(⟐m(p ∧ qg) ∧ ⊡m−1¬qg)]→ ¬ ⊡n [ ⋁
o≤i≤o+n

(⟐o(¬p ∧ ri) ∧ ⊡o−1¬ri)]

Proof. By Theorem 4.6 and Lemma 5.4. �

6. Case 2: l,m ≥ 1, n ≥ 0, o = 0.

Our second and final case is, where l,m ≥ 1, and n ≥ 0,

◻l ◇m p→◇np

In this case some instances are theorems of KT.
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Lemma 6.1. Where l,m,≥ 1, n ≥ 0,

KT ⊢ ◻l ◇m p→◇np iff m ≤ n
Proof. If m ≤ n then KT ⊢ ◇mp→◇np. And since KT ⊢ ◻l ◇m p→◇mp,

KT ⊢ ◻l ◇m p→◇np
Conversely, assume m > n, and define R on the natural numbers with:

xRy iff x = y or x + 1 = y. Let V (p) = { x ∣ m ≤ x }. Since m > n, 0 ⊧ ◻n¬p,
and 0 ⊧ ◇mp. Moreover, ◇mp is valid in the model, thus 0 ⊧ ◻l ◇m p, for
all l. The model is reflexive, thus no such instance is a theorem of KT. �

Thus, by this lemma, our second case is l,m,≥ 1, n ≥ 0, o = 0 and m > n.

Lemma 6.2. Where l,m,≥ 1, n ≥ 0, o = 0 and m > n,

K⊕Mlmno ⊢ ⊡l[ ⋁
m≤g≤m+l

(⟐m(p ∧ qg) ∧ ⊡m−1¬qg)]→⟐np

Proof. K⊕Mlmno ⊢ ◻l ◇m p → ◇np, thus the result follows from Cor. 3.9
and Theorem 3.10. �

Lemma 6.3. Where m > n ≥ 0,

Ṁm,0 ⊧ ⊡n¬p
Proof. By construction, for all z <m, Ṁm, z ⊧ ¬p and Ṁm, z ⊧ ¬p. Thus if
m > n, Ṁm,0 ⊧ ⊡n¬p. �

Theorem 6.4. Where l,m,≥ 1, n ≥ 0, and m > n,
K /⊢ ⊡l[ ⋁

m≤g≤m+l

(⟐m(p ∧ qg) ∧ ⊡m−1¬qg)]→⟐np

Proof. By Lemma 6.3 and Theorem 4.6 �

7. Main Result

The following Lemma is helpful in simplifying our cases.

Lemma 7.1. An instance of Mlmno is an instance of Ghijk iff
(l = 0 or m = 0) and (n = 0 or o = 0)

Proof. If (l = 0 or m = 0) and (n = 0 or o = 0), then Mlmno has no mixed
modalities in either the antecedent or the consequent, thus it is an instance
of Ghijk.

Conversely, if (l ≥ 1 and m ≥ 1) or (n ≥ 1 and o ≥ 1), then either a box
precedes a diamond in the antecedent, or a diamond precedes a box in the
consequent. Either way, Mlmno is not an instance of Ghijk. �

By Lemma 7.1, we can avoid redundancy with the work in [4].

Lemma 7.2. For all Mlmno ∉ KT,

if [(l,m, o ≥ 1 and n ≥ 0) or (l,m ≥ 1 and n ≥ 0 and o = 0)],
then (∃ψ)( K⊕Mlmno ⊢ tψ and KT/⊢ ψ).

Australasian Journal of Logic (15:3) 2018 Article no. 2



641

Proof. Assume Mlmno ∉ KT.
If l,m, o ≥ 1 and n ≥ 0, then this is case 1, from Section 5. By Lemma

5.1, Theorem 5.5 and Lemma 1.2, the desired conclusion follows.
If l,m ≥ 1 and n ≥ 0 and o = 0, this is case 2, from Section 6. By

assumption, Mlmno ∉ KT, thus we know by Lemma 6.1 that m > n. Let Ψ
be the theorem of K⊕Mlmno in Lemma 6.2. By Theorem 6.4, when m > n,
Ψ is not a theorem of K. By Lemma 1.2, the desired conclusion follows. �

Theorem 7.3. For all Mlmno ∉ KT,(∃ψ)( K⊕Mlmno ⊢ tψ and KT /⊢ ψ)

Proof. Assume Mlmno ∉ KT. If Mlmno is an instance of Ghijk, the conclusion
follows by Theorem 5.14 of [4].

If Mlmno is not an instance of Ghijk, then by Lemma 7.1,
(l ≥ 1 and m ≥ 1) or (n ≥ 1 and o ≥ 1)

Assume l ≥ 1 and m ≥ 1. Either o = 0 or not. Either way, the conclusion
follows by Lemma 7.2.

Assume n ≥ 1 and o ≥ 1. Thus our axiom is: ◻l ◇m p → ◇n ◻o p. By
contraposition and substituting ¬p for p, our axiom is equivalent to,

◻n ◇o p→◇l ◻m p
Since n, o ≥ 1, this case is isomorphic to the previous case.
Thus, for all Mlmno ∉ KT,(∃ψ)( K⊕Mlmno ⊢ tψ ∧ KT /⊢ ψ). �
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