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In the last several years, paraconsistent mereology has begun to be developed and applied to

a range of philosophical issues, from puzzles about boundaries [13], to the Meinongian ‘problem of

nothingness’ [1, 2, 10], to the metaphysics of unity [9]. Because these formal systems are fresh out

of the package, as it were, there will inevitably be some wrinkles that need ironing out. In this

note, I’ll point out a problem with the systems in Priest [9, 10], and suggest a way to fix them.

Priest’s [10] mereology uses the proper parthood relation as its primitive, symbolized by <. He

defines the parthood relation ≤ using the standard definition: x ≤ y :≡ x < y ∨ x = y; he also

defines mereological overlap ◦ as x ◦ y :≡ ∃z(z ≤ x ∧ z ≤ y).1 Here are his axioms:

(1) ∀x∀y(x < y → ¬y < x) Asymmetry

(2) ∀x∀y((x < y ∧ y < z)→ x < z) Transitivity

(3) ∀x∀y(∀z(z ◦ x↔ z ◦ y)→ x = y) Extensionality

(4) ∀X∃y∀z(z ◦ y ↔ ∃x(x ∈ X ∧ z ◦ x)) Unrestricted Fusion

The first two axioms state that proper parthood is a strict ordering on the domain; these are

principles Priest accepts as “a standard assumption (that I will not challenge here)” [10, p. 148].

The next axiom is that objects are extensionally defined via their overlappers; and the final is an

unrestricted principle of fusion based on a definition from Goodman [5].2

1Priest uses E and A for quantifiers instead of ∃ and ∀, as he is working in a Meinongian framework with neutral
quantification. For our purposes, however, the difference makes little difference.

2Strictly speaking, Priest [10] is only committed to there being fusions for every set, not the existence of such a
fusion.
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A similar system is found in Priest [9, ch. 6], except that there Priest rejects Asymmetry and

its correlate Antisymmetry.

(5) ∀x∀y((x ≤ y ∧ y ≤ x)→ x = y) Antisymmetry

The rejection of (5) is crucial to Priest’s metaphysics of unity, due to a substitution argument

involving ‘prime gluons’ (p. 89).

But the problem is that (5) is entailed by (2) and (3).3 Assume x ≤ y and y ≤ x. From the

former, it actually follows that ∀z(z ◦ x→ z ◦ y): for assume z ◦ x i.e. ∃w(w ≤ z ∧ w ≤ x); by (2),

w ≤ y and so z ◦ y. Similarly from y ≤ x we have ∀z(z ◦ y → z ◦ x), and so ∀z(z ◦ x↔ z ◦ y). By

(3), x = y.

This means, crucially, that in order for Priest’s systems to undergird the applications in [9], (3)

must go. Perhaps, then, Priest can treat this ‘problem’ as simply a sound argument for rejecting

(3). Problem solved?

Not exactly. For once (3) is rejected, a whole new range of problems crop up, particularly to

do with the definition of fusion. Consider the following two models (where upward arrows indicate

parthood).

a b

c

@@__ a b
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ff OO

Figure 1: Bad fusions

Look first at the diagram on the left of figure 1, which displays a model in which everything

overlaps everything; in particular, something overlaps c if and only if it overlaps either a or b.

Counterintuitively, then, this means that c is a fusion of {a, b}. Oddly, though, c isn’t even an

upper bound of a and b; it doesn’t even have a or b as parts! Another case in point is the non-

3Here I assume the underlying paraconsistent logic is such that → detaches, as it does in BX (see Priest [10, fn.
16]). If one is using a non-detachable conditional, such as the material conditional of LP , then all the axioms of the
theory — especially (4) — are much weaker that one would have hoped (see Priest [10, §8]).
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extensional model on the right, where a turns out to be fusion of {a, b} even though b is not part of

a (and vice versa). This shows clearly that things can go badly wrong with the definition fusions

in such non-extensional models.

What to do? There are a number of options. We could mess around with the definition of

fusions. Here are three prominent definitions of fusions found in the literature.

(6) FXz :≡ ∀x(x ∈ X → x ≤ z) ∧ ∀y(∀x(x ∈ X → x ≤ y)→ z ≤ y) Algebraic Fusions

(7) F ′
Xz :≡ ∀x(x ∈ X → x ≤ z) ∧ ∀y(y ≤ z → ∃x(x ∈ X ∧ y ◦ x)) Leśniewski Fusions

(8) F ′′
Xz :≡ ∀y(y ◦ z ↔ ∃x(x ∈ X ∧ y ◦ x)) Goodman Fusions

Priest relies on (8), but he might have more success with either (6) which is used in [13] and

subsequently in [1, ch. 4] and [2, 3]. Alternatively, he might try the historic (7) used [6], [11], and

popularized by [8].4

But instead of pursuing other definitions of fusion, a simpler fix would be to recover some

missing structure by adding an axiom that falls just short of extensionality.

(9) ∀x∀y(∀z(z ◦ x→ z ◦ y)→ x ≤ y) Strong Supplementation

This principle is one of a family of so-called Supplementation principles, which forces objects to

be decomposed in intuitive ways. It is easy to see that this principle eliminates the problem with

the above models, since it requires that whenever x’s overlappers includes y’s overlappers, then x

includes y. A fusion, then, will always be an upper bound of the things it fuses.

I say that (9) ‘falls just short of extensionality’ because when x and y have the same overlappers,

it follows that x ≤ y and y ≤ x. However, the inference to x = y is blocked because we don’t in

general have (5).

To sum up, the mereology given in Priest [9] is inadequate for his purposes, due to the presence

of antisymmetry and extensionality. But a good fix is not too far away.

4For more on the various definitions of fusion in non-antisymmetric (albeit classical) contexts, see [4].
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