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Semantical analyses are provided for several intensional logics, in particular for (substan-

tial parts of) the systems R of relevant implication, �R of relevant implication with necessity,

P of ticket entailment, and E of entailment, and what is the same theory as E the system Π

of rigorous implication. The analyses provided are used to provide semantical completeness

results and decidability results for the main systems discussed, and are applied to settle

some of the open questions concerning E and R and their fragments (on these questions see

Anderson [?]).

The analyses extend the set-up analysis of the first-degree theory of entailment provided

in [?]. (The discussion in [?] is presupposed in the remainder of this introductory section).

The rules for set-up membership for conjunctive, disjunctive, and negated formulae are

essentially the rules already defended in [?]; viz.

(A&B) is in set-up Hα iff A is in Hα and B is in Hα

(A ∨B) is in set-up Hα iff A is in Hα or B is in Hα

∼ A is in set-up Hα iff A is not in H∗α,

with complementary set-up H∗α of Hα explained as in [?]. The chief innovation is a more

sophisticated rule for the introduction of entailmental formaulae, of the form A→ B, which

enables the design of set-ups which falsify entailmental principles, and in particular of set-ups

which falsify the law of identity A → A for any given A. This is done by evaluating higher

degree entailments not over a single (possible) situation as in strict implication, but over a

pair of (modus-ponens-) connected situations. Thus the special form of the implication rule

is as follows:—

A → B is in Hα iff for every pair of set-ups Hβ and Hγ which are R-related to Hα if

A is in Hβ then materially B is in Hγ; in short, if R(Hα, Hβ, Hγ) and A is in Hβ then

B is in Hγ. Canonically relation R is the following: R(Hα, Hβ, Hγ) iff for every wff B

and C, if B → C is in Hα and B is in Hβ, then C is in Hγ.

But the general implication rule requires special conditions for practically every pure impli-

cational thesis; so while it is a fine tool for independence proofs and for systems with weak

pure entailment parts, it considerably complicates first attempts to prove completeness. To

take advantage of known results, e.g. in system E, the implication rule is recast as follows:

A→ B is in Hα iff for every set-up Hβ which is R-related to Hα, if A is in Hβ then B is in

Hα+β, where Hα+β is a certain compounded set-up constructed from Hβ taking account of

Hα. In fact, the connections may now be made using Anderson’s rule of entailment elimina-

tion: If A ∈ Hα and A→ B ∈ Hβ then B ∈ Hα+β where α + β is the set of lattice union of

α and β.
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For analysis of E, P, and R (and for typing) it is convenient to transform Hα into the pair

(α,H) and to consider α and H as independent units. Then for all the systems mentioned the

R-relation of Hα to Hβ, now replaced by the relation of (α,H1) to (β,H2), can be analyzed

broken down into two independent relations, of H1RH2 and of αZβ. Relation R is the now

familiar alternativeness relation of modal logic; and in the case of system E it is required, as

for S4, that R is reflexive and transitive. In the case of systems like E and R, which, unlike

P countenance implicative suppression or implicative commutation principles, the ordering

relation Z does not figure, since αZβ for every α and β; accordingly the implication rule

can be simplified in these cases to:

A→ B is in (α,H) iff for every H1 and every β, if H1RH2 and A is in (β,H1) then B

is in (α + β,H2).

For system R where relation R is an equivalence relation and where the hereditariness con-

dition:

if A is in (α,H1) and H1RH2, then A is in (α,H2)

is satisfied, a further simplification can be made: relation R and its field can be omitted

altogether. This for system R the implication rule reduced to:

A→ B is in α iff for every β, if A is in β then B is in α + β.

The rule for E can be recovered from this rule for R by combining it with the � necessity

rule, for “�”; viz.

�A is in (α,H) iff, for every H1, if HRH1 then, materially, A is in (α,H1).

It will follow then from the semantics that E is effectively an S4-modalization of R.

The strict implication rule is a special case of the entailment rule for E; the strict impli-

cation rule results from equating α with β for every α and β. Thus the semantics include

conditions for normal modal logics as special cases.

In the presentation a characteristic function h is used to indicate whether or not a given

wff is in or holds in a given situation, i.e. h(A, (α,H)) = T , or = F , according as A is in, of

is not in, (α,H). Finally, h(A, (α,H)) is shortened to h(A,α,H).

The paper is heavily indebted to the work of Anderson and Belnap and Meyer and Dunn

and coworkers (and I hope debt will increase). The paper presupposes some of their work,

and it also presupposes semantical analysis of modal logics, especially the work of Kripke.

The methods of the paper may be applied to provide semantics for a number of other

systems related to these studied.
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1 The Axiomatic Systems

[PDF p. 6]1 The postulates of system E are (in favoured Anderson & Belnap form) as follows:

E1. ((A→ A)→ B)→ B

E2. A→ B → .B → C → .A→ C

E3. (A→ .A→ B)→ A→ B

E4. A&B → A

E5. A&B → B

E6. (A→ B)&(A→ C)→ .A→ (B&C)

E7. NA&NB → N(A&B)

E8. A→ A ∨B
E9. B → A ∨B
E10. (A→ C)&(B → C)→ .(A ∨B)→ C

E11. A&(B ∨ C)→ (A&B) ∨ C
E12. A→∼ A→ . ∼ A

E13. A→∼ B → .B →∼ A

E14. ∼∼ A→ A

Modus Ponens (MP): From A and A→ B to infer B.

Adjunction (Adj): From A and B to infer A&B.

The connectives “&” (symbolizing conjunction) “∼” (negation) and “→” (implication or

entailment) are taken as primitive; “∨” (disjunction) is either taken as primitive, or defined

in the full system; A ∨ B =Df∼ (∼ A& ∼ B) and “N” (necessity) is defined: NA =Df

(A→ A)→ A. The pure implicational fragment EI , of E, has as postulates E1–E3 and MP;

the implication-negation fragment, E−I , the postulates E1–E3 and E12–E14 with MP; the

implication-conjunction fragment, E&, the postulates E1–E7 with MP and Adj; the positive

fragment, E+, E1–E11 with MP and Adj.

The postulates of system R and those of E together with the scheme

E0. A→ .(A→ A)→ A

or one of its equivalents. Further each fragment of R adds E0 to the corresponding fragments

of E; e.g. R+ is E++ E0. Scheme E7 is however redundant whenever it occurs in R systems;

and scheme E12 may be proved using E3 (or vice versa) in R systems (see [?]).

System Rf (of Meyer [?]) takes the propositional constant f as primitive in place of N,

and replaces negation axioms E12–E14 of R by the single axiom: A→ f → f → A.

System �R, of relevant implication with S4-necessity, results upon adding to R the new

primitive ‘�’ and the intended S4 principles (see e.g. Meyer [?])

�1. �A→ A

�2. �(A→ B)→ .�A→ �B

�3. �A&�B → �(A&B)

�4. �A→ ��A

1For convenience, sections begin with a reference to the page number of the PDF of the scanned

manuscript. In the manuscript, some pages are not numbered, and the numbering of the remaining pages

restarts at certain points. The reference to the page numbers of the PDF can be used by the reader to locate

the beginning of sections by counting from the first page of the manuscript.
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Necessitation (Nec): From A to infer �A.

Entailment is defined thus in �R: A⇒ B =Df �(A→ B). The �R translation of a wff �A

of E is the wff A′ which results on replacing each occurrence of ‘→’ in A by ‘⇒’ and each

occurrence of ‘N ’ by ‘�’.

�R may be reaxiomatized so as to avoid the rule of necessitation by doubling up on the

axioms as follows: for each axiom Ax of the given system the new axiom �Ax is added. For

example, in the reaxiomatization, both �A → A and �(�A → A) are taken as axioms. In

the reaxiomatized system the rule of necessitation is a derivable rule provable by induction

over proofs.

System P (of [?]) differs from E in just these respects. In place of E1 the scheme E1′.

A→ A is adopted; E7 is deleted; and the permuted form E2′, A→ B → .C → A→ .C → B,

of E2 is added. The pure implication fragment PI of P has as postulates E1′, E2, E2′, and

E3 with MP; the implication-negation fragment P−I has the postulates of PI together with

E12–E14; the implication-conjunction fragment P& the postulates of PI together with E4–E6

and Adj; and the positive fragment P+ the postulates of PI together with E4–E6, E8–E11

and Adj.

The system EΛ (of [?]) adds to E a propositional constant Λ satisfying these postulates:

Λ1. A→ Λ→∼ A Λ2. ∼ (A→ A)→ Λ

EΛ, which is a conservative extension of E, corresponds to Ackermann’s system Π′ (of [?])

as E corresponds to Ackermann’s system Π, i.e. they have the same class of theorems.

Several other systems are singled out for attention. First, S5-modalizations of the focal

systems. E5 (P5) adds to E (P) the S5 principle

E15. ∼ NA→ N ∼ NA

�R5 adds to �5 the postulate ∼ �A→ � ∼ �A, and, in reaxiomatized form, the postulate

∼ �A⇒ � ∼ �A. Second, extensions of the focal systems by a special S5 type principle to

the effect that some logically false proposition entails its necessary falsity. Thus �Rf5 adds

to �Rf the postulate f → �f (and f ⇒ �f), and EΛ5 adds to EΛ the postulate Λ→ NΛ.

Third, non-transitive analogues of E and P. Here E2 and P2 resemble S2 in the way E

resembles S3; they weaken the Exported Syllogism principles E2 and E2′ to the imported

form: (A → B)&(B → C) → .A → C. Naturally, compensation for the loss of an over-

powerful proofs principle such as exported syllogism has to be made elsewhere. Thus P2,

formulated with primitive connective set {→,∼,&}, reforges P as follows

P1. A→ A

P2. A→ B&B → C → .A→ C

P3. A→ (B → C)→ A&B → C

P4. A&B → A

P5. (A→ B)&(C → C)→ .A&C → D&B

P6. A→ A&A
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P11–P14 are the same as E11–E14: to the rules of P is added the further rule of substi-

tutability of entailments: from C(A) and (A ↔ B), i.e. A → B&B → A, to infer C(B).

The sole pure entailment axiom P1 is of course derivable from P4 and P6.

Forth, extensions of P+ and E+ by different negation principles. Of special interest are

the systems PP (P proper) and EP obtained from P and E respectively by weakening E12;

for once impossible situations are admitted as semantically valuable, the reductio principle

E12 appears as an unnecessary and undesirable restriction. Moreover, in the case of P leads

to anomalies; e.g. P has as a theorem ((A∨ ∼ A)→ B)→ B though rejecting the theorem

((A → A) → B) → B characteristic of E; yet the grounds for objecting to the second of

these are also grounds for objecting to the first.2

2There is a note here. The first half reads “add A → B →∼ (A& ∼ B) &”, and I have been unable to

figure out the last half.
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2 The Semantical Systems

2.0 Positive Models

[PDF p. 10] An E+-model M is a structure M = 〈G,K,R, 0, N, h〉, where K is a set; G ∈ K;

R is a reflexive and transitive relation on K; N is a set of sets including the null set 0 and

closed under the set union operation +, and h is a 2-place holding function such that for

every atomic wff p and every H ∈ K and α ∈ N , h(p, α,H) = T or = F .

The holding function h is extended to all wff of E+ as follows:—

h(A&B,α,H) = T iff h(A,α,H) = T = h(B,α,H)

h(A ∨B,α,H) = T iff h(A,α,H) = T or h(B,α,H) = T

h(A → B,α,H) = T iff for every H ′ ∈ K and β ∈ N if HRH ′ and h(A, β,H ′) = T

then materially h(B,α + β,H ′) = T .

A wff B is true in E+-model M iff h(B, 0, G) = T , false in M iff h(B, 0, G) = F , E+-valid iff

B is true in every E+-model. E+-model M falsifies B iff h(B, 0, G) = F ; M satisfies Γ iff for

every wff B ∈ Γ, h(B, 0, G) = T .

An R+-model M is an E+-model such that:

(i) if h(p, α,H1) = T and H1RH2 then h(p, α,H2) = T , for every atomic p and every

H1, H1 ∈ K (the hereditariness requirement).

A �R+-model M is a structure M = 〈G,K,R, 0, N,W, h〉 where 〈G,K,R, 0, N, h〉 is an

R+-model and W is another reflexive and transitive relation on K.

A P+-model is an E+-model where the elements of sets of N are ordered. A convenient

choice is to take N as a set of sets of positive integers (or ordinals). Then, as in Anderson

& Belnap [?], for α ∈ N ,3

2.1 Forced Negation Models

An R-model M is a structure M = 〈G,K,R, 0, N, P, h〉 where K is a set, G ∈ K, R is a

reflexive and transitive relation on K, N is a set of sets including the null set 0 and closed

under the set union operation +, P is a relation on elements of N and K such that

(i) if, for every β ∈ N and H ∈ K H1RH and P (α + β,H) materially imply HRH2 and

P (γ + β,H2), then (α,H1) = (γ,H2) (the reduction requirement).

Finally h is a 2-place holding (or valuation) function such that for every atomic wff p and

every H ∈ K and every α ∈ N , h(p, α,H) = T or = F , and such that

(ii) for every atomic wff p and every H1, H2 ∈ K and every α ∈ N , if H1RH2 and

3This sentence appears to be missing the latter half.
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h(p, α,H1) = T , then h(p, α,H2) = T (the hereditariness requirement); and

(iii) for every atomic p and every α ∈ N and every H1 ∈ K if h(p, α,H1) = F then for some

H2 ∈ K and β ∈ N H1RH2 and P (α + β,H2) (the falsity requirement).

The holding function h is extended from atomic wff to all wff of R as follows:—

h(A&b, α,H) = T iff h(A,α,H) = T = h(B,α,H)

h(A → B,α,H) = T iff, every every H ′ ∈ K and every β ∈ N , if HRH ′ and

h(A, β,H ′) = T then, materially, h(B,α + β,H ′) = T

h(∼ A,α,H) = T iff for every H ′ ∈ K and every β ∈ N if HRH ′ and P (α + β,H ′)

then, materially, h(A, β,H ′) = F .

An R-model may be simplified. G may be defined: G = H(H ∈ K); and R may be

eliminated (in the way explained in [?]). If requirements (i) and (iii) and dropped a minimal

logic version of R which does not validate E14 results.

Lemma 1. For every wff A, if H1RH2 and h(A,α,H1) = T then h(A,α,H2) = T .

Proof. Proof is by induction from the stipulated basis. There are 3 cases:

Ad &: If h(B&C, α,H1) = T and H1RH2 then h(B&C, α,H2) = T

Ad →: by transitivity of R and definition of h

Ad ∼: by transitivity of R and definition of h

Lemma 2. . For every wff A and every H1 ∈ K if h(A,α,H1) = F then, for some H2 ∈ K
and some β ∈ N , H1RH2 and P (α + β,H2).

Proof. Proof is by induction from the stipulated basis.

Ad &: If h(B&C, α,H1) = F then either h(B,α,H1) = F or h(C, α,H1) = F . In either case

the derived rule follows by induction hypothesis.

Ad →: If h(B → C, α,H1) = F then for some H3 and some γ ∈ N , H1RH3 and h(B, γ,H3) =

T and h(C, α + γ,H3) = F . Since h(C, α + γ,H3) = F , by induction hypothesis, for some

H2 ∈ K and some δ ∈ N , H3RH2 and P (α + γ + δ,H2). Thus, as R is transitive, for some

H2 and some β = γ + δ, H1RH2 and P (α + β,H2).

Ad ∼: If h(∼ B,α,H1) = F , then, for some H2 ∈ K and some β ∈ N , H1RH2 and

P (α + β,H2).

It is simplest to use the β yielded by this lemma in applying the reduction requirement.

A wff B is true in R-model M iff h(B, 0, G) = T ; B is R-valid iff B is true in every

R-model. R-model M falsifies B iff h(B, 0, G) = F . M satisfies Γ iff for every wff B ∈ Γ,

h(B, 0, G) = T .
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Lemma 3. Where ∨ is defined: A ∨B =Df∼ (∼ A& ∼ B),

(i) if h(A,α,H) = T or h(B,α,H) = T then h(A ∨B,α,H) = T

(ii) if h(A ∨ B,α,H) = T then h(A,α,H) = T or h(B,α,H) = T provided that for some

wff C and some β, h(C, α + β,H) = F .

Proof. (i) If h(∼ (∼ A& ∼ B), α,H) = F then for some γ and some H1, P (α + γ,H1)

and h(∼ A, γ,H1) = T = h(∼ B, γ,H1). Hence since P (α + γ,H1), h(A,α,H1) = F =

h(B,α,H1). Since HRH1, by hereditariness, h(A,α,H) = F = h(B,α,H).

(ii) If h(∼ (∼ A& ∼ B), α,H1) = T then for every β and H, if P (α + β,H) and H1RH

then h(∼ A& ∼ B, β,H) = F , i.e.: either h(∼ A, β,H) = F or h(∼ B, β,H) = F . Suppose

further that h(∼ A, β,H) = F . Then for some γ and some H2, P (β + γ,H2) and HRH2

and h(A, γ,H2) = T . By the reduction requirement then (γ,H2) = (α,H1): i.e. in this

case h(A,α,H1) = T . Similarly, on the alternative assumption that h(∼ B, β,H) = F

h(B,α,H1) = T follows. Thus, using the falsity requirement to guarantee that for some β

and H, H1RH and P (α + β,H), either h(A,α,H1) = T or h(B,α,H1) = T .

An Rf -model is an R-model; only the extension of h differs as follows: the clause for

negated wff is replaces by this clause for f :

h(f, α,H) = F iff P (α,H)

Thus P may be eliminated in the case of Rf -models.

Lemma 4. A wff A of R is R-valid iff its Rf -translation Af , obtained by eliminating each

part ∼ B using the definition ∼ B =Df B → f , is Rf -valid.

Proof. Suppose Af is not Rf -valid. Then for some R-model M h′(Af , 0, G) = F where h′ is

the R-extension of h it follows by induction over sub formulae of Af that h′(A, 0, G) = F .

The converse half is similar.

An R-model M for wff A is an R-model M where h assigns truth vales only for atomic

sub wff of A (and for f). Function h is extended as before for sub wff of A. Further in the

case of disjunction h is extended as follows, for sub wff B and C:

if h(B,α,H) = T or h(C, α,H) = T then h(B ∨ C, α,H) = T

if h(B ∨C, α,H) = T and, for some sub wff D of A (or f) and some β, h(D,α+ β,H) = F ,

then h(B,α,H) = T or h(C, α,H) = T .

Under this definition, a wff A of R is valid (c-valid) iff A is true in every R-model for A,

i.e. h(A, 0, G) = T for every R-model for A.

Theorem. Every theorem of R is both valid and c-valid.

A �R-model M is a structure M = 〈G,K,R, 0, N, P,W, h〉 where 〈G,K,R, 0, N, P, h〉 is

an R-model and W is a reflexive and transitive relation on K such that
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(v) if H1RH2 then H1WH2

Hence if H1RH2 and H2WH3 then H1WH3. The holding function h is extended as for system

R; and, in addition,

h(�A,α,H) = T iff either for every H1 such that HWH1 h(A,α,H1) = T or for every

H2 and β, if HRH2 then not P (α + β,H2).

Truth in M, �R-validity, �R-c-validity, etc, are defined along the same lines as before.

Lemma 5. For every wff A, if H1RH2 and h(A,α,H1) = T , then h(A,α,H2) = T .

Lemma 6. For every wff A, if h(A,α,H1) = F , then, for some H2 and β, H1RH2 and

P (α + β,H2).

The new induction step, for �, is immediate from the holding function for �, & helps explain

its design.

A �R5-model M is a �Rf -model such that

(vi) if H1WH2 and P (α,H2) then P (α,H1).

In the case of �R4 the holding function h may be extended in the expected way for �; e.g.:

h(�A,α,H) = T iff for every H1 such that HWH1, h(A,α,H1) = T

The lemmata shown both hold.

It follows from the �R5 modeling that necessary entailments [are]4 evaluated as follows:

h(A → B,α,H1) = T iff for every H2 and H3 and β, if H1WH2 and H2RH3 and

h(A, β,H3) = T then h(B,α + β,H3) = T .

In the case of �R-modeling the following alternative is added: or else for every H4 and γ, if

H1RH4 then not P (α + γ,H4). In view of condition (v) and given quantification logic, the

main clause can be simplified to the following:

h(A → B,α,H1) = T iff, for every H3 and β, if H1WH3 and h(A, β,H3) = T then

h(B,α + β,H3) = T .

For, for some H2, H1WH2 and H2RH3 iff H1WH3, by quantification logic.

An5 EΛ5-model is a structure M = 〈G,K,R, 0, N, P, h〉 where K is a set, G ∈ K, R is a

reflexive and transitive relation on K, N is a set of sets including the null set 0 closed under

4Cut off
5This page is marked for omission. I have indicated the contents of the page by the horizontal lines.
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set union operation +, P is a relation on elements of K and N such that

(i) If, for every β ∈ N and H ∈ K H1RH and P (α + β,H) materially imply HRH2 and

P (γ + β,H2), then (α,H1) = (γ,H2), for α, γ ∈ N , H1, H3 ∈ K.

(ii) If P (α,H2) and H1RH2 then P (α,H1) for α ∈ N and H1, H2 ∈ K.

Finally h is a 2-place holding (or valuation) function such that for every atomic p and H ∈ K
and α ∈ N , h(p, α,H) = T or = F , and such that

(iii) for every atomic p and α ∈ N , H1 ∈ K if h(p, α,H1) = F then, for some H2 ∈ K and

β ∈ N , H1RH2 and P (α + β,H2).

The holding function h is extended to wff of EΛ5 as follows:—

h(A&B,α,H) = T iff h(A,α,H) = T = h(B,α,H)

h(Λ, α,H) = F iff P (α,H)

h(A⇒ B,α,H) = T iff for every H ′ ∈ K and every β ∈ N , if HRH ′ and h(A, β,H ′) =

T then materially h(B, β + α,H ′) = T .

h(∼ Aα,H) = F iff for some H1 ∈ K and β ∈ N HRH1 and P (α + β,H1) and

h(A, β,H1) = T .

A wff B is true in a EΛ5-model M iff h(B, 0, G) = T ; etc. Since the distinguishing

postulate ∼ NA → N ∼ NA of E5 is EΛ5-valid, it is tempting to define E5-validity as

EΛ5-validity of a Λ-free wff.

Lemma 7. For every wff A, if h(A,α,H) = F then for some H1 and some β, HRH1 and

P (α + β,H1).

Lemma 8. For every wff B, if h(∼ B,α,H) = T 6

max(α) =

the largest element of α, if α 6= 0

zero, if α = 0

In the case of P+ the holding function for → is extended to the following:—

h(A→ B,α,H) = T iff for every H ′ ∈ K and β ∈ N if HRH ′ and max(β) ≥ max(α)

and h(A, β,H ′) = T then, materially, h(B,α + β,H ′) = T .

A wff B is true in P+-model M iff h(B, 0, G) = T ; etc.

Modelings for systems EI , RI , PI , EI&, RI&, and PI& are obtained from the modelings

given by deleting clauses for inoperative connectives.

6Page is cut off here
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Theorem. If `L A then A is L-valid for each of the positive systems and their fragments.

An S4T -model and indeed an S4-model, is and E+-model where

N = {0}, i.e. α = 0 for every α ∈ N . It is this clear that by varying conditions on the rela-

tion R implicational analogues of normal modal systems can be got. For a characterization

of entailment proper there is, as Lewis emphasized, a case for abandoning the transitiv-

ity requirement on R, and thereby cutting Exported Syllogism, E2, back to Conjunctive

Syllogism: A→ B&B → C → .A→ C.

2.2 Direct Negation Models

The models so far studied cause substantial problems with respect to the assessment of

formulae where negation occurs essentially (and not simple on a substitution instance of a

positive wff). To reduce the problems the initial models are supplanted by models which

treat negation more directly.

An E-model M is a structure M = 〈G,K,R, 0, N, h〉 where K is a set of elements,

including G = H0, such that for every Hi ∈ K there is a unique element Ji ∈ K; and R is a

transitive and reflexive relation on M = {Hi : Hi ∈ K}, 0 and N are as before; and h is, as

before, two-valued holding function which assigns one of T or F to every atomic wff for every

Hi and Ji ∈ K and every α ∈ N . But h also assigns one of T and F to every entailment for

every α ∈ N and Ji ∈ K, i.e. entailments are assigned values arbitrarily at J-situations.

The symbols I, I1, I2, . . . , I ′, . . . are used as general variables ranging over elements of

K. h is extended from atomic wff to all wff of E thus:

h(A&B,α, I) = T iff h(A,α, I) = h(B,α, I) = T

h(A ∨B,α, I) = T iff h(A,α, I) = T or h(B,α, I) = T

h(∼ A,α,Hi) = T iff h(A,α, Ji) = F

h(∼ A,α, Ji) = T iff h(A,α,Hi) = F

if h(A → B,α,Hi) = T then, for every β ∈ N and Hj ∈ K, if HiRHj, then if

h(A, β,Hj) = T h(B,α + β,Hj) = T and if h(A,α + β, Jj) = T h(B, β, Jj) = T ;

further if h(A → B,α,Hi) = T and h(B,α,Hi) = F then h(A,α, Ji) = F . (The last

condition is the reduction condition; the complication of the first condition is to take

account of contraposition principles.)

If h(A → B,α,Hi) = F then, for some β ∈ N and some Hj ∈ K, HiRHj and

h(A, β,Hj) = T and h(B,α + β,Hj) = F , h(A,α + γ, Jk) = T and h(B, γ, Jk) = F
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(N.B. A single quantification, for some β ∈ N , covering the whole consequent can be used

in place of the separate quantifications for β and γ. )

A wff B is true in E-model M iff h(B, 0, G) = T , i.e. h(B, 0, H0) = T ; etc.

An R-I-model M is an E-model M such that

(1) R is extended to M , i.e. K −M through the equivalence: J1RJ2 iff H2RH1, for every

J1, J2 ∈ K;

(2) if h(A,α, I1) = T and I1RI2 then h(A,α, I2) = T , for every initial case, i.e. (1) for

every atomic wff for every α ∈ N and I1, I2 ∈ K, and (ii) for every entailment for every

α ∈ N and I1, I2 ∈M (the Hereditariness requirement).

Lemma 9. Where M is an R-I-model, if h(A,α, I1) = T and I1RI2 then h(A,α, I2) = T ,

for every wff A, every α ∈ N and I1, I2 ∈ K.

Proof is by induction over connectives in A.

A is R-I-valid iff A is true in every R-I-model.

A �R-I-model M is a structure M = 〈G,K,R, 0, N,W, h〉 where 〈G,K,R, 0, N, h is an R-

I-model, and W is a reflexive and transitive relation on M such that if H1RH2 then H1WH2,

and h(�A,α, J) is a further initial case, i.e. �A is evaluated arbitrarily in (α, J) situations.

The hereditariness lemma results.7

A is �R-I-valid iff A is true in every �R-I-model.

A P-model is simple an E-model where N is an ordered set; however entailment wff are

evaluated differently in H-situations, i.e. the extension of h differs from that for E in the

following:—

If h(A → B,α,Hi) = T then, for every β ∈ N and Hj ∈ K, if HiRHj and max(β)

≥ max(α), then if h(A, β,Hj) = T h(B,α + β,Hj) = T and if h(A,α + β, Jj) = T

h(B, β, Jj) = T ; further if h(A→ B) = T then if h(A,α, Ji) = T h(B,α,Hi) = T .

If h(A → B,α,Hi) = F then for some β ∈ N and Hi ∈ K max(β) ≥ max(α) and

HiRHj and h(A, β,Hj) = T and h(B,α + β,Hj) = F and also for some γ ∈ N and

Hk ∈ K max(γ) ≥ max(α) and HiRHk and h(A,α + γ, Jk) = T and h(B, γ,Hk) = F .

B is P-valid iff B is true in every P-model, in effect P-true in every E-model; etc.

In the case of the positive part, P+, of P the entailment evaluation rule simplifies to the

following:—

h(A → B) = T iff for every β ∈ N and H ′ ∈ K if HRH ′ and max(α) ≤ max(β) and

h(A, β,H ′) = T then h(B,α + β,H ′) = T .

7I have used the word “results” here as a placeholder, as I am unable to decipher the original.
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2.3 Simplified Models for Systems based on R and R+

Lemma 10. Every non-valid wff of R [�R etc] has a connected R- [�R- etc] countermodel,

i.e. every R-satisfiable wff has a connected R-model (etc).

Proof. Proof is as in Kripke [?]. Define K ′ = {H ∈ K : GR∗H}8 where R∗ is the ancestral

of R; R′ is the restriction of R to K ′; and for H ∈ K ′, h′(p, α,H ′) = h(p, α,H)9. Then

M′ = 〈G,K ′, R′, 0, N, P, h′〉 is a connected R-model; & it follows, by induction, that for

every H ∈ K ′, h′(B,α,H) = h(B,α,H).

Lemma 11. (i) For every H ∈ K, h(A,α,H) = h(∼∼ A,α,H)

(ii) If H1RH2, h(∼ A,α,H1) = h(∼ A,α,H2).

(iii) If H1RH2, then h(A,α,H1) = h(A,α,H2)

Proof of (i) uses falsity and reduction requirements, and proof of (ii) the transitivity of R.

A simplified R-model M is a structure M = 〈0, N, P, h〉 where 0 and N are as before, P

is a property of elements of N and h is a holding function such that for every atomic wff p

and every α ∈ N , h(p, α) = T or = F . It is required:

(i) If, for every β ∈ N , P (α + β) materially implies P (γ + β), then α = γ (the simplified

reduction requirement).

(ii) For every atomic p and every α ∈ N if h(p, α) = F then for some β ∈ N P (α + β) (the

simplified falsity requirement).

The holding function is extended in the expected way upon after deletion of H, viz:

h(A&B,α) = T iff h(A,α) = T = h(B,α)

h(A→ B,α) = T iff, for every β ∈ N , if h(A, β) = T then, materially, h(B,α+β) = T

h(∼ A,α) = T iff, for every β ∈ N , if P (α + β) then, materially, h(A, β) = F

A wff B is true in a simplified R-model iff h(B, 0) = T . B is R-s-valid iff true in every

simplified R-model.10

A simplified Rf -model is a structure 〈0, N, h〉: P is eliminated using f .

Lemma 12. In R-models the reduction requirement can be simplified without affecting R- or

Rf -validity to the following:

if, for every β, P (α + β,H1) implies H1RH2 and P (β + γ,H2) then (α,H1) = (γ,H2).

8Part is cut off. I merely guess that the clause is GR∗H.
9Again, this part was partially cut off.

10Last sentence cut off.
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Proof. The only postulate that requires the reduction principle ∼∼ A → A remains valid

using the simpler requirement, by direct verification. The converse presupposes completeness

material of §4. If Aα 6∈ H1 and Aγ ∈ H2 then A→ f → fα 6∈ H1. Hence, for some H and β11

H1RH and A→ fβ ∈ H, and fα+β 6∈ H. By the preceding lemma since H1RH2 A→ fβ ∈ H1

and fα+β 6∈ H1. Remaining details in establishing the simplified reduction requirement are

as for the (presupposed) proof of the reduction requirement in §4.

Theorem.

(i) If `R B (`Rf B) then B is R-s-valid (Rf -s-valid).

(ii) B is Rf -s-valid iff B is Rf -valid.

Proof. Proof of (i) is by induction over proof of B. As to (ii) if B is Rf -valid then B is

Rf -s-valid since Rf -s-models are R-models with K = {G}. Suppose, for the converse that B

is not Rf -valid; then there is a connected Rf countermodel M to B; Since M is connected

and R is transitive, by a lemma for every H ∈ K, h(A,α,H) = h(A,α,G) = h(A,α) say. The

restriction of K to {G} thus provided a countermodel also, and hence B is not Rf -s-valid.

Ad (a). Since M is connected, for every H ∈ K, GRH. Thus P (γ + β,G) implies GRH &

P (γ + β,G) which implies GRH & P (γ + β,H). Hence for every β, P (α + β,G) implies

P (γ + β,G) implies that for every β, P (α + β,G) implies GRH & P (γ + β,H). Therefore,

using the previous lemma, (α,G) = (γ,H). Since, however, GRH, for evaluation of wff,

(α,G) = (γ,G). Next, if h(p, α,G) = F then for some β and H GRH ad P (α + β,H), i.e.

h(f, α + β,H); hence for some β h(f, α + β,G), i.e. P (α + β,G).

Ad (b). By induction over connectives, each step which shows that A holds or fails to hold

in (α,H) may be reflected in (α,G). (of the analogous proof in the decidability section).

An S-model, for system S of classical two-valued logic, is a simplified R-model where

N = {0}. [Thus model wise it seems that R is related to classical logic as E is to S4: but,

though R includes S, E does not include S4].

A simplified �Rf -model is a structure 〈G,K,R, 0, N, h〉 where 〈G, 0, N, h〉 is a simplified

Rf -model with α = (α,G), and K is a set with base G and R is a reflexive and transitive

relation on K. Further:

h(�A,α,H) = T iff for every H ′ ∈ K if HRH ′ then, materially, h(A,α,H ′) = T .12

11This transcription may be incorrect due to unreadability.
12There is a scratched out lemma below this.
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3 Deduction Theorems and Primeness Theorems

[PDF p. 25] Where L is one of the systems E or R or their parts, and where, as before

α, α1, . . . , β, γ, θ, etc are sets (or lattice elements), 0 is the null new (or minimal element)

and α + β is the set (or lattice) union of α and β, define:—

A1
α1
, . . . , Anαn L Bβ is an L-proof of Bβ from hypotheses A1

α1
, . . . , Anαn iff there is a se-

quence C1
γ1
, . . . , Cm

γm with Cm
γm = Bβ, where each elements of the sequence is either

(i) one of the hypotheses, or

(ii) D0 where D is an axiom of L, or

(iii) obtained from predecessors in the sequence by application of the → E rule: from Aα

and (A→ D)β to infer Dα+β, or

(iv) obtained from predecessors in the sequence by application of the rule &I: from Aα and

Dα to infer (A&D)α.

As before α, α1, . . . , αn, β are sets, 0 is the null set and α + β is the set union of α and β.

∇ L Bβ iff for someA1
α1
, . . . , Anαn ∈ ∇A1

α1
, . . . , Anαn L Bβ; in this caseBβ is L-provable from

∇. ∇α is a set of α-subscripted wff.

For systems like P and P2 and their parts, it is necessary, once again, to use sets where

elements are ordered. Sets of ordinals are a convenient choice. For these systems the rule

→ E is simplified by adding the proviso: provided max(α) 6< max(β), where, as before,

max(α) =

the largest element of α, if α 6= 0

0, if α = 0

The first deduction theorems proved for E, R and P and their parts are given essentially

in Anderson [?] and Anderson and Belnap [?].

Lemma 13. If A1
α1
, . . . , Anαn , Aθ E Bβ and θ 6= 0, θ 6≤ β and θ 6≤ αi for any i, 1 ≤

i ≤ n and each Aiαi is an entailment, i.e. of the form (E1 → E2)αi, for 1 ≤ i ≤ n, then

A1
α1
, . . . , Anαn , [Aθ] E NBβ from which hypothesis Aθ may be deleted.

Proof. Let the assumed proof sequence be represented

(α) B1
β1
, . . . , Bm

βm
with Bm

βm
= Bβ.

Form a new sequence

(β) D1
δ1
, . . . , Dp

δp
with Dp

δp
= Bβ,
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obtained from (α) by deleting every Bi
βi

13 such that θ ≤ βi. Then (β) guarantees.

A1
α1
, . . . , Anαn E Bβ.

For no wff with a subscript α including θ occurs essentially in a proof of Bβ from hypotheses

A1
α1
, . . . , Anαn , for if it did it would follow that θ ≤ β. For → E and &I eliminate no

subscripts, and θ 6= 0, so no axioms used have a θ subscript. Now form a new sequence

(γ) ND1
δ1
, . . . , NDp

δp

[In the case of the pure calculus of entailment the more general form, ((Di → C)→ C)δi for

arbitrary C, can displace ND1
δi

: see [?]] Proof of the adequacy of (γ) uses the same proof

strategy as the deduction theorem which follows. There are these cases:

Case 1: Di
δi

is one of A1
α1
, . . . , Anαn , say, Arαr . Then insert before NDi

δi
in (γ) the zero

subscripted E-proof sequence of �(Ar → NAr)0, using the fact that Ar is an entailment.

NDi
δi

then results by → E.

Case 2: Di
δi

is C0 for some axiom C of system E.

Case 3: Di
δi

is inferred by → E from Dj
δj

and Dk
δk

, with j < i, k < i. Then Dj
δj

(say) is

(Dk → Di)δj and δi = δj + δk. By induction hypothesis, NDk
δk

and NDj
δj

i.e. N(Dk → Di)δj
are available. Insert before Di

δi
a zero subscripted E-proof of (N(Dk → Di) → .NDk →

NDi)0; and NDi
δj+δk

results by two applications of → E.

Case 4: Di
δi

is implied by &I from Dj
δj

and Dk
δk

, with j < i, k < i. Then δi = δj = δk and

Di = Dj&Dk. By induction hypothesis NDj
δj

and NDk
δk

are available in (γ). Insert before

NDi
δi

the axiom NDj&NDk → N(Dj&Dk), and (NDj&NDk)δi .
14

Lemma 14. If A1
α1
, . . . , Anαn �R Bβ, then �A1

α1
, . . . ,�Anαn �R �Bβ.

Proof. Let the given proof sequence be represented

C1
δ1
, . . . , Cm

δm = Bβ

Form a new sequence

�C1
δ1
, . . . ,�Cm

δm ;

then this sequence provides a proof of �Bβ from hypotheses �A1
α1
, . . . ,�Anαn . The cases are

these at stage Ci
δi

:15

Case 1: Ci
δi

is Ajαj : Then �Ci
δi

is �Ajαj .

13Original text appears to read Bi
αi

14I have fixed a number of typographical errors in this paragraph.
15I have added the formatting and case numbers to the following to be consistent with the above proof.
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Case 2: Ci
δi

is D0 where D is an axiom; then �Ci
δi

is �D0, which can be introduced in a �R

proof from hypothesis.

Case 3: Ci
δi

is obtained by rule → E from Cj
α and (Cj → Ci)β with δi = α + β; then �Ci

δi

is obtained from �Cj
α and �(Cj → Ci)β which occur in the new sequence by the following

inserted steps:16

�(Cj → Ci)→ .�Cj → �Ci
0, �Cj → �Ci

β and one of → E.

Case 4: Ci
δi

is obtained from Dj
δj

and Ck
δk

by &I, then δi = δj = δk and Ci = Cj&Ck: then

�(Cj&Ck)δi is obtained from �Cj
δi

and �Ck
δi

by &I, → E and the following inserted steps:

(�Cj&�Ck)δi , (�Cj&�Ck)→ �(Cj&Ck)0.

Case 5:Ci
δi

is �D0 where D0 is an axiom; then �Ci
δi

17 is ��D0 and is obtained by → E

from the following inserted formulae, �D0, �D → ��D0.

Lemma 15. If ∇ E Bβ and each wff in ∇ is an entailment then ∇ E �Bβ, where

�Bβ ↔ .B → B → B.

Proof is like the preceding lemma; it uses the following theorems of E:

C → C → N(C → D); N(C → D)→ .NC → ND; NC&ND → N(C&D).

Theorem (First Deduction Theorems for E and R and their Parts).

If A1
α1
, . . . , Anαn , Aδ L Bβ and δ 6= 0, δ ⊆ β but δ 6⊆ αi for any i, 1 ≤ i ≤ n, then

A1
α1
, . . . , Anαn ,L A→ Bβ−δ

where

(1) L is system R

(2) L is system E, and for each i, 1 ≤ i ≤ n, Ai is an entailment, i.e. of the form

(D1 → D2).

Proof. By assumption there is a sequence

B1
β1
, . . . , Bm

βm with Bm
βm = Bβ

which provides a proof of Bβ from hypotheses A1
α1
, . . . , Anαn .18 Form a new sequence

B1
β1

′
, . . . , Bm

βm
′

16I have made corrections in the following wffs
17Corrected
18Corrected to Anαn

: subscript in original possibly crossed out.
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where

Bi
βi

′
=

(A→ Bi)βi−δ, if δ ⊆ βi

Bi
βi
, if δ 6⊆ βi

Then since δ ⊆ β, Bm
βm
′ = (A → B)β−δ. Following the proof strategy of Church [?, p.

88–89] it is shown how to make insertions in the new sequence so that is provides a proof

from hypotheses A1
α1
, . . . , Anαn of its last element Bm

βm
′. Suppose the insertions have been

completed just up to the (i− 1)th stage. At the ith stage there are these cases:

Case 1a: Bi
βi

is Aδ. Then Bi
βi

′
is (A→ A)0. Insert before Bi

βi
a proof sequence of (A→ A)0

using zero subscripted axioms and → E.

Case 1b: Bi
βi

is one of A1
α1
, . . . , Anαn , say Arαr . Then Bi

βi

′
is also Arαr , since δ 6⊆ αr. Thus Bi

βi

′

occurs as one of the hypotheses (case (i) in an L-proof from hypotheses).

Case 2: Bi
βi

is D0 for some axiom D of L. Since δ 6= 0, as a consequence of δ 6⊆ αi, B
i
βi

′
is also

D0. Thus Bi
βi

′
occurs as a zero subscripted axiom (case (ii) in an L-proof from hypotheses).

Case 3: Bi
βi

is inferred by → E from Bj
βj

and Bk
βk

, with j < i, k < i. Then Bj
βj

(say) is

(Bk → Bi)βj and βi = βj + βk. There are 4 subcases:—

Case 3a: δ ⊂ βj and δ ⊂ βk; so δ ⊂ βi. Then Bk
βk

′
is (A → Bk)βk−δ. B

j
βj

′
is (A → (Bk →

Bi))βj−δ, and Bi
βi

′
is (A→ Bi)Bj+Bk−δ. Insert before Bi

βi

′
a zero subscripted proof sequence

of (A→ (Bk → Bi)→ .A→ Bk → .A→ Bi)0; then insert (A→ Bk → .A→ Bi)βj−δ. B
i
βi

′

is inferred by → E.

Case 3b: δ ⊆ βk and δ 6⊆ βj. Thus Bk
βk

′
is (A→ Bk)βk−δ but Bj

βj

′
if (Bk → Bi)βj . Insert the

axiom (Bk → Bi → .A→ Bk → .A→ Bi)0 and (A→ Bk → .A→ Bi)βj before Bi
βi

′
. Then

Bi
βi

′
, i.e. (A→ Bi)βj+βk−δ, results by → E.

Case 3c: δ 6⊆ βk and δ 6⊆ βj. Thus Bk
βk

′
is Bk

βk
, Bj

βj

′
is (Bk → Bi)βj , and Bi

βi

′
, i.e. Bi

βj+βk
, is

inferred by → E.

Case 3d: δ ⊆ βj and δ 6⊆ βk. Thus Bk
βk

′
is Bk

βk
, Bj

βj

′
is (A → (Bk → Bi))βj−δ, and Bi

βi

′
is

(A→ Bi)βj+βk−δ.

(1) L is system R. Insert before Bi
βi

′
a zero subscripted proof sequence of (A → (Bk →

Bi)→ .Bk → .A→ Bi)0, and then insert (Bk → .A→ Bi)βj−δ. B
i
βi

′
then results from

→ E.

(2) L is system E. By a lemma, since γ 6⊆ βk, there is an E-proof from hypotheses of

(NBk)βk . Insert this sequence, then insert the zero-subscripted proof sequence of

(A → (Bk → Bi) → .NBk → .A → Bi)0, and finally insert (NBk → .A → Bi)βj=δ.

Bi
βi

then results by → E.

Case 4: Bi
βi

is inferred by &I from Bj
βj

and Bk
βk

with j < i, k < i. Then βi = βj = βk and

Bi is (Bj&Bk). There are 2 subcases:—
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Case 4a: δ ⊆ βi. Then Bk
βk

′
is (A → Bk)βk−δ, B

j
βj

′
is (A → Bj)βk−δ and Bi

βi

′
is (A →

Bj&Bk)βk−δ. Insert before Bi
βi

′
the axiom ((A→ Bj)&(A→ Bk)→ .A→ (Bj&Bk))0 and,

what is inferred by &I, (A→ Bj)&(A→ Bk)βk−δ. Then Bi
βi

′
is inferred by → E.

Case 4b: δ 6⊆ βi. Then Bk
βk

′
is Bk

βk
, Bj

βj

′
is Bj

βk
, and Bi

βi

′
is (Bj&Bk)βk , which is inferred, as

before, by &I.

This deduction theorem holds also for such extensions of E and R as EΛ, �R, �R5,

etc. It is not, of course, the only deduction theorem for E and R. Alternative deduction

theorems for RI are given in [?] and [?]19, and an alternative deduction theorem for EI is as

follows: if A1, . . . , An, A `EI B and A1, . . . , An are entailments and A is used in the proof

then A1, . . . , An `E A→ B. In order to deal with disjunction in R then following deduction

theorem is needed:

Theorem (A Second Deduction Theorem for R and E). If A1
α1
, . . . , Anαn , Aδ R Bβ

then either A1
α1
, . . . , Anαn ,R A→ Bβ−δ with δ ⊆ β or A1

α1
, . . . , Anαn ,R Bβ. Similarly for E

when A1
α1
, . . . , Anαn are entailments.

Proof. Let B1
β1
, . . . , Bm

βm
= Bβ be a proof of Bβ from hypotheses A1

α1
, . . . , Anαn . [It] is shown

by induction for each Bi
βi

that either (i) A1
α1
, . . . , Anαn R A → Bi

βi−δ and δ ⊆ βi or (ii)

A1
α1
, . . . , Anαn R B

i
βi

.

Case 1: Bi
βi

is Aδ. Then A1
α1
, . . . , Anαn R A→ Bi

βi
using A→ A0.

Case 2: Bi
βi

is a zero-subscripted axiom of one of A1
α1
, . . . , Anαn . Then A1

α1
, . . . , Anαn  B

i
βi

.

Case 3: Bi
βi

is inferred by → E. The cases are as before. Note that Bi
βi

results when and

only when both the previous are of form (i). δ ⊆ βi follows from δ ⊆ βj or δ ⊆ βk.

Case 4: Bi
βi

is inferred by &I.

Corollary 1. (Primeness Theorem for R) If Γ, Aδ R Bβ and Γ, Cδ R Bβ then Γ, (A ∨
C)δ R Bβ.

Proof. Given the premises, either Γ R Bβ, and so Γ, (A ∨ C)δ R Bβ, or both Γ R A →
Bβ−δ and Γ R C → Bβ−δ and δ ⊆ β. Since `R (A → B)&(C → B) → .A ∨ C → B,

Γ R (A ∨ C → B)β−δ with δ ⊆ β, whence Γ, A ∨ Cδ R B(β−δ)+δ, i.e. Γ, A ∨ Cδ R Bβ,

since β ⊆ δ.

Corollary 2. (A primeness result for E). As in corollary 1 but with Γ consisting only of

entailments.

Theorem (Alternative Form of the First Deduction Theorem for R and for E).

If A1
α1
, . . . , Anαn , Aδ R Bβ and δ 6= 0, δ ⊆ β and δ disjoint from αi for 1 ≤ i ≤ n, then

A1
α1
, . . . , Anαn ,R A→ Bβ−δ. Similarly for E where A1

α1
, . . . , Anαn are entailments.

19This footnote is in the original: “The simple use-of-hypotheses account breaks down over conjunction.”
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Proof. Redefine

Bi
βi

′
=

(A→ Bi)βi−δ, if δ not disjoint βi

Bi
βi
, if δ disjoint βi

Then Bm
βm
′ is (A→ B)β−δ. The proof is as before. Note in case 3c if δ disj βk and δ disj βj

then δ disj (βj + βk); in 3b δ disj βj but not disj βk then δ not disj (βj + βk); in 3a δ not

disj βk and not disj βj then δ not disj (βj + βk); in 3d that δ is not disj (βj + βk).

Theorem (First Deduction Theorem for P and its parts). If A1
α1
, . . . , Anαn , Aδ L Bβ

where δ 6= 0, m = max(δ) ∈ β but m exceeds max(αi) for each i in 1 ≤ i ≤ n, then

A1
α1
, . . . , Anαn ,L A→ Bβ−δ

Proof. Using the assumed sequence B1
β1
, . . . , Bm

βm
= Bβ, for a new sequence B1

β1

′
, . . . , Bm

βm
′

where

Bi
βi

′
=

(A→ Bi)βi−δ, if max(δ) ∈ βi
Bi
βi
, if max(δ) 6∈ βi

Cases 1 and 2 and 4: as before.

Case 3: Bi
βi

is inferred by → E from Bk
βk

and Bj
βj

= (Bk → Bi)βj with j < i, k < i,

βi = βj + βk, and max(βk) 6< max(βj).

Case 3a: m = max(δ) ∈ βj and m ∈ βk; so m ∈ βi. Thus Bk
βk

′
is (A → Bk)βk−δ, B

j
βj

′
is

(A→ (Bk → Bi))βj−δ, and Bi
βi

′
is (A→ Bi)βj+βk−δ.

Case 3a(i): max(βk − δ) 6< max(βj − δ). Insert a zero-subscripted proof sequence of (A →
(Bk → Bi)→ .A→ Bk → .A→ Bi)0, then insert (A→ Bk → .A→ Bi)βj−δ. In view of the

ordering conditions → E may be applied to infer Bi
βi

′
.

Case 3a(ii): max(βk − δ) < max(βj − δ). Insert a proof sequence for ((A → Bk) → .A →
(Bk → Bi)→ .A→ Bi)0, then insert A→ (Bk → Bi)→ .A→ Bi)βk−δ (since max(βk− δ)≥
0).

Case 3b: m ∈ βk but m 6∈ βj; so m ∈ βk+βj, and Bk
βk

′
is (A→ Bk)βk−δ, B

i
βi

′
is (A→ Bi)βi−δ

but Bj
βj

′
is (Bk → Bi)βj .

Case 3b(i): max(βj) ≤ max(βk − δ). Insert (Bk → Bi → .A → Bk → .A → Bi)0, (A →
Bk → .A→ Bi)βj before Bi

βi

′
; and use → E twice.

Case 3b(ii): max(βj) 6< max(βk − δ). Insert (A → Bk → .Bk → Bi → .A → Bi)0, (Bk →
Bi → .A→ Bi)βk−δ before Bi

βi

′
; and use → E twice.

Case 3c: as before.

Case 3d: impossible. For since m ∈ βj the largest element that can occur belongs to βj. As

m 6∈ βk, max(βj) > max(βk), contradicting an assumption for case 3.
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Theorem (A Second Deduction Theorem for P and its parts). If A1
α1
, . . . , Anαn , Aδ P

Bβ and m = max(δ) and m > max(αi) for every αi, 1 ≤ i ≤ n, then either A1
α1
, . . . , Anαn P

A→ Bβ−δ and m ∈ β or A1
α1
, . . . , Anαn P Bβ and m 6∈ β.

Proof is like the second deduction theorem for R.

This deduction theorem is not sharp enough to provide the basis for a disjunction rule

for P. For that the following rule seems to be needed.

Theorem (Improved Second Deduction Theorem for P (conjecture only)). 20

If A1
α1
, . . . , Anαn , Aδ P Bβ and max(δ) ≥ max(αi) for every αi, 1 ≤ i ≤ n, then either

A1
α1
, . . . , Anαn P A→ Bβ−δ and m ∈ β or A1

α1
, . . . , Anαn P Bβ.

Corollary 3. (A Primeness result for P)

If Γ, Aβ P Cδ and Γ, Bβ P Cδ then Γ, (A ∨B)β P Cδ, provided max(β) > max(γ) for

each Dγ ∈ Γ.

Theorem (Qualified Primeness Theorem for P and E). If Γα, Aα  Cα and Γα, Bα 

Cα then Γα, (A ∨B)α  Cα for every α. Γα is a set of wff all subscripted with α.

Proof. (α′). If Γα, Aα  Cα then Γα, (A ∨B)α  (C ∨B)α.

Let given sequence in (α′) be

A1
γ1
, . . . , Amγm = Cα

Then γi = 0 or α according as Ai is a theorem or is a consequence of at least one of the

hypotheses. Form a new sequence:

A1
γ1

′
, . . . , Amγm

′

where

Aiγi
′
=

(Ai ∨B)γi , if γi = α

Ai0, otherwise

There are these cases:—

Case → E: Aiγi follows by → E from Akγk and (Ak → Ai)γj = Ajγj and γi = γj + γk.

Case 1: γj = γk = α. Then γi = α, and by hypotheses have in new sequence (Ak ∨ B)α and

(Ak → Ai ∨ .B)α. Then insert (Ak ∨B&Ak → Ai ∨ .B)α appropriate theorems leading to, in

turn, to

([Ak&(Ak → Ai)] ∨ [Ak&B] ∨ [B&Ak → Ai] ∨ [B&B])α

20Above “conjecture” is written “unlikely?”.
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(Ai ∨B ∨B ∨B)α

(Ai ∨B)α

Case 2: γj = γk = 0 Then result just as before by → E.

Case 3: γk = α and γj = 0. Then γi = α and Akγk
′
is (Ak ∨B)α, Ajγj

′
is (Ak → Ai)0, and Aiγi

′

is (Ai∨B)α. Insert (B → B)0, (Ak → Ai&.B → B)0, ((Ak → Ai)&(B → B)→ .(Ak∨B)→
(Ai ∨B))0, whence (Ak ∨B)→ (Ai ∨B)0 so (Ai ∨B)α.

Case 4: γk = 0 and γj − α; so γi = α. This case is impossible for P unless α = 0, in

which case the result follows as for case 1. For E, Akγk
′

is Ak0, Ajγj
′

is ((Ak → Ai) ∨ B)α

and Aiγi
′

is (Ai ∨ B)α. If α = 0 then the result folows as for case 1; if α 6= 0 then Ak must

be a theorem. Hence (Ak → Ai) → Ai is a theorem. So insert ((Ak → Ai) → Ai)0 [and]

insert (B → B)0 then (B → B&(Ak → Ai) → Ai)0, then [something unreadable], then

((Ak → Ai) ∨B → Ai ∨B)0. Result by → E.

Base Hyp: Aiγi ∈ Γα or Aiγi is Aα; then Aiγi
′

is (Ai ∨B)α. Insert Ai → (Ai ∨B).

Case Axiom: Aiγi = D0; then Aiγi
′
= D0 also.

Case &I: Aiγi = (Aj&Ak)γi follows by &I from Ajγj and Akγk ; then γj = γk = γi.

Case 1: γi = α. So Akγk
′

= (Ak ∨ B)α, Ajγj
′

= (Aj ∨ B)α, and Aiγi
′

= (Aj&Ak ∨ B)α. Apply

&I to get ((Aj ∨B)&(Ak ∨B))α, then insert appropriate theorems to get (Aj&Ak ∨B)α.

Case 2: γi = 0; then Aiγi
′
= Ai0, Ajγj

′
= Aj0, and Akγk

′
= Ak0.21

(b′) If Γα, Bα  Cα then Γα, (C ∨B)α  (C ∨ C)α. The proof is similar to (b′).22

(c′) Γα, (C ∨ C)α  Cα. For ` C ∨ C → C.

The theorem then follows on combining (a′), (b′), and (c′).

21The rest cut off the page.We use & intro on the two theorems to get Ai, then we simply insert Ai → Ai∨B.

The result follows by → E.
22Likely to mean (a′).
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4 Completeness by Maximal Set Methods

[PDF p. 41] ∇ is L-consistent w.r.t. N iff, for some δ ∈ N and Dδ ∈ ∇, Dδ is not L-provable

from ∇.

∇ is an L-ok set w.r.t. N (where N is a set closed under + and including 0) iff

(i) ∇ is L-consistent w.r.t. N

(ii) A0 ∈ ∇ for every axiom A of L

(iii) for every α ∈ N , if Aα ∈ ∇ and Bα ∈ ∇ then (A&B)α ∈ ∇

(iv) for every α, β ∈ N , if Bβ ∈ ∇ and (B → C)α ∈ ∇ then Cα+β ∈ ∇23 [provided max(β)

6< max(α) , in the case of P systems].

Lemma 16. If ∇ is an L-ok set w.r.t. N then

(i) for every theorem A of L, A0 ∈ ∇,

(ii) for α ∈ N , (A&B)α ∈ ∇ iff Aα ∈ ∇ and Bα ∈ ∇,

(iii) for α ∈ N , Aα ∈ ∇ iff ∇ L Aα

An L-ok set ∇ w.r.t. N is prime iff for every α ∈ N if (A ∨B)α ∈ ∇ then either Aα ∈ ∇
or Bα ∈ ∇. If ∇ is prime then A ∨Bα ∈ ∇ iff Aα ∈ ∇ or Bα ∈ ∇.

Lemma 17. If (B → C)α 6∈ ∇ where ∇ is an E-ok set, and ∇′ is a set whose elements

comprise every subscripted entailment (D1 → D2)δi in ∇ and Bδ for any δ 6= α, 6≤ δi for

(D1 → D2)δi ∈ ∇, and 6= 0, then Cα+δ is not E-provable from ∇′.

Proof. Suppose on the contrary, ∇′ E Cα+δ. Then for some entailments, D1
δ1
, . . . , Dn

δn
∈ ∇,

and therefore in ∇′, D1
δ1
, . . . , Dn

δn
Bδ E Cα+δ. Since δ 6⊆ δi for 1 ≤ i ≤ n, Bδ must

occur among the hypotheses. The conditions for the subscripted deduction theorem are

satisfied; thus D1
δ1
, . . . , Dn

δn
E (B → C)α. Since, however, D1

δ1
, . . . , Dn

δn
∈ ∇ and ∇ is E-ok,

(B → C)α ∈ ∇,24 contradiction the hypothesis.

Lemma 18. If (B → C)α 6∈ ∇ where ∇ is an R-ok set [�R-ok set], and ∇′ is a set whose

elements comprise those of ∇ and Bδ for any δ 6⊆ α, 6⊆ β for Dβ ∈ ∇, and 6= 0, then Cα+δ

is not R-provable [�R-provable] from ∇′.

A suitable δ can always be got, e.g. by deriving a new δ.

23Corrected N to ∇.
24Corrected 6∈ ∇ to ∈ ∇ to form said contradiction.
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Lemma 19. If (B → C)α 6∈ ∇ where ∇ is a P-ok set [P2-ok set], and ∇′ is a set whose

elements comprise every subscripted entailment (D1 → D2)δi in ∇ and Bγ where max(γ) is

greater than all elements of α and of δi for (D1 → D2)δi ∈ ∇, then Cα+γ is not P-provable

[P2-provable] from ∇′.

Lemma 20. If Cδ is not L-provable from ∇ then there is an L-ok extension ∇+ of ∇ w.r.t.

any countable set N which includes all subscripts of ∇ such that Cδ 6∈ ∇′.

Proof. Enumerate N and numerate the wff of L, and then enumerate the wff of L with respect

to the subscripts of N . Let the resulting enumeration of subscripted wff be represented:

D0, D1, . . . , Dj, . . .

Define

∇0 = ∇
∇j+1 = ∇j if ∇j, Dj L Cδ, and

= ∇j ∪ {Dj} otherwise

∇+ =
⋃
j<ω

∇j

(i) Cδ is not L-provable from ∇+. Proof is by induction over j from the given basis. The

induction step is a consequence of the construction.

(ii) Cδ 6∈ ∇+, by (i).

(iii) D0 ∈ ∇+ where D is an axiom of system L.

(iv) ∇+ is closed under → E. Suppose, otherwise, that Bγ ∈ ∇+, (B → D)β ∈ ∇+ but

Dδ+β 6∈ ∇+ (and for P: max(γ) 6< max(β) ). Then ∇+, Dγ+β L Cδ. But then since

∇+ L Bγ and ∇+ L (B → D)δ, ∇+ L Dγ+δ, whence ∇+  Cδ, contradicting (i).

(v) ∇+ is closed under &I. Suppose Bγ ∈ ∇+, Dγ ∈ ∇+ but (B&D)γ 6∈ ∇+. Then

∇+, (B&D)γ L Cδ, and (much as in (iv)) ∇+ L Cδ, contradicting (i).

Lemma 21. If, further, L is system R then ∇+ is prime.

Proof. Suppose A ∨ Bα ∈ ∇+, Aα 6∈ ∇+ and Bα 6∈ ∇+. Then for some p, ∇p, Aα R Cδ,

∇p, Bα R Cδ, but not ∇p, (A ∨ B)α R Cδ. By the second deduction theorem either

∇p  A → Cδ−α and ∇p R C → Cδ−α and α ⊆ δ or else ∇p R Cδ. Since the second

is impossible, ∇p R (A → C)&(B → C)δ−α. Hence, since `R (A → C)&(B → C) →
.A ∨B → C, ∇p R A ∨B → Cδ−α, and i.e. ∇p, A ∨Bα R Cδ.
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Lemma 22. If no wff in non-null set Σ is L-provable from ∇ then there is an L-ok extension

∇+ of ∇ w.r.t. any set N which includes all subscripts of ∇ such that no wff in Σ belongs

to ∇+.

Proof is like the similar lemma where Σ = {Cδ} except the ∇+ is redefined, as follows:

∇0 = ∇
∇j+1 = ∇j if ∇j, Dj L Dδ for some Cδ ∈ Σ

= ∇j ∪ {Dj} otherwise

∇+ =
⋃
j<ω

∇j

Then no wff Cδ ∈ Σ is L-provable from ∇+, and ∇+ is L-ok.

Lemma 23. If �Bα 6∈ ∇ where ∇ is a �R-ok set [�R4-ok set] then there is a set ∇′,
whose elements comprise each Cδ such that �Cδ ∈ ∇, such that Bα is not �R-provable

[�R4-provable] from ∇′.25

Proof. Suppose C1
δ1
, . . . , Cn

δn
�R Bα. Then by a lemma �C1

δ1
, . . . ,�Cn

δn
�R �Bα. Hence,

since ∇ is �R-ok, �Bα ∈ ∇.

Lemma 24. If Cδ is not �R-provable from ∇ then there is a �R-ok extension ∇+ of ∇
w.r.t. countable set N which includes all subscripts of ∇ and that Cδ 6∈ ∇+.

Lemma 25. If ∼ Aα ∈ ∇ where ∇ is E-ok but ∼ (A→ A)α+β 6∈ ∇ (or Λα+β 6∈ ∇), and ∇′

is any set containing every entailment in ∇ then Aβ is not E-provable from ∇′.

Proof. Suppose ∇′ E Aβ. Then by a lemma since each member of ∇′ is an entailment

∇′ E A→ A→ Aβ; so ∇′ E∼ A→∼ (A→ A)β, and ∇′,∼ Aα E∼ (A→ A)α+β. Hence

since ∇ is E-ok ∼ (A→ A)α+β ∈ ∇, contradicting the hypothesis. (In the case of Λα+β, use

the principle ∼ (A→ A)→ Λ.)

Lemma 26. If (B → C)α 6∈ ∇ where ∇ is an R-ok [�R-ok] set, then there is an R-ok

[�R-ok] set Σ which includes ∇ such that B{k} ∈ Σ but Cα{k} 6∈ Σ for some {k}.

Proof combines previous lemmata.

Lemma 27. If (B → C)α 6∈ ∇ where ∇ is an E-ok set then

(i) there is an E-ok set Σ such that for some {k} B{k} ∈ Σ and (D1 → D2)δ ∈ Σ if

(D1 → D2)δ ∈ ∇ but Cα+{k} 6∈ Σ.26

25Correction: added the prime to the last occurence of ∇ in the lemma.
26The rest of this lemma was marked for omission by Routley.
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(ii) There is an E-ok set H© which contains every subscripted entailment in ∇ and does not

contain any subscripted negation not in ∇ (i.e. if ∼ Dδ 6∈ ∇ then ∼ Dδ 6∈ H©) such

that for some {k} B{k} ∈ H© but Cα+{k} 6∈ H©.

Proof. Proof of (ii):27 given ∇, there is a set ∇′, whose elements comprise every subscripted

entailment in ∇ and B{k} for suitable {k}, such that Cα+{k} is not E-provable from ∇′.
Suppose, for some ∼ Dδ not in ∇, ∇′, B{k} E∼ Dδ. Then D{k} must be used in the proof

since ∼ Dδ is not E-provable from ∇′; hence k ∈ δ. Now choose any k such that for each

∼ Dδ not in ∇ with B →∼ Dδ−α ∈ ∇ for some α, k 6∈ δ. (Any new k will satisfy these

conditions.)

Let Σ be the set consisting of Cα+{k} and every subscripted negation ∼ Dδ not in ∇.

Then Σ is not null and no element of Σ is E-provable from ∇′. Hence, by a lemma ∇′ has

an E-ok extension, H© say, such that no element of Σ belongs to H©.

Theorem (Completeness Theorems for Rf and R and R+).

(i) If A0 is not Rf -provable from Γ0 then there is an R-model M = 〈G,K,R, 0, N, P, h〉
with K and N denumerable which satisfies Γ and falsifies A. Hence every Rf -consistent

set is satisfiable in a denumerable model.

(ii) If A is Rf -valid then `Rf A.

(iii) If A is R-valid then `R A.

(iv) If A is R+-valid then `R+ A.

Proof. (i). By a lemma there is an Rf -ok set, G say, w.r.t. {0}, which entails Γ0 but excludes

A0. Define a canonical R-model M, with base G, as follows:—

K and N are defined by a joint inductive definition:

(i) G ∈ K and 0 ∈ N

(ii) if for H1 ∈ K and β ∈ N , (B → C)β 6∈ H1 then by a lemma there is a new (singleton)

subscript set γ and an Rf -ok set H2, which extends H1, such that Bγ ∈ H2 and

Cβ+γ 6∈ H2; fact H2 ∈ K and γ ∈ N . (A convenient choice of γ is as the set consisting

of the first positive integer k not already in N .)

(iii) K is the set consisting of G and its successors.

(iv) N is the closure under set union of the sets assigned to it.

27This proof was marked for omission.
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It follows, using set theory, that both K and N are denumerable. The remaining components

of the canonical model are defined thus:

H1RH2 iff for every β ∈ N and every wff C, if Cβ ∈ H1 then Cβ ∈ H2, i.e. iff H1 ⊆ H2;

P (α,H) iff Fα 6∈ H, for α ∈ N and H ∈ K;

h(p, α,H) = T iff pα ∈ H, for every atomic wff p, every α ∈ N and every H ∈ K.

(∗) h(A,α,H) = T iff Aα ∈ H, for every α ∈ N and H ∈ K.

Proof is by induction from the specified base.

Ad f :

h(f, α,H) = T iff ∼ P (α,H)

iff fα ∈ H

Ad &:

h(A&B,α,H) = T iff h(A,α,H) = T = h(B,α,H)

iff Aα ∈ H and Bα ∈ H, by the induction hypothesis

iff A&Bα ∈ H, since H is Rf -ok.

Ad →:

(1) If B → Cα ∈ H and HRH ′ then B → Cα ∈ H ′; so if Bβ ∈ H ′ then, since H ′ is Rf -ok,

Cα+β ∈ H ′, for any α, β ∈ N . Thus if B → Cα ∈ H, then h(B → C, α,H) = T , using

the induction hypothesis and applying quantification logic.

(2) If B → Cα 6∈ H for α ∈ N , then by the construction there is an H ′ ∈ K and β ∈ N
such that HRH ′ and Bβ ∈ H ′ and Cα+β ∈ H ′. Hence, using the induction hypothesis,

h(B → C, α,H) = T .

(+) M is an R-model.

It is immediate that G ∈ K, 0 ∈ N and that N is a set of sets closed under union. Moreover

since R is an inclusion relation, R is reflexive and transitive and the hereditariness require-

ments is satisfied. As to the falsity requirement, suppose Aα 6∈ H. Then (A→ f → f)α 6∈ H,

so for some β ∈ N and H1 ∈ K HRH1 and Fα+β 6∈ H1; thus for some β and H1 HRH1

and P (α + β,H1). Finally as to the reduction requirement, suppose (α,H1) = (γ,H2),

then for some wff A, Aα 6∈ H1 and Aγ ∈ H2 say (the other case is similar). Accordingly

(A → f → f)α 6∈ H1, whence for some β ∈ N and H ∈ K, H1RH and A → Fβ ∈ H and
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fα+β 6∈ H. Since A → Fβ ∈ H and Aγ ∈ H2 either ∼ HRH2 or fβ+γ ∈ H2. Thus it is false

for every β and every H that if H1RH and P (α + β,H) then HRH2 and P (β + γ,H2).

Applying (∗) since A0 6∈ G, h(A, 0, G) = F and for B0 ∈ Γ, B0 ∈ G, so h(B, 0, G) = T .

Hence, since by (+) the canonical model M is an R-model, M satisfies Γ and falsifies A.

(ii). If A is not a theorem of Rf then A0 is not Rf -provable from the null set of hypotheses

Λ0. Hence by (i) there is an R-model M which falsifies A; so A is not Rf -valid.

(iii). If wff A of R is R-valid then (see §2) A is Rf -valid, so by (i), (ii) A is a theorem of

R−f . Hence, since A is a wff of R and R is a conservative extension of Rf (see Meyer [?]),

A is a theorem of R.

(iv). As for (ii) but all statements and conditions concerning f and P are deleted.

A direct proof of the completeness of R may be got as follows:

Theorem (Completeness and Skolem-Löwenheim Theorems for R).

(i) If A0 is not R-provable from Γ0 then there is an R-model M = 〈G,K,R, 0, N, P, h〉
with K and N denumerable which satisfies Γ and falsifies A.

(ii) If A is R-valid then `R A.

Proof. Proof of (i) varies the proof of the preceeding theorem at these points.

Since the primitive set {→,∼,&} replaces the primitive set {→, f,&} of Rf , f is not a

wff of R. P is redefined thus

P (α,H) iff for every wff C, ∼ (C → C)α 6∈ H

In terms of R, f =∼ (p)(p→ p).

The induction step for ∼ in (∗) is proved as follows:—

(1) Suppose ∼ Aα ∈ H and HRH1 and Aβ ∈ H1. Then since `R∼ A→ .A→∼ (A→ A),

A →∼ (A → A) ∈ H. Since HRH1 and Aβ ∈ H1, ∼ (A → A)α+β ∈ H1; hence

∼ P (α + β,H1). Hence ∼ Aα ∈ H ⊃ .HRH1&P (α + β,H1) ⊃ .Aβ 6∈ H1, whence by

the induction hypothesis and quantification logic, ∼ Aα ∈ H ⊃ .h(∼ A,α,H) = T .

(2) Suppose∼ Aα 6∈ H; then A →∼ (D → D)α 6∈ H for arbitrary D. Hence for some

H1 and β, HRH1 and Aβ ∈ H1 and ∼ (D → D)α+β 6∈ H1, i.e. P (α + β,H1). Hence

h(∼ A,α,H) = F . [The argument requires that for some H1 and β for every D — not
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for every D there is some H1 and β — so its validity may be questioned. I think the

substitution of A→∼ (p)(p→ p)→ . ∼ A for A→∼ (D → D)→∼ A makes it plain

that the argument is satisfactory. For the skeptical the semantics may be complicated

by adding to M a class X of individuals; by replacing P (α,H) by P (α,H,C) where

C ∈ X, and by complicating appropriately the conditions of P . In the canonical model

M, X is defined as the class of all wff and P (α,H,C) iff ∼ (C → C)α 6∈ H.]

Falsity and reduction requirements are established as follows: Suppose Aα 6∈ H, then

∼∼ Aα 6∈ H, so for some β ∈ N and some H1, HRH1 and P (α+β,H1), as required. Suppose

that (α,H1) 6= (γ,H3). Then Aα 6∈ H1 and Aγ ∈ H3 say. Since Aα 6∈ H1, ∼∼ Aα 6∈ H1,

so by (2), for some H and β, H1RH and P (α + β,H) but ∼ Aβ ∈ H3. By (1) then for H3

such that HRH3, H1RH and P (β + γ,H3), Aγ ∈ H3, contradicting the supposition.28 In

turn, for some H and β, H1RH and P (α + β,H1) but it is not the case that both HRH3

and P (β + γ,H3), as required.

Corollary 4. Rf is a conservative extension of R.

A normalized R-model M is an R-model M such that P (0, G).

Corollary 5. `R A (`Rf A) iff A is true in all normalized R-models.

Proof. One half is immediate, by specialization. For the other half suppose A is not a theorem

of Rf (or R). Then A0 is not Rf -provable from Λ0. But also ∼`Rf (∼`R∼ (D → D) for

any D); hence f0 is not R−f provable from Λ0. Now let G be an Rf -ok set including Λ0

which excludes both A0 and f0. The remainder of the completeness is just as before: A

canonical R-model M with base G is constructed. Moreover, M is normalized; since f0 6∈ G,

P (0, G).

Corollary 6. (Meyer–Dunn Theorem for R) Material detachment is admissible for R, i.e.

if `R A and `R∼ (A& ∼ B) then `R B.

Proof. Suppose A and ∼ (A& ∼ B) are theorems of R but B is not. Then there is a

normalized R-model M such that h(A, 0, G) = T = h(∼ (A& ∼ B), 0, G) but h(B, 0, G) 6= T .

Since h(∼ (A& ∼ B), 0, G) by an earlier lemma either h(∼ A, 0, G) = T or h(B, 0, G) = T .

As the second case is impossible, h(∼ A, 0, G) = T . Since, however, P (0, G), P (0 + 0, G),

and h(A, 0, G) 6= T , which is impossible.

[incomplete: breaks down for +ve parts]

28Perhaps Routley means Aγ 6∈ H3, which would contradict the supposition.
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Theorem (Separation Theorems for R formulated with {→,∼,&} and Rf formu-

lated with {→, f,&}).
If A is a theorem of R, of Rf , and L is a fragment of R ({→}, {→,∼}, {→ &} fragments),

or of Rf ({→}, {→, f}, {→ &} fragments), then A is a theorem of L iff A is a wff of L.

Proof. Suppose, for the non-trivial half, that A is a wff of L and a theorem of R. Then A is

R-valid, and, since a wff of L, also L-valid. Hence, by the relevant part of the completeness

theorem, A is a theorem of L, provided L is a negative fragment of R.

Theorem (Completeness Theorem for R+ and Separation Theorems for R for-

mulated with {→,∼,&} and Rf formulated with {→, f,&}).
If L is a negation fragment of R, or Rf , ({→}, {→∼}, {→, f}, {→ &}, {→,∨}) then:

(i) If A is a theorem of L, A is L-c-valid.

(ii) If A is a theorem of R, then A is a theorem of L iff A is a wff of L.

(iii) If A is a theorem of R+ then where L is a fragment of R+ A is a theorem of L iff A is

a wff of L.

Proof. Proof of (i): By a lemma there is a prime L-ok set G which entails Λ0 w.r.t but

excludes A0 (delete the requirements which do not apply). Define a canonical model M

with base G as before, except for the following points:— B → Cβ is only considered in case

(B → C) is a subformula of A; and when a new set H ∈ K is introduced it is required that

they set be a prime L-ok set — such a set is guaranteed by lemmata. h(p, α,H) = T iff

pα ∈ H for every atomic component p of A and for f , and for every α ∈ N and H ∈ K. (∗)
is proved for subformulae of A. The new step for disjunction follows using primeness.

Proof of (ii) as before.

It differs from the completeness proof that the qualification on the disjunction holding

function can be lifted; for as such stage of the construction there is a suitable wff Cα+β (or

fα+β) not in H.

Corollary 7.

1. Church’s theory of weak implication, RI , is complete.

2. RI is the pure implicational part of R.

As to 2. If A is a theorem of R and a wff of RI then A is a theorem of R−I by the

preceding theorems. But if then follows, using a Gentzen formulation of R−I (got from the

Kripke formulation of E−I in Belnap & Wallace [?] by dropping the restriction to entailments

on the left of →; see also Meyer [?]).
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Theorem (Completeness Theorem and Skolem-Löwenheim Theorem for �R).

(i) If A0 is not �R-provable from Γ0 then there is a �R-model M = 〈G,K,R, 0, N, P,W, h〉
with K and N countable which satisfies Γ and falsifies A.

(ii) If A is �R-valid then `�R A.

(iii) `�R iff A is true in every normalized �R-model.

Proof. Proof is like that for R, but K is enlarged as follows:—

If for H1 ∈ K and β ∈ N , �Aβ 6∈ H1 then by a lemma there is a �R-ok set H2 which

contains every wff Bγ such that �Bγ ∈ H1 such that Aβ 6∈ H2. �R-ok sets are of course

used in place of R-ok sets. Further:

H1WH2 iff for every α ∈ N and every wff B, if �Bα ∈ H1 then, materially, Bα ∈ H2.

(∗) h(A,α,H) = T iff Aα ∈ H, for every α ∈ N and H ∈ K.

Ad �: If �Aα ∈ H then h(�A,α,H) = T by the definition of h and W and by quantification

logic. Conveniently if �Aα 6∈ H then, by construction, for some H1, HWH1 and Aα 6∈ H1,

i.e. by the induction hypotheses, h(A,α,H1) = F . Furthermore if �Aα 6∈ H then since H is

�R-ok �A→ f → fα 6∈ H (or ∼∼ �Aα 6∈ H); hence for some β and some H2, HRH2 and

fα+β 6∈ H2 i.e. P (α + β,H2) = T .29

(+) M is a �R-model.

For W is reflexive, and since `�R �A → ��A, transitive. Since R is an inclusion relation,

H1RH2 and H2WH3 imply H1WH3.

The remainder of the proof is like that for Rf (or R).

Similar results can be proved for �R5. In particular using f → �f , if H1WH2 & fα 6∈ H2

then fα 6∈ H1, as required.

The admissibility of material detachment follows, as before, for both �R and �R5. In the

case of �R however there is one further case because of the presence of P in the evaluation

function for �.

Theorem (Separation theorems for �R formulated with {→,�, f,&}, {→,�,∼,&},
{→,�, f,&∨}, {→,�,∼,&,∨}).
Disjunction is only considered in the fragments {→,�,&,∨} and {→,&,∨}; otherwise all

proper fragments are considered.

If A is a theorem of �R and L is one of the chosen fragments of �R then A is a theorem of

L iff A is a wff of L.

29This is certainly a typo.
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Proof.

Case 1: L is a fragment including negation or falsity. Then the proof is as usual.

Case 2: L is a fragment not including negation or falsity.
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30

Theorem (Completeness and Skolem-Löwenheim Theorems for EΛ5).

(i) If A0 is not EΛ5-provable from Γ0 then there is an EΛ5-model M = 〈G,K,R, 0, N, P, h〉
with K and N denumerable which satisfies Γ and falsifies A.

(ii) If A is EΛ5-valid then `EΛ5 A.

Proof. Proof of (i) varies the corresponding result for Rf at these points:—

In the construction of K each new set H2, which is introduced in order to falsify the sub-

scripted wff (B → C)β which is not in H1, is related to H1 as follows: If (D1 → D2)δ ∈ H1

then (D1 → D2) ∈ H2. Correspondingly R is defined thus:

H1RH2 iff for every β ∈ N and every wff (D1 → D2) if (D1 → D2)δ ∈ H1 then

(D1 → D2)δ ∈ H2. Furthermore P (α,H) iff Λα 6∈ H.

(∗) h(A,α,H) = T iff Aα ∈ H for α ∈ N and H ∈ K.

Ad ∼ (1) Suppose ∼ Aα 6∈ H. Then A → Λα 6∈ H. Hence for some H2 and β, HRH1 and

Aβ ∈ H1 and Λα+β 6∈ H1, i.e. P (α + β,H1). Hence h(∼ A,α,H) 6= T

(2) Suppose ∼ Aα ∈ H and HRH1 and P (α + β,H1). Then Λα+β 6∈ H1, and, since

HRH1, NΛα+β 6∈ H. For if NAγ ∈ H then (A → A) → Aγ ∈ H; so if HRH1

then if A → A0 ∈ H1, as it does, Aγ ∈ H1. Finally then Λα+β ∈ H, since

`EΛ5 Λ → NΛ. The conditions are simplified to apply a lemma which asserts

that Aβ is not EΛ5-provable from any set ∇1 comprising every entailment in H.

By the construction of K the only H ∈ K are obtained by applying a simple

extension lemma. Hence for any H1 ⊇ ∇1 in K, Aβ 6∈ H1. In sum, ∼ Aα ∈ H
implies h(∼ A,α,H) = T .

(+) M is an EΛ5-model.

Since R is an inclusion of entailments relation it is reflexive and transitive. That P (α,H2)

and H1RH2 imply P (α,H1) follows as in (2) where using Λ → NΛ and that NAβ ∈ H1

and H1RH2 imply Aβ ∈ H2. Falsity and reduction requirements follow, using the theorem

∼∼ A→ A; just as in the case of system R.

A normalized EΛ5-model is an EΛ5-model such that P (0, G).

Corollary 8. `EΛ5 A iff A is true in every normalized EΛ5-model.

Corollary 9. Material detachment is admissible for EΛ5.

30The following theorem, proof, definition, and corollaries were marked for omission by Routley. I have

indicated this section by horizontal lines.
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[Primeness presupposed: also presupposed in superlat31 theorem]

Theorem (Completeness and Skolem-Löwenheim Theorems for E and E+).

(i) If A0 is not E-provable from Γ0 then there is an E-model M = 〈G,K,R, 0, N, h〉 with

K and N denumerable which satisfies Γ and falsifies A. Similarly with E+ for E.

(ii) If A is E-valid then `E A.

Proof. Proof of (i) follows the same lines are earlier proofs. G = H0 is an E-ok extension of

Γ0 w.r.t. {0} which excludes A0. Then M and N are defined jointly, thus:

(i) G ∈M and {0} ∈ N .

(ii) if for H1 ∈M and β ∈ N (B → C)β 6∈ H1 then by a lemma there is a new (singleton)

subscript γ and an E-ok set H2 such that Bγ ∈ H2, Cβ+γ 6∈ H2 and such that if

(D1 → D2)α ∈ H1 then (D1 → D2)α ∈ H1: put H2 ∈M and γ ∈ N .

(iii) M is the new consisting of G and its successions under (ii).

(iv) N is the closure under set union of elements assigned to it.

Further:

if Hi ∈M then Ji ∈M , where for every β ∈ N and every wff A, Aβ ∈ Ji iff ∼ Aβ 6∈ Hi.

K = M ∪M .

H1RH2 iff for every β ∈ N and every wff (D1 → D2) if (D1 → D2)β ∈ H1 then (D1 →
D2)β ∈ H2.

h(p, α, I) = T iff pα ∈ I for every atomic wff p, every α ∈ N and I ∈ K; and h((D1 →
D2), α, J) = T iff (D1 → D2)α ∈ J for every wff (D1 → D2), every α ∈ N , and J ∈M .

(∗) h(A,α, I) = T iff Aα ∈ I for every wff A, every α ∈ N and I ∈ K.

Proof is by induction from the specified initial cases.

Ad &: h(B&C, α,Hi) = T iff h(B,α,Hi) = T = h(C, α,Hi) is proved as before using induc-

tion hypothesis and properties of E and sets.

h(B&C, α, Ji) = T iff h(B,α, Ji) = T = h(C, α, Ji)

iff Bα ∈ Ji and Cα ∈ Ji
iff ∼ Bα 6∈ Hi and ∼ Cα 6∈ Hi

iff ∼ Bα∨ ∼ Cα 6∈ Hi by primeness

iff ∼ (B&C)α 6∈ Hi since `E∼ B∨ ∼ C ↔∼ (B&C)

iff B&C ∈ Ji
31Unable to read what I have put here as “superlat”.
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Ad ∨: Similar in principle to the & case.

Ad ∼:

h(∼ A,α,Hi) = T iff h(A,α, Ji) 6= T

iff Aα 6∈ Ji
iff ∼ Aα ∈ Hi

h(∼ A,α, Ji) iff Aα ∈ Hi

iff ∼∼ Aα ∈ Hi by `E∼∼ A↔ A

iff ∼ Aα 6∈ Ji

Ad →: h(B → C, α, J) = T iff B → Cα ∈ J , by stipulation.

(1) If B → Cα ∈ H, then, if HRH ′ and Bβ ∈ H ′32 then Cα+β ∈ H ′ – is proved as before.

Also if B → Cα ∈ H then ∼ C →∼ Bα ∈ H since `E B → C → . ∼ C →∼ B. So

similarly if HRH ′ then ∼ Cβ ∈ H ′ materially implies ∼ Bα+β ∈ H ′, i.e. Bα+β ∈ J ′

materially implies Cβ ∈ J ′. Finally since `E B → C →∼ B ∨ C, if B → Cα ∈ H then

∼ B∨Cα ∈ H, so ∼ Bα ∈ H of Cα ∈ H, whence Bα 6∈ J or Cα ∈ J and h(B,α, J) 6= T

of h(C, α,H) = T .

(2) If C → Cα 6∈ H then by construction for some H ′ ∈ K and β ∈ N Bβ ∈ H ′, Cα+β 6∈ H ′

and HRH ′. Also if B → Cα 6∈ H then ∼ C →∼ Bα 6∈ H; this, by the construction,

for some H ′′ ∈ K and γ ∈ N , HRH ′′, ∼ Cγ ∈ H ′′ and ∼ Bα+γ 6∈ H ′′, i.e. Bα+γ ∈ J ′′

and Cγ 6∈ J ′′.

Much as before.

(+) M is an E-model.

Theorem (Completeness and Skolem-Löwenheim Theorems for R using R-I-mod-

els).

Statement and proof are like the preceding result; but note:— Step (ii) in the construction

of M is carried out as for R+. H1RH2 iff, for every β ∈ N and every wff C, if Cβ ∈ H1

then Cβ ∈ H2. J1RJ2 iff H1RH2. The model is an R-I-model, since Cβ ∈ H1 and H1RH2

materially imply Cβ ∈ H2 in virtue of the definition of R. As for the J-case, if Cβ ∈ J2 and

J1RJ2 then ∼ Cβ 6∈ H2 and H1RH2, so ∼ Cβ 6∈ H1, i.e. Cβ ∈ J1.

32Correction
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Theorem (Completeness and Skolem-Löwenheim Theorems for �R using

�R-I-models).

Use �R-ok sets in place of the R-ok sets of the preceding result, and extend M by the

following step: if �Aβ 6∈ H1 for β ∈ N and H1 ∈ M then there is a �R-ok set H2, which

contains every wff Bγ such that �Bγ ∈ H1 such that Aβ 6∈ H2:33 put H2 in M .

Theorem (Translation Theorem 1). A is a theorem of E iff its �R-translation A+ is a

theorem of �R.

Proof. One half, if `E A then `�R A follows by induction over the E-proof of A. As to

the other half, suppose ∼`E A; then there is an E-model M = 〈G,K,W, 0, N, h〉 such that

h(A,O,G) = F . Form a new model M1 = 〈G,K, Id, 0, N,W, h〉 where Id is the identity

relation on K and remaining elements are as before. Then M1 is a �R-I-model which

falsifies A+; hence ∼`�R A.

Theorem (Translation Theorem 2). A is a theorem of E+ iff its �R-translation A+ is

a theorem of �R+.

[Primeness assumed]

Theorem (Completeness and Skolem-Löwenheim Theorems for P and P+).

Statement and proof is like that for E and E+ except at the following points:

At point (ii) in the construction of M it required that m = max(γ) exceeds every element

of β and of α for (D1 → D2)α ∈ H1.

Ad →: If B → Cα ∈ H and HRH ′ and max(β) ≥ max(α) and Bβ ∈ H ′34 then since

B → Cα ∈ H ′ Cα+β ∈ H ′ by the → E rule for P since H ′ is P-ok. The remainder is much

like before but taking account of maximization requirements.

Theorem (Meyer-Dunn theorem for E and P). (γ) is admissible: i.e. if `L A and

`L∼ A ∨B then `L B, where L is P or E.

Proof. Suppose otherwise that in some L-model h(A,O,G) = T = h(∼ A ∨ B, 0, G) and

h(B, 0, G) 6= T . Since h ∼ A, 0, G) = T or h(B, 0, G) = T , h(∼ A, 0, G) = T ; i.e.

h(A, 0, J0) = F . But h(A→ A, 0, G) = T , so that if h(A, 0, J0) = F then h(A, 0, G) = F by

the reduction condition. Hence h(A, 0, G) = F , contradicting h(A, 0, G) = T .

33Correction.
34Correction.
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Because of the unfortunate way negation and disjunction features are used in showing

that the implication relation is correct in the canonical model, a separation theorem is not

an immediate corollary of completeness theorems. However, some partial results may be

obtained by building on independently 35 results.

Theorem (Separation theorem from {→,∼} part, E−I , of E). If A is a theorem of E

then A is a theorem of E−I iff A is a wff of E−I .

Proof. Suppose A is a theorem of E and a wff of E−I . Then its �R-translation A+ is a

theorem of �R; but A+ is a wff whose only connectives are →,∼ and �. Hence, by the

separation theorem of �R, A+ is a theorem of the {→,∼,�} fragment of �R, i.e. of �R−I .

Then, however, by a result of Meyer [?], A is a theorem of E−I .

Theorem (Separation theorem for the pure entailment part, EI, of E). If A is a

theorem of E then A is a theorem of EI iff A is a wff of EI .

Proof. By the previous theorem if A is a theorem of E and a wff of EI then A is a theorem

of E−I . But it follows using the Belnap-Wallace Gentzen formulations of E−I (in [?]) that if

A is a wff of EI and a theorem of E−I , A is a theorem of EI .

Theorem (Separation theorem for E+ and P+). If A is a theorem of E+ (P+ ) and L

is one of these fragments of E (P)36 — {→}, {→,&}— then A is a theorem of L iff A is a

wff of L.

35Word unreadable.
36Correction.
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5 Decidability

5.1

[PDF p. 63] An equivalence class method is used to show that the systems studied have the

finite model property (for further details see [?] and [?]).

Where Ψ is a set of wff closed under subformulae, define (α1, I1) ≡Ψ (α2, I2) iff, for every

wff B ∈ Ψ, h(B,α1, I1) = T iff h(B,α2, I2). Then ≡Ψ is an equivalence relation which

partitions situations (α, I) into equivalence classes; and there are finitely many equivalence

classes when Ψ is finite. Next (Î)Ψ =Df {I ′ : (∪α ∈ N).(α, I) ≡)Ψ(α, I)} and (α̂)Ψ =Df

{α′ : (∪I ∈ K).(α′, I) ≡Ψ (α, I)}. Then relative to a given Ψ K̂ = {Î : I ∈ K}, Ĥ =

{α̂ : α ∈ N}. Also ĥ(A, α̂, Î) = T iff h(A,α, I) = T and A ∈ Ψ, for every initial case (and

thus for every atomic wff A). In the case of system R, Ĥ1R̂Ĥ2 iff for every B ∈ Ψ and

every α ∈ N , if h(B,α,H1) = T then, materially, h(B,α,H2) = T and Ĵ1R̂Ĵ2 iff Ĥ2R̂Ĥ1.

For �R, Ĥ1Ŵ Ĥ2 iff for every B ∈ Ψ and α ∈ N if h(�B,α,H1) = T then, materially,

h(B,α,H2) = T . For E and P, Ĥ1R̂Ĥ2 iff for every wff B,C ∈ Ψ and every α ∈ N if

h(B → C, α,H1) = T then, materially, h(B → C, α,H2) = T . This specification defined a

filtration M̂ = 〈Ĝ, K̂, R̂, 0̂, N̂ , [Ŵ ], ĥ〉 of L-model M through Ψ, written M̂ = M/Ψ.

Lemma 28. Where M is an L-model (for L = R, �R, E, P or their parts) then

(i) If H1RH2 then Ĥ1R̂Ĥ2

(ii) If H1WH2 then Ĥ1Ŵ Ĥ2

(iii) R̂ is reflexive and transitive

(iv) Ŵ is reflexive and transitive

(v) where L is R or �R and A ∈ Ψ, if Ĥ1R̂Ĥ2 and ĥ(A, α̂, Ĥ1) = T , then ĥ(A, α̂, Ĥ2) = T ,

for every α̂ ∈ N̂ and every Ĥ1, Ĥ2 ∈ K̂37

Hence M̂ is an L-model.

Lemma 29. For every wff A ∈ Ψ, for every I ∈ K, ĥ(A, α̂, Î) = T iff h(A,α, I) = T .

Proof is by induction on the number of connectives in A. The basis for initial cases is

immediate, & the induction steps for “&”, “∨” and “∼” are straightforward. The step for

→ is based on the fact that h(A → B,α,H) = T iff for every β and H ′ if HRH ′ and

h(A, β,H ′) = T [and max(β) ≥ max(α)] then h(B,α+ β,H ′) = T and similarly for R̂. The

case for J situations is an initial case. If ĥ(B → C, α̂, Ĥ) = T then h(B → C, α,H) = T , since

37Last part of sentence cut off. I have merely guessed the last part.
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HRH ′ implies ĤR̂Ĥ ′. Conversely, suppose ĥ(B → C, α̂, Ĥ) 6= T and ĥ(C, ˆα + β, Ĥ ′) = F ,

whence ĤR̂Ĥ ′ and h(B, β,H ′) = T and h(C, α + β,H ′) = F by the induction hypothesis.

Hence, using the definition of R̂, h(B → C, α,H) 6= T .

Theorem (Decidability Theorems).

(i) If wff A is false in L-model M then, where H© is the subformula closure of A, A is false

in L-model M/ H©;

(ii) L has the finite model property, and accordingly is decidable; and therefore

(iii) E, P, and R and their isolable fragments are decidable.

(iv) E+, P+, and R+ and their fragments are decidable.

Proof. Proof of (i). Applying previous lemmata M̂ = M/ H© is an L-model, and ĥ(A, 0̂, Ĝ) =

F . Further K and N are finite since there are only finitely many equivalence classes, (α, I)

when H© is finite.

[How convincing!]
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5.3 Decidability using Simplified Rf

Where Ψ is a set of formulae closed under subformulae and including f , define α1 ≡Ψ α2 iff

for every wff B ∈ Ψ, h(B,α1) = h(B,α2); (α̂)Ψ = {α′ : α′ ≡Ψ α}.
A filtration M̂ = M/Ψ = 〈N̂ , 0̂, P̂ , ĥ〉 of M through Ψ is defined as follows (relative to a

given Ψ):

N̂ = {α̂ : α ∈ N}; α̂ + β̂ = α̂ + β;

P̂ (α̂) iff h(f, α) = F since f ∈ Ψ always;

ĥ(p, α̂) = T iff h(p, α) = T&p ∈ Ψ

Lemma 30. Where M is a simplified R-model, M̂ is also.

Lemma 31. For every wff A ∈ Ψ, ĥ(A, α̂) = h(A,α)

Proof. Proof is by induction from the following dual basis:

ĥ(p, α̂) = T iff h(p, α) = T & p ∈ Ψ iff h(p, α) = T

ĥ(f, α̂) = T iff ∼ P̂ (α̂) iff h(f, α) = T

& step is immediate;

→

ĥ(A→ B, α̂) = T iff, for every β̂ ∈ N̂ , ĥ(A, β̂) = T ⊃ ĥ(B, ˆα + β) = T

iff for every β ∈ N, h(A, β) = T ⊃ h(B,α + β) = T

by the induction hypothesis

iff h(A→ B,α) = T

Theorem (Decidability for Rf and R).
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6 Semantic Tableaux for the Systems

[PDF p. 66] A tableaux construction for a wff A (i.e. A0) is begun by putting A0 in the right

column of the two columns of the main tableaux G of the construction. (The exposition

presupposes the work of Kripke; see especially [?, p. 72 ft]). The construction is continued,

in the case of wff of E (in form �R) and its fragments, by applying the following rules for

any tableaux H and any subscript α:—

&l if (A&B)α is on the left of H, put both Aα and Bα on the left of H.

&r if (A&B)α is on the right of H, put either Aα on the right of H of Bα on the right of

H. In such a case the tableaux is replaced by alternative cases (in a way well explained

in [?]).

∨l if (A ∨B)α is on the left of H, put either Aα on the left of H or Bα on the left of H.

∨r if (A ∨B)α is on the right of H, put both Aα and Bα on the right of H.

→ l If (A → B)α is on the left of H, for every tableaux H′ such that HRH′, put either Aβ

on the right of H’ or Bα+β on the left of H′, for every subscript β in N .38

→ r If (A → B)α is on the right of H begin a new tableaux H′, with Aβ for new subscript

β ∈ N on the left of H’ and Bα+β on the right of H′, such that HRH′.

N.B. these negation rules are not adequate for negation in combination with disjunction: try

B → C → . ∼ B ∨ C.

∼ l If ∼ Aα is on the left of H, put Aα on the right of H for every γ in N such that

P (α + γ,H).

∼ r If ∼ Aα is on the right of H, put Aγ, with new subscript γ ∈ N , on the left of H, and

set P (α + γ,H) to the left of Aγ.

∼∼ r If Aα is on the right of H, put ∼∼ Aα on the right of H.

For an E-construction, tableaux relation R is assumed to have the same properties as mod-

eling relation R, i.e. to be reflexive and transitive, P to have the same properties as P , and

subscript operation + to satisfy the same conditions as its modeling correlate. Subscript set

N is of course determined by the construction, beginning with element 0 and being enlarged

through application of → r and ∼ r; N is closed under operation +. For constructions for

38There is system R, the modeling relation R and tableaux relation R. Tableaux relation R and system R

and written without italics. Context will be sufficient to discriminate between uses.
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fragments of E, the inapplicable rules are simply deleted. Negation-free constructions have

the subformula property. Negation operations are illustrated in the following example:39,40,41

∼ A→∼ B → .B → A0

G R

∼ A→∼ Bα B → Aα By → r

H1 R

Bβ Aα+β by → r

A ∼∼ Aα+β by ∼∼ r

P(γ + α + β) ∼ Aγ by ∼ r

1. 2.

∼ Bα+γ

1. 2.

∼ Aγ
by → l

Beth’s way of setting out alternatives and showing closure have been adopted in the

example, but for more complicated examples it is useful to combine Beth’s method with

Kripke’s method of recopying alternatives (see [?, p. 74 ft]).

For P-constructions, and constructions for systems which eliminate implicative suppres-

sion, the implication rules are amended by replacing “such that HRH′” in each case by “such

that HRH′ and max(β) ≥ max(α)”. In the case of wff of R, tableaux constructions corre-

sponding to simplified models are easier. In this case the main tableaux G (together with

its alternatives) is the only tableaux. The rules for conjunction, disjunction, and negation

remain as before except that “H” is replaces throughout by “the tableaux” and deleted from

P(γ,H). The implication rules are as follows:

→ l If (A→ B)α is on the left of the tableaux, put either Aβ on the right of the tableaux

or Bαβ on the left of the tableaux, for every β in N.

→ r If (A→ B)α is on the right of the tableaux, choose a new subscript β, put Aβ on the

left of the tableaux and Bα+β on the right of the tableaux, and put β in N.

A tableaux is closed iff some subscripted wff Aβ appears on both sides of the tableaux;

a set of tableaux is closed iff some tableaux in it is closed; a system of tableaux is closed

39Placement of G, H1, . . . , and the placement of the R slightly modified to fit the tabular environment in

LaTeX.
40Last line of the following tableaux is cut off.
41I have inserted a picture of the original tableaux in the Transcriber’s Note at the end of this document.
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iff each of its alternative sets is closed; and a subscripted construction is closed iff at some

stage of the construction a closed system of alternative sets appears. To facilitate closure it

is required that rules are not applied to subscripted wff occurring in a closed tableaux and

are not applied in case their result is repetitive, i.e. only reflects an application of the rules

that has already been made (perhaps with relettered notation). The presence of Aα on the

right of a tableaux and Aβ on the left does not ensure closure unless α = β.

It is advantageous to reformulate the rules so that the constructions may be based on a

tree relation S instead of relation R: constructions and formulations based on S are called

“s-constructions” and “s-formulations”. These reformulations do not, of course, apply to

constructions for wff of systems like R where they omit relation R altogether. Consider then

an E-s-construction. The construction is begun as before; all the rules are as before except

for → r where “S” replaces “R” and → l which is altered to:

→ l If (A→ B)α is on the left of the H, put either Aβ on the right of H or Bα+β on the left

of H, for each subscript β in N, and put (A → B)α on the left of H′ for any H′ such

that HSH′.

The→ l rule for s-constructions for other systems where R is both reflexive and transitive

is similarly formulated. The statement as to what is meant by “alternative sets” also has to

be reformulated with “S” in place of “R” (for a lucid statement see Kripke [?, p. 121]). For

systems like @T, ET, and D where relation R is reflexive but not transitive the s-formulation

is a similar modification of the original formulation except for the rule → l which is altered

to:

→ l If (A → B)α is on the left of the H, put either Aβ on the right of H or Bα+β on the

left of H and of any tableaux H′ such that HSH′, for each subscript β in N.

Lemma 32. The L-s-construction for A is closed iff the L-construction for A is closed, for

each system L for which both constructions have been introduced.

Proof consists of showing that one construction can be transformed into the other, and

vice versa.

Note how we split → l into two parts— as for intuitionistic logic.

Theorem. The L-construction for A is closed iff A is L-valid; for each semantical system

L introduced.

Proof reduces to two lemmas, and in each of these the arguments of Kripke ( [?, p. 76–79])

are adopted.

Lemma 33. If the L-construction for A is closed the A is L-valid.
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Proof. Suppose the L-construction is closed by A is not L-valid. Then there is an L-model

M = 〈G,K,R,N, h〉 such that h(A, { }, G) = F . Also for each n, at the nth stage of the

closed L-construction, there is an alternative set D of the construction and a mapping ϑ,

mapping tableaux of D into elements of K such that

(∗) If H is a tableaux of D, H = ϑ(H) and Bα is any wff occurring on the left (right) of H then

(B,α,H) = T (F ). Furthermore, if H1 and H2 are in D and H1 = ϑ(H1) and H2 = ϑ(H2)

then H1RH2 implies H1RH2.

Proof is by induction on n. For n = 1 there is only one tableaux G with A{ } on the right;

but h(A, { }, G) = F , as required. For the induction step suppose that in realizing the (n+1)

stage one of the rules is applied to some tableaux H of D, and that (∗) holds for all stages

up to and including the nth.

(incomplete in detail)

Generally each semantical system yields a corresponding tableaux system.
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7 Deductive Tableaux and Natural Deduction and an

Alternative Route to Completeness

[PDF p. 72] Deductive tableaux are specifically arranged semantics-tableaux in which certain

formulae are repeated. The specific arrangement and repetition is required in order that

closed tableaux may be mechanically transformed into Fitch-style natural deduction proofs.

(On deductive tableaux and their conversion into natural deduction proofs see Barth [?]

and [?] and the papers of Beth referred to therein; and on Fitch-style natural deduction

proofs for E, P, R and their fragments, see Anderson [?] and Anderson and Belnap [?]).

In presenting the rules for natural deduction tableaux the rules and format of Barth [?],

for classical sentential logic, are adopted. In the rules that follow ∆ is the class of all wff

in the right column, ∆′,∆′′ are subclasses of ∆, and Σ,Σ′ are subclasses of Σ; each of these

classes may be null. Λ is the null class of wff. The rules are given the form of transformation

rules. The table on the left of the symbol “−→” is the resulting table after application of the

rule. On the far right in each case the ensuing natural deduction is displayed. Subsequently

natural deduction rules are provided which ensure that the resulting natural deduction is

valid provided the dotted vertical lines can be filled in correctly. The deductive tableaux

rules stated are those for E and fragments. Qualifications needed for rules for P are stated,

where required, in square brackets.
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Tableaux Closure:

L R

∆′ Σ′

A A

∆′′

−→

L R

∆′ Σ′

A A

∆′′

Repetition (Rep)

∆′

A

∆′′

A (Rep)

Σ′

→ r:

L R

∆ Σ′

A→ Bα

Λ

−→

L R

∆ Σ′

A→ Bα

. . . . . .

Aβ Bα+β

(β new)

Implication Introduction (→ I)

∆

pAβ q
...

xBα+βy

A→ Bα → I

Σ′

[For P: β new and max(β) ≥ max(α)]

→ l:

L R

∆′ Σ

A→ Bα

∆′′

−→

L R

∆′ Σ

A→ Bα

1. 2.

Bα+β

1. 2.

Aβ

(any β)

Implication Elimination (→ E)

∆′

A→ Bα

∆′′

...

Aβ

Bα+β → E

...

Σ

[For P: for any β with max(β) ≥ max(α)]
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The particular form of the result of the transformation is selected to work with the

convention for linearizing tableaux that is chosen.

→ transmission:42

L R

∆′ Σ′

A→ Bα

∆′′

. . . . . .

∆′′′ Σ′′

−→

L R

∆′ Σ′

A→ Bα

∆′′

. . . . . .

∆′′′ Σ′′

. . . . . .

A→ Bα

Reiteration (Reit)

∆′

A→ Bα

∆′′

p∆′′′q

A→ Bα Reit

xΣ′′y

Σ′

&r:

L R

∆ Σ′

A&Bα

Λ

−→

L R

∆ Σ′

A&Bα

1. 2. 1. 2.

Aα Bα

Conjunction Introduction (&I)

∆

...

Aα
...

Bα

A&Bα &I

Σ′

&l:

L R

∆′ Σ

A&Bα

∆′′

−→

L R

∆′ Σ

A&Bα

∆′′

Aα

B′α

Conjunction Elimination (&I)

∆′

A&Bα

∆′′

Aα &E

Bα &E

...

Σ

42The last line in both the right tableaux and the natural deduction proofs are cut off.
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∨r:

L R

∆ Σ′

A ∨Bα

Λ

−→

L R

∆ Σ′

A ∨Bα

1. 2. 1. 2.

Aα Bα

Disjunction Introduction (∨I)

∆ or ∆

...
...

Aα Bα

A ∨Bα A ∨Bα

Σ′ Σ′

The double vertical lines indicate that only one of the subtableaux need be closed for

the tableaux to be closed. This form is chosen so that deductive tableaux rules are always

applied on the right first.

∨l:

L R

∆′ Σ′

A ∨Bα Cα+β

∆′′

−→

L R

∆′ Σ′

A ∨Bα Cα+β

∆′′

1. 2.

Aα Bα

1. 2.

Cα+β Cα+β

Disjunction Elimination (∨E)

∆′

A ∨Bα

∆′′

Aα −
...

Cα+β

Bα −
...

Cα+β

Cα+β ∨ E
Σ′
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∼ r:

L R

∆ Σ′

∼ Aα

Λ

−→

L R

∆ Σ′

∼ Aα

P(α + γ) Aγ ∼ Aα

Negation Introduction (∨E)

∆

P (α + β) Aγ −
...

∼ Aα

∼ Aα

Σ′

∼∼ r:

L R

∆ Σ′

Aα

Λ

−→

L R

∆ Σ′

Aα

∼∼ Aα

Double Negation Elimination (∨E)

∆

...

∼∼ Aα

Aα ∼∼ E

Σ′

∼ l:

L R

P(β + γ) ∆′ Σ′

∼ Bβ

∆′′

−→

L R

P(β + γ) ∆′ Σ′

∼ Bβ

∆′′ Bγ

Negation Elimination (∼ E)

P (β + γ) ∆

∼ Bβ

∆′′

...

Bγ

Σ′

Once again the negation rules are unsatisfactory.
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The general method of linearization of closed deductive tableaux is best indicated dia-

grammatically:

A closed tableaux is transformed into a natural deduction sequence by rewriting the

formulae in the tableaux in a vertical arrangement in the order in which they appear along

the arrow in this linearization diagram, and by inserting in the resulting vertical arrangement

hypotheses introduction and removal signs and marginal notes as to natural deduction rules

applied. Both of the later features are listed systematically along with the rules given above

for each connective.

To illustrate two important examples of closed deductive tableaux and their transforma-

tions in natural deduction form are given.
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(i) Distribution (E11)

A&(B ∨ C)→ .(A&B) ∨ C0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A&(B ∨ C)α (A&B) ∨ Cα
Aα

B ∨ Cα
1. 2.

Bα Cα

1. 2.

1. 2.

(A&B) ∨ Cα (A&B) ∨ Cα
A&Bα Cα

1. 2.

Aα Bα

pA&(B ∨ C)α q Hyp

Aα &E

(B ∨ C)α &E

Aα Rep

Bα − Hyp

Aα Reit

Bα Rep

(A&B)α &I

(A&B) ∨ Cα ∨I

Cα − Hyp

(A&B) ∨ Cα ∨I

x(A&B) ∨ Cα y ∨E
A&(B ∨ C)→ .(A&B) ∨ C → I
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(ii) Contraposition (E13)

A→∼ B → .B →∼ A0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A→∼ Bα B →∼ Aα

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bβ ∼ Aα+β

P (α + β + γ) Aγ ∼ Aα+β

A→∼ Bα

1. 2.

∼ Bα+γ

1. 2.

Aγ

Bβ

pA→∼ Bα q Hyp

pBβ q Hyp

P (α + β + γ) Aγ − Hyp

A→∼ Bα Reit

Aγ Rep

∼ Bα+γ → E

Bβ Rep

∼ Aα+β

x ∼ Aα+β y ∼ I

xB →∼ Aα y → I

A→∼ B → .B →∼ A0 → I
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For R-deductive tableaux, the →-transmission rules is deleted and the implication rule

→ r is amended to the following:

→ r:

L R

∆ Σ′

A→ Bα

Λ

−→

L R

∆ Σ′

A→ Bα

Aβ Bα+β

(β new)

Implication Introduction (→ I)

∆

pAβ Hypq
...

xBα+β y

A→ Bα → I

Σ′

The remaining rules are just as for E-deductive tableaux.

Theorem. If the L-s-construction for A is closed then the L-deductive tableaux construction

for A is closed.

The Fitch-style natural deduction systems, E∗, P∗ and R∗, introduced differ from those

of Anderson and Belnap, in particular in that two sets of hypotheses are admitted. (How-

ever the systems of Anderson and Belnap are taken for granted as background knowledge;

see especially [?]). In stating the rules there for E∗ one takes as central; and differences

and qualifications needed for P∗ and R∗ are noted where needed. Such standard features

of natural deduction systems as vertical arrangement subproof arrangement are taken for

granted.

(i) Structural Rules:

New World Hypotheses (N. Hyp). A step Bα may be introduced as the new world hypothesis

of a new subproof, where each new hypothesis B receives a new subscript α from N . The

introduction of such subscripted hypothesis is marked by the sign p ... q written above it, and

‘N. Hyp’ written to its right, and the hypothesis is eliminated with the paired sign x . . . y.

Ordinary Hypothesis (O. Hyp). A step Bα may be introduced as the ordinary hypothesis in

the application of an extensional logical rule of a new subproof. The introduction of such a

hypothesis is marked by the signs ‘ − ’ and its removal by the coupled sign ‘ ’.43

Repetition. Bα by be repeated within a proof or subproof.

Reiteration. Bα may be reiterated, retaining its subscript, in

(i) ordinary hypothetical subproofs, with no restriction;

(ii) new world hypothetical subproofs, provided B has the form C → D.

In the case of R∗ Bα may be reiterated into new world hypothetical subproofs whatever its

43The signs I have chosen to use differ slightly from those Routley used.
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form. Hence the distinction between N. Hypotheses and O. Hypotheses largely vanishes in

R and by reshaping the implication rules N. hypotheses can be eliminated altogether from

R∗.

(ii) Logical Rules:

These rules have already been exhibited schematically. They are, to summarize, as follows:

(iia) Implicational rules.

→ I. From a proof of Bα+β on hypothesis Aβ to infer A → Bα. For P∗ it is required

that max(β) ≥ max(α). In the case of R∗, where N. Hypotheses are eliminated, the rule is

modified to:

→ I(R). From a proof of Bα+β on hypothesis Aβ to infer A→ Bα, provided β is a new label

from N except in the case of ∨E and ∼ I below.

→ E. From Aβ and A→ Bβ to infer Bα+β. For P∗ it is required that max(β) ≥ max(α).

(iib) Extensional Rules.

&I. From Aα and Bα to infer A&Bα.

&E. From (A&B)α to infer both Aα and Bα.

∨I. From Aα to infer (A ∨B)α. From Bα to infer (A ∨B)α.

∨E. From (A ∨ B)α and a proof of Cα+β on O. hypothesis Aα and a proof of Cα+β on O.

hypothesis Aα to infer Cα+β.

∼∼ E. From ∼∼ Aα to infer Aα.

∼ I. From a proof of ∼ Aα on O. hypothesis Aγ where P(α + γ) to infer ∼ Aα.

∼ E.From ∼ Aβ where P(β + γ) to infer Aγ.

Theorem. If the deductive L-tableaux for A is closed then A is a theorem of L∗.

Proof. Transform the deductive L-tableaux into vertical form. Then no gaps remain since

the L-tableaux is closed, so a proof in L∗ results.

Theorem (Anderson Completeness). If A is a theorem of L∗, then A is a theorem of

L. This may be proved either by the methods of Anderson [?], or using deduction theorems.

Note that the case 44 of proof could be applied directly to deductive tableaux.

44Word cannot be deciphered.
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8 Reversed Tableaux and Completeness Through

Gentzen Methods

9 Independent Gentzen Formulations of the Positive

Systems; A Gentzen Form of R+: R+
∗

[PDF p. 83]

Axiom Scheme Cα  Cα
In the following formulation Γ, H© etc are sets of subscripted wff. A singular formulation is

given.

Structural rules. in antecedent

Weakening (Thinning):

Γ  Dδ

Cα,Γ  Dδ

Contraction:

Cα, Cα,Γ  Dδ

Cα,Γ  Dδ

Interchange:

Λ, Cα, Dβ H©  Eη
Λ, Dβ, Cα, H©  Eη

Logical rules.

in succedent in antecedent

→ Aα,Γ  Bβ

Γ  A→ Bβ−α

Provided α 6= 0, α ⊆ β, α 6∈ δ for Cδ ∈ Γ.

∆  Aα Bα+β,Γ  Dδ

A→ Bβ,∆,Γ  Dδ

&
Γ  Aα Γ  Bα

Γ  (A&B)α

Aα,Γ  Dδ

(A&B)α,Γ  Dδ

Bα,Γ  Dδ

(A&B)α,Γ  Dδ
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∨ Γ  Aα
Γ  (A ∨B)α

Γ  Bα

Γ  (A ∨B)α

Aα,Γ  Dδ Bα,Γ  Dδ

(A ∨B)α,Γ  Dδ

Cut
∆  Cδ Cδ,Γ  Dγ

∆,Γ  Dγ

A Cut-Free Reformulation. R+
∗

The following changes are made to the first formulation.

Weakening:

Γ  Dδ provided α ⊆ δ
Cα,Γ  Dδ

→

Aα,Γ  Bβ

Γ  A→ Bβ−α

provided α 6= 0, α ⊆ β, α disj β, for Cδ ∈ Γ

→

Γ  Aα Bα+β,Γ  Dδ

A→ Bβ,Γ  Dδ

Cut is omitted.

Lemma 34. If Γ  Dδ and Cα ∈ Γ then α ⊆ δ.

Proof. Proof is by induction over the rules. The one case that is not immediate is →.

Suppose Cγ ∈ Γ. Then γ ⊆ β. But also α ⊆ β and α disj γ; hence γ ⊆ β − α.

Theorem (Elimination theorem for R+
∗ ). If ∆  Cδ and Cδ,Γ  Dγ then ∆,Γ  Dγ.

Proof. Cut may be replaced by the following rule Mix:

∆ Mδ Σ  Dγ
(Mix),

∆,ΣMδ
 Dγ

where Mδ ∈ Σ and sequence ΣMδ
is obtained from Σ by suppressing all occurrences of Mδ.

Cut follows from Mix, and thus:

∆  Cδ Cδ,Γ  Dγ
Mix

∆,ΓCδ  Dγ

∆,Γ  Dγ
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by weakening, since, by a premise , δ ⊆ γ.

∆ Mδ

Σ  Dγ

Mδ,ΣMδ
 Dγ

∆,ΣMδ
 Dγ

Proof that all cases of Mix may be eliminated follows Kleene [?, p. 54 ft]. Kleene’s

definition of rank is applied: M is replaced by Mδ in the definitions since Mδ is now the mix

formula.45

The case structure of the double induction is same as in Kleene, but some cases treated

by Klenne no longer occur in a simpler formulation. In some remaining cases subscript

induction has to be established. The mix to be established is written:

Π Mδ Σ  Dγ

Π,ΣMδ
 Dγ

or briefly

S1 S2

S3

where Mδ ∈ Σ.

A. Preliminary cases

Case 1a. Mδ ∈ Π. If Cα ∈ Π then, in view of S1, α ⊆ δ, since Mδ ∈ Σ, δ ⊆ γ; so α ⊆ δ.

Hence S3 arises from S2 by weakening.

Case2a. does not occur, but case 2b does:—

Π  Dδ

H©  Dγ
T with Mδ ∈ H©

Mδ, H©  Dγ
Mix

Π, H©Mδ
 Dγ

Since Π Mδ, if Cα ∈ Π, α ⊆ γ. Thus the proof figure may be converted to eliminate Mix,

thus:

H©  Dγ
T ( H©Mδ

= H©)
Π, H©Mδ

 Dγ

B. Further cases. These cases differ from those in Kleene in only the matter of showing that

relevant conditions are satisfied. Main examples:—

B1, where rank is 2.

Case 3

Aα,Π  Bα+β
(with conditions)

Π  A→ Bβ

Γ  Aα Bα+β,Γ  Dδ

A→ Bβ,Γ  Dδ
Mix

Π,Γ  Dδ

45There may be an addition cut off at this point.
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Since α ⊆ β + α ⊆ δ the figure may be amended to (after change of subscripts perhaps)

Γ  Aα Aα,Π  Bα+β
Mix

Γ,ΠAα  Bα+β Bα+β,Γ  Dδ
Mix

Γ,ΠAα ,ΠBα+β  Dδ

Π,Γ  Dδ

B2, where rank exceeds 2.

B2.1, the left rank ≥ 2. So Mδ occurs in the antecedent of at least one of the premises for

the inference of S1

Case 4a. S1 is by an antecedent structural rule δ.

Case 4. a©
b© similar

Γ  Aα Γ  Bα

Γ  (A&B)α

Aα,Γ  Dδ
Hence α ⊆ δ

(A&B)α,Γ  Dδ
Mix

Π,Γ  Dδ

Alter to

Π  Aα Aα,Γ  Dδ
Mix

Π,ΓAα  Dδ
using α ⊆ δ

Π,Γ  Dδ

Case 5 a©

Π  Aα
Π  (A ∨B)α

Γ, Aα  Dδ Γ, Bα  Dδ
+ conditions

Γ, A ∨Bα  Dδ
Mix

Π,Γ  Dδ

Alter to

Π  Aα Γ, Aα  Dδ
Mix

Π,ΓAα  Dδ
Since α ⊆ δ

Π,Γ  Dδ

Thus all conditions are met automatically.

Case 3: General Form

Aγ,Π, Dγ+β

Π  A→ Bβ

Γ  Aα Bα+β,Γ  Dδ

A→ Bβ,Γ  Dδ
Mix

Π,Γ  Dδ

By hypothesis there is a proof without mix of Aα,Π  B + γ + β, where ξ disj γ for

every Cξ ∈ Π. If Cα ∈ Π for some C choose a new distinct subscript η and change α to

η throughout the proof of Aα,Π  Bγ+β. As for lemma 35 in Kleene the new figure is a

proof. The procedure eliminates all occurrences of α from Π’s subscripts. Finally γ to α

throughout the proof figure. Then the same figure as before, only relettered, provides a proof

of Aα,Π  Bα+β, satisfying the conditions for →.

Then the figure on the left is replaced by the figure on the right.
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Π1 Mδ
δ

Π Mδ Σ  Dγ
Mix

Π,ΣMδ
 Dγ

Π1 Mδ Σ  Dγ
Mix

Π1,ΣMδ
 Dγ

Π,ΣMδ
 Dγ

In case the rule δ is weakening by Cα, note that α ⊆ δ ⊆ γ, since Mδ ∈ Σ. The new

figure reduced the rank of the mix by one.

Case11a: S1 is by a one premise logical rule L, either →, & , of  ∨. Since the formulation

is singular and the left rank ≥ 2 only the following case can occur with Λα = Aα of Bα. It

is altered as shown on the right.

Λα,Γ Mδ
&

(A&B)α,Γ Mδ Σ  Dγ
Mix

(A&B)α,Γ,ΣMδ
 Dγ

Λα,Γ Mδ Σ  Dγ
Mix

Λα,Γ,ΣMδ
 Dγ

& 
(A&B)α,Γ,ΣMδ

 Dγ

Case 12: S1 is by a two-premise logical rule L, either → of ∨  since  & is impossible.

∨ :

Aα,Γ Mδ Bα,Γ Mδ
L

(A ∨B)α,Γ Mδ Σ  Dγ
Mix

(A ∨B)α,Γ,ΣMδ
 Dγ

Alter to the following figure which reduced the rank of the mix.

Aα,Γ Mδ Σ  Dγ
Mix

Aα,Γ,ΣMδ
 Dγ

Bα,Γ Mδ Σ  Dγ
Mix

Bα,Γ,ΣMδ
 Dγ

L
(A ∨B)α,Γ,ΣMδ

 Dγ

→:

Γ  Aα Bα+β,Γ Mδ
L

A→ Bβ,Γ Mδ Σ  Dγ
Mix

A→ Bβ,Γ,ΣMδ  Dγ

Alter to:

Γ  Aα

Bα+β,Γ Mδ Σ  Dγ
Mix

Bα+β,Γ,ΣMδ
 Dγ

L
A→ Bβ,Γ,Γ,ΣMδ

 Dγ
C

A→ Bβ,Γ,ΣMδ
 Dγ

B2.2: The right rank ≥ 2, so Mδ occurs in the antecedent of it before one of the premises for

the inference.

Cases 4b and 10b: S2 is by an antecedent structural rule δ. The figure is amended as on the

right.
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Π Mδ

Σ1  Dγ
δ

Σ  Dγ
Mix

Π,ΣMδ
 Dγ

Π Mδ Σ1  Dγ
Mix

Π,Σ1Mδ
 Dγ

δ
Π,ΣMδ

 Dγ

In case Mδ is an interchanged or contracted formula in application of δ, Σ1Mδ
is ΣMδ

and the

last δ step is unnecessary. In case some formula Cα, not Mδ, is introduced by application of

δ then α ⊆ γ, so δ can be applied after mix.

Case 11b: S2 is by a one premise logical rule L. The rule has the form

Λ1,Γ  Ω,Λ2
L

Ξ1,Γ  Ω,Ξ2

where each of Λ1,Λ2 is either a side formula of empty and one of Ξ1,Ξ1 is the principal

formula while the other is empty, and at best one of Ω and Λ2 and of Ω and Ξ2 is empty.

Subcase 1: Ξ1 is not Mδ, so Mδ ∈ Γ.

Π Mδ

Λ1,Γ  Ω,Ξ2
L

Ξ1,Γ  Ω,Ξ2
Mix

Π,Ξ1,ΓMδ
 Ω,Ξ2

The altered proof figure is:

Π Mδ Λ1,Γ  Ω,Λ2
Mix

Π,Λ1,ΓMδ
 Ω,Λ2

I
Λ1,Π,ΓMδ

 Ω,Λ2
L

Ξ1,Π,ΓMδ
 Ω,Ξ2

I
Π,Ξ1,ΓMδ

 Ω,Ξ2

The new mix is of rank one less than the original. It remains to show in case L in → that

for each Cξ ∈ Π ξ disj α, where Λ1 = Aα. By S1, ξ ⊆ α and by the original premise for

application of L, δ disj α since Mδ ∈ Γ. Hence ξ disj α.

Subcase 2: Ξ1 is Mδ. Then Ξ2 is empty, Ω is Dγ and Λ2 is empty. Also Λ1 is not Mδ, so

Mδ ∈ Γ. (Thus L can only be & , but the more general case is given to reduce later new

cases in extensions of R+.)

Π Mδ

Λ1,Γ  Dγ
L

Mδ,Γ  Dγ
Mix

Π,ΓMδ
 Dγ

Alter to:

Π Mδ

Π Mδ Λ1,Γ  Dγ
Mix

Π,Λ1,ΓMδ
 Dγ

I
Λ1,Π,ΓMδ

 Dγ
L

Mδ,Π,ΓMδ
 Dγ

Mix
Π,Π,ΓMδ

 Dγ
C

Π,ΓMδ
 Dγ
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Case12b: S2 is by a two premise logical rule L. The rule has the form

Λ11,Γ  ΩΛ12 Λ21,Γ  ΩΛ22
L

Ξ1,Γ  Ω,Ξ2

Subcase 1: Ξ1 is not Mδ, so Mδ ∈ Γ.

Π Mδ

Λ11,Γ  ΩΛ12 Λ21,Γ  ΩΛ22
L

Ξ1,Γ  Ω,Ξ2
Mix

Π,Ξ1,ΓMδ
 Ω,Ξ2

The amended proof figure is:

Π Mδ Λ11,Γ  Ω,Λ12
Mix

Π,Λ11,ΓMδ
 Λ12

I
Λ11,Π,ΓMδ

 Λ12

Π Mδ Λ21,Γ  Ω,Λ22
Mix

Π,Λ21,ΓMδ
 Λ22

I
Λ21,Π,ΓMδ

 Λ22
L

Ξ1,Π,ΓMδ
 Ω,Ξ2

I
Π,Ξ1,ΓMδ

 Ω,Ξ2

Subcase 2: Ξ1 is Mδ. The case reduces to

Π Mδ

Λ11,Γ  Dγ Λ21,Γ  Dγ
L

Mδ,Γ  Dγ
Mix

Π,ΓMδ
 Dγ

Mδ ∈ Γ (The rule can only be  ∨.)

The amended proof figure is:

Π Mδ

Π Mδ Λ11,Γ  Dγ
Mix

Π,Λ11,ΓMδ
 Dγ

I
Λ11,Π,ΓMδ

 Dγ

Π Mδ Λ21,Γ  Dγ
Mix

Π,Λ21,ΓMδ
 Dγ

I
Λ21,Π,ΓMδ

 Dγ
L

Mδ,Π,ΓMδ
 Dγ

Mix
Π,Π,ΓMδ

 Dγ
C

Π,ΓMδ
 Dγ

Corollary 10.

(i) R+
∗ proofs without cut have the subformula property.

(ii) The separation theorem holds.

(iii) The decidability theorem holds.

Weakening is available in a form which does not affect Kleene’s cognation class argument.

(In fact in ′R+
∗ weakening is available with qualification.)

Theorem (The Elimination Theorem for |R
+
∗ (without cut)).
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Proof. Proof is as for R+
∗ , except that in B2.2 it is assumed both that the right rank exceeds

1 and that the left rank = 1. In this way the restrictions on → needed in case 11b are

guaranteed by the form of S1.

Theorem (Equivalence Theorem for R+ Systems).

`R A iff  A0 in R+
∗

iff  A0 in |R
+
∗

Proof. One half amounts to direct demonstration of the axioms of R+; for modus ponens

follows using Cut and adjunction follows from  &. For the converse the sequent Γ  Aδ of

the Gentzen system is interpreted as Γ R Aδ, i.e. as an R+-proof of Aδ from hypotheses

Γ. Then the axiom scheme holds, and in the case of each rule, if the premises hold the

the conclusion holds, using the deduction theorems already established, & their corollaries.

Hence, if  A0 in R+
∗ then there is an R+-proof of A from null hypotheses, so `R A.
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A Cut-Free Formulation � R+
∗

The following rules are added to R+
∗

Aα,Γ  Dδ
� �Aα,Γ  Dδ

�Γ  Dδ  ��Γ  �Dδ

�Γ is the sequence of subscripted wff forms by prefixing � to each wff in sequence Γ.

Lemma 35. If Γ  Dδ and Cα ∈ Γ, then α ⊆ δ.

Theorem (Elimination theorem for �R+
∗ ).

There are the following new cases.

B1, where rank is 2.

Case 6:

�Π  Cγ
�Π  �Cγ

Cγ,Γ  Dδ

�Cγ,Γ  Dδ
Mix�Π,Γ  Dδ

Amend the figure to:

�Π  Cγ Cγ,Γ  Dδ
Mix�Π,Γ  Dδ

B2, where rank exceeds 2.

Case 11a: Only the following new case can occur.

Aα,Γ Mδ
� �Aα,Γ Mδ Σ  Dγ

Mix�Aα,Γ,ΣMδ
 Dγ

Amend to

Aα,Γ Mδ Σ  Dγ
Mix

Aα,Γ,ΣMδ
 Dγ

� �Aα,Γ,ΣMδ
 Dγ

Case 11b: Already treated generally: except one case.46

Case11b subcase 1: Mδ ∈ �Γ; so Mδ is �Nδ. The proof figure to be amended is:

46The corollary following these subcases was originally put after this line. I have moved the corollary to

after the subcases for convenience. Routley had “see p10”, the next page, at the location of this footnote.

In moving the corollary I have obviated the need for this reference.
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Π  �Nδ

�Γ  Dγ
 ��Γ  �Dγ
Mix

Π,�Γ�Nδ  �Dγ

Case a: The left rank is 1. Then �Nδ must have been introduced by  �. Thus Π is of the

form � H©. The proof figure is amended as follows:

� H©  �Nδ �Γ  Dγ
Mix� H©,�Γ�Nδ  Dγ

 �� H©,�Γ�Nδ  �Dγ

Case b: The left rank exceeds 1, so ≥ 2, is already treated under B2.1

Corollary 11. Separation & Decidability theorems for �R+
∗ , and hence for �R+.

Gentzen Forms of E+

Add to the forms for R+ the further proviso on →. Provided every member of Γ is a

subscripted entailment.

The elimination theorem holds (for case B2.2, assume also that left rank = 1).
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Cut Free Formulations of Parts of P

(I) PI*

Formulation 1 . Axiom Cα  Cα

Structural rules: Contraction and interchange (as for R+)

Γ  Dδ Weakening
CαΓ  Dδ

provided α ⊆ δ

Logical Rules:

Γ  Aα Bα+β,Γ  Dδ →
A→ Bβ,Γ  Dδ

provided max(α)≥ max(β)

Aα,Γ  Bβ
→

Γ  A→ Bβ−α

provided α 6= 0, α ≤ β, and for Cδ ∈ Γ

α disj δ and max(α) > max(δ).

Lemma 36. If Γ  Dδ and Cα ∈ Γ then

(i) α ⊆ δ

(ii) max(α) ≤ max(δ)

New details in the elimination theorem.

(i) For →. In cases 12a and 12b the restrictions in the original figures carry over to the

amended figures. In case 12b subcase 1, the further restriction on → is derived thus. For

Cξ ∈ Π, max(ξ) ≤ max(δ) by the premise S1. But Mδ ∈ Γ so max(α) > max(δ; hence (α)

> max(ξ).

Formulation 2 As per above but
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(a) proviso on weakening removed

(b) → replace by [the] following rule

Aα,Γ  Bβ
→

Γ  A→ Bβ−α

provided α 6= 0, max(α) ∈ β,

and max(α) > max(δ) for Cδ ∈ Γ.

Since rule elimination theorem holds, PI is... the methods of Kleene.47

(II) P∗I&

Add to the formulations the subscripted rules for &. Everything holds

(III) P∗+

Add to PI&* the subscripted rules for ∨.

Then everything holds but the equivalence theorem. It breaks down because I have not

been able to prove primeness, i.e. (here).

(?!) if Γ, Aβ P Cδ and Γ, Bβ P Cδ then Γ(A ∨B)β P Cδ

There is a Gentzen formulation using primeness in the form I have managed to establish,

but then the proof of the elimination theorem breaks down.

47Cut off of page
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Covering Note Confidential

There are several gaps in the argument, and no doubt many invalid moves — I should be

grateful if you would point out all those you think I have failed to see. The chief gaps &

deficiencies are these:

1) A proof of the following primeness theorem is still outstanding in the area of E and P:

If γ,Aα  Cβ and γ,Bα  Cβ then γ, (A ∨B)α  Cβ.

2) A separation theorem for the positive logics of R, �R, E and P is still lacking. I’ve

put very little work into looking for one: The lack of one is symptomatic of the next.

3) The lack of a satisfactory treatment of negation. Two reasons:

i) an inadequate logic of negation

ii) The implication evaluation function is not quite right. There are clearly lots of varia-

tions on the implication rule with the right sort of features.

I started out e.g. with the following functions:

h(A→ B,H1) = T iff for every H2, H3 if H1R(H2, H3) and h(A,H2) = T then h(B,H3) = T .

h(∼ A,H) = T iff h(A,H∗) = F .

Then the condition for contraposition is the not unpleasing : ifHR(H1, H2) thenHR(H∗2 , H
∗
1 ).

But the conditions for implication theorems get quite complicated. It should be possible to

guess a suitable simplification. An improved implication rule might enable a solution of 1)

too. For all the trouble. . . 48

4) The later parts — §6 on — are sketchy and even transparently deficient, but I would

hope the deficiencies & gaps can be repaired when other problems (1)& 3)) have been solved.

5) The simple rule for negation on the right:

If ∼ Aα is in the right of H put Aα on the left appears to work fine, but I haven’t been

able to show its adequacy. But its mate for negation on the right would sanction Disjunctive

Syllogism, if in any case it is not adequate for that thorn Contraposition.

6) I’m still unhappy about disjunctions behavior in {→ &f} formulations of R. There’s

more to this than has met my eye.

7) All of my “proofs” that simplified models will work for R have broken down. I now

think a proof will result using the methods of the sketchy §7: at least it seems to follow that

models for R+ may be simplified as in §2.3.

8) The basic idea of §8, which I have only in rough form, is that deductive tableaux

rewritten, from bottom to top, provide a Gentzen cut-free proof method. Thus completeness

follows using an interpretation theorem for the Gentzen system. You’ll see how the positive

Gentzen systems look in §9.

48Cut off page.
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Transcriber’s Note

In transcribing this work of Routley’s, I have taken the liberty to correct a couple obvious

typographical errors. In each case I have added a footnote indicating the correction. Fur-

thermore, the only corrections I have made are small, but significant, errors; e.g. writing

α ∈ ∇ when he means α 6∈ ∇.

All of the footnotes in this document are my own, and they take note of various things.

Some examples include the material of Routley’s (single) footnote and notational alterations

I have made to ease the transcription to LATEX.

I have used the latex citation in place of Routley’s [ ] notation. The result, however, is

very similar.

There are a number of words that I have been unable to decipher. Some of these words

were guessed at, and other I have marked with an underlined blank space. In each case there

is an accompanying footnote.

My recreation of the example tableaux in section 6 leaves a lot to be desired. Below is a

copy of the tableaux from Routley.

In formatting the document I have tried to balance the formatting, and formatting notes,

of the original with considerations for readability.

–Nicholas Ferenz
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