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Abstract

In this paper, I will develop a set of boulesic-doxastic tableau systems
and prove that they are sound and complete. Boulesic-doxastic logic consists
of two main parts: a boulesic part and a doxastic part. By ‘boulesic logic’
I mean ‘the logic of the will’, and by ‘doxastic logic’ I mean ‘the logic of
belief’. The first part deals with ‘boulesic’ concepts, expressions, sentences,
arguments and theorems. I will concentrate on two types of boulesic expres-
sion: ‘individualx wants it to be the case that’ and ‘individualx accepts that
it is the case that’. The second part deals with ‘doxastic’ concepts, expres-
sions, sentences, arguments and theorems. I will concentrate on two types
of doxastic expression: ‘individualx believes that’ and ‘it is imaginable to
individual x that’. Boulesic-doxastic logic investigates how these concepts
are related to each other. Boulesic logic is a new kind of logic. Doxastic
logic has been around for a while, but the approach to this branch of logic in
this paper is new. Each system is combined with modal logic with two kinds
of modal operators for historical and absolute necessity and predicate logic
with necessary identity and ‘possibilist’ quantifiers. I use a kind of possible
world semantics to describe the systems semantically. I also sketch out how
our basic language can be extended with propositional quantifiers. All the
systems developed in this paper are new.

Keywords: Boulesic-doxastic logic, Boulesic logic, doxastic logic, modal
logic, semantic tableaux, practical rationality.

1 Introduction

There are two important types of propositional attitudes: boulesic (from theGreek
‘boulesis’) and doxastic (from the Greek ‘doxa’). Boulesic attitudes include atti-
tudes such as wanting, willing, accepting, consenting, intending, desiring,reject-
ing, loving and hating, while doxastic attitudes include attitudes such as believing,
holding true, conceiving and imagining. Boulesic logic deals with the former, dox-
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astic logic with the latter1, and boulesic-doxastic logic investigates both. In this
paper, I will focus on two types of boulesic expression: ‘individualx wants it to
be the case that’ and ‘individualx accepts that it is the case that’, and two types
of doxastic expression: ‘individualx believes that’ and ‘it is imaginable to individ-
ual x that’. Boulesic-doxastic logic deals with both boulesic and doxastic words,
concepts, expressions, sentences, principles, arguments and systems, and with the
relationships between these concepts, and so on.

In this paper, I will develop a set of boulesic-doxastic tableau systems2, I
will investigate several interesting boulesic-doxastic principles and I will estab-
lish some important theorems. Each system is combined with modal logic with
two kinds of modal operators for historical and absolute necessity, and predicate
logic with necessary identity and ‘possibilist’ quantifiers.3 I also sketch out how
our basic language can be extended with propositional quantifiers, and how we can
define several interesting concepts that can be used to say something about what it
might mean to be (perfectly) rational or wise, for example the concept of perfect
self-awareness.4 All the systems developed in this paper are new.5 I will use a kind
of possible world semantics to describe them semantically and I will prove that
each (non-augmented) logic is sound and complete with respect to its semantics.
A non-augmented logic does not include the propositional quantifiers.

The systems in this paper include four operators that can be used to represent
various propositional attitudes:W , A, B andC. Let t be a term (that represents
some individual) and letD be any well-formed sentence. Then all of the following
formulas are well-formed in our language:WtD, AtD, BtD andCtD. ‘WtD’ says
that individualt wants it to be the case thatD, ‘AtD’ says thatt accepts that it

1For more on doxastic logic (and epistemic logic, which deals with the conceptof knowledge)
see, for example, Fagin, Halpern, Moses and Vardi (1995), Gochet and Gribomont (2006), Hintikka
(1962), Meyer and van der Hoek (1995) and van Ditmarsch, van derHoek and Kooi (2008).

2The kind of technique I use is inspired by, for example, Jeffrey (1967), Priest (2008) and
Smullyan (1968). A general introduction to the tableau method can be found in D’Agostino, Gabbay,
Hähnle and Posegga (1999). See also Fitting and Mendelsohn (1998).

3For various introductions to ordinary (alethic) modal logic, see, for example, Blackburn, de
Rijke and Venema (2001), Blackburn, van Benthem, Wolter (2007), Chellas (1980), Fitting and
Mendelsohn (1998), Gabbay (1976), Garson (2006), Kracht (1999) and Lewis and Langford (1932).
For more on modal predicate logic see, for example, Barcan (Marcus) (1946), Carnap (1946), Garson
(1984, 2006), Hughes and Cresswell (1968) and Priest (2008).

4For more on propositional quantifiers see, for example, Bull (1969),Fine (1970, 1980), Gallin
(1975), Grover (1972), Kaplan (1970), Kripke (1959) and Lewis and Langford (1932, pp. 178−198),
and for more on the concept of rationality, see Mele (2004).

5Boulesic logic is an entirely new kind of logic. However, for some vaguely similar approaches,
see, for example, Broersen (2011), Broersen, Dastani and van der Torre (2001), Cohen and Levesque
(1990), Gensler (2002), Chapter 10, Lorini and Herzig (2008), Marra and Klein (2015) and Semmling
and Wansing (2008).
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is the case thatD (or that t consents to the state of affairs thatD), ‘BtD’ says
that t believes that it is the case thatD and ‘CtD’ says that it is (doxastically)
conceivable tot that D. SinceD is any well-formed sentence it is meaningful to
speak about wanting anything, believing anything, etc.D can be about the present
time (I want to eat (now); I believe that it is raining (now)), about the future (Mary
wants to go for a walk tomorrow; He believes that Germany will win the soccer
tournament), or about the past (I want [hope, desire, wish] that I madea good
impression yesterday6; I believe that I paid the bill last week); it can be about
a contingent state of affairs (Harry wants to go to the movies this weekend; She
believes that Paris is the capital of France) or a necessary state of affairs (He wants
the Goldbach conjecture to be true; She believes that the law of non-contradiction is
valid); it can be about facts concerning the ‘natural’ world (She wants the weather
to be sunny; He believes that water includes oxygen) or about the ‘mental’world
(She wants to believe that he is faithful to her; He believes that he wants to be
faithful to her); it can be aboutt (He wants to be smart; She believes that she is
smart) or about some other individual or individuals (She wants Will to take out
the trash; He believes that Sally believes that he is a doctor), it can be about things
within t’s control (He wants to go to the store; She believes that she will call him)
or about things that are not withint’s control (Fanny wants Peter to love her; Paul
believes that the sun will rise tomorrow); it can be about something that involves
t’s own agency (He wants to go for a swim; She believes that she is thinking about
philosophy) or about something that does not involvet’s own agency (She wants
to be famous; He believes that he is tall); and so on. Ift is not perfectly rational
(reasonable or wise), it is even possible thatt wants or believes impossible states
of affairs. A person who is not rational can both want and reject something at the
same time according to our systems in this paper (He wants to be with her and he
wants not to be with her.). It does not appear to be rational to have inconsistent
propositional attitudes of this kind, but it is not logically impossible.

When we say that some individualt wants something (or accepts something)
A, we usually mean thatt wants (accepts)A in an all-things-considered sense in
this paper. For example,t might not feel like going to the dentist, in fact,t might
very much dislike going to the dentist. Nevertheless, all-things-consideredt wants
to go to the dentist. Going to the dentist is a means to an end, namely, healthy
teeth. So, when we say thatt wants (or accepts) something, we do not necessarily
mean thatt wants (or accepts) this ‘thing’ in itself. It is possible to want (and

6Some philosophers seem to think that all desires (and wants) are orientedtowards the future
(see, for example, Sumner, 1996, pp. 128−130 and Sumner, 2000), while other philosophers appear
to reject this idea (see, for example, Fred Feldman, 2004, pp. 61−63). Most wants (desires) that
people have seem to be directed at the future or the present and concern contingent states of affairs.
Yet, we will not rule out the possibility of past-directed wants in this paper.
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accept) something as a means to something else and it is possible to want (and
accept) something in itself. Furthermore, it is possible fort to want (or accept)A
in an all-things-considered sense even ift does not like every aspect ofA or every
consequence ofA and even ift has some desire (a prima facie desire) for not-A.

For a perfectly rational individual wanting is a ‘stronger’ attitude than consent-
ing (at least, in every system that includes the tableau ruleT − bD (Table 13)). If
a perfectly rational individual wantsA, she also consents toA (given that we ac-
cept conditionC − bD (Table 2)). However, it is possible for a perfectly rational
individual to consent to something that she does not want. A perfectly rational in-
dividual may, for example, consent to not getting any help in a particular situation
even though not getting any help is not something she wants. Instead of ‘consent’
or ‘acceptance’, we can sometimes use the words ‘agree’, ‘allow’, ‘approve’, ‘con-
done’ or ‘tolerate’. As I have already mentioned, consenting to something usually
means consenting to it all-things-considered in this paper. It is possible forsome-
one to consent toA even though she objects to some aspects of or consequences
of A. In every system in this paper, it is possible (even for a perfectly rational
individual) to consent toA and (at the same time) to consent to not-A.

In the sense that I am using the terms in this paper, intentions and wants are
not the same thing. It is possible to want someone else to do something, but it is
not possible that you intend someone else to do something. Intentions are directed
towards (our own) actions, while it is possible to want and desire and accept all
sorts of things. Wanting to do something and intending to do it is perhaps the
same thing, but it is not obvious that this is the case. Even if this were true (and I
am not denying that it is true), wants would have a ‘wider scope’ than intentions.
Wanting something is also not the same as wishing it were true. Wishing something
impossible were true might be possible even for a perfectly rational individual,
even though it seems to be reasonable to claim that no perfectly rational individual
wants impossible things (in an all-things-considered sense).

Since all the systems in this paper are new, the results are technically valuable.
There are also many good philosophical reasons to be interested in the systems in
this paper. Space does not permit me to discuss every possible argument, but I will
briefly mention some of the most obvious ones.

Reason 1.There are several problems with standard systems of doxastic logic
that we can avoid in our systems, for examplethe problem of logical omniscience
(see Meyer and van der Hoek (1995, pp. 71−89) for an introduction). Accord-
ing to this problem, the notions of knowledge and belief that are used in ordinary
epistemic and doxastic symbolic systems are too strong; they are only reasonable
for ‘ideal’ individuals. For example, the following rules of inference holdin most
standard systems (BiA reads ‘individuali believes thatA’):
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If A↔ C is a theorem, thenBiA↔ BiC is a theorem (for everyi andA andC)
(Belief of equivalent formulas).

If A→ C is a theorem, thenBiA→ BiC is a theorem (for everyi andA andC)
(Closure under valid implication).

If A is a theorem, thenBiA is a theorem (for everyi and A) (Belief of valid
formulas).

If we want to use doxastic logic to describe ordinary human or human-like
agents (non-human animals, computers, robots, etc.), then all these inference pat-
terns are unreasonable. It is implausible to assume that an organism such as a
human being can believe every valid sentence no matter how complex it is. It is
also unreasonable to suppose that a human-like agent’s beliefs are closed under
valid implication. As far as we know, no human-like agent believes every logical
consequence of what she believes no matter how complicated it is. Moreover, even
‘Belief of equivalent formulas’ is problematic. Suppose thatA andB are logically
equivalent. Does it follow that the agent believesA iff she believesB? For some
A and someB this is perhaps the case, but is the principle true for everyA andB
no matter how complicated these propositions are? The rules of inference above
hold in standard doxastic systems due to the fact that doxastic (and epistemic)logic
traditionally has been developed as a form of normal modal logic. The firstrule
(Belief of equivalent formulas) is a problem also for many non-normal systems.
Many formulas that can be proved in (most) standard systems are also problem-
atic. Consider the following examples:

(BiA∧ Bi(A→ C))→ BiC.
¬(BiA∧ Bi¬A).
Bi(A∧C)↔ (BiA∧ BiC).

In our systems, the rules of inference and the formulas above do not hold.
Hence, we can solve the problem of logical omniscience. Almost nothing of inter-
est follows from the fact that someone believes something.

Let us consider a more concrete example of a situation that is problematic for
many standard systems of doxastic logic. The following scenario appears tobe
perfectly logically possible:

Example 1. (The Triangle Scenario) Mike believes that this figure is a triangle
(because he can see that this figure has three edges and three vertices). Mike
believes that if this figure is a triangle this figure is equiangular (because someone
in the past told him that all triangles are equiangular). But it is not the case that
he believes that this figure is equiangular, in fact, he believes that this figureis not
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equiangular (because he can see that the angles are not equal). Of course, what
Mike believes is inconsistent. Hence, his beliefs are inconsistent. Accordingly, it
is reasonable to conclude that he is not perfectly rational. But people sometimes
have inconsistent beliefs and not everyone is perfectly rational. (It mighteven be
the case that no-one is.)

Yet, according to normal systems of doxastic logic The Triangle Scenario does
not describe a logically possible situation. Any set of the following form is in-
consistent in most standard doxastic logics (and ineverynormal doxastic logic):
{BiA,Bi(A→ C),¬BiC}. In our systems, the propositions in The Triangle Sce-
nario can be symbolised in the following way:BcTt, Bc(Tt → Qt), ¬BcQt and
Bc¬Qt, where ‘T’ stands for ‘is a triangle’, ‘Q’ stands for ‘is equiangular’, ‘c’
refers to Mike and ‘t’ refers to this figure. According to our semantics, it is possi-
ble that there is a possible world in which all these sentences are true. In Section
3.2, I will verify this assertion. This example clearly shows that the systems in this
paper are much more realistic than many other systems in the literature.

However, if the inference rules and the principles above are restricted toper-
fectly rational (reasonableor wise) individuals they might be reasonable. In ev-
ery system that includes the tableau ruleT − dD (see Table 14 in Section 4.2.7)
we can, for example, prove that no perfectly rational (reasonable or wise) in-
dividual has inconsistent beliefs; that is, we can prove the following formula:
¬Σx(Rx∧ (BxA ∧ Bx¬A)) (there is nox such thatx is perfectly rational andx
believes thatA andx believes that not-A).

It is logically possible that no-one has any inconsistent beliefs at some time. It
might even be factually true that there is some moment in time when no-one has
any inconsistent beliefs (if there is a time when there are no agents that believe
anything, this proposition will be vacuously true). But even if this is possible, it
appears to be implausible to assume that it is alogical truth that no-one has incon-
sistent beliefs. Not all truths are logical truths and we are not primarily interested
in contingent truths in this paper.

Many different solutions to the problem of logical omniscience have been sug-
gested in the literature.7 I will not try to discuss these solutions in the present paper.
However, every solution seems to suffer from the same kind of problem: it is based
on some system that is intuitively too strong, intuitively too weak or simultaneously
both too strong and too weak. A system is too strong if it includes too many theo-
rems, that is, if we can prove things in this system that are counterintuitive; and it is

7For more on this, see, for example, Fagin and Halpern (1988), Girle (1998), Gochet and Gillet
(1991), Gochet and Gribomont (2006), Hocutt (1972), Jaspars (1991), Levesque (1984), McLane
(1979), Rantala (1982), Sim (1997, 2000), Thijsse (1992), van derHoek and Meyer (1989), Yap
(2014).
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too weak, if it contains too few theorems, that is, if we cannot prove all intuitively
plausible principles that we want to establish. For example, classical systemsap-
pear to be too strong, since Belief of equivalent formulas (see above) still holds in
such systems, and systems that use impossible worlds often seem to be too weak.
It is intuitively reasonable to assume that a perfectly rational individual willnot
believe any contradiction. We cannot show this in systems based on some kindof
‘standard’ impossible world semantics. The systems in this paper are partly weaker
and partly stronger than many standard systems. Some intuitively problematic sen-
tences and arguments that can be established in standard systems are not valid in
our systems, and some intuitively plausible sentences and arguments that arenot
valid in standard systems can be established in our systems. It follows that wecan
avoid many problems with classical doxastic logic and with many other solutions
to the problem of logical omniscience. According to some solutions, we must pos-
tulate various new kinds of entities that might be ontologically problematic, for
example impossible things or impossible worlds. Our semantics do not presuppose
the existence (or being) of any entities of this kind. In conclusion, there are good
reasons to be interested in the results in this paper.

Reason 2.The systems in this paper can be used to investigate many interesting
principles, for example the principle that no-one who is perfectly rational or wise
wants it to be the case thatA at the same time as she wants it to be the case that
not-A, and the principle that no-one who is perfectly rational or wise believes that
it is the case thatA at the same time as she believes that it is the case that not-A. In
particular, we can investigate many interesting principles that include both boulesic
and doxastic expressions. Consider the following examples:

Example 2. (Some boulesic-doxastic principles)
(i) If someone is perfectly rational (wise), then if she wants something she

believes that she wants it; that is, she is aware of everything she wants.
(ii) If x is perfectly rational (wise), then x wants A only if x believes that it is

possible that A.
(iii) If x is perfectly rational (wise), then if x wants it to be the case that A and

x believes that it is necessary that if A then B then x wants it to be the case thatB.

To be able to study such principles we need boulesic-doxastic logic. (i)−(iii)
can be symbolised in the following way in our systems: (i)Πx(Rx→ (WxA →
BxWxA)), (ii) Πx(Rx→ (WxA→ Bx◇A)) (orΠx(Rx→ (WxA→ BxMA))), and
(iii) Πx(Rx→ ((WxA∧Bx◻(A→ B))→WxB)) (orΠx(Rx→ ((WxA∧BxU(A→
B)) → WxB))). (iii) is one possible interpretation of the so-called hypothetical
imperative that was introduced by Kant8. Hence, this is a philosophically very

8See Kant, 1785, p. 45; English translation in Paton, 1948, pp. 80−81. According to Kant, ‘Who
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interesting principle.9 (i) and (ii) are also interesting. (i) is a theorem in every
system that includes the tableau rulesT − db4 (Table 18) andT − UR (Table 15),
or T −db4, T −MB (Table 17) andT −FTR(Table 15); I will prove this in Section
5; (ii) is a theorem in every system that includes the tableau rulesT −MB, T −WP
(Table 16) andT − ab4 (Table 16); and (iii) is a theorem in every system that
includes the tableau rulesT − MW (Table 16) andT − dT (Table 14); in Section
3.4, I will use a ‘semantic’ argument to show that (iii) is valid in every model that
satisfies the semantic conditionsC − MW (Table 4) andC − dT (Table 3). Hence,
it is not only possible to symbolise these principle in our systems, we can also
investigate what we must assume to be able to prove that they are valid and what
follows from them if we accept them. It appears to be impossible to do this in
any other logics in the literature. In most systems, we cannot even symbolise such
expressions as ‘everyone who is such and such believes that...’, ‘someone who is
such and such believes that...’, ‘everyone who is such and such wants itto be the
case that...’, ‘someone who is such and such wants it to be the case that...’, etc.

(i)−(iii) seem more or less intuitively plausible to me. Consider, for example,
the following instance of (ii): ifx is perfectly rational, thenx wants to pass right
through this stonewall only ifx believes that it is possible to pass right through
this stonewall. This instance of (ii) can be symbolised in the following way in our
systems:Πx(Rx → (WxPx → Bx ◇ Px)), where ‘Px’ says thatx passes right
through this stonewall. In Section 7, I will prove that this formula is a theorem in
every system that includesT−MB, T−WP andT−ab4. If this sentence is not true,
there will be someone, sayc, such thatc wants to pass right through this stonewall
even though it is not the case thatc believes that it is possible to pass right through
this stonewall. It might even be the case thatc believes that it is impossible to
pass right through this stonewall. Suppose thatc believes this and still wants to
pass right through this stonewall. She starts walking and hits her head against the
wall. Furthermore, suppose she does not change any beliefs as a consequence of
this event. So, she keeps hitting her head against the wall, like a fly that repeatedly
tries to pass through a window until it drops dead. It might be the case thatc wants
to pass right through this stonewall because she wants to enter a garden and if it
were possible to pass right through this stonewall this would be the quickestway
to enter this garden. Suppose also that there is a gate just a few feet fromthe place

wills the end, wills (so far as reason has decisive influence on his actions)also the means which
are indispensably necessary and in his power’ and “‘If I fully will the effect, I also will the action
required for it” is analytic’.

9For more on the hypothetical imperative, see, for example, Bedke (2009), Broome (1999),
Brunero (2010), Downie (1984), Feldman (1986, Chapter 5), Foot(1972), Gensler (1985), Greenspan
(1975), Harsanyi (1958), Hill (1973, 1989), Korsgaard (2008), Marshall (1982), Shaver (2006),
Schroeder (2004, 2005, 2009, 2015), Wallace (2001) and Way (2010).
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wherec is and that it would be very easy to enter the garden through the gate. In
this situation, it seems difficult to callc perfectly rational.10

Reason 3. Our systems can be used to define many interesting concepts in
a rigorous way, for example, the concepts of (perfect) self-infallibility, (perfect)
self-acceptance and (perfect) self-awareness (see Section 5).

Reason 4. The systems in this paper can be used to explain the validity of
several intuitively valid arguments that cannot be proved in any other system and
they can be used to generate countermodels that show that an argument is not valid.
Consider the following example of an intuitively valid (complex) argument:

Example 3. (The Doctoral Student Argument) Every student in the room wants
to become a doctor some time in the future. Carl is a student in the room. So,
Carl wants to become a doctor some time in the future. Carl believes that it is
(historically) necessary that he will become a doctor some time in the future only
if he studies hard. Hence, if Carl is perfectly rational (wise), Carl wantsto study
hard.

Many people think that arguments of this kind, which include a kind of means-
end reasoning, are good. In some boulesic-doxastic systems introducedin this pa-
per, the conclusion follows from the premises. Yet, we cannot find even aplausible
symbolisation of this argument in any other system. In fact, the whole deduction
includes two subarguments and two conclusions. In Section 7, I will show how we
can symbolise these arguments and use semantic tableaux to prove that the first is
valid in all systems in this paper and that the second is valid in every system that
includes the tableau rulesT − dT andT −MW (see sections 4.2.7 and 4.2.9, Table
14 and Table 16).

Even though the argument inExample 3 (The Doctoral Student Argument)
is intuitively plausible, the following argument appears to be invalid:

10It might be possible to think of bizarre scenarios where someone has (at least some) reasons to
want something even though she believes that it is not possible. We can, for example, think of a
situation where there is some mad scientist that is able to scan this person’s brain and decide what
she wants and believes. Suppose this scientist, as a part of some crazy experiment, says that he will
punish this person if she does not want something she believes is impossible. Then this person might
have some reasons to want something even though she does not believethat it is possible. But it is
not obvious that those reasons are ‘rational’ reasons. We can perhaps say that this person in this case
has ‘pragmatic’ or ‘instrumental’ or ‘self-interested’ reasonsnot to be perfectly rational. In a similar
way someone can have ‘external’ reasons to believe in a contradiction. This does not necessarily
entail that it is rational, reasonable or wise to believe in a contradiction, at least not in the sense that
we are using these terms in the present paper. Whether or not this is a reasonable position, (ii) is a
philosophically interesting principle that is worth exploring further. And without a boulesic-doxastic
logic we cannot even symbolise principles of this kind in any plausible way. This is a strong reason
to be interested in the systems in this paper.
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Example 4. (The Doctoral Student Argument II) Every student in the room wants
to become a doctor some time in the future. Carl is a student in the room. Carl
believes that it is (historically) necessary that he will become a doctor some time
in the future only if he studies hard. Hence, Carl wants to study hard.

Note that in this argument the conclusion is not a conditional where the an-
tecedent says that Carl is perfectly rational (wise). The conclusion is the cate-
gorical claim that Carl wants to study hard. But this proposition does not seem
to follow from the premises. If Carl is not perfectly rational, he may want many
things without wanting the things he believes are necessary means to the things
he wants. From the first and the second premise, we can still conclude thatCarl
wants to become a doctor some time in the future. But from this sentence and the
proposition that Carl believes that it is (historically) necessary that he willbecome
a doctor some time in the future only if he studies hard, it does not follow that Carl
wants to study hard. In Section 7, I will show how one can use semantic tableaux
to generate countermodels and prove that this argument is not valid (in the class of
all models).

Reason 5. Boulesic-doxastic logic can be used to solve several puzzles in a
rather conservative and economical way. For example, we do not haveto postu-
late any new entities, such as impossible worlds or impossible objects, to solve the
problem of logical omniscience (see reason 1 above). The tableau rulesfor the
propositional connectives, for the modal operators and for the (possibilist) quanti-
fiers are standard. Furthermore, all normal doxastic systems assume thatthe do-
main (of agents) is non-empty. And since Belief of valid formulas holds in all those
systems, they entail the existence of at least one individual that believes every valid
sentence (at least if we assume that the domain only includes existing things).All
systems in the present paper are compatible both with the existence and the non-
existence of a perfectly rational individual. Hence, they are ontologicallymore
neutral than many systems in the literature. I therefore conclude that we have both
very good technical and very good philosophical reasons to be interested in the
systems that are developed in this paper.

The paper consists of seven main sections. Section 2 is about syntax and Sec-
tion 3 about semantics. In Section 4, I introduce the proof theory of our systems,
while Section 5 includes some examples of theorems. Section 6 contains soundness
and completeness proofs for every non-augmented system, that is, every system
without the propositional quantifiers. Finally, Section 7 includes some examples
of valid and invalid arguments and principles.
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2 Syntax

2.1 Alphabet

Terms: variablesx1, x2, x3 . . .; constants (rigid designators)kd1, kd2, kd3, . . ..
Predicates:n-place predicate symbolsP1

n, P2
n, P3

n . . ., for every natural number
n, E (existence),R (rationality) and= (necessary identity).

Connectives:¬ (negation),∧ (conjunction),∨ (disjunction),→ (material im-
plication) and↔ (material equivalence).

Operators: modal:U (absolute necessity),M (absolute possibility),◻ (histor-
ical necessity),◇ (historical possibility); boulesic:W (want),A (acceptability);
doxastic:B (belief) andC (imaginability, conceivability).

Quantifiers: Π (all) andΣ (some).
Parentheses:) and (.
We will usex, y andz . . . for arbitrary variables,a, b, c . . . for arbitrary con-

stants,sandt for arbitrary terms (with or without primes or subscripts) andFn, Gn,
Hn . . . for arbitraryn-place predicates (we will omit the subscript if it can be read
off from the context).

2.2 Languages

The languageL is the set of well-formed formulas generated by the following
clauses:

(i) Any constant or variable is a term.
(ii) If t1, . . . , tn are any terms andP is any n-place predicate,Pt1 . . . tn is an

atomic formula.
(iii) If t is a term,Et (‘ t exists’) is an atomic formula andRt (‘ t is perfectly

rational’) is an atomic formula.
(iv) If sandt are terms, thens= t (‘ s is identical witht’) is an atomic formula.
(v) If A andB are formulas, so are¬A, (A∧B), (A∨B), (A→ B) and(A↔ B).
(vi) If A is a formula, so areUA (‘it is universally [or absolutely] necessary that

A’), MA (‘it is universally [or absolutely] possible thatA’), ◻A (‘it is [historically]
necessary thatA’) and◇A (‘it is [historically] possible thatA’).

(vii) If D is any formula andt is any term, thenWtD (‘ t wants it to be the case
thatD’) andAtD (‘ t accepts that it is the case thatD’) are formulas.

(viii) If D is any formula andt is any term, thenBtD (‘ t believes thatD’) and
CtD (‘it is imaginable [or conceivable] tot thatD’) are formulas.

(ix) If A is any formula andx is any variable, thenΠxA (‘for every [possible]
x: A’) andΣxA (‘for some [possible] x:A’) are formulas.

(x) Nothing else is a formula.
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A, B, C, D . . . represent arbitrary formulas, andΓ, Φ . . . finite sets of closed
formulas. The concepts of bound and free variables, and open and closed formulas,
are defined as usual.(A)[t/x] is the formula obtained by substitutingt for every
free occurrence ofx in A. The definition is standard. Brackets are usually dropped
if the result is not ambiguous.

The languageLS ubis the languageL augmented with propositional quantifiers.
To obtainLS ub, we augment our language with a set of propositional variablesX,
Y, Z, W (with or without subscripts). Then we modify the formation-clauses, as
standard. In particular, we add the following clause: ifA is any formula (in our
extended languageLS ub) andX is any propositional variable, thenΠXA andΣXA
are formulas.(A)[B/X] is the result of uniformly replacing free occurrences ofX
in A by B and(A)[B1/X1, . . . ,Bn/Xn] is the result of simultaneously replacing free
occurrences ofX1 in A by B1, . . ., andXn in A by Bn.

3 Semantics

3.1 Models

Definition 5. A modelM is a structure⟨D,W,R,A,D,v⟩, where D is a non-empty
set of individuals (the domain), W is a non-empty set of possible worlds,R is a
binary alethic accessibility relation (R ⊆ W×W),A is a ternary boulesic accessi-
bility relation (A ⊆ D×W×W),D is a ternary doxastic accessibility relation (D ⊆
D ×W×W), and v is an interpretation function.

Informally, Rωω′ says that the possible worldω′ is alethically (historically)
accessible from the possible worldω, Aδωω′ that the possible worldω′ is accept-
able to the individualδ in (or relative to) the possible worldω, or thatδ accepts
ω′ in (or relative to)ω, andDδωω′ that the possible worldω′ is doxastically ac-
cessible to the individualδ from the possible worldω, or thatδ can seeω′ from
ω.

The valuation functionv assigns every constantc an elementv(c) ∈ D, and
every possible worldω ∈ W andn-place predicateP a subsetvω(P) (the extension
of P in ω) of Dn. Thus, the constants are rigid designators while the extension of a
predicate may change from world to world.

The extension of the identity predicate is the same in every possible world (in
a model):vω(=) = {⟨d,d⟩ ∶ d ∈ D}. Hence, all identities (and non-identities) are
both absolutely and historically necessary. The existence predicateE functions as
an ordinary predicate. ‘Ec’ is true in a possible world iff v(c) exists in this world.

The predicateR has a special meaning. Informally, ‘Rc’ says thatc is per-
fectly rational, perfectly reasonableor perfectly wise. SinceR functions as an
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ordinary predicate, an individualδ may be inR’s extension in one possible world
even thoughδ is not inR’s extension in every possible world. Hence, the fact that
an individualδ is perfectly rational, reasonable or wise in a possible world does
not entail that δ is perfectly rational, reasonable or wise ineverypossible world.
Exactly what it means to be perfectly rational, reasonable or wise will depend on
the conditions we impose on the boulesic and doxastic accessibility relations (Sec-
tion 3.3).Rplays an important role in the definitions of the truth conditions for our
boulesic and doxastic operators.

The valuation function assigns extensions to so-called matrices. Given any
closed boulesic or doxastic formula of the formWtA, AtA, BtA or CtA, we shall
construct its matrix as follows. Letm be the least number greater than everyn
such thatxn occurs bound inA. From left to right, replace every occurrence of
an individual constant withxm, xm+1, etc. The result is the formula’s matrix.
Consider the following examples: the matrix ofWcPd is Wx1Px2; the matrix of
AaPcc is Ax1Px2x3; the matrix ofBc(Fa ∧ Gbc) is Bx1(Fx2 ∧ Gx3x4); the ma-
trix of WaΣx1(Fx1 → Gc) is Wx2Σx1(Fx1 → Gx3); the matrix ofWcBdΠx2Px2

is Wx3Bx4Πx2Px2, etc. (A)[a1, . . . ,an/x1, . . . , xn] is the result of replacing ev-
ery free occurrence ofx1 by a1, ..., and every free occurrence ofxn by an in

A. (A)[a1, . . . ,an/x1, . . . , xn] will be abbreviated as(A)[a1, . . . ,an/
→

x]. If M
is any matrix of the formWtA, AtA, BtA or CtA with free variablesx1, . . . , xn,
thenvω(M) ⊆ Dn. Note thatM always includes at least one free variable.11 Let
M be a matrix wherexm is the first free variable inM andam is the constant in
M[a1, . . . ,an/

→

x] that replacesxm. Then the truth conditions for closed boulesic or

doxastic formulas of the formM[a1, . . . ,an/
→

x], whenvω(Ram) = 0, are defined
in terms of the extension ofM in ω (see condition (ii) in Section 3.2 below). For
some examples of matrices and how they function, see sections 3.2 and 7.

LetM be a model. Then the language ofM, L(M), is obtained by adding a
constantkd, such thatv(kd) = d, to the language for every memberd ∈ D. Con-
sequently, every object in the domain of a model has at least one name in our
language.

3.2 Truth conditions

We now extend the valuation function. Every closed formula inL (LS ub) is as-
signed exactly one truth-value (1= True or 0= False),vω(A), in each worldω in
a modelM. The truth conditions for the omitted truth-functional connectives are
standard.

(i) vω(Pa1 . . .an) = 1 iff ⟨v(a1), . . . ,v(an)⟩ ∈ vω(P).
11The idea of using matrices is borrowed from Priest (2005, Ch. 1−2).
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Let M be a matrix wherexm is the first free variable inM andam is the constant
in M[a1, . . . ,an/

→

x] that replacesxm. Then the truth conditions for closed boulesic

and doxastic formulas of the formM[a1, . . . ,an/
→

x], whenvω(Ram) = 0, are given
in (ii) below.

(ii) vω(M[a1, . . . ,an/
→

x]) = 1 iff ⟨v(a1), . . . ,v(an)⟩ ∈ vω(M).
(iii) vω(¬A) = 1 iff vω(A) = 0.
(iv) vω(A∧ B) = 1 iff vω(A) = 1 andvω(B) = 1.
(v) vω(UA) = 1 iff ∀ω′ ∈ W: vω′(A) = 1.
(vi) vω(MA) = 1 iff ∃ω′ ∈ W: vω′(A) = 1.
(vii) vω(◻A) = 1 iff ∀ω′ ∈ W s.t.Rωω′: vω′(A) = 1.
(viii) vω(◇A) = 1 iff ∃ω′ ∈ W s.t.Rωω′: vω′(A) = 1.
(ix) vω(ΠxA) = 1 iff for all kd ∈ L(M),vω(A[kd/x]) = 1.
(x) vω(ΣxA) = 1 iff for somekd ∈ L(M),vω(A[kd/x]) = 1.
(xi) vω(BaD) = 1 iff for allω′ such thatDv(a)ωω′: vω′(D) = 1, given thatv(a)

is an element invω(R), if v(a) is not an element invω(R), thenBaD is assigned a
truth-value inω in a way that does not depend on the value ofD (see condition (ii)
above).

(xii) vω(CaD) = 1 iff for at least oneω′ such thatDv(a)ωω′: vω′(D) = 1, given
thatv(a) is an element invω(R), if v(a) is not an element invω(R), thenCaD is
assigned a truth-value inω in a way that does not depend on the value ofD (see
condition (ii) above).

(xiii) WaD. The same as forBaD, except that we replaceB byW andD by A.
(xiv) AaD. The same as forCaD, except that we replaceC byA andD by A.
If v(a) is not perfectly rational in a possible world,WaD, AaD, BaD andCaD

behave as if they are predicates in this world; and ifv(a) is perfectly rational in
a possible world,Wa, Aa, Ba andCa behave as ordinary modal operators in this
world. In other words, ifv(a) is not perfectly rational in a possible world, almost
nothing of interest follows from the fact thatv(a) wants something, accepts some-
thing, believes something or finds something imaginable or conceivable, while all
sorts of interesting facts follow ifv(a) is perfectly rational.

Let us return toThe Triangle Scenario(seeExample 1) that we mentioned in
the introduction. This example will help explain conditions (ii) and (xi) above and
the concept of a matrix.12 Recall that the propositions in The Triangle Scenario
can be symbolised in the following way:BcTt, Bc(Tt → Qt), ¬BcQt andBc¬Qt,
where ‘T’ stands for ‘is a triangle’, ‘Q’ stands for ‘is equiangular’, ‘c’ refers to
Mike and ‘t’ refers to this figure. According to our systems, it is possible that there
is a possible world in which all these sentences are true. We will now verify this.

12Since (xi) is (formally) similar to conditions (xii)−(xiv), this example will also help explain
those conditions.

Australasian Journal of Logic (16:3) 2019, Article no. 3



97

Bx1T x2 is the matrix ofBcTt, Bx1(T x2 → Qx3) is the matrix ofBc(Tt→ Qt),
Bx1Qx2 is the matrix ofBcQt andBx1¬Qx2 is the matrix ofBc¬Qt. Now, con-
sider the following model.W = {ωo}, D = {Mike,This Figure} andR, A and
D are empty. v(c) = Mike, v(t) = This Figure, vω0(Bx1T x2) is the extension
of Bx1T x2 in ω0, vω0(Bx1(T x2 → Qx3)) is the extension ofBx1(T x2 → Qx3)
in ω0, etc. Letvω0(Bx1T x2) include ⟨v(c),v(t)⟩, let vω0(Bx1(T x2 → Qx3)) in-
clude⟨v(c),v(t),v(t)⟩, let vω0(Bx1Qx2) be empty, and letvω0(Bx1¬Qx2) include
⟨v(c),v(t)⟩. Let R be empty inω0, that is, assume that no-one is perfectly rational
in ω0. Finally, let T includev(t) and letQ be empty (for our purposes, it does
not matter what is and what is not included in the extensions ofT andQ). In this
model,BcTt, Bc(Tt→ Qt), ¬BcQt andBc¬Qt are all true inω0. Let us verify that
BcTt and¬BcQt are both true inω0.

If Rcis false inω0, thenBx1T x2[c, t/x1, x2] is true inω0 iff ⟨v(c),v(t)⟩ is an el-
ement invω0(Bx1T x2) (see condition (ii) above). SinceRc is false inω0, it follows
thatBx1T x2[c, t/x1, x2] is true inω0 iff ⟨v(c),v(t)⟩ is in vω0(Bx1T x2). ⟨v(c),v(t)⟩
is in vω0(Bx1T x2). Hence,Bx1T x2[c, t/x1, x2] is true inω0. Bx1T x2[c, t/x1, x2] =
BcTt. Consequently,BcTt is true inω0.

If Rc is false inω0, thenBx1Qx2[c, t/x1, x2] is true inω0 iff ⟨v(c),v(t)⟩ is an
element invω0(Bx1Qx2). SinceRc is false inω0, it follows thatBx1Qx2[c, t/x1, x2]
is true inω0 iff ⟨v(c),v(t)⟩ is an element invω0(Bx1Qx2). ⟨v(c),v(t)⟩ is not an
element invω0(Bx1Qx2). Hence,Bx1Qx2[c, t/x1, x2] is not true inω0, i.e. it is false
in ω0. Therefore,¬Bx1Qx2[c, t/x1, x2] is true inω0. ¬Bx1Qx2[c, t/x1, x2] = ¬BcQt.
It follows that¬BcQt is true inω0.

In most doxastic systems in the literature we cannot find any plausible symbol-
isation of this scenario. In those systems, the set that includesBcTt, Bc(Tt→ Qt)
and¬BcQt is inconsistent. If Mike begins to think about his beliefs, he might be-
come aware of the fact that they are inconsistent. Hence, he might come to reject
some of his beliefs. He might, for example, reject the false belief that all triangles
are equiangular. An equiangular triangle is a triangle where all three interior angles
are equal in measure and it is not the case that all three interior angles areequal
in measure in all triangles. This does not entail that his beliefs were consistent all
along. This example illustrates the fact that not every instance of the following
problematic formula is a theorem in our systems:Πx((BxA∧Bx(A→ B))→ BxB)
(see the introduction).

The propositional quantifiersΠ andΣ are a kind of ‘substitutional’ quantifiers.
Intuitively, ΠXA is true iff every substitution instance ofA is true, andΣXA is true
iff some substitution instance ofA is true. Substitutions are subject to the usual
provisos; no free variable should be bound by any quantifier, etc. To avoid circu-
larity, we shall forbid substitutions that include the propositional quantifiers. (Al-
ternatively, we can construct a hierarchy of propositional quantifiersin which the
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substitution instances for a propositional quantifier at a given level contain propo-
sitional quantifiers only from lower levels.) In tableau systems that include the
tableau rules for the propositional quantifiers, we will allow that open formulas
occur in a tree. However, we will only consider substitutions where the free vari-
ables are propositional variables. Open sentences are neither true norfalse. So,
we will define the truth conditions for various formulas inLS ubwith respect to an
assignment, where an assignment,α, is a function which assigns to each proposi-
tional variable a sentence inL. The assignmentα′ is anX-variant of the assign-
mentα if α andα′ agree on all variables except possibly the variableX. If A is
a formula whose free (propositional) variables areX1, . . . ,Xn, thenA is true in the
possible worldω in the modelM with respect to the assignmentα just in case
(A)[α(X1)/X1, . . . , α(Xn)/Xn]. ΠXA is true inω in M with respect toα just in
caseA is true inω inM for every assignmentα′ that is anX-variant ofα. The truth
conditions forΣXAare similar. The truth conditions for the constructs that already
appear inL are the same. Since sentences do not contain any free variables, we can
continue to talk about sentences as true and false in a possible world in a model
(without mentioning any assignments).

The concepts of semantic validity, entailment, satisfiability and so on can be
defined in the usual way (see the introduction for some relevant references).

3.3 Conditions on models

In this section, I will introduce some conditions that might be imposed on our
models. These conditions correspond to some tableau rules in Section 4.2 andto
various interesting theorems discussed in Section 5.13

3.3.1 Conditions on the relationR

Condition Formalisation of condition
C − aT ∀xRxx
C − aD ∀x∃yRxy
C − aB ∀x∀y(Rxy→Ryx)
C − a4 ∀x∀y∀z((Rxy∧Ryz)→Rxz)
C − a5 ∀x∀y∀z((Rxy∧Rxz)→Ryz)

Table 1
13Which conditions should we accept? This seems to be something of an open question. I would

be willing to defend most of the conditions, but some combinations might generate systems that are
intuitively too strong (see Section 4.3). We might want to use different combinations of conditions
for different purposes. Similar remarks apply to the tableau rules in Section 4.2 and to the theorems
in Section 5.
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3.3.2 Conditions on the relationA

Condition Formalisation of condition
C − bD ∀d∀x∃yAdxy
C − b4 ∀d∀x∀y∀z((Adxy∧Adyz)→ Adxz)
C − b5 ∀d∀x∀y∀z((Adxy∧Adxz)→ Adyz)
C − bT′ ∀d∀x∀y(Adxy→ Adyy)
C − bB′ ∀d∀x∀y∀z((Adxy∧Adyz)→ Adzy)

Table 2

3.3.3 Conditions on the relationD

Condition Formalisation of condition
C − dO ∀d∀x∀y(Ddxy→ x = y)
C − dT ∀d∀xDdxx
C − dD ∀d∀x∃yDdxy
C − dB ∀d∀x∀y(Ddxy→Ddyx)
C − d4 ∀d∀x∀y∀z((Ddxy∧Ddyz)→Ddxz)
C − d5 ∀d∀x∀y∀z((Ddxy∧Ddxz)→Ddyz)
C − dT′ ∀d∀x∀y(Ddxy→Ddyy)
C − dB′ ∀d∀x∀y∀z((Ddxy∧Ddyz)→Ddzy)

Table 3

3.3.4 Conditions concerning the relation betweenR and A

Condition Formalisation of condition
C − MW ∀d∀x∀y(Adxy→Rxy)
C −WP ∀d∀x∃y(Adxy∧Rxy)
C − MW ′ ∀d∀x∀y∀z((Adxy∧Adyz)→Ryz)
C −WP′ ∀d∀x∀y(Adxy→ ∃z(Adyz∧Ryz))
C − ab4 ∀d∀x∀y∀z((Rxy∧Adyz)→ Adxz)
C − ab5 ∀d∀x∀y∀z((Rxy∧Adxz)→ Adyz)
C −AMP ∀d∀x∀y∀z((Adxy∧Rxz)→ ∃w(Ryw∧Adzw))
C −WMP ∀d∀x∀y∀z((Rxy∧Adyz)→ ∃w(Adxw∧Rwz))
C − MWP ∀d∀x∀y∀z((Adxy∧Ryz)→ ∃w(Rxw∧Adwz))

Table 4

Australasian Journal of Logic (16:3) 2019, Article no. 3



100

3.3.5 Conditions concerning the relation betweenR and D

Condition Formalisation of condition
C − MB ∀d∀x∀y(Ddxy→Rxy)
C − BP ∀d∀x∃y(Ddxy∧Rxy)
C − MB′ ∀d∀x∀y∀z((Ddxy∧Ddyz)→Ryz)
C − BP′ ∀d∀x∀y(Ddxy→ ∃z(Ddyz∧Ryz))
C − BM ∀d∀x∀y(Rxy→Ddxy)
C − ad4 ∀d∀x∀y∀z((Rxy∧Ddyz)→Ddxz)
C − ad5 ∀d∀x∀y∀z((Rxy∧Ddxz)→Ddyz)
C − CMP ∀d∀x∀y∀z((Ddxy∧Rxz)→ ∃w(Ryw∧Ddzw))
C − BMP ∀d∀x∀y∀z((Rxy∧Ddyz)→ ∃w(Ddxw∧Rwz))
C − MBP ∀d∀x∀y∀z((Ddxy∧Ryz)→ ∃w(Rxw∧Ddwz))

Table 5

3.3.6 Conditions concerning the relation betweenA and D

Condition Formalisation of condition
C −WB ∀d∀x∀y(Ddxy→ Adxy)
C − BW ∀d∀x∀y(Adxy→Ddxy)
C −WC ∀d∀x∃y(Adxy∧Ddxy)
C − BA ∀d∀x∃y(Ddxy∧Adxy)
C − BWB ∀d∀x∀y(Ddxy→ Adyy)
C −WBW ∀d∀x∀y(Adxy→Ddyy)
C − db4 ∀d∀x∀y∀z((Ddxy∧Adyz)→ Adxz)
C − db5 ∀d∀x∀y∀z((Ddxy∧Adxz)→ Adyz)
C − bd4 ∀d∀x∀y∀z((Adxy∧Ddyz)→Ddxz)
C − bd5 ∀d∀x∀y∀z((Adxy∧Ddxz)→Ddyz)
C −WWB ∀d∀x∀y∀z((Adxy∧Ddyz)→ Adxz)
C − BBW ∀d∀x∀y∀z((Ddxy∧Adyz)→Ddxz)
C −ABP ∀d∀x∀y∀z((Ddxy∧Adxz)→ ∃w(Adyw∧Ddzw))
C − CWP ∀d∀x∀y∀z((Adxy∧Ddxz)→ ∃w(Ddyw∧Adzw))
C − BWP ∀d∀x∀y∀z((Adxy∧Ddyz)→ ∃w(Ddxw∧Adwz))
C −WBP ∀d∀x∀y∀z((Ddxy∧Adyz)→ ∃w(Adxw∧Ddwz))
C −WO ∀d∀x∀y∀z((Adxy∧Ddyz)→ y = z)

Table 6

C−WC andC−BA are logically equivalent. I mention both conditions since I
will associate them with different tableau rules and theorems (see sections 4.2 and
5). The same goes forC −ABP andC − CWP.
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3.3.7 Conditions concerning the relation betweenR, A and D

Condition Formalisation of condition
C −WNI ∀d∀x∀y∀z((Adxy∧Ryz)→Ddyz)
C −WNO ∀d∀x∀y∀z((Adxy∧Ddyz)→Ryz)
C −WBP ∀d∀x∀y∀z(Adxy→ ∃z(Ddyz∧Ryz))
C − BWP ∀d∀x∀y∀z(Ddxy→ ∃z(Adyz∧Ryz))
C − BMW ∀d∀x∀y∀z((Ddxy∧Adyz)→Ryz)

Table 7

3.3.8 Conditions on the valuation functionv in a model

Condition Formalisation of condition
C − FTR If Rω1ω2 andRc is true inω1,

thenRc is true inω2 (for anyc).
C −UR If Rc is true inω1, thenRc is true inω2 (for anyc).

Table 8

3.4 An example of a valid formula

In this section, I will show that the formalisation of sentence (iii) inExample 2
in the introduction is valid in every model that satisfies the semantic conditions
C−MW (Table 4) andC−dT (Table 3). Recall that (iii) is the following principle:
If x is perfectly rational (wise), then ifx wants it to be the case thatA and x
believes that it is necessary that ifA then B then x wants it to be the case that
B. This principle can be symbolised in the following way in our formal language:
Πx(Rx → ((WxA ∧ Bx ◻ (A → B)) → WxB)). To establish this, assume that
this formula is not true in some possible worldω in some modelM that satisfies
C−MW andC−dT. ThenRc,WcA andBx◻ (A→ B)) are true inω in M, while
WcB is false inω in M. SinceWcB is false inω in M andc is perfectly rational
in ω in M, there is a possible worldω′ in M that is boulesically accessible toc
from ω in which B is false. Therefore,A is true inω′ in M. For c is perfectly
rational inω in M, ω′ is boulesically accessible toc from ω andWcA is true in
ω in M. Hence,ω′ is alethically accessible fromω, for M satisfiesC − MW .
Furthermore,ω is doxastically accessible toc from itself sinceM satisfiesT −dT.
Sinceω is doxastically accessible toc from itself, c is perfectly rational inω and
Bx◻(A→ B)) is true inω inM,◻(A→ B) is true inω inM. It follows thatA→ B
is true inω′ in M, for ω′ is alethically accessible fromω. Hence,B is true inω′

in M (by propositional logic). But this is absurd. Consequently, our assumption
cannot be true. In other words,Πx(Rx→ ((WxA∧Bx◻(A→ B))→WxB)) is valid
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inM. Since,ω andMwere arbitrary, it follows thatΠx(Rx→ ((WxA∧Bx◻(A→
B))→WxB)) is valid in every model that satisfiesC − MW andC − dT. Q.E.D.

3.5 Model classes and the logic of a class of models

LetM(C1, . . . ,Cn) be the class of all models that satisfy the conditionsC1, . . . ,Cn.
For example,M(C − dD,C − db4,C − bd5) is the class of all models that satisfy
the conditionsC − dD, C − db4 andC − bd5.

By imposing different conditions on our models we can define a set of logical
systems. The set of all sentences inL that are valid in a class of modelsM is
called the (logical) system (or logic) ofM, and in symbols,S(M). For example,
S(M(C−dD,C−db4,C−bd5)) (the system ofM(C−dD,C−db4,C−bd5)) is
the class of sentences inL that are valid in the class of all models that satisfy the
conditionsC − dD, C − db4 andC − bd5. In an ‘augmented system’, we useLS ub

instead.

4 Proof theory

4.1 Semantic tableaux

The concepts of semantic tableau, branch, open and closed branch, proof, deriva-
tion, etc. are defined in a standard way. For more on the tableau method, seethe
references in the introduction.

4.2 Tableau rules

4.2.1 Propositional rules

I will use the same propositional rules as those in Priest (2008). Let us call them
(∧), (¬∧), and so on.
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4.2.2 Basic alethic rules (ba-rules)

U M ◻ ◇

UA, i MA, i ◻A, i ◇A, i
↓ ↓ ir j ↓

A, j A, j ↓ ir j
for any j where j is new A, j A, j

where j is new
¬U ¬M ¬◻ ¬◇

¬UA, i ¬MA, i ¬ ◻ A, i ¬◇ A, i
↓ ↓ ↓ ↓

M¬A, i U¬A, i ◇¬A, i ◻¬A, i
Table 9

4.2.3 Basic boulesic and doxastic rules (bb-rules and bd-rules)

W A B C

Rc, i Rc, i Rc, i Rc, i
WcB, i AcB, i BcB, i CcB, i
iAc j ↓ iDc j ↓

↓ iAc j ↓ iDc j
B, j B, j B, j B, j

where j is new where j is new
¬W ¬A ¬B ¬C

Rc, i Rc, i Rc, i Rc, i
¬WcB, i ¬AcB, i ¬BcB, i ¬CcB, i
↓ ↓ ↓ ↓

Ac¬B, i Wc¬B, i Cc¬B, i Bc¬B, i
Table 10

Intuitively, ‘Rc, i’ in the rules in this section says that the individual denoted
by ‘c’ is perfectly rational in the possible world denoted by ‘i’, ‘ iAc j’ says that the
possible world denoted by ‘j’ is acceptable to ‘c’ in ‘ i’, and ‘iDc j’ says that ‘j’ is
conceivable or imaginable to ‘c’ in ‘ i’. All rules of this kind in this section hold for
every constantc, that is, ‘c’ can be replaced by any constant in these rules.
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4.2.4 Possibilist quantifiers

Π Σ ¬Π ¬Σ

ΠxA, i ΣxA, i ¬ΠxA, i ¬ΣxA, i
↓ ↓ ↓ ↓

A[a/x], i A[c/x], i Σx¬A, i Πx¬A, i
for every constanta wherec is new

on the branch, to the branch
a new if there are no

constants on the branch
Table 11

The termsa andc in the quantifier rules are rigid constants—we never instan-
tiate with variables;a is any constant on the branch andc is a constant new to the
branch.

4.2.5 Alethic accessibility rules (a-rules)

T − aD T − aT T − aB T − a4 T − a5
i i ir j ir j ir j
↓ ↓ ↓ jrk irk

ir j iri jri ↓ ↓

where j is new irk jrk
Table 12

4.2.6 Boulesic accessibility rules (b-rules)

T − bD T − b4 T − b5 T − bT′ T − bB′

i iAc j iAc j iAc j iAc j
↓ jAck iAck ↓ jAck

iAc j ↓ ↓ jAc j ↓

where j is new iAck jAck kAc j
Table 13
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4.2.7 Doxastic accessibility rules (d-rules)

T − dO T − dT T − dB T − dD T − d4 T − d5 T − dT′ T − dB′

iDc j i iDc j i iDc j iDc j iDc j iDc j
↓ ↓ ↓ ↓ jDck iDck ↓ jDck

i = j iDci jDci iDc j ↓ ↓ jDc j ↓

where j iDck jDck kDc j
is new

Table 14

4.2.8 Transfer-rules, and the CUT-rule (CUT)

T − FTR T −UR CUT
Rc, i Rc, i i
ir j ↓ ↲ ↳

↓ Rc, j A, i ¬A, i
Rc, j for any j for everyA andi

Table 15

It is possible to replace theCUT rule by a weaker rule,CUTR. In CUTR
‘A’ (in CUT) is replaced by ‘Rc’ where c is a constant (that occurs as an index
to some boulesic operator) on the branch. In fact, in the completeness proofs (see
Section 6) we do not needCUT if our systems includeCUTR. In Section 7, we
will also assume that our weakest systemBD (see Section 4.3) includesCUTRand
not CUT. However,CUT is often more useful in proving theorems and deriving
non-primitive rules.
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4.2.9 Alethic-boulesic accessibility rules (ab-rules)

T − MW T − MW ′ T −WP T −WP′

iAc j iAc j i iAc j
↓ jAck ↓ ↓

ir j ↓ iAc j jAck
jrk ir j jrk

where j wherek
is new is new

T − ab4 T − ab5 T −AMP T −WMP T − MWP
ir j ir j iAc j ir j iAc j
jAck iAck irk jAck jrk
↓ ↓ ↓ ↓ ↓

iAck jAck jrl iAcl irl
kAcl lrk lAck

wherel wherel wherel
is new is new is new
Table 16

4.2.10 Alethic-doxastic accessibility rules (ad-rules)

T − MB T − MB′ T − BP T − BP′ T − BM
iDc j iDc j i iDc j ir j
↓ jDck ↓ ↓ ↓

ir j ↓ iDc j jDck iDc j
jrk ir j jrk

where j wherek
is new is new

T − ad4 T − ad5 T − CMP T − BMP T − MBP
ir j ir j iDc j ir j iDc j

jDck iDck irk jDck jrk
↓ ↓ ↓ ↓ ↓

iDck jDck jrl iDcl irl
kDcl lrk lDck

wherel wherel wherel
is new is new is new
Table 17
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4.2.11 Boulesic-doxastic accessibility rules (b-d-rules)

T −WB T − BW T −WC T − BA T − db4 T − db5
iDc j iAc j i i iDc j iDc j
↓ ↓ ↓ ↓ jAck iAck

iAc j iDc j iAc j iDc j ↓ ↓

iDc j iAc j iAck jAck
where j where j
is new is new

T − bd4 T − bd5 T −ABP T − CWP T − BWP T −WBP
iAc j iAc j iDc j iAc j iAc j iDc j
jDck iDck iAck iDck jDck jAck
↓ ↓ ↓ ↓ ↓ ↓

iDck jDck jAcl jDcl iDcl iAcl
kDcl kAcl lAck lDck

wherel wherel wherel wherel
is new is new is new is new

T − BWB T −WBW T −WWB T − BBW T −WO
iDc j iAc j iAc j iDc j iAc j
↓ ↓ jDck jAck jDck

jAc j jDc j ↓ ↓ ↓

iAck iDck j = k
Table 18

T −WC is equivalent toT −BA andT −ABP is equivalent toT −CWP (Table
18). Everything that can be proved withT −WC can be proved withT − BA and
vice versa, and similarly forT −ABP andT − CWP.

4.2.12 Alethic-boulesic-doxastic rules (abd rules)

T −WNI T −WNO T −WBP T − BWP T − BMW
iAc j iAc j iAc j iDc j iDc j
jrk jDck ↓ ↓ jAck
↓ ↓ jDck jAck ↓

jDck jrk jrk jrk jrk
wherek is new wherek is new

Table 19
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4.2.13 Identity rules

T −R= T −S = T − N =, T − A = T − D = T − IdI T − IdII
∗ s= t, i a = b, i a = b, i a = b, i α(i) α(i)
↓ A[s/x], i ↓ jAak jDak i = j j = i

t = t, i ↓ a = b, j ↓ ↓ ↓ ↓

for everyt A[t/x], i for any j jAbk jDbk α( j) α( j)
on the branch

Table 20

There are two world identity rules:T − IdI andT − IdII (both abbreviatedId).
α(i) is a line in a tableau that includes ‘i’, andα( j) is like α(i) except that ‘i’ is
replaced by ‘j’. That is, if α(i) is A, i, thenα( j) is A, j; if α(i) is kri, thenα( j) is
kr j; if α(i) is i = k, thenα( j) is j = k, etc. If α(i) is A, i we only apply the rule
whenA is atomic or of the formWsD,AsD, BsD or CsD given that¬Rs, i is on the
branch.

(T − S =) is applied only ‘within worlds’, and we usually only apply the rule
whenA is atomic. However, we shall also allow applications of the following kind.
Let M be a matrix wherexm is the first free variable inM andam is the constant
in M[a1, . . . ,a, . . . ,an/

→

x] that replacesxm. Furthermore, suppose we havea = b, i,

M[a1, . . . ,a, . . . ,an/
→

x], i and¬Ram, i on the branch. Then we may apply (T −S =)

to obtain an extension of the branch that includesM[a1, . . . ,b, . . . ,an/
→

x], i.

4.2.14 Propositional quantifiers

PΠ PΣ P¬Π P¬Σ
ΠXA, i ΣXA, i ¬ΠXA, i ¬ΣXA, i
↓ ↓ ↓ ↓

A[B/X], i A[Y/X], i ΣX¬A, i ΠX¬A, i
for anyB whereY is new

to the branch
Table 21

The propositional quantifiers are similar to the possibilist quantifiers. Nonethe-
less, in these rulesX, Y andB do not refer to individuals;X andY are propositional
variables andB is a formula, with the usual provisos (see Section 3.2). ‘P’ in ‘ PΠ’
stands for ‘propositional’. We can omit the initial ‘P’ if it is clear from the context
that we are talking about the propositional quantifiers.
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4.3 Tableau systems and some basic proof-theoretical concepts

A tableau system is a set of tableau rules. A boulesic-doxastic (tableau) system (or
logic) is a tableau system that includes the propositional rules, the basic alethic,
boulesic and doxastic rules, the rules for the possibilist quantifiers, theCUT-rule
and the identity rules. The smallest boulesic-doxastic system is calledBD. By
adding various tableau rules toBD, we obtain a large class of stronger boulesic-
doxastic systems, and by adding the rules for the propositional quantifiers, we can
generate a set of ‘augmented systems’. A non-augmented system is basedon the
languageL and an augmented system is based onLS ub.

Among all the many boulesic-doxastic systems, which system is thecorrect
one? I do not think that this question has a simple answer. Different systems may be
useful for different purposes. However, I would like to mention a logic that seems
particularly interesting to me. This logic contains every tableau rule in Section 4.2
exceptT − dO, T − MWP, T −WB, T − BWB, T −WWB, T − BWP, T −WO,
T − UR and the propositional quantifiers. Let us call this systemstrong boulesic-
doxastic logic. By adding the propositional quantifiers we obtainaugmented strong
boulesic-doxastic logic. Strong boulesic-doxastic logic includes many redundant
rules and there are many systems that are deductively equivalent that contain fewer
primitive rules. It is beyond the scope of this paper to try to argue for this system
and defend it against various criticisms. It is possible to derive some surprising and
perhaps prima facie counterintuitive theorems in it, but it nevertheless seemsquite
attractive to me.

Important proof theoretical concepts like the concepts of proof, theorem, deriva-
tion, consistency, inconsistency in a system, the logic of a tableau system, etc.are
defined in a standard way (for more on the tableau method, see the references in
the introduction).

5 Examples of theorems

In this section, I will present some sentences that can be proved in various sys-
tems. The informal reading of the theses should be obvious. A ‘system’ means
a ‘boulesic-doxastic system’ and a ‘T-system’ means a ‘boulesic-doxastic system
that includesT’.

Furthermore, I use the following abbreviations. We have omitted the initial
‘T−’ in the names of the rules.T1.T2 stands for a system that includes bothT1

and T2, whereT1 and T2 are some non-basic tableau rules.T1 ∶ T2 stands for
a system that includesT1 or T2. For example, consider Table 27.ABP.(UR ∶
(MB.MW .FTR))means that the theoremABP= Πx(Rx→ (AxBxA→ BxAxA))
is provable in every logic that includes the tableau rulesABP, andURor MB, MW
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andFTR. In other words, this sentence is a theorem in every system that includes
ABP andUR, and it is a theorem in every system that includesABP, MB, MW
and FTR. ABP is also a theorem in every logic that includes the tableau rules
CWP, andUR or MB, MW andFTR.

Theorem Systems
Πx(Rx→ (WxB↔ ¬Ax¬B)) Every
Πx(Rx→ (¬WxB↔ Ax¬B)) Every
Πx(Rx→ (Wx¬B↔ ¬AxB)) Every
Πx(Rx→ (AxB↔ ¬Wx¬B)) Every
Πx(Rx→ (Wx(A∧ B)↔ (WxA∧WxB))) Every
Πx(Rx→ ((WxA∨WxB)→Wx(A∨ B))) Every
Πx(Rx→ (Ax(A∧ B)→ (AxA∧AxB))) Every
Πx(Rx→ (Ax(A∨ B)↔ (AxA∨AxB))) Every
Πx(Rx→ (Wx(A→ B)→ (WxA→WxB))) Every
Πx(Rx→ (Wx(A→ B)→ (AxA→ AxB))) Every
Πx(Rx→ (Wx(A→ B)→ (Wx¬B→Wx¬A))) Every
Πx(Rx→ (Wx(A→ B)→ (¬WxB→ ¬WxA))) Every
Πx(Rx→ (Wx(A↔ B)→ (WxA↔WxB))) Every
Πx(Rx→ (Wx(A↔ B)→ (AxA↔ AxB))) Every
Πx(Rx→ (Wx(A↔ B)→ (Wx¬A↔Wx¬B))) Every
Πx(Rx→ (Wx(A↔ B)→ (¬WxA↔ ¬WxB))) Every

Table 22 (Some pure boulesic sentences that are theorems in every system)

Let A be a theorem in Table 22 and letT(A) be the sentence that is obtained
from A by replacing every occurrence ofW byB and every occurrence ofA by C.
ThenT(A) is a theorem in every system.

Name Theorem Systems
bD Πx(Rx→ ¬(WxB∧Wx¬B)) bD
b4 Πx(Rx→ (WxB→WxWxB)) b4.(UR ∶ (MW .FTR))
b5 Πx(Rx→ (AxB→WxAxB)) b5.(UR ∶ (MW .FTR))
bT′ Πx(Rx→Wx(WxB→ B)) bT′.(UR ∶ (MW .FTR))
bB′ Πx(Rx→Wx(AxWxB→ B)) bB′.(UR ∶ (MW .FTR))

Table 23 (Some pure boulesic sentences that are theorems in various systems)
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Name Theorem Systems
dO Πx(Rx→ (A→ BxA)) dO
dT Πx(Rx→ (BxA→ A)) dT
dD Πx(Rx→ ¬(BxD ∧ Bx¬D)) dD
dB Πx(Rx→ (D→ BxCxD)) dB.(UR ∶ (MB.FTR))
d4 Πx(Rx→ (BxD→ BxBxD)) d4.(UR ∶ (MB.FTR))
d5 Πx(Rx→ (CxD→ BxCxD)) d5.(UR ∶ (MB.FTR))
dT′ Πx(Rx→ Bx(BxD→ D)) dT′.(UR ∶ (MB.FTR))
dB′ Πx(Rx→ Bx(CxBxD→ D)) dB′.(UR ∶ (MB.FTR))

Table 24 (Some pure doxastic sentences that are theorems in various systems)

Name Theorem Systems
MW Πx(Rx→ (◻A→WxA)) MW
WP Πx(Rx→ (WxA→◇A)) WC
MW ′ Πx(Rx→Wx(◻A→WxA)) MW ′.UR
WP′ Πx(Rx→Wx(WxA→◇A)) WC′.(UR ∶ (MW .FTR))
ab4 Πx(Rx→ (WxA→ ◻WxA)) ab4.(UR ∶ FTR)
ab5 Πx(Rx→ (AxB→ ◻AxB)) ab5.(UR ∶ FTR)
AMP Πx(Rx→ (Ax ◻ B→ ◻AxB)) AMP.(UR ∶ FTR)
WMP Πx(Rx→ (Wx ◻ A→ ◻WxA)) WMP.(UR ∶ FTR)
MWP Πx(Rx→ (◻WxA→Wx ◻ A)) MWP.(UR ∶ FTR)

Table 25 (Some alethic-boulesic sentences that are theorems in various systems)

Name Theorem Systems
MB Πx(Rx→ (◻A→ BxA)) MB
BP Πx(Rx→ (BxA→◇A)) BC
MB′ Πx(Rx→ Bx(◻A→ BxA)) MB′.UR
BP′ Πx(Rx→ Bx(BxA→◇A)) BC′.(UR ∶ (MB.FTR))
BM Πx(Rx→ (BxA→ ◻A)) BM
ad4 Πx(Rx→ (BxA→ ◻BxA)) ad4.(UR ∶ FTR)
ad5 Πx(Rx→ (CxB→ ◻CxB)) ad5.(UR ∶ FTR)
CMP Πx(Rx→ (Cx ◻ B→ ◻CxB)) CMP.(UR ∶ FTR)
BMP Πx(Rx→ (Bx ◻ A→ ◻BxA)) BMP.(UR ∶ FTR)
MBP Πx(Rx→ (◻BxA→ Bx ◻ A)) MBP.(UR ∶ FTR)

Table 26 (Some alethic-doxastic sentences that are theorems in various systems)
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Name Theorem Systems
WB Πx(Rx→ (WxA→ BxA)) WB

BW Πx(Rx→ (BxA→WxA)) BW

WC Πx(Rx→ (WxA→ CxA)) WC ∶ BA

BA Πx(Rx→ (BxA→ AxA)) BA ∶ WC

BWB Πx(Rx→ (BxWxA→ BxA)) BWB.(UR ∶ (MB.FTR))
WBW Πx(Rx→ (WxBxA→WxA)) WBW .(UR ∶ (MW .FTR))
W I Πx(Rx→Wx(BxA→ A)) WBW .(UR ∶ (MW .FTR))
db4 Πx(Rx→ (WxA→ BxWxA)) db4.(UR ∶ (MB.FTR))
db5 Πx(Rx→ (AxA→ BxAxA)) db5.(UR ∶ (MB.FTR))
bd4 Πx(Rx→ (BxA→WxBxA)) bd4.(UR ∶ (MW .FTR))
bd5 Πx(Rx→ (CxA→WxCxA)) bd5.(UR ∶ (MW .FTR))
WWB Πx(Rx→ (WxA→WxBxA)) WWB.(UR ∶ (MW .FTR))
BBW Πx(Rx→ (BxA→ BxWxA)) BBW .(UR ∶ (MB.FTR))
ABP Πx(Rx→ (AxBxA→ BxAxA)) ABP.(UR ∶ (MB.MW .FTR))

CWP.(UR ∶ (MB.MW .FTR))
CWP Πx(Rx→ (CxWxA→WxCxA)) CWP.(UR ∶ (MB.MW .FTR))

ABP.(UR ∶ (MB.MW .FTR))
BWP Πx(Rx→ (BxWxA→WxBxA)) BWP.(UR ∶ (MB.MW .FTR))
WBP Πx(Rx→ (WxBxA→ BxWxA)) WBP.(UR ∶ (MB.MW .FTR))
WO Πx(Rx→Wx(A→ BxA)) WO.(UR ∶ (MW .FTR))

Table 27 (Some boulesic-doxastic sentences that are theorems in various systems)
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Considerdb4. This is a formalisation of (i) inExample 2(see the introduction).
I will now show that this formula is a theorem in every system that includesT−db4,
T − MB andT − FTR. This will illustrate how to use semantic tableaux. To prove
that a sentenceA is a theorem in some systemS, we construct a closed semantic
S-tableau that starts with¬A,0. An S-tableau is a tableau that has been generated
in accordance with the rules inS.

(1) ¬Πx(Rx→ (WxA→ BxWxA)),0
(2) Σx¬(Rx→ (WxA→ BxWxA)),0 [1,¬Π]

(3) ¬(Rc→ (WcA→ BcWcA)),0 [2,Σ]
(4) Rc,0 [3,¬→]

(5) ¬(WcA→ BcWcA) [3, ¬→]
(6)WcA,0 [5,¬→]

(7) ¬BcWcA,0 [5,¬→]
(8) Cc¬WcA,0 [4, 7,¬B]

(9) 0Dc1 [4, 8,C]
(10)¬WcA,1 [4, 8,C]
(11) 0r1 [9, T − MB]

(12)Rc,1 [4, 11,T − FTR]
(13)Ac¬A,1 [10, 12,¬W ]

(14) 1Ac2 [12, 13,A]
(15)¬A,2 [12, 13,A]

(16) 0Ac2 [9, 14,T − db4]
(17) A,2 [4, 6, 16,W ]

(18)∗ [15, 17]

Theorem Systems
Πx(Rx→ (ΠyWxD↔WxΠyD)) Every
Πx(Rx→ (ΣyAxD↔ AxΣyD)) Every
Πx(Rx→ (AxΠyD→ ΠyAxD)) Every
Πx(Rx→ (ΣyWxD→WxΣyD)) Every
Πx(Rx→ (ΠyBxD↔ BxΠyD)) Every
Πx(Rx→ (ΣyCxD↔ CxΣyD)) Every
Πx(Rx→ (CxΠyD→ ΠyCxD)) Every
Πx(Rx→ (ΣyBxD→ BxΣyD)) Every

Table 28 (Some Barcan-like sentences that are theorems in every system)
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Theorem Systems
Πx(Rx→ (◻(A→ B)→ (WxA→WxB))) MW
Πx(Rx→ (◻(A→ B)→ (AxA→ AxB))) MW
Πx(Rx→ (◻(A→ B)→ (Wx¬B→Wx¬A))) MW
Πx(Rx→ (◻(A→ B)→ (¬WxB→ ¬WxA))) MW
Πx(Rx→ (◻(A↔ B)→ (WxA↔WxB))) MW
Πx(Rx→ (◻(A↔ B)→ (AxA↔ AxB))) MW
Πx(Rx→ (◻(A↔ B)→ (Wx¬A↔Wx¬B))) MW
Πx(Rx→ (◻(A↔ B)→ (¬WxA↔ ¬WxB))) MW

Table 29 (Some alethic-boulesic sentences that are theorems in every
MW-system)

Let A be a theorem in Table 29 and letT(A) be the sentence that is obtained
from A by replacing every occurrence ofW byB and every occurrence ofA by C.
ThenT(A) is a theorem in everyMB-system.

Name Theorem Systems
WNI Πx(Rx→Wx(BxA→ ◻A)) WNI.(UR ∶ (FTR.MW)
WNO Πx(Rx→Wx(◻A→ BxA)) WNO.(UR ∶ (FTR.MW)
WBP Πx(Rx→Wx(BxA→◇A)) WBP.(UR ∶ (FTR.MW)
BWP Πx(Rx→ Bx(WxA→◇A)) BWC.(UR ∶ (FTR.MB)
BMW Πx(Rx→ Bx(◻A→WxA)) BMW.(UR ∶ (FTR.MB)

Table 30 (Some alethic-boulesic-doxastic theorems)

Name Theorem Systems
UR Πx(Rx→ URx) UR

Πx(Rx→WxRx) UR ∶ (FTR.MW)
Πx(Rx→ AxRx) (UR.bD) ∶ (FTR.MW .bD)
Πx(Rx→ BxRx) UR ∶ (FTR.MB)
Πx(Rx→ CxRx) (UR.dD) ∶ (FTR.MB.dD)
Table 31 (Some theorems concerningR)
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Name Theorem Systems
(WcD ∧ c = d)→WdD Every
(AcD ∧ c = d)→ AdD Every
ΠxΠy((WxD ∧ x = y)→WyD) Every
ΠxΠy((AxD ∧ x = y)→ AyD) Every
(BcD ∧ c = d)→ BdD Every
(CcD ∧ c = d)→ CdD Every
ΠxΠy((BxD ∧ x = y)→ ByD) Every
ΠxΠy((CxD ∧ x = y)→ CyD) Every
ΠxΠy(x = y→ Ux = y) Every
ΠxΠy(x = y→ ◻x = y) Every
ΠxΠy(¬x = y→ U¬x = y) Every
ΠxΠy(¬x = y→ ◻¬x = y) Every

Table 32 (Some theorems that include the identity sign)

1 2 3 4
(a)PBS (a)NBS (a)PBI (a)NBI
BcD→ BcBcD ¬BcD→ Bc¬BcD BcBcD→ BcD Bc¬BcD→ ¬BcD
(b)NMS (b)PMS (b)NMI (b)PMI
¬CcD→ Bc¬CcD CcD→ BcCcD Bc¬CcD→ ¬CcD BcCcD→ CcD
(c)PMC (c)PBC (c)PMM (c)NMM
CcCcD→ CcD CcBcD→ BcD CcD→ CcCcD ¬CcD→ Cc¬CcD
(d)NBC (d)NMC (d)NBM (d)PBM
Cc¬BcD→ ¬BcD Cc¬CcD→ ¬CcD ¬BcD→ Cc¬BcD BcD→ CcBcD

Table 33 (Some boulesic-doxastic principles)

5 6 7 8
(a)PWL (a)NWL (a)PWG (a)NWG
WcD→WcWcD ¬WcD→Wc¬WcD WcWcD→WcD Wc¬WcD→ ¬WcD
(b)NAL (b)PAL (b)NAG (b)PAG
¬AcD→Wc¬AcD AcD→WcAcD Wc¬AcD→ ¬AcD WcAcD→ AcD
(c)PAP (c)PWP (c)PAA (c)NAA
AcAcD→ AcD AcWcD→WcD AcD→ AcAcD ¬AcD→ Ac¬AcD
(d)NWP (d)NAP (d)NWA (d)PWA
Ac¬WcD→ ¬WcD Ac¬AcD→ ¬AcD ¬WcD→ Ac¬WcD WcD→ AcWcD

Table 34 (Some boulesic-doxastic principles)
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9 10 11 12
(a)PWS (a)NWS (a)PWI (a)NWI
WcD→ BcWcD ¬WcD→ Bc¬WcD BcWcD→WcD Bc¬WcD→ ¬WcD
(b)NAS (b)PAS (b)NAI (b)PAI
¬AcD→ Bc¬AcD AcD→ BcAcD Bc¬AcD→ ¬AcD BcAcD→ AcD
(c)PAC (c)PWC (c)PAM (c)NAM
CcAcD→ AcD CcWcD→WcD AcD→ CcAcD ¬AcD→ Cc¬AcD
(d)NWC (d)NAC (d)NWM (d)PWM
Cc¬WcD→ ¬WcD Cc¬AcD→ ¬AcD ¬WcD→ Cc¬WcD WcD→ CcWcD

Table 35 (Some boulesic-doxastic principles)

13 14 15 16
(a)PBL (a)NBL (a)PBG (a)NBG
BcD→WcBcD ¬BcD→Wc¬BcD WcBcD→ BcD Wc¬BcD→ ¬BcD
(b)NML (b)PML (b)NMG (b)PMG
¬CcD→Wc¬CcD CcD→WcCcD Wc¬CcD→ ¬CcD WcCcD→ CcD
(c)PMP (c)PBP (c)PMA (c)NMA
AcCcD→ CcD AcBcD→ BcD CcD→ AcCcD ¬CcD→ Ac¬CcD
(d)NBP (d)NMP (d)NBA (d)PBA
Ac¬BcD→ ¬BcD Ac¬CcD→ ¬CcD ¬BcD→ Ac¬BcD BcD→ AcBcD

Table 36 (Some boulesic-doxastic principles)

Consider the principles in tables 33−36. The firstP and the firstN stand for
‘positive’ and ‘negative’, respectively.B, M, W andA in the second position stand
for ‘belief’, ‘imagination’, ‘want’ and ‘acceptance’, respectively.S, C, I , M, L,
P, G, A in the third position stand for ‘awareness’ (introspection), (access-) ‘con-
sciousness’, ‘infallibility’, ‘imaginability’, ‘lovability’, ‘approvability’, ‘govern-
ability’ and ‘acceptability’, respectively. So,PBS, for example, stands for ‘the
principle of positive belief awareness’,NAI for ‘the principle of negative accep-
tance infallibility’, and so on.

‘1: d4.(UR ∶ (MB.FTR))’ means that every principle in 1 (in Table 33) is
provable in every system that includesd4, andURor MB andFTR, given thatc is
perfectly rational, and so on. Hence, we can establish the following results:

1: d4.(UR ∶ (MB.FTR)). 2: d5.(UR ∶ (MB.FTR)). 3: d5.(UR ∶ (MB.FTR)).
4: (dD.d4).(UR ∶ (MB.FTR)).

5: b4.(UR ∶ (MW .FTR)). 6: b5.(UR ∶ (MW .FTR)). 7: b5.(UR ∶ (MW .
FTR)). 8: (bD.b4).(UR ∶ (MW .FTR)).

9: db4.(UR ∶ (MB.FTR)). 10: db5.(UR ∶ (MB.FTR)). 11: (db5.dD).(UR ∶
(MB.FTR)). 12: (db4.dD).(UR ∶ (MB.FTR)).

Australasian Journal of Logic (16:3) 2019, Article no. 3



117

13: bd4.(UR ∶ (MW .FTR)). 14: bd5.(UR ∶ (MW .FTR)). 15: (bd5.bD).
(UR ∶ (MW .FTR)). 16: (bd4.bD).(UR ∶ (MW .FTR)).

We can employ the principles in tables 33−36 to define 64 different predicates
that can be used to describe various individuals. For every principleP, we define
a corresponding predicatePx in the following way:Πx(Px↔ ΠY(P[Y/D, x/c])),
whereP[Y/D, x/c] is like P except that every occurrence ofD has been replaced
by an occurrence ofY and every occurrence ofc has been replaced by an occur-
rence ofx. For example, fromPBSwe define the predicatePBS xin the following
way: Πx(PBS x↔ ΠY(BxY → BxBxY)), which reads as ‘x is (perfectly) posi-
tively belief aware iff for everyY, if x believesY, thenx believes thatx believes
Y’. In other words,x is (perfectly) positively belief aware iff she is aware of all
her beliefs. Furthermore, letPYZxbe one of the 32 predicates defined in this way
that begins withP, and letNYZxbe one of the 32 predicates defined in this way
that begins withN. Then we can define 32 new predicates in the following way:
Πx(YZx↔ (PYZx∧ NYZx)). For example, we define the predicateBS xin terms
of PBS xandNBS xin the following way:Πx(BS x↔ (PBS x∧ NBS x)), which
reads as ‘x is (perfectly) belief aware iff x is both positively and negatively belief
aware’. In other words,x is (perfectly) belief aware iff she is aware of all her beliefs
and non-beliefs. Among these predicates, eight are of the formBZx, eight of the
form WZx, eight of the formMZx and eight of the formAZx, whereZ stands for
S, C, I , M, A, G, L or P. LetZ be interpreted in this way. Then, we can define eight
new predicates in the following way:Πx(Zx↔ (BZx∧WZx∧ MZx∧AZx)). For
example,Πx(S x↔ (BS x∧WS x∧ MS x∧ AS x)). The informal interpretation of
these predicates is as follows:S x: x is perfectly (self-)aware; in other words, some-
one is perfectly (self-) aware iff she is aware of everything she believes and does
not believe, everything she wants and does not want, everything that is imaginable
or conceivable to her and everything that is not, and everything that is acceptable to
her and everything that is not;Cx: x is perfectly (self-)(access-)conscious;Ix: x is
perfectly (self-)infallible;Mx: x is perfectly (self-)imaginative;Ax: x is perfectly
(self-)accepting;Gx: x is perfectly (self-)governing (autonomous);Lx: x is per-
fectly (self-)loving;Px: x is perfectly (self-)approving. Finally, we will introduce
one more predicate that is defined in terms of these eight basic predicates in the
following way:Πx(Ex↔ (S x∧Cx∧ Ix ∧ Mx∧ Ax∧Gx∧ Lx∧ Px)), which says
thatx is (perfectly) enlightened iff x is perfectly (self-)aware, and so on.
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Theorem Systems
Πx(Rx→ (PBS x∧ NMS x∧ PMCx∧ NBCx)) d4.(UR ∶ (MB.FTR))
Πx(Rx→ (NBS x∧ PMS x∧ PBCx∧ NMCx)) d5.(UR ∶ (MB.FTR))
Πx(Rx→ (PBIx∧ NMIx∧ PMMx∧ NBMx)) d5.(UR ∶ (MB.FTR))
Πx(Rx→ (NBIx∧ PMIx∧ NMMx∧ PBMx)) (dD.d4).(UR ∶ (MB.FTR))
Πx(Rx→ (PWLx∧ NALx∧ PAPx∧ NWPx)) b4.(UR ∶ (MW .FTR))
Πx(Rx→ (NWLx∧ PALx∧ PWPx∧ NAPx)) b5.(UR ∶ (MW .FTR))
Πx(Rx→ (PWGx∧ NAGx∧ PAAx∧ NWAx)) b5.(UR ∶ (MW .FTR))
Πx(Rx→ (NWGx∧ PAGx∧ NAAx∧ PWAx)) (bD.b4).(UR ∶ (MW .FTR))
Πx(Rx→ (PWS x∧ NAS x∧ PACx∧ NWCx)) db4.(UR ∶ (MB.FTR))
Πx(Rx→ (NWS x∧ PAS x∧ PWCx∧ NACx)) db5.(UR ∶ (MB.FTR))
Πx(Rx→ (PWIx∧ NAIx∧ PAMx∧ NWMx)) (db5.dD).(UR ∶ (MB.FTR))
Πx(Rx→ (NWIx∧ PAIx∧ NAMx∧ PWMx)) (db4.dD).(UR ∶ (MB.FTR))
Πx(Rx→ (PBLx∧ NMLx∧ PMPx∧ NBPx)) bd4.(UR ∶ (MW .FTR))
Πx(Rx→ (NBLx∧ PMLx∧ PBPx∧ NMPx)) bd5.(UR ∶ (MW .FTR))
Πx(Rx→ (PBGx∧ NMGx∧ PMAx∧ NBAx)) (bd5.bD).(UR ∶ (MW .FTR))
Πx(Rx→ (NBGx∧ PMGx∧ NMAx∧ PBAx)) (bd4.bD).(UR ∶ (MW .FTR))

Table 37 (Some theorems in some systems)

Consider Table 37. We see, for example, thatΠx(Rx→ (PBS x∧ NMS x∧
PMCx∧NBCx)) is provable in every system that includesd4, andURor MB and
FTR. In other words, in every system that containsd4, andUR or MB andFTR,
we can prove that every perfectly rational individual is (perfectly) positively belief
aware, and so on; that is, ifx is (perfectly) rational then for everyY if x believes
Y then x believes thatx believesY, and so on. The other results are interpreted
similarly.

Theorem Systems
Πx(Rx→ (BS x∧ MS x∧ MCx∧ BCx)) (d4.d5)(UR ∶ (MB.FTR))
Πx(Rx→ (BIx∧ MIx ∧ MMx∧ BMx)) (dD.d4.d5).(UR ∶ (MB.FTR))
Πx(Rx→ (WLx∧ ALx∧ APx∧WPx)) (b4.b5).(UR ∶ (MW .FTR))
Πx(Rx→ (WGx∧ AGx∧ AAx∧WAx)) (bD.b4.b5).(UR ∶ (MW .FTR))
Πx(Rx→ (WS x∧ AS x∧ ACx∧WCx)) (db4.db5).(UR ∶ (MB.FTR))
Πx(Rx→ (WIx∧ AIx∧ AMx∧WMx)) (dD.db4.db5).(UR ∶ (MB.FTR))
Πx(Rx→ (BLx∧ MLx∧ MPx∧ BPx)) (bd4.bd5).(UR ∶ (MW .FTR))
Πx(Rx→ (BGx∧ MGx∧ MAx∧ BAx)) (bD.bd4.bd5).(UR ∶ (MW .FTR))

Table 38 (Some theorems in some systems)
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Theorem Systems
Πx(Rx→ S x) (d4.d5.db4.db5).(UR ∶ (MB.FTR))
Πx(Rx→ Cx) (d4.d5.db4.db5).(UR ∶ (MB.FTR))
Πx(Rx→ Ix) (dD.d4.d5.db4.db5).(UR ∶ (MB.FTR))
Πx(Rx→ Mx) (dD.d4.d5.db4.db5).(UR ∶ (MB.FTR))
Πx(Rx→ Ax) (bD.b4.b5.bd4.bd5).(UR ∶ (MW .FTR))
Πx(Rx→Gx) (bD.b4.b5.bd4.bd5).(UR ∶ (MW .FTR))
Πx(Rx→ Lx) (bD.b4.b5.bd4.bd5).(UR ∶ (MW .FTR))
Πx(Rx→ Px) (b4.b5.bd4.bd5).(UR ∶ (MW .FTR))
Πx(Rx→ Ex) (bD.b4.b5.bd4.bd5.dD.d4.d5.db4.db5).(UR ∶ (MW .MB.FTR))

Table 39 (Some theorems in some systems)

Theorem Systems
ΠX◻ X↔ ◻ΠXX; ΠXUX↔ UΠXX Every
ΣX◇ X↔◇ΣXX; ΣXMX↔ MΣXX Every
◇ΠXX→ ΠX◇ X; MΠXX→ ΠXMX Every
ΣX◻ X→ ◻ΣXX; ΣXUX→ UΣXX Every
Πx(Rx→ (ΠYWxY↔WxΠYY)); Πx(Rx→ (ΠYBxY↔ BxΠYY)) Every
Πx(Rx→ (ΣYAxY↔ AxΣYY)); Πx(Rx→ (ΣYCxY↔ CxΣYY)) Every
Πx(Rx→ (AxΠYY→ ΠYAxY)); Πx(Rx→ (CxΠYY→ ΠYCxY)) Every
Πx(Rx→ (ΣYWxY→WxΣYY)); Πx(Rx→ (ΣYBxY→ BxΣYY)) Every

Table 40 (Barcan-like theorems involving propositional quantifiers)

6 Soundness and completeness theorems

In this section, I will show that every (non-augmented) system in this paperis
sound and complete with respect to its semantics (from now on, ‘system’ means
‘non-augmented system’). The definitions of ‘soundness’ and ‘completeness’ are
standard (see the introduction for some references).

Lemma 6. (Locality): LetM1 = ⟨D,W,R,A,D,v1⟩ andM2 = ⟨D,W,R,A,D,v2⟩
be two models. Since the domain ofM1 is identical with the domain ofM2:
L(M1) = L(M2). We will call this languageL. Moreover, let A be any closed
formula ofL such that v1 and v2 agree on the denotations of all the predicates,
constants and matrices in it. Then for allω ∈ W: v1ω(A) = v2ω(A).

Proof. Atomic formulas.v1ω(Pa1 . . .an) = 1 iff ⟨v1(a1), . . . ,v1(an)⟩ ∈ v1ω(P) iff
⟨v2(a1), . . . ,v2(an)⟩ ∈ v2ωτ(P) iff v2ω(Pa1 . . .an) = 1.

Suppose thatv1ω(Ram) = 0, thatM is a matrix wherexm is the first free vari-

able inM and thatam is the constant inM[a1, . . . ,an/
→

x] that replacesxm. Then:
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v2ω(Ram) = 0 andv1ω(M[a1, . . . ,an/
→

x]) = 1 iff ⟨v1(a1), . . . ,v1(an)⟩ ∈ v1ω(M) iff

⟨v2(a1), . . . ,v2(an)⟩ ∈ v2ω(M) iff v2ω(M[a1, . . . ,an/
→

x]) = 1.
Truth-functional connectives. Straightforward.
(◻). v1ω(◻B) = 1 iff for all ω′ such thatRωω′, v1ω′(B) = 1 iff for all ω′ such

thatRωω′, v2ω′(B) = 1 [the IH (the induction hypothesis)] iff v2ω(◻B) = 1.
Other alethic operators. Similar.
(BcC). A is of the formBcC. Assume thatv1ω(BcC) = 1. We have two cases:

v1ω(Rc) = 0 or v1ω(Rc) = 1. Supposev1ω(Rc) = 0. Thenv2ω(Rc) = 0. Hence,
v2ω(BcC) = 1. And vice versa. Supposev1ω(Rc) = 1. Then for allω′ such that
Dv1(c)ωω′: v1ω′(C) = 1. Accordingly, for allω′ such thatDv2(c)ωω′: v2ω′(C) =
1 [by assumption and the IH]. Furthermore,v2ω(Rc) = 1. Hence,v2ω(BcC) = 1.
And vice versa. Consequently,v1ω(BcC) = 1 iff v2ω(BcC) = 1.

Other boulesic and doxastic operators. Similar.
(Π). v1ω(ΠxB) = 1 iff for all kd ∈ L, v1ω(B[kd/x]) = 1 iff for all kd ∈

L, v2ω(B[kd/x]) = 1 [by the IH, and the fact thatv1ω(kd) = v2ω(kd) = d] iff
v2ω(ΠxB) = 1.

The particular quantifier. Similar.

Lemma 7. (Denotation): LetM= ⟨D,W,R,A,D,v⟩ be a model and let A be any
formula ofL(M) with at most one free variable x. Furthermore, let a and b be
any two constants such that v(a) = v(b). Then, vω(A[a/x]) = vω(A[b/x]), for any
ω ∈ W.

Proof. Atomic formulas. Suppose that the formula has one occurrence of ‘a’ dis-
tinct from eachai . Then,vω(Pa1 . . .a . . .an) = 1 iff ⟨v(a1), . . . ,v(a), . . . ,v(an)⟩ ∈
vω(P) iff ⟨v(a1), . . . ,v(b), . . . ,v(an)⟩ ∈ vω(P) iff vω(Pa1 . . .b . . .an) = 1. Other
cases. Similar.

Supposevω(Ram) = 0, thatM is a matrix wherexm is the first free variable inM

and thatam is the constant inM[a1, . . . ,a, . . . ,an/
→

x] (M[a1, . . . ,b, . . . ,an/
→

x]) that
replacesxm. (To illustrate, we assume that the formula has one occurrence of ‘a’

distinct from eachai and thatam is nota (b).) Then:vω(M[a1, . . . ,a, . . . ,an/
→

x]) =
1 iff ⟨v(a1), . . . ,v(a), . . . ,v(an)⟩ ∈ vω(M) iff ⟨v(a1), . . . ,v(b), . . . ,v(an)⟩ ∈ vω(M)
iff vω(M[a1, . . . ,b, . . . ,an/

→

x]) = 1.
Truth-functional connectives. Straightforward.
(◻). vω(◻B[a/x]) = 1 iff for all ω′ such thatRωω′, vω′(B[a/x]) = 1 iff for all

ω′ such thatRωω′, vω′(B[b/x]) = 1 [the IH] iff vω(◻B[b/x]) = 1.
Other alethic operators. Similar.
(Bt). A is of the formBtC. Eithervω(Rt) = 1 or vω(Rt) = 0. We have already

shown that the result holds ifvω(Rt) = 0. Accordingly, suppose thatvω(Rt) = 1.
Sincex is the only free variable,t cannot be a variable distinct fromx. So,t is either
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x or a constant. Supposet is x. Thenvω(BxC[a/x]) = 1 iff vω(BaC[a/x]) = 1 iff
for all ω′ such thatDv(a)ωω′, vω′(C[a/x]) = 1 iff for all ω′ such thatDv(b)ωω′,
vω′(C[b/x]) = 1 [by the fact thatv(a) = v(b) and the IH] iff vω(BbC[b/x]) = 1
iff vω(BxC[b/x]) = 1. Supposet is a constant, sayc. Thenvω(BcC[a/x]) = 1 iff
for all ω′ such thatDv(c)ωω′, vω′(C[a/x]) = 1 iff for all ω′ such thatDv(c)ωω′,
vω′(C[b/x]) = 1 [by the IH] iff vω(BcC[b/x]) = 1.

Other boulesic and doxastic operators. Similar.
(Π). If x = y, the result is trivial, for thenA[a/x] = A[b/x] = A. So, suppose

that x andy are distinct. Then,(ΠyB)[b/x] = Πy(B[b/x]) and(B[b/x])[a/y] =
(B[a/y])[b/x]. vω((ΠyB)[a/x]) = 1 iff vω(Πy(B[a/x])) = 1 iff for all kd ∈
L(M), vω((B[a/x])[kd/y]) = 1 iff for all kd ∈ L(M), vω((B[kd/y])[a/x]) = 1
iff for all kd ∈ L(M), vω((B[kd/y])[b/x]) = 1 [the IH] iff for all kd ∈ L(M),
vω((B[b/x])[kd/y]) = 1 iff vω(Πy(B[b/x])) = 1 iff vω((ΠyB)[b/x]) = 1.

The particular quantifier. Similar.

6.1 Soundness theorem

LetM = ⟨D,W,R,A,D,v⟩ be a model and letB be a branch in a tableau. ThenB
is satisfiable inM iff there is a functionf from 0,1,2, . . . to W such that

(i) A is true in f (i) in M, for every nodeA, i onB,
(ii) if ir j is onB, thenR f (i) f ( j) in M,
(iii) if iAc j is onB, thenAv(c) f (i) f ( j) in M.
(iv) if iDc j is onB, thenDv(c) f (i) f ( j) in M.
(v) if i = j is onB, then f (i) is f ( j).
We shall say thatf shows thatB is satisfiable inM if these conditions are

fulfilled.

Lemma 8. (Soundness Lemma): LetB be any branch of a tableau and letM be
any model. IfB is satisfiable inM and a tableau rule is applied to it, then there is
a modelM′ and an extension ofB, B′, such thatB′ is satisfiable inM′.

Proof. Let f be a function that shows that the branchB is satisfiable inM.
Connectives and modal operators. Straightforward.
(W). Suppose thatRc, i, WcC, i, andiAc j are onB, and that we apply theW-

rule. Then we get an extension ofB that includesC, j. SinceB is satisfiable inM,
WcC is true in f (i) andRc is true in f (i). Moreover, for anyi and j such thatiAc j
is onB, Av(c) f (i) f ( j). Thus by the truth conditions forWcC, C is true in f ( j).

(C). Suppose thatRc, i andCcB, i are onB and that we apply theC-rule. Then
we get an extension ofB that includes nodes of the formiDc j andB, j. SinceB
is satisfiable inM, bothCcB andRcare true inf (i). Accordingly, for someω in
W, Dv(c) f (i)ω andB is true inω [by the truth conditions forCcB and the fact that
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Rc is true in f (i)]. Let f ′ be the same asf except thatf ′( j) = ω. Since f and
f ′ differ only at j, f ′ shows thatB is satisfiable inM. Moreover, by definition
Dv(c) f ′(i) f ′( j), andB is true in f ′( j).

Other boulesic and doxastic cases. Similar.
(Π). Suppose thatΠxA, i is onB and that we apply theΠ-rule. Then we get an

extension ofB that includes a node of the formA[a/x], i. SinceB is satisfiable in
M,M makesΠxA true in f (i). Accordingly,A[kd/x] is true in f (i) in M, for all
kd ∈ L(M). Let d be such thatv(a) = v(kd). By the Denotation Lemma,A[a/x]
is true in f (i) in M. Hence, we can takeM′ to beM.

(Σ). Suppose thatΣxA, i is onB and that we apply theΣ-rule to get an extension
of B that includes a node of the formA[c/x], i (wherec is new).ΣxA is true in f (i)
in M, for B is satisfiable inM. Accordingly, there is somekd ∈ L(M) such
thatM makesA[kd/x] true in f (i). LetM′ = ⟨D,W,R,A,D,v′⟩ be the same as
M except thatv′(c) = d. A[kd/x] is true in f (i) in M′ sincec does not occur
in A[kd/x], by the Locality Lemma. By the Denotation Lemma and the fact that
v′(c) = d = v′(kd), A[c/x] is true in f (i) in M′. Furthermore,M′ makes all
other formulas on the branch true at their respective worlds as well, by theLocality
Lemma, sincec does not occur in any other formula on the branch.

(¬Π) and (¬Σ). Straightforward.
Accessibility rules. Here is one example.
(T − WNI). Suppose thatiAc j and jrk are onB, and that we apply (T −

WNI) to give an extended branch containingjDck. SinceB is satisfiable inM,
Av(c) f (i) f ( j) andR f ( j) f (k). Hence,Dv(c) f ( j) f (k) sinceM satisfies condi-
tion C −WNI. Consequently, the extension ofB is satisfiable inM.

Other cases. Similar.

Theorem 9. (Soundness Theorem): Every system S in this paper is strongly sound
with respect to its semantics.

Proof. Let M be the class of models that corresponds toS. We show the ‘contra-
position’. So, suppose thatB does not follow fromΓ in M . Then the premises inΓ
are true and the conclusionB false in some worldω in M . Consider anS-tableau
whose initial list consists ofA,0 for everyA ∈ Γ and¬B,0, where ‘0’ refers toω.
Then the initial list is satisfiable inM . If we apply a rule to this list, it produces at
least one extension that is satisfiable inM (by the Soundness Lemma). Hence, we
can find a whole branch such that every initial section of this branch is satisfiable
in M . Suppose this branch is closed. Then some sentence is be both true and false
in some possible world inM . Still, this is impossible. Consequently, the tableau is
open. In conclusion,B is not derivable fromΓ in S.
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6.2 Completeness theorem

Definition 10. (Induced Model): LetB be an open complete branch of a tableau,
let i, j, k, etc. be numbers onB, and let I be the set of numbers onB. We shall
say that i⇌ j just in case i= j, or ‘i = j’ or ‘ j = i’ occurs onB. ⇌ is an
equivalence relation and[i] is the equivalence class of i. Moreover, let C be the
set of all constants onB. Define a∼ b to mean that a= b,0 is on the branch.
a ∼ b is obviously an equivalence relation. Let[a] be the equivalence class of a
under∼. The modelM = ⟨D,W,R,A,D,v⟩ induced byB is defined as follows.
D = {[a] ∶ a ∈ C} (or, if C = ∅, D = {o} for an arbitrary o). (o is not in the
extension of anything.) W= {ω[i] ∶ i occurs onB}, Rω[i]ω[ j] iff ir j occurs on
B, Av(a)ω[i]ω[ j] iff iAa j and Dv(a)ω[i]ω[ j] iff iDa j occurs onB. v(a) = [a],
and ⟨[a1], . . . , [an]⟩ ∈ vω[i](P) iff Pa1 . . .an, i is onB, given that P is any n-place
predicate other than identity. If¬Ram, i occurs onB and M is an n-place matrix
with instantiations on the branch (where xm is the first free variable in M and am is

the constant in M[a1, . . . ,an/
→

x] that replaces xm), then⟨[a1], . . . , [an]⟩ ∈ vω[i](M)

iff M[a1, . . . ,an/
→

x], i occurs onB. (Due to the identity rules this is well defined.)
When we have a= b,0, b = c,0, etc. we choose one single object for all constants
to denote.

If a tableau system does not includeT−dOor T−WO,⇌ is reduced to identity
and[i] = {i}. Hence, in such systems, we may takeW to be{ωi ∶ i occurs onB}
and dispense with the equivalence classes.

Lemma 11. (Completeness Lemma): Let B be an open branch in a complete
tableau and letM be a model induced byB. Then, for every formula A:

(i) if A, i is onB, then vω[i](A) = 1, and
(ii) if ¬A, i is onB, then vω[i](A) = 0.

Proof. Atomic formulas. Pa1 . . .an, i is on B ⇒ ⟨[a1], . . . , [an]⟩ ∈ vω[i](P) ⇒
⟨v(a1), . . . ,v(an)⟩ ∈ vω[i] (P)⇒ vω[i](Pa1 . . .an) = 1.

¬Pa1 . . .an, i is onB ⇒ Pa1 . . .an, i is not onB (B open)⇒ ⟨[a1], . . . , [an]⟩ ∉
vω[i](P)⇒ ⟨v(a1), . . . ,v(an)⟩ ∉ vω[i](P)⇒ vω[i](Pa1 . . .an) = 0.

Suppose thatM is a matrix wherexm is the first free variable andam is the

constant inM[a1, . . . ,an/
→

x] that replacesxm and thatvω[i](Ram) = 0. Then:

M[a1, . . . ,an/
→

x], i occurs onB⇒ ⟨[a1], . . . , [an]⟩ ∈ vω[i](M)⇒ ⟨v(a1), . . . ,v(an)⟩

∈ vω[i](M)⇒ vω[i](M[a1, . . . ,an/
→

x]) = 1. Furthermore,¬M[a1, . . . ,an/
→

x], i oc-

curs onB⇒ M[a1, . . . ,an/
→

x], i is not onB (B open)⇒ ⟨[a1], . . . , [an]⟩ ∉ vω[i](M)

⇒ ⟨v(a1), . . . ,v(an)⟩ ∉ vω[i](M)⇒ vω[i](M[a1, . . . ,an/
→

x]) = 0.
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a = b, i is onB⇒ a ∼ b (T −N =)⇒ [a] = [b]⇒ v(a) = v(b)⇒ vω[i](a = b) =
1.

¬a = b, i is onB⇒ a = b,0 is not onB (B open)⇒ it is not the case thata ∼ b
⇒ [a] ≠ [b]⇒ v(a) ≠ v(b)⇒ vω[i](a = b) = 0.

Other truth-functional connectives and modal operators. Straightforward.
Boulesic and doxastic operators. (¬B). Suppose¬BcD, i is onB. Furthermore,

suppose thatRc, i is not onB. Then¬Rc, i is onB [by CUT]. Hence,BcD is false
in ω[i] by definition and previous steps. SupposeRc, i is onB. Then the¬B-rule
has been applied to¬BcD, i and we haveCc¬D, i on B. For the branch is com-
plete. Then theC-rule has been applied toCc¬D, i, since the branch is complete.
Hence, for some newj, iDc j and¬D, j occur onB. By the induction hypothesis,
Dv(c)ω[i]ω[ j], andD is false inω[ j]. SinceRc, i is onB, v(c) is perfectly rational
in ω[i]. Consequently,BcD is false inω[i], as required.

Other boulesic and doxastic operators. Similar.
Quantifiers. (Σ). Suppose thatΣxD, i is on the branch. The tableau is com-

plete; so, (Σ) has been applied. Hence, for somec, D[c/x], i is on the branch.
Accordingly, vω[i](D[c/x]) = 1, by (IH). For somekd ∈ L(M), v(c) = d, and
v(kd) = d. Therefore,vω[i](D[kd/x]) = 1, by the Denotation Lemma. In con-
clusion,vω[i](ΣxD) = 1. Suppose that¬ΣxD, i is on the branch. The tableau is
complete; so, (¬Σ) has been applied. Hence,Πx¬D, i is on the branch. Again,
since the tableau is complete (Π) has been applied. Accordingly, for allc ∈ C,
¬D[c/x], i is on the branch. It follows thatvω[i](D[c/x]) = 0 for all c ∈ C [by
the induction hypothesis]. Ifkd ∈ L(M), then for somec ∈ C, v(c) = v(kd). By
the Denotation Lemma, for allkd ∈ L(M), vω[i](D[kd/x]) = 0. In conclusion,
vω[i](ΣxD) = 0.

The case forΠ is similar.

Theorem 12. (Completeness Theorem): Every system in this paper is strongly
complete with respect to its semantics.

Proof. First we establish that the theorem holds for the weakest systemBD. Then
we show how it can be extended to stronger systems. LetM be the class of models
that corresponds toBD.

We prove the ‘contraposition’. Suppose thatB is not derivable fromΓ in BD.
Then it is not the case that there is a closedBD-tableau whose initial list comprises
A,0 for everyA in Γ and¬B,0. Let t be a completeBD-tableau whose initial list
comprisesA,0 for everyA in Γ and¬B,0. Thent must be open. Accordingly,
there is at least one open branch int, sayB. The model induced byB makes all
the premises inΓ true andB false inω[0]. Consequently, it is not the case thatB
follows fromΓ in M .
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To show that all extensions ofBD are complete with respect to their semantics,
we have to check that the model induced by the open branch in each case isof the
right kind. To do this we first go through every single semantic condition, then we
combine each of the individual arguments. Here is one step in the proof to illustrate
the method.

C −WBP. Suppose thatAv(c)ω[i]ω[ j]. TheniAc j occurs onB [by the defini-
tion of an induced model]. SinceB is complete (T−WBP) has been applied. Hence,
for somek, jDck and jrk are onB. Accordingly, for someω[k], Dv(c)ω[ j]ω[k] and
Rω[ j]ω[k], as required [by the definition of an induced model].

Other cases. Similar.

7 Some examples

In this section, I will prove some examples that were mentioned in the introduction.
First, I will show that the following instance of (ii) inExample 2 is a theorem in
every system that includesT −MB, T −WP andT −ab4: if x is perfectly rational,
thenx wants to pass right through this stonewall only ifx believes that it is possible
to pass right through this stonewall. This instance of (ii) can be symbolised in the
following way in our systems:Πx(Rx→ (WxPx → Bx ◇ Px)). The following
tableau establishes this result:

(1) ¬Πx(Rx→ (WxPx→ Bx ◇ Px)),0
(2) Σx¬(Rx→ (WxPx→ Bx ◇ Px)),0 [1,¬Π]

(3) ¬(Rc→ (WcPc→ Bc ◇ Pc)),0 [2,Σ]
(4) Rc,0 [3,¬→]

(5) ¬(WcPc→ Bc ◇ Pc),0 [3,¬→]
(6)WcPc,0 [5,¬→]

(7) ¬Bc ◇ Pc,0 [5,¬→]
(8) Cc¬◇ Pc,0 [4, 7,¬B]

(9) 0Dc1 [4, 8,C]
(10)¬◇ Pc,1 [4, 8,C]
(11)◻¬Pc,1 [10,¬◇]
(12) 0r1 [9, T − MB]
(13) 1Ac2 [T −WP]
(14) 1r2 [T −WP]

(15) 0Ac2 [12, 13,T − ab4]
(16) Pc,2 [4, 6, 15,W ]
(17)¬Pc,2 [11, 14,◻]

(18)∗ [16, 17]
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Since the system that includesT − MB, T − WP andT − ab4 is valid with
respect to the class of all models that satisfyC−MB, C−WP andC−ab4 (by the
soundness theorems in Section 6), it follows thatΠx(Rx→ (WxPx→ Bx ◇ Px))
is valid in the class of all models that satisfy these conditions.14 Q.E.D.

Second, we will turn toThe Doctoral Student Argument (seeExample 3).
Recall that this argument includes the following premises and conclusions:

(P1) Every student in the room wants to become a doctor some time in the
future. (P2) Carl is a student in the room. So, (C3) Carl wants to become adoctor
some time in the future. (P4) Carl believes that it is (historically) necessary that he
will become a doctor some time in the future only if he studies hard. Hence, (C5)
if Carl is perfectly rational (wise), Carl wants to study hard.

This argument can be symbolised in the following way: (P1′)Πx(S x→WxDx)
(Every student in the room wants to become a doctor some time in the future),
where ‘S x’ stands for ‘x is a student in the room’ and ‘Dx’ for ‘ x will become a
doctor some time in the future’. (P2′) S c (Carl is a student in the room), where
‘c’ refers to Carl. (C3′) WcDc (Carl wants to become a doctor some time in the
future). (P4′) Bc ◻ (Dc→ Hc) (Carl believes that it is (historically) necessary that
he will become a doctor some time in the future only if he studies hard), where
‘Hc’ stands for ‘c (Carl) studies hard’. (C5′) Rc → WcHc (If Carl is perfectly
rational (wise), Carl wants to study hard). (C3′) follows from (P1′) and (P2′) in
every system in this paper. (C5′) follows from (C3′) and (P4′) in every system that
includes the tableau rulesT − dT andT − MW . Let us now show this. (‘MP’ is
an abbreviation of Modus Ponens, which is a rule that is derivable in our systems.)
(3) is the ‘negation’ of (C3′).

(1)Πx(S x→WxDx),0 [P1′]
(2) S c,0 [P2′]

(3) ¬WcDc,0 [The ‘negation’ of C3′]
(4) S c→WcDc,0 [1,Π]
(5)WcDc,0 [2, 4,MP]

(6) ∗ [3, 5]

Now we use the conclusion (C3′) as a premise in a new argument for (C5′). (3)
below is the ‘negation’ of (C5′).

14Note thatΠx(Rx→ (WxPx → Bx ◇ Px)) also can be proved in many other systems in this
paper, for example, in every system that includesT −WP andT − db4. Similar remarks apply to
many other theorems that are mentioned in this paper.
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(1)WcDc,0 [C3′]
(2)Bc ◻ (Dc→ Hc),0 [P4′]

(3) ¬(Rc→WcHc),0 [The ‘negation’ of C5′]
(4) Rc,0 [3,¬→]

(5) ¬WcHc,0 [3,¬→]
(6)Ac¬Hc,0 [4, 5,¬W ]

(7) 0Ac1 [4, 6,A]
(8) ¬Hc,1 [4, 6,A]

(9) Dc,1 [4, 1, 7,W ]
(10) 0Dc0 [T − dT]

(11)◻(Dc→ Hc),0 [4, 2, 10,B]
(12) 0r1 [7, T − MW ]

(13) Dc→ Hc,1 [11, 12,◻]
(14) Hc,1 [9, 13,MP]

(15)∗ [8, 14]

The tableaux above show that both subarguments inThe Doctoral Student
Argument are ‘syntactically’ valid. In the first argument, we have not used any
special tableau rules. Hence, the conclusion is derivable from the premises in every
system in this paper. By the soundness results (see Section 6) it follows that the
argument is valid in the class of all models. In the second subargument, we have
used the tableau rulesT−MW andT−dT. Hence, the conclusion is derivable from
the premises in every system that includes these rules. By the soundness results in
Section 6 it follows that the argument is valid in the class of all models that satisfy
C − MW andC − dT. It follows thatThe Doctoral Student Argument is valid in
the class of all models that satisfyC − MW andC − dT. Q.E.D.

Third, we will now show that the conclusion inThe Doctoral Student Argu-
ment II (seeExample 4) is not derivable from the premises in our weakest system
BD. Recall that this argument consists of the following premises and conclusion:
(P1) Every student in the room wants to become a doctor some time in the future.
(P2) Carl is a student in the room. (P3) Carl believes that it is (historically)neces-
sary that he will become a doctor some time in the future only if he studies hard.
Hence, (C4) Carl wants to study hard. These sentences can be symbolised in the
following way: (P1′) Πx(S x→ WxDx), (P2′) S c, (P3′) Bc ◻ (Dx → Hx) and
(C4′) WcHc, where the predicates are interpreted as in The Doctoral Student Ar-
gument. To show this, we construct a semantic tableau that starts with the premises
and the negation of the conclusion. More precisely, our tableau will begin with the
following nodes: (P1′), 0, (P2′), 0, (P3′), 0 and¬ (C4′), 0.

Australasian Journal of Logic (16:3) 2019, Article no. 3



128

(1)Πx(S x→WxDx),0 [P1′]
(2) S c,0 [P2′]

(3)Bc ◻ (Dc→ Hc),0 [P3′]
(4) ¬WcHc,0 [The ‘negation’ of C4′]

(5) S c→WcDc,0 [1,Π]
↲ ↳

(6) ¬S c,0 [5,→] (7) WcDc,0 [5,→]
(8) ∗ [2, 6] ↲ ↳

(9) Rc,0 [CUTR] (10) ¬Rc,0 [CUTR]
(11)c = c,0 [T −R=]

The branch in the middle can be extended further. However, the branch tothe
right is open and complete. Hence, we can use this branch to read off a counter-
model. This countermodel can then be used to verify that the argument is notvalid
in the class of all models.

The matrix ofBc ◻ (Dc→ Hc) is Bx1 ◻ (Dx2 → Hx3); the matrix ofWcHc is
Wx1Hx2; and the matrix ofWcDc isWx1Dx2.

W = {ω0}, D = {[c]}, v(c) = [c], and the extensions ofD andH are empty
in ω0. R, A and D are empty. vω0(Bx1 ◻ (Dx2 → Hx3)) is the extension of
Bx1 ◻ (Dx2 → Hx3) in ω0, vω0(Wx1Hx2) is the extension ofWx1Hx2 in ω0, and
vω0(Wx1Dx2) is the extension ofWx1Dx2 in ω0.

S c,0 is on the branch. Accordingly,[c] is in the extension ofS in ω0 in M.
Hence,S cis true inω0 in M. ¬Rc,0 is on the branch. Therefore,[c] is not in the
extension ofR in ω0 in M, and so,Rc is false inω0 in M.

If ¬Ram, i is on the open branchB and M is an n-place matrix with instan-
tiations onB (where xm is the first free variable inM and am is the constant
in M[a1, . . . ,an/x1, . . . , xn] that replacesxm), then ⟨[a1], . . . , [an]⟩ ∈ vωi(M) iff
M[a1, . . . ,an/x1, . . . , xn], i occurs onB.

Bx1(Dx2 → Hx3)[c,c,c/x1, x2, x3],0 (= Bc(Dc → Hc),0) is on the branch.
c is the constant inBx1(Dx2 → Hx3)[c,c,c/x1, x2, x3] that replacesx1 and x1

is the first free variable inBx1(Dx2 → Hx3). Therefore,⟨[c], [c], [c]⟩ is an el-
ement invω0(Bx1(Dx2 → Hx3)). If Rc is false inω0 in M, thenBx1(Dx2 →

Hx3)[c,c,c/x1, x2, x3] is true inω0 inM iff ⟨v(c),v(c),v(c)⟩ is in vω0(Bx1(Dx2 →

Hx3)). It follows thatBx1(Dx2 → Hx3)[c,c,c/x1, x2, x3] is true inω0 in M iff
⟨v(c),v(c),v(c)⟩ is in vω0(Bx1(Dx2 → Hx3)). ⟨v(c),v(c),v(c)⟩ is in
vω0(Bx1(Dx2 → Hx3)). So, we conclude thatBx1(Dx2 → Hx3)[c,c,c/x1, x2, x3]
is true inω0 in M. Bx1(Dx2 → Hx3)[c,c,c/x1, x2, x3] = Bc(Dc→ Hc). It follows
thatBc(Dc→ Hc) is true inω0 in M.

If Rc is false inω0 in M, thenWx1Hx2[c,c/x1, x2] is true inω0 in M iff
⟨v(c),v(c)⟩ is an element invω0(Wx1Hx2). Consequently,Wx1Hx2[c,c/x1, x2]
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is true inω0 in M iff ⟨v(c),v(c)⟩ ∈ vω0(Wx1Hx2). Wx1Hx2[c,c/x1, x2],0 (=
WcHc,0) is not on the branch.c is the constant inWx1Hx2[c,c/x1, x2] that re-
places the first free variable inWx1Hx2, namelyx1. Hence,⟨[c], [c]⟩ is not an
element invω0(Wx1Dx2) (vω0(Wx1Dx2) is empty). Therefore,⟨v(c),v(c)⟩ is not
in vω0(Wx1Hx2). So, it is not the case thatWx1Hx2[c,c/x1, x2] is true inω0 in M.
It follows that it is not the case thatWcHc is true inω0 in M, that is,WcHc is
false inω0 in M. ForWx1Hx2[c,c/x1, x2] = WcHc.

Wx1Dx2[c,c/x1, x2],0 (that is,WcDc,0) is on the branch. The first free vari-
able inWx1Dx2 is x1 and c is the constant inWx1Dx2[c,c/x1, x2] that replaces
x1. So,⟨[c], [c]⟩ is an element invω0(Wx1Dx2). If Rc is false inω0 in M, then
Wx1Dx2[c,c/x1, x2] is true inω0 in M iff ⟨v(c),v(c)⟩ ∈ vω0(Wx1Dx2). Hence,
Wx1Dx2[c,c/x1, x2] is true inω0 inM iff ⟨v(c),v(c)⟩ ∈ vω0(Wx1Dx2). ⟨v(c),v(c)⟩
∈ vω0(Wx1Dx2). Consequently,Wx1Dx2[c,c/x1, x2] is true in ω0 in M.
Wx1Dx2[c,c/x1, x2] = WcDc. In conclusion,WcDc is true inω0 in M.

We have shown thatS cis true inω0 in M and thatWcDc is true inω0 in M.
Hence,S c→WcDc is true inω0 in M. Since[c] is the only object in our domain,
it follows thatΠx(S x→WxDx) is true inω0 in M.

It follows that all the premises inThe Doctoral Student Argument II are true
in ω0 in M, while the conclusion in this argument is false inω0 in M. Hence, the
argument is invalid in the class of all models. Q.E.D.
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