AUSTRALASIAN JOURNAL OF L oGIc

Boulesic-Doxastic Logic

Daniel Ronnedal
Department of Philosophy, Stockholm University
daniel.ronnedal@philosophy.su.se

Abstract

In this paper, | will develop a set of boulesic-doxastic ¢atl systems
and prove that they are sound and complete. Boulesic-doXagic consists
of two main parts: a boulesic part and a doxastic part. By l¢sia logic’
| mean ‘the logic of the will’, and by ‘doxastic logic’ | mearthe logic of
belief’. The first part deals with ‘boulesic’ concepts, exggions, sentences,
arguments and theorems. | will concentrate on two types ofdsic expres-
sion: ‘individual x wants it to be the case that’ and ‘individuahccepts that
it is the case that'. The second part deals with ‘doxasticicepts, expres-
sions, sentences, arguments and theorems. | will conterdratwo types
of doxastic expression: ‘individuad believes that’ and ‘it is imaginable to
individual x that’. Boulesic-doxastic logic investigates how thesecemts
are related to each other. Boulesic logic is a new kind ofdoddoxastic
logic has been around for a while, but the approach to thisdbraf logic in
this paper is new. Each system is combined with modal logiie tmio kinds
of modal operators for historical and absolute necessityadicate logic
with necessary identity and ‘possibilist’ quantifiers. euwskind of possible
world semantics to describe the systems semanticallyolskstch out how
our basic language can be extended with propositional gt All the
systems developed in this paper are new.

Keywords: Boulesic-doxastic logic, Boulesic logic, doxastic logmodal
logic, semantic tableaux, practical rationality.

1 Introduction

There are two important types of propositional attitudes: boulesic (frorGthek
‘boulesis’) and doxastic (from the Greek ‘doxa’). Boulesic attitudesuihe atti-
tudes such as wanting, willing, accepting, consenting, intending, desigjegt-

ing, loving and hating, while doxastic attitudes include attitudes such as beljeving
holding true, conceiving and imagining. Boulesic logic deals with the fornoer, d
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astic logic with the lattér, and boulesic-doxastic logic investigates both. In this
paper, | will focus on two types of boulesic expression: ‘individualants it to

be the case that’ and ‘individual accepts that it is the case that’, and two types
of doxastic expression: ‘individuaibelieves that’ and ‘it is imaginable to individ-
ual x that’. Boulesic-doxastic logic deals with both boulesic and doxastic words,
concepts, expressions, sentences, principles, arguments and systdmath the
relationships between these concepts, and so on.

In this paper, | will develop a set of boulesic-doxastic tableau systems
will investigate several interesting boulesic-doxastic principles and | widbes
lish some important theorems. Each system is combined with modal logic with
two kinds of modal operators for historical and absolute necessity, mticate
logic with necessary identity and ‘possibilist’ quantifiérs.also sketch out how
our basic language can be extended with propositional quantifiers pangé can
define several interesting concepts that can be used to say somethihgvabbil
might mean to be (perfectly) rational or wise, for example the conceptridggie
self-awarenes$ All the systems developed in this paper are Rdwvill use a kind
of possible world semantics to describe them semantically and | will prove that
each (non-augmented) logic is sound and complete with respect to its semantics
A non-augmented logic does not include the propositional quantifiers.

The systems in this paper include four operators that can be used teaspre
various propositional attitudesy, A, B andC. Lett be a term (that represents
some individual) and Ieb be any well-formed sentence. Then all of the following
formulas are well-formed in our languag®’D, A;D, B;D andCD. ‘W,D’ says
that individualt wants it to be the case th&t, ‘.A;D’ says thatt accepts that it

For more on doxastic logic (and epistemic logic, which deals with the comddgtowledge)
see, for example, Fagin, Halpern, Moses and Vardi (1995), GaetteGribomont (2006), Hintikka
(1962), Meyer and van der Hoek (1995) and van Ditmarsch, vakidek and Kooi (2008).

2The kind of technique | use is inspired by, for exampleffrag (1967), Priest (2008) and
Smullyan (1968). A general introduction to the tableau method can be iod'Agostino, Gabbay,
Hahnle and Posegga (1999). See also Fitting and Mendelsohn (1998).

3For various introductions to ordinary (alethic) modal logic, see, fompta, Blackburn, de
Rijke and Venema (2001), Blackburn, van Benthem, Wolter (2007ll&h (1980), Fitting and
Mendelsohn (1998), Gabbay (1976), Garson (2006), Kracl&9)l8nd Lewis and Langford (1932).
For more on modal predicate logic see, for example, Barcan (Mp{t946), Carnap (1946), Garson
(1984, 2006), Hughes and Cresswell (1968) and Priest (2008).

“For more on propositional quantifiers see, for example, Bull (1968 (1970, 1980), Gallin
(1975), Grover (1972), Kaplan (1970), Kripke (1959) and Lewid hangford (1932, pp. 178.98),
and for more on the concept of rationality, see Mele (2004).

SBoulesic logic is an entirely new kind of logic. However, for some vaguighjlar approaches,
see, for example, Broersen (2011), Broersen, Dastani anderdiode (2001), Cohen and Levesque
(1990), Gensler (2002), Chapter 10, Lorini and Herzig (2008)r&land Klein (2015) and Semmling
and Wansing (2008).
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is the case thaD (or thatt consents to the state offairs thatD), ‘B;D’ says
thatt believes that it is the case thBt and C;D’ says that it is (doxastically)
conceivable td thatD. SinceD is any well-formed sentence it is meaningful to
speak about wanting anything, believing anything, &can be about the present
time (I want to eat (now); | believe that it is raining (now)), about the fat{Mary
wants to go for a walk tomorrow; He believes that Germany will win the soccer
tournament), or about the past (I want [hope, desire, wish] that | raagieod
impression yesterddy | believe that | paid the bill last week); it can be about
a contingent state offiairs (Harry wants to go to the movies this weekend; She
believes that Paris is the capital of France) or a necessary stdfaicf éHe wants
the Goldbach conjecture to be true; She believes that the law of non-dictitva is
valid); it can be about facts concerning the ‘natural’ world (She warmtsvisather
to be sunny; He believes that water includes oxygen) or about the ‘merddd
(She wants to believe that he is faithful to her; He believes that he wants to be
faithful to her); it can be about(He wants to be smart; She believes that she is
smart) or about some other individual or individuals (She wants Will to taite o
the trash; He believes that Sally believes that he is a doctor), it can bethbws
within t's control (He wants to go to the store; She believes that she will call him)
or about things that are not withtis control (Fanny wants Peter to love her; Paul
believes that the sun will rise tomorrow); it can be about something that irs/olve
t's own agency (He wants to go for a swim; She believes that she is thinking ab
philosophy) or about something that does not invdlseown agency (She wants
to be famous; He believes that he is tall); and so ort.idfnot perfectly rational
(reasonable or wise), it is even possible thaints or believes impossible states
of affairs. A person who is not rational can both want and reject something at th
same time according to our systems in this paper (He wants to be with her and he
wants not to be with her.). It does not appear to be rational to have iistents
propositional attitudes of this kind, but it is not logically impossible.

When we say that some individualvants something (or accepts something)
A, we usually mean thatwants (acceptsh in an all-things-considered sense in
this paper. For examplé might not feel like going to the dentist, in fadtmight
very much dislike going to the dentist. Nevertheless, all-things-considevadts
to go to the dentist. Going to the dentist is a means to an end, namely, healthy
teeth. So, when we say thiatvants (or accepts) something, we do not necessarily
mean that wants (or accepts) this ‘thing’ in itself. It is possible to want (and

®Some philosophers seem to think that all desires (and wants) are ortemtedis the future
(see, for example, Sumner, 1996, pp. 4280 and Sumner, 2000), while other philosophers appear
to reject this idea (see, for example, Fred Feldman, 2004, pp631 Most wants (desires) that
people have seem to be directed at the future or the present andrconoéingent states offairs.
Yet, we will not rule out the possibility of past-directed wants in this paper.
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accept) something as a means to something else and it is possible to want (and
accept) something in itself. Furthermore, it is possibletftar want (or acceptp

in an all-things-considered sense evendbes not like every aspect éfor every
consequence ¢k and even it has some desire (a prima facie desire) for Aot-

For a perfectly rational individual wanting is a ‘stronger’ attitude tharseon-
ing (at least, in every system that includes the tableauTweD (Table 13)). If
a perfectly rational individual wantd, she also consents # (given that we ac-
cept conditionC — bD (Table 2)). However, it is possible for a perfectly rational
individual to consent to something that she does not want. A perfectiynediio-
dividual may, for example, consent to not getting any help in a particulatiitu
even though not getting any help is not something she wants. Insteachskitd
or ‘acceptance’, we can sometimes use the words ‘agree’, ‘allonpréaye’, ‘con-
done’ or ‘tolerate’. As | have already mentioned, consenting to sometisinally
means consenting to it all-things-considered in this paper. It is possibéeifoe-
one to consent té\ even though she objects to some aspects of or consequences
of A. In every system in this paper, it is possible (even for a perfectly rdtiona
individual) to consent té\ and (at the same time) to consent to #ot-

In the sense that | am using the terms in this paper, intentions and wants are
not the same thing. It is possible to want someone else to do something, but it is
not possible that you intend someone else to do something. Intentions atedlire
towards (our own) actions, while it is possible to want and desire angbatie
sorts of things. Wanting to do something and intending to do it is perhaps the
same thing, but it is not obvious that this is the case. Even if this were trdd (an
am not denying that it is true), wants would have a ‘wider scope’ thantiotesn
Wanting something is also not the same as wishing it were true. Wishing something
impossible were true might be possible even for a perfectly rational ingilidu
even though it seems to be reasonable to claim that no perfectly rationatimali
wants impossible things (in an all-things-considered sense).

Since all the systems in this paper are new, the results are technically valuable
There are also many good philosophical reasons to be interested in tmsys
this paper. Space does not permit me to discuss every possible arguatémtjlb
briefly mention some of the most obvious ones.

Reason 1.There are several problems with standard systems of doxastic logic
that we can avoid in our systems, for examiple problem of logical omniscience
(see Meyer and van der Hoek (1995, pp.-8%) for an introduction). Accord-
ing to this problem, the notions of knowledge and belief that are used in oydina
epistemic and doxastic symbolic systems are too strong; they are only rbksona
for ‘ideal’ individuals. For example, the following rules of inference hilanost
standard system®{A reads ‘individuai believes that\):
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If A< Cis atheorem, theB;A « B;C is a theorem (for everyandA andC)
(Belief of equivalent formulas).

If A— Cis atheorem, theB;A — B;C is a theorem (for everyand A andC)
(Closure under valid implication).

If Ais atheorem, themB;A is a theorem (for every and A) (Belief of valid
formulas).

If we want to use doxastic logic to describe ordinary human or human-like
agents (non-human animals, computers, robots, etc.), then all thesedafqrat-
terns are unreasonable. It is implausible to assume that an organismssach a
human being can believe every valid sentence no matter how complex it is. It is
also unreasonable to suppose that a human-like agent’s beliefs ard oluber
valid implication. As far as we know, no human-like agent believes everydbgic
consequence of what she believes no matter how complicated it is. Maoreesra
‘Belief of equivalent formulas’ is problematic. Suppose tAandB are logically
equivalent. Does it follow that the agent believesft she believe? For some
A and someB this is perhaps the case, but is the principle true for eeaynd B
no matter how complicated these propositions are? The rules of infereace ab
hold in standard doxastic systems due to the fact that doxastic (and epidtagitc)
traditionally has been developed as a form of normal modal logic. Thertiliest
(Belief of equivalent formulas) is a problem also for many non-normsatesys.
Many formulas that can be proved in (most) standard systems are aldemrob
atic. Consider the following examples:

(BIAABi(A—C)) - BC.
—\(BiA/\ Bi—|A).
Bi(AAC) « (B/AABC).

In our systems, the rules of inference and the formulas above do nat hold
Hence, we can solve the problem of logical omniscience. Almost nothingesf in
est follows from the fact that someone believes something.

Let us consider a more concrete example of a situation that is problematic for
many standard systems of doxastic logic. The following scenario appeéass to
perfectly logically possible:

Example 1. (The Triangle Scenario) Mike believes that this figure is a triangle
(because he can see that this figure has three edges and three yeriMdide
believes that if this figure is a triangle this figure is equiangular (becausesoe
in the past told him that all triangles are equiangular). But it is not the cas¢ th
he believes that this figure is equiangular, in fact, he believes that this figuc
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equiangular (because he can see that the angles are not equal). u@fecavhat
Mike believes is inconsistent. Hence, his beliefs are inconsistent. Acclyrding
is reasonable to conclude that he is not perfectly rational. But people tsoes
have inconsistent beliefs and not everyone is perfectly rational. (It reiggr be
the case that no-one is.)

Yet, according to normal systems of doxastic logic The Triangle Scenag® do
not describe a logically possible situation. Any set of the following form is in-
consistent in most standard doxastic logics (andviarynormal doxastic logic):
{BiA,B{(A— C),-BiC}. In our systems, the propositions in The Triangle Sce-
nario can be symbolised in the following waf:Tt, B.(Tt — Qt), -B:Qt and
B:.—Qt, where T’ stands for ‘is a triangle’, Q' stands for ‘is equiangular’,c
refers to Mike andt’ refers to this figure. According to our semantics, it is possi-
ble that there is a possible world in which all these sentences are truectiorSe
3.2, I will verify this assertion. This example clearly shows that the systemssin th
paper are much more realistic than many other systems in the literature.

However, if the inference rules and the principles above are restricteerio
fectly rational (reasonableor wisé individuals they might be reasonable. In ev-
ery system that includes the tableau rilile- dD (see Table 14 in Section 4.2.7)
we can, for example, prove that no perfectly rational (reasonableis®)vin-
dividual has inconsistent beliefs; that is, we can prove the followingfia:
-ZX(RXA (BxA A Bx-A)) (there is nox such thatx is perfectly rational and
believes thalA andx believes that no#).

It is logically possible that no-one has any inconsistent beliefs at some time. |
might even be factually true that there is some moment in time when no-one has
any inconsistent beliefs (if there is a time when there are no agents thatebeliev
anything, this proposition will be vacuously true). But even if this is possible
appears to be implausible to assume that itlegécal truth that no-one has incon-
sistent beliefs. Not all truths are logical truths and we are not primarilyasted
in contingent truths in this paper.

Many different solutions to the problem of logical omniscience have been sug-
gested in the literaturé! will not try to discuss these solutions in the present paper.
However, every solution seems taf&r from the same kind of problem: it is based
on some system that is intuitively too strong, intuitively too weak or simultaneously
both too strong and too weak. A system is too strong if it includes too many theo-
rems, that is, if we can prove things in this system that are counterintuitidet

"For more on this, see, for example, Fagin and Halpern (1988), GBRS|1 Gochet and Gillet
(1991), Gochet and Gribomont (2006), Hocutt (1972), Jasd#81(), Levesque (1984), McLane
(1979), Rantala (1982), Sim (1997, 2000), Thijsse (1992), varHdek and Meyer (1989), Yap
(2014).
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too weak, if it contains too few theorems, that is, if we cannot prove all i@t
plausible principles that we want to establish. For example, classical syaems
pear to be too strong, since Belief of equivalent formulas (see abtiNé&odds in

such systems, and systems that use impossible worlds often seem to be koo wea
It is intuitively reasonable to assume that a perfectly rational individual waitl
believe any contradiction. We cannot show this in systems based on somaf kind
‘standard’ impossible world semantics. The systems in this paper are pagakewe
and partly stronger than many standard systems. Some intuitively problenmatic se
tences and arguments that can be established in standard systems a&rnot v
our systems, and some intuitively plausible sentences and arguments that are
valid in standard systems can be established in our systems. It follows tttainwve
avoid many problems with classical doxastic logic and with many other solutions
to the problem of logical omniscience. According to some solutions, we msst po
tulate various new kinds of entities that might be ontologically problematic, for
example impossible things or impossible worlds. Our semantics do not presuppo
the existence (or being) of any entities of this kind. In conclusion, thergaod
reasons to be interested in the results in this paper.

Reason 2.The systems in this paper can be used to investigate many interesting
principles, for example the principle that no-one who is perfectly rationalige
wants it to be the case thatat the same time as she wants it to be the case that
not-A, and the principle that no-one who is perfectly rational or wise believés tha
it is the case that at the same time as she believes that it is the case that.riot-
particular, we can investigate many interesting principles that include bothdioule
and doxastic expressions. Consider the following examples:

Example 2. (Some boulesic-doxastic principles)

(i) If someone is perfectly rational (wise), then if she wants something she
believes that she wants it; that is, she is aware of everything she wants.

(ii) If x is perfectly rational (wise), then x wants A only if x believes that it is
possible that A.

(iii) If x is perfectly rational (wise), then if x wants it to be the case that A and
X believes that it is necessary that if A then B then x wants it to be the cad®.that

To be able to study such principles we need boulesic-doxastic logieiiifi)
can be symbolised in the following way in our systems:ITR(Rx - (WA —
BxWxA)), (i) TIX(RXx— (WxA - By & A)) (or IIX(Rx— (WxA - ByMA))), and
(i) IIX(Rx— ((WxAABxO(A - B)) - WxB)) (orIIx(Rx— (WxAABxU (A —

B)) - WxB))). (iii) is one possible interpretation of the so-called hypothetical
imperative that was introduced by K&ntHence, this is a philosophically very

8See Kant, 1785, p. 45; English translation in Paton, 1948, pe880According to Kant, ‘Who
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interesting principl€. (i) and (ii) are also interesting. (i) is a theorem in every
system that includes the tableau rules db4 (Table 18) and” - UR (Table 15),
orT-db4, T - MB (Table 17) and — FTR(Table 15); I will prove this in Section
5; (ii) is a theorem in every system that includes the tableau fules! B, T - WP
(Table 16) andlT — ab4 (Table 16); and (iii) is a theorem in every system that
includes the tableau rulés— MW (Table 16) andl — dT (Table 14); in Section
3.4, I will use a ‘semantic’ argument to show that (iii) is valid in every model that
satisfies the semantic conditio@s- MV (Table 4) andC — dT (Table 3). Hence,
it is not only possible to symbolise these principle in our systems, we can also
investigate what we must assume to be able to prove that they are valid ahd wha
follows from them if we accept them. It appears to be impossible to do this in
any other logics in the literature. In most systems, we cannot even symhadise s
expressions as ‘everyone who is such and such believes that...",0semeo is
such and such believes that...’, ‘everyone who is such and such wamtseatthe
case that...’, ‘someone who is such and such wants it to be the case that...’, e
()—(iii) seem more or less intuitively plausible to me. Consider, for example,
the following instance of (ii): ifx is perfectly rational, thex wants to pass right
through this stonewall only ik believes that it is possible to pass right through
this stonewall. This instance of (ii) can be symbolised in the following way in our
systems:TIx(Rx - (WxPx — By & Px)), where PX says thatx passes right
through this stonewall. In Section 7, | will prove that this formula is a theorem in
every system thatincludds-MB, T-WP andT —ab4. If this sentence is not true,
there will be someone, say such that wants to pass right through this stonewall
even though it is not the case tlwbelieves that it is possible to pass right through
this stonewall. It might even be the case thdielieves that it is impossible to
pass right through this stonewall. Suppose thhtlieves this and still wants to
pass right through this stonewall. She starts walking and hits her headstihein
wall. Furthermore, suppose she does not change any beliefs asemaense of
this event. So, she keeps hitting her head against the wall, like a fly thaiteelhe
tries to pass through a window until it drops dead. It might be the case teatts
to pass right through this stonewall because she wants to enter a gadidrita
were possible to pass right through this stonewall this would be the quiskgst
to enter this garden. Suppose also that there is a gate just a few feg¢h&qiace

wills the end, wills (so far as reason has decisive influence on his actdststhe means which
are indispensably necessary and in his power’ and “If | fully will thEeet, | also will the action
required for it” is analytic’.

°For more on the hypothetical imperative, see, for example, Bedk@9j2Broome (1999),
Brunero (2010), Downie (1984), Feldman (1986, Chapter 5), @®at2), Gensler (1985), Greenspan
(1975), Harsanyi (1958), Hill (1973, 1989), Korsgaard (20Qdarshall (1982), Shaver (2006),
Schroeder (2004, 2005, 2009, 2015), Wallace (2001) and Way0§20
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wherec is and that it would be very easy to enter the garden through the gate. In
this situation, it seems flicult to callc perfectly rational?

Reason 3. Our systems can be used to define many interesting concepts in
a rigorous way, for example, the concepts of (perfect) self-infallibiliperfect)
self-acceptance and (perfect) self-awareness (see Section 5).

Reason 4. The systems in this paper can be used to explain the validity of
several intuitively valid arguments that cannot be proved in any othézrayand
they can be used to generate countermodels that show that an argunuoewaish
Consider the following example of an intuitively valid (complex) argument:

Example 3. (The Doctoral Student Argument) Every student in the room wants

to become a doctor some time in the future. Carl is a student in the room. So,
Carl wants to become a doctor some time in the future. Carl believes that it is
(historically) necessary that he will become a doctor some time in the futilye o

if he studies hard. Hence, if Carl is perfectly rational (wise), Carl wantstudy
hard.

Many people think that arguments of this kind, which include a kind of means-
end reasoning, are good. In some boulesic-doxastic systems intradubézipa-
per, the conclusion follows from the premises. Yet, we cannot find epésugible
symbolisation of this argument in any other system. In fact, the whole deduction
includes two subarguments and two conclusions. In Section 7, | will shovwe
can symbolise these arguments and use semantic tableaux to prove that ibe firs
valid in all systems in this paper and that the second is valid in every system that
includes the tableau rul8s—dT andT - MW (see sections 4.2.7 and 4.2.9, Table
14 and Table 16).

Even though the argument Example 3 (The Doctoral Student Argument)
is intuitively plausible, the following argument appears to be invalid:

101t might be possible to think of bizarre scenarios where someone hksié some) reasons to
want something even though she believes that it is not possible. Wearaexdmple, think of a
situation where there is some mad scientist that is able to scan this persgin’subd decide what
she wants and believes. Suppose this scientist, as a part of somexgrazynent, says that he will
punish this person if she does not want something she believes is impo3sibn this person might
have some reasons to want something even though she does not tredisivés possible. But it is
not obvious that those reasons are ‘rational’ reasons. We cangseshg that this person in this case
has ‘pragmatic’ or ‘instrumental’ or ‘self-interested’ reasosto be perfectly rational. In a similar
way someone can have ‘external’ reasons to believe in a contradictiois. ddes not necessarily
entail that it is rational, reasonable or wise to believe in a contradiction, sitde&in the sense that
we are using these terms in the present paper. Whether or not this sonabée position, (i) is a
philosophically interesting principle that is worth exploring further. And witha boulesic-doxastic
logic we cannot even symbolise principles of this kind in any plausible whig i§ a strong reason
to be interested in the systems in this paper.
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Example 4. (The Doctoral Student Argument I 1) Every student in the room wants

to become a doctor some time in the future. Carl is a student in the room. Carl
believes that it is (historically) necessary that he will become a doctoedone

in the future only if he studies hard. Hence, Carl wants to study hard.

Note that in this argument the conclusion is not a conditional where the an-
tecedent says that Carl is perfectly rational (wise). The conclusioreisdte-
gorical claim that Carl wants to study hard. But this proposition does e@mns
to follow from the premises. If Carl is not perfectly rational, he may wantynan
things without wanting the things he believes are necessary means to the things
he wants. From the first and the second premise, we can still conclud€aHhat
wants to become a doctor some time in the future. But from this sentence and the
proposition that Carl believes that it is (historically) necessary that hdedbme
a doctor some time in the future only if he studies hard, it does not follow thét Ca
wants to study hard. In Section 7, | will show how one can use semantic tblea
to generate countermodels and prove that this argument is not valid (in seofla
all models).

Reason 5. Boulesic-doxastic logic can be used to solve several puzzles in a
rather conservative and economical way. For example, we do nottbg@stu-
late any new entities, such as impossible worlds or impossible objects, to solve the
problem of logical omniscience (see reason 1 above). The tableaufoultse
propositional connectives, for the modal operators and for the ifplst quanti-
fiers are standard. Furthermore, all normal doxastic systems assuntiecttokat-
main (of agents) is non-empty. And since Belief of valid formulas holds in afi¢ho
systems, they entail the existence of at least one individual that belexgswalid
sentence (at least if we assume that the domain only includes existing thdigs).
systems in the present paper are compatible both with the existence and the non
existence of a perfectly rational individual. Hence, they are ontologicatlye
neutral than many systems in the literature. | therefore conclude that \veebbélv
very good technical and very good philosophical reasons to be itadrés the
systems that are developed in this paper.

The paper consists of seven main sections. Section 2 is about syntar@nd S
tion 3 about semantics. In Section 4, | introduce the proof theory of @iess,
while Section 5 includes some examples of theorems. Section 6 contains essindn
and completeness proofs for every non-augmented system, that ig,sygéem
without the propositional quantifiers. Finally, Section 7 includes some example
of valid and invalid arguments and principles.
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2 Syntax

2.1 Alphabet

Terms: variablesxy, X, X3 .. .; constants (rigid designator),, Kq,, Kg,, - - -

Predicates:n-place predicate symboR}, P2, P2 . .., for every natural number
n, E (existence)R (rationality) and= (necessary identity).

Connectives: - (negation),A (conjunction),v (disjunction),— (material im-
plication) and— (material equivalence).

Operators: modal:U (absolute necessitylM (absolute possibility)a (histor-
ical necessity) (historical possibility); boulesic)V (want), A (acceptability);
doxastic:B (belief) andC (imaginability, conceivability).

Quantifiers: II (all) andX (some).

Parentheses) and (.

We will usex, y andz... for arbitrary variablesa, b, c ... for arbitrary con-
stantssandt for arbitrary terms (with or without primes or subscripts) &dG,
H, ... for arbitraryn-place predicates (we will omit the subscript if it can be read
off from the context).

2.2 Languages

The languager is the set of well-formed formulas generated by the following
clauses:

(i) Any constant or variable is a term.

(i) If t1,...,ty are any terms an@ is anyn-place predicatePt; ...t, is an
atomic formula.

(ii) If tis a term,Et (‘t exists’) is an atomic formula an@t (‘t is perfectly
rational’) is an atomic formula.

(iv) If sandt are terms, thes =t (‘ sis identical witht’) is an atomic formula.

(v) If AandB are formulas, so areA, (AAB), (AvB), (A— B) and(A < B).

(vi) If Ais aformula, so ar& A (it is universally [or absolutely] necessary that
A), MA (‘itis universally [or absolutely] possible tha&t), oA (it is [historically]
necessary thak’) and GA (‘it is [historically] possible that').

(vii) If D is any formula and is any term, thet;D (‘t wants it to be the case
thatD’) and A;D (‘t accepts that it is the case tHa) are formulas.

(vii) If D is any formula and is any term, themB;D (‘t believes thaD’) and
C:D (‘itis imaginable [or conceivable] tbthat D) are formulas.

(ix) If Ais any formula andk is any variable, thefIxA (‘for every [possible]
x: A') and ZxA (‘for some [possible] xA") are formulas.

(x) Nothing else is a formula.
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A, B, C, D ... represent arbitrary formulas, afid @ ... finite sets of closed
formulas. The concepts of bound and free variables, and open aatidarmulas,
are defined as usua(A)[t/x] is the formula obtained by substitutindor every
free occurrence af in A. The definition is standard. Brackets are usually dropped
if the result is not ambiguous.

The languag€s pis the languag€ augmented with propositional quantifiers.
To obtainLs, We augment our language with a set of propositional variakles
Y, Z, W (with or without subscripts). Then we modify the formation-clauses, as
standard. In particular, we add the following clauseAiis any formula (in our
extended languagés ) andX is any propositional variable, thdiX A andXXA
are formulas(A)[B/X] is the result of uniformly replacing free occurrences<of
in Aby Band(A)[B1/Xa, ..., Bn/Xn] is the result of simultaneously replacing free
occurrences oKy in Aby By, ..., andX, in A by By.

3 Semantics

3.1 Models

Definition 5. A modelM is a structure(D, W, R, 2, D, v), where D is a non-empty
set of individuals (the domain), W is a non-empty set of possible wéRds,a
binary alethic accessibility relatior?§ ¢ W x W), 2l is a ternary boulesic accessi-
bility relation (2( € D x W x W), ® is a ternary doxastic accessibility relatio®(c

D x W x W), and v is an interpretation function.

Informally, Rww’ says that the possible world' is alethically (historically)
accessible from the possible woild 2(6ww’ that the possible world’ is accept-
able to the individuab in (or relative to) the possible worl@, or thats accepts
' in (or relative to)w, andDdsww’ that the possible world’ is doxastically ac-
cessible to the individual from the possible worldv, or thats can seav’ from
w.

The valuation functiorv assigns every constantan element/(c) € D, and
every possible world € W andn-place predicat® a subset,, (P) (the extension
of Pin w) of D". Thus, the constants are rigid designators while the extension of a
predicate may change from world to world.

The extension of the identity predicate is the same in every possible world (in
a model):v, (=) = {(d,d) : d e D}. Hence, all identities (and non-identities) are
both absolutely and historically necessary. The existence predidatections as
an ordinary predicateEc is true in a possible worldf v(c) exists in this world.

The predicateRr has a special meaning. InformallyR¢ says thatc is per-
fectly rational perfectly reasonabler perfectly wise SinceR functions as an
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ordinary predicate, an individualmay be inR's extension in one possible world
even thougls is not inR's extension in every possible world. Hence, the fact that
an individualé is perfectly rational, reasonable or wise in a possible world does
not entail that¢ is perfectly rational, reasonable or wiseawerypossible world.
Exactly what it means to be perfectly rational, reasonable or wise will depen
the conditions we impose on the boulesic and doxastic accessibility relatians (Se
tion 3.3).R plays an important role in the definitions of the truth conditions for our
boulesic and doxastic operators.

The valuation function assigns extensions to so-called matrices. Given any
closed boulesic or doxastic formula of the fodA, A:A, B:A or CiA, we shall
construct its matrix as follows. Leh be the least number greater than every
such thatx, occurs bound iPA. From left to right, replace every occurrence of
an individual constant withky,, Xm+1, €tc. The result is the formula’s matrix.
Consider the following examples: the matrix WcPd is Wy, PX; the matrix of
AaPccis Ay, Pxoxs; the matrix of Bc(Fa A Gbc) is By, (Fx2 A GxsXa); the ma-
trix of WaZxi(Fxq — GC) is Wy,Zx1(Fx1 — Gxg); the matrix ofWBgllxaPx
IS W Bx, JIxoPx, etc. (A)[ay,...,an/X1,...,%n] IS the result of replacing ev-
ery free occurrence of; by aj, ..., and every free occurrence af, by a, in
A. (A)ay,...,an/X,..., %] will be abbreviated agA)[as,...,a,/ X]. If M
is any matrix of the formWA, A{A, B{A or C;A with free variablesx, ..., X,
thenv, (M) c D". Note thatM always includes at least one free variablielet
M be a matrix where, is the first free variable itM and ay, is the constant in
M[as,...,an/ 7(] that replacesy. Then the truth conditions for closed boulesic or

doxastic formulas of the forrM[ay,...,an/ i], whenv,,(Ran) = 0, are defined
in terms of the extension dfl in w (see condition (i) in Section 3.2 below). For
some examples of matrices and how they function, see sections 3.2 and 7.

Let M be a model. Then the language/®f, £L(M), is obtained by adding a
constanty, such thatv(kq) = d, to the language for every member D. Con-
sequently, every object in the domain of a model has at least one name in our
language.

3.2 Truth conditions

We now extend the valuation function. Every closed formul&iQls ) is as-
signed exactly one truth-value ELTrue or 0= False),v,,(A), in each worldw in

a modelM. The truth conditions for the omitted truth-functional connectives are
standard.

(i) Vw(Pag...ay) =1 iff (v(a1),...,v(an)) € V,(P).

"The idea of using matrices is borrowed from Priest (2005, G2) 1
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Let M be a matrix where, is the first free variable iM anda, is the constant
in M[ay,...,an/ ?] that replacesy,. Then the truth conditions for closed boulesic

and doxastic formulas of the forM[ay, ..., a,/ 7(], whenv,, (Ray) = 0, are given
in (ii) below.

(i) vo(M[ay,...,an/ ?(]) =1iff (v(a1),...,Vv(an)) € Vp,(M).

(i) v, (-A) =1iffv,(A) =0.

(iv) vo(AAB) =1 iff v,(A) =1andv,(B) =1.

(V) Vw(UA) =1 iff Yo' e W: v, (A) =1.

(Vi) Vo (MA) = 1 iff Jo’ e W: vy (A) =1,

(vii) V,(OA) =1 iff Vo' e Ws.t.Rwaw'’: v,y (A) = 1.

(vii)) v,(OA) =1 iff Jo' e Ws.t.Rww': v,y (A) = 1.

(ix) v, (TIxA) = 1 iff for all kg € L(M),V,(A[kg/X]) = 1.

(X) Vo (EXA) = 1 iff for somekq € L(M),V,(A[kd4/X]) = 1.

(Xi) Vo (BaD) = 1iff for all ' such tha®v(a)ww': v, (D) = 1, given thaw(a)
is an element i, (R), if v(a) is not an element in,, (R), thenB,D is assigned a
truth-value inw in a way that does not depend on the valu®dtee condition (ii)
above).

(i) Vi (CaD) = 1iff for at least one’ such tha®v(a)ww’: v,/ (D) = 1, given
thatv(a) is an element irv,(R), if v(a) is not an element in, (R), thenC,D is
assigned a truth-value i in a way that does not depend on the valudafsee
condition (ii) above).

(xiii) WaD. The same as fd8,D, except that we repladé by VW and® by L.

(xiv) AaD. The same as faf,D, except that we replaggby .4 and® by 2.

If v(a) is not perfectly rational in a possible world/;D, A3D, BaD andC,D
behave as if they are predicates in this world; and &) is perfectly rational in
a possible world)V,, Aa, Ba andC, behave as ordinary modal operators in this
world. In other words, ifs/(a) is not perfectly rational in a possible world, almost
nothing of interest follows from the fact thefa) wants something, accepts some-
thing, believes something or finds something imaginable or conceivable, Mihile a
sorts of interesting facts follow if(a) is perfectly rational.

Let us return tar'he Triangle Scenario(seeExample 1) that we mentioned in
the introduction. This example will help explain conditions (ii) and (xi) abowt an
the concept of a matri}¢ Recall that the propositions in The Triangle Scenario
can be symbolised in the following wayi:Tt, Bc(Tt — Qt), -B.Qt and B.-Qt,
where T’ stands for ‘is a triangle’, Q' stands for ‘is equiangular’,c’ refers to
Mike and t’ refers to this figure. According to our systems, it is possible that there
is a possible world in which all these sentences are true. We will now veify th

2Since (xi) is (formally) similar to conditions (xi)(xiv), this example will also help explain
those conditions.

Australasian Journal of Logic (16:3) 2019, Article no. 3



97

Bx, T X is the matrix of BcTt, By, (T X2 - QX3) is the matrix ofB.(Tt — Qt),

Bx, QX is the matrix of B.Qt and By,-Qx is the matrix of3.-Qt. Now, con-
sider the following modelW = {wo}, D = {Mike, T his Figure andf, 2 and
D are empty.v(c) = Mike, v(t) = This Figure v,,(Bx, T %) is the extension
of By, TXo IN wo, Vi (Bx, (TX — Qx3)) is the extension oB3y, (Tx - Qx3)

in wo, etc. Letv,,(By Tx) include (v(c),Vv(t)), let v ,(Bx, (Tx - Qx3)) in-
clude (v(c),v(t),v(t)), letv,,(Bx,Qx%) be empty, and let,,(By,-Qx) include
(v(c),v(t)). LetR be empty inwp, that is, assume that no-one is perfectly rational
in wp. Finally, letT includev(t) and letQ be empty (for our purposes, it does
not matter what is and what is not included in the extensions afd Q). In this
model,B:Tt, Bc(Tt— Qt), -B:.Qt andB.-Qt are all true inwg. Let us verify that
B:Ttand-B:Qt are both true inup.

If Rcis false inwp, thenBy, T X[ C, t/X1, X2] is true inwg iff (v(c), v(t)) is an el-
ement inv,,, (Bx, T %) (see condition (ii) above). SindRcis false inwy, it follows
that By, T %[ C, /X1, X2] is true inwg iff (v(C), V(1)) is in Vy, (Bx, T X). (v(c),v(t))

IS IN Vo (Bx, TXe). Hence, By, T Xo[C,t/X1, X2] IS true inwg. By, T Xo[C,t/X1, X2] =
B:Tt. Consequenthy3:Ttis true inwg.

If Rcis false inwg, thenBy, Qxe[C,t/X1, X2] is true inwyg iff (v(c),v(t)) is an
element inv,,,(Bx, QX). SinceRcis false inwy, it follows thatBy, QXx[C, t/X1, X2]
is true inwyg iff (v(c),Vv(t)) is an element irv,,(By, Qx). (v(c),v(t)) is not an
element inv,,, (Bx, Qx%2). Hence Bx, Qx[C, t/X1, X2] is not true inwy, i.e. itis false
iNn wo. Therefore-By, QX[ C, t/X1, X2] is true inwg. By, QX[ C,t/X1, X2] = -B:Qt.

It follows that-B.Qt is true inwg.

In most doxastic systems in the literature we cannot find any plausible symbol-
isation of this scenario. In those systems, the set that inclBglEs B.(Tt — Qt)
and-B.Qt is inconsistent. If Mike begins to think about his beliefs, he might be-
come aware of the fact that they are inconsistent. Hence, he might conjedb re
some of his beliefs. He might, for example, reject the false belief that all teang
are equiangular. An equiangular triangle is a triangle where all three intaripes
are equal in measure and it is not the case that all three interior anglequak
in measure in all triangles. This does not entail that his beliefs were cansidite
along. This example illustrates the fact that not every instance of the foljpwin
problematic formula is a theorem in our systeis( (BxAA Bx(A — B)) — BxB)
(see the introduction).

The propositional quantifiedd andX are a kind of ‘substitutional’ quantifiers.
Intuitively, IIXAis true it every substitution instance #fis true, andEXA s true
iff some substitution instance &fis true. Substitutions are subject to the usual
provisos; no free variable should be bound by any quantifier, etcvdid &ircu-
larity, we shall forbid substitutions that include the propositional quantifigkk
ternatively, we can construct a hierarchy of propositional quantiiievghich the
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substitution instances for a propositional quantifier at a given level itoptapo-
sitional quantifiers only from lower levels.) In tableau systems that include the
tableau rules for the propositional quantifiers, we will allow that open ftamu
occur in a tree. However, we will only consider substitutions where thes\iaei-
ables are propositional variables. Open sentences are neither trisdsgor So,
we will define the truth conditions for various formulas4a ., with respect to an
assignment, where an assignmentis a function which assigns to each proposi-
tional variable a sentence ii. The assignment’ is an X-variant of the assign-
menta if @ andae’ agree on all variables except possibly the variablelf A is
a formula whose free (propositional) variables Aie. . ., X, thenA is true in the
possible worldw in the modelM with respect to the assignmeamtjust in case
(A)[a(X1)/X1,...,a(Xn)/Xq]. TIXAis true inw in M with respect tax just in
caseAis true inw in M for every assignment’ that is anX-variant ofa. The truth
conditions forzXAare similar. The truth conditions for the constructs that already
appear inC are the same. Since sentences do not contain any free variables, we can
continue to talk about sentences as true and false in a possible world in & mode
(without mentioning any assignments).

The concepts of semantic validity, entailment, satisfiability and so on can be
defined in the usual way (see the introduction for some relevant refesen

3.3 Conditions on models

In this section, | will introduce some conditions that might be imposed on our
models. These conditions correspond to some tableau rules in Section 4® and
various interesting theorems discussed in Sectibh 5.

3.3.1 Conditions on the relation?

Condition | Formalisation of condition

C-aT YV XRXX

C-aDb YV X3AyRXy

C-aB VXVY(RXY = RyX)

C-a4 VXYYV Z((RXy A RyZ) - RX2)

C-a5 VXVYYVZ((JRxy A RXZ) - Ry2z)
Table 1

3Which conditions should we accept? This seems to be something of an oesiiog. | would
be willing to defend most of the conditions, but some combinations migtargemsystems that are
intuitively too strong (see Section 4.3). We might want to usketént combinations of conditions
for different purposes. Similar remarks apply to the tableau rules in Sectiond® &éhe theorems
in Section 5.
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3.3.2 Conditions on the relation(

Condition | Formalisation of condition

C-bD vdVv x3yddxy

C-b4 vdvxvyvz((Adxya Adyz) - 2Adx2)

C-b5 vVdvxvyvz((Adxya Adxz) — Ady2)

C-bT vVdvxvy(Adxy — dyy)

C-bB vdvxvyvz((Adxya dyz) — dzy)
Table 2

3.3.3 Conditions on the relation®

Condition | Formalisation of condition

C-do vdvxVy(Ddxy— x=y)

C-dT Vdvx0dxx

C-db vdVvx3ayDdxy

C-dB Vdvxvy(Ddxy— Ddyx)

C-d4 Vdvxvyvz((DdxyA Ddyz) - Ddx2)

C-d5 vdvxvyvz((Ddxya Ddx2) - Ddy2)

C-dT’ vdvxvy(Ddxy— Ddyy)

C-dB vdvxvyvz((Ddxya Ddyz) - Ddzy)
Table 3

3.3.4 Conditions concerning the relation betweefR and 2

Condition | Formalisation of condition

C-MW | vdvVxvy(Adxy— Jxy)

C-wWP VdVvx3y(Adxy A Rxy)

C-MW' | vdVxvyvz((2dxya Adyz) - Ryz)

C-WP' | vdVxvy(2dxy— Fz(2AdyzA Ryz))

C-am vdVvxvyvz((Rxy A Ady2) — Adx2)

C-ahb vdVvxvyvz((Rxy A Adxz) - 2Adyz)

C-AMP | vdVxVyvVz((2dxyA BRxz) — Iw(Ryw A 2Adzw))
C-WMP | VdVxVyVz((RxyA Adyz) - Iw(AdxwA Rwz))
C- MWP | VdVxVyVz((AdxyA Ryz) > Iw(Rxw A Adwz))

Table 4
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3.3.5 Conditions concerning the relation betweefk and ©

Condition | Formalisation of condition

C-MB | VdvVxvVy(Ddxy— JRxy)

C-BP VdVx3y(DdxyA 2Rxy)

C-MB' | vdVxVyvz((DdxyA Ddyz) - Ryz)

C-BF vdvVxvy(Ddxy— 3z(Ddyza Ryz))

C-BM VdVxVy(Rxy - Ddxy)

C-add | Vdvxvyvz((RxyA Ddyz) - Ddx2)

C-ads | VdVxVyVz((MRxyADdxz) - Ddyz)

C-CMP | VdVxVyVz((DdxyA $Rxz) - Iw(RywA Ddzw))
C-BMP | VdVxVyVz((RxyA Ddyz) - Iw(Ddxwa Rwz))
C - MBP | VdVxVyVz((DdxyA Ryz) - Iw(RxwA Ddwz))

Table 5

3.3.6 Conditions concerning the relation betweefl and ©

Condition | Formalisation of condition

C-WwnB Vdvxvy(Ddxy— Adxy)

C-BW vdvxVy(dxy - Ddxy)

cC-wc vdvx3y(Adxy A Ddxy)

C-BA vVdvx3y(Ddxya Adxy)

C-BWB | VdvxVy(Ddxy— Adyy)

C-WBW | vdVxVy(dxy— Ddyy)

C-dh vdvxvyvz((Ddxy 2Adyz) - 2Adx2)

C-dbs Vdvxvyvz((DdxyA Adx2) — Adyz)

C-bd4 vdvxvyvz((AdxyA Ddyz) - Ddx2)

C - bd5 Vdvxvyvz((2ldxyA Ddx2) - Ddy2)

C-WWB | VdVxVyVvz((Adxys Ddyz) - Adx2)

C-BBW | VdVxvVyvVz((Ddxya ddyz) - Ddx2)

C-ABP | VdVxVyVz((Ddxya 2dx2) — Iw(Adywa Ddzw))
C-CWP | VdVxVyVz((Adxys Ddx2) — Iw(Ddywa Adzw))
C-BWP | VdVxVyVvz((Adxys Ddyz) - Iw(Ddxwa Adwz))
C-WBP | VdvVxVyVvz((Ddxya 2Adyz) - Iw(Adxwa Ddwz))
C-wo vdvxvyvz((AdxyA Ddyz) -y = 2)

Table 6
C-WC andC - BA are logically equivalent. | mention both conditions since |

will associate them with dlierent tableau rules and theorems (see sections 4.2 and
5). The same goes f@ - ABP andC - CWP.
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3.3.7 Conditions concerning the relation betweefR, 2l and ©

Condition | Formalisation of condition

C-WNI | vdvxVyVz((2AdxyA Ryz) - Ddy2)

C-WNO | YdVxVyVz((2AdxyA Ddyz) - Ryz)

C-WBP | vdVxVyVz(Adxy— 3z(Ddyza Ryz))

C-BWP | VdVxvyVz(Ddxy— 3z(AdyzA Ryz))

C-BMW | vdVxVyVz((Ddxya 2Ady2) — Ryz)
Table 7

3.3.8 Conditions on the valuation functionv in a model

Condition | Formalisation of condition

C-FTR | If Rwiw, andRcis true inwz,

thenRcis true inw; (for anyc).

C-UR If Rcis true inwy, thenRcis true inw; (for anyc).
Table 8

3.4 An example of a valid formula

In this section, | will show that the formalisation of sentence (iiilErample 2

in the introduction is valid in every model that satisfies the semantic conditions
C-MW (Table 4) andC - dT (Table 3). Recall that (iii) is the following principle:

If x is perfectly rational (wise), then ik wants it to be the case th#&t and x
believes that it is necessary thatAfthen B then x wants it to be the case that
B. This principle can be symbolised in the following way in our formal language:
IIX(Rx - (WxA A Bxo (A - B)) - WxB)). To establish this, assume that
this formula is not true in some possible woddin some modelM that satisfies
C-MW andC-dT. ThenRc WA andBx0O (A — B)) are true irw in M, while
WcB is false inw in M. SinceW,B is false inw in M andc is perfectly rational

in w in M, there is a possible worl@d’ in M that is boulesically accessible ¢to
from w in which B is false. ThereforeA is true inw’ in M. Forc is perfectly
rational inw in M, ' is boulesically accessible mfrom w andW,A is true in

w in M. Hence,u' is alethically accessible from, for M satisfiesC — MW.
Furthermorew is doxastically accessible tofrom itself sinceM satisfiesT —dT.
Sincew is doxastically accessible wfrom itself, ¢ is perfectly rational inv and
Bxo(A — B))istrue inwin M, o(A — B)istrue inw in M. Itfollows thatA - B

is true inw’ in M, for «’ is alethically accessible from. Hence,B is true inw’

in M (by propositional logic). But this is absurd. Consequently, our assumptio
cannot be true. In other worddx(Rx— ((WxAABxO(A — B)) - WyB)) is valid
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in M. Sincew and M were arbitrary, it follows thalIx(Rx— ((WxAABxO (A —
B)) - WxB)) is valid in every model that satisfi€&- MV andC - dT. Q.E.D.

3.5 Model classes and the logic of a class of models

Let M(Cy,...,Cp) be the class of all models that satisfy the conditiGas . ., Cy,.
For example M (C - dD,C - db4,C - bd5) is the class of all models that satisfy
the conditionC — dD, C — db4 andC - bdbs.

By imposing diferent conditions on our models we can define a set of logical
systems. The set of all sentencesdrthat are valid in a class of models! is
called the (logical) system (or logic) @1, and in symbolsS(M). For example,
S(M(C-dD,C-db4,C-bds)) (the system oM (C -dD,C - db4,C - bd5)) is
the class of sentences fhthat are valid in the class of all models that satisfy the
conditionsC — dD, C — db4 andC - bd5. In an ‘augmented system’, we ue
instead.

4 Proof theory

4.1 Semantic tableaux

The concepts of semantic tableau, branch, open and closed branof),dariva-
tion, etc. are defined in a standard way. For more on the tableau methdtesee
references in the introduction.

4.2 Tableau rules

4.2.1 Propositional rules

| will use the same propositional rules as those in Priest (2008). Letludhem
(A), (=), and so on.
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4.2.2 Basic alethic rules (ba-rules)

U M O &
UA,i MA, i DA, OAI
! ! irj }
A Aj | ir

foranyj | wherejisnew| A, j Aj
wherej is new
-U -M -0 -
-UA,i -MAi -OAi O A
! } ! }
M-A,i U-Ai O-A O-A,i
Table 9

4.2.3 Basic boulesic and doxastic rules (bb-rules and bd-rules)

w A B C
Rgi Rgi Rgi Rgi
WeB,i AcB,i BB, i CcB,i
IAC]| i) iDcj il
) IAC] l iDcj
B,j B,j B,j B, ]
wherej is new wherej is new
-W -A -B -C
Rgi Rgi Rgi Rgi
-WeB,i -AcB,i -B:B,i -CcB, i
! ! ! v
Ac-B,i We—-B,i Cc-B,i B.-B,i
Table 10

Intuitively, ‘Rc i’ in the rules in this section says that the individual denoted
by ‘c’ is perfectly rational in the possible world denoted by “iAcj’ says that the
possible world denoted byj*is acceptable toc’ in ‘i’, and ‘iDcj’ says that j’ is
conceivable or imaginable ta™in *i’. All rules of this kind in this section hold for
every constant, that is, ¢’ can be replaced by any constant in these rules.
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4.2.4 Possibilist quantifiers

I1 z —IT -2
IIXA, i XA —IIXA T | —ZXA I
2 NS 2 N
Ala/x],i A[c/x],i IX-A1 | TIx-A i
for every constard | wherec is new
on the branch, to the branch
a new if there are no
constants on the branch

Table 11

The termsa andc in the quantifier rules are rigid constants—we never instan-
tiate with variablesa is any constant on the branch an a constant new to the
branch.

4.2.5 Alethic accessibility rules (a-rules)

T-aDb T-aT | T-aB|T-a4 | T-ab
i i i ir irj

! l l jrk irk
i iri jri } !
wherej is new irk jrk
Table 12

4.2.6 Boulesic accessibility rules (b-rules)

T-bD T-b4 | T-b5|T-bT" | T-bB
[ IAC]| IAC]| IAC] IAC]|
) JAck | iAck } JACk
IAC] l ! JAC] !
wherejisnew| iAck | jAck kAc]j
Table 13
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4.2.7 Doxastic accessibility rules (d-rules)

T-dO|T-dT | T-dB| T-dD |T-d4 | T-d5| T-dT' | T-dB
iDcj i iDcj [ iDcj iDC] iDcj iDC]
l | l l jDck iDck l jDck
i=] iDci jDci iDcj } ! iDcj }
wherej | iDck jDck kDcj
is new
Table 14

4.2.8 Transfer-rules, and the CUT-rule CUT)

T-FTR| T-UR CuT
Rgi Rgi i
i | v N\
! RG j Ai -Ai
Rc j foranyj | for everyA andi
Table 15

It is possible to replace th€UT rule by a weaker ruleCUTR In CUTR
‘A’ (in CUT) is replaced by Rc where c is a constant (that occurs as an index
to some boulesic operator) on the branch. In fact, in the completeneds (see
Section 6) we do not negdUT if our systems includ€UTR In Section 7, we
will also assume that our weakest systBf (see Section 4.3) includ€dJ T Rand
notCUT. However,CUT is often more useful in proving theorems and deriving
non-primitive rules.
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4.2.9 Alethic-boulesic accessibility rules (ab-rules)

T-MW | T-MW' | T-WP | T-WP
IAC] IAC] i IAC]
| jAck ! !
i 1 IAC] jAck
jrk irj jrk
wherej wherek
is new is new
T-ab4 | T-abs | T-AMP | T-WMP | T - MWP
i irj IAC] i IAC]|
JACk IAck irk JACk irk
s ! ! ! \
iAck JACk irl iAcl irl
kAcl Irk IAck
wherel wherel wherel
is new is new is new
Table 16
4.2.10 Alethic-doxastic accessibility rules (ad-rules)
T-MB | T-MB' | T-BP T-BP T-BM
iDcj iDcj i iDcj ir]
S jDck 2 ) S
i J iDcj jDck iDcj
jrk irj jrk
wherej wherek
is new is new
T-ad4d | T-ad5 | T-CMP | T-BMP | T - MBP
irj irj iDC] irj iDcj
jDck iDck irk jDck jrk
N N l $ N
iDck jDck jrl iDcl irl
kDcl Irk IDck
wherel wherel wherel
is new is new is new
Table 17
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4.2.11 Boulesic-doxastic accessibility rules (b-d-rules)

T-WB T-BW T-WC T-BA T-db4 T -dbs
iDcj iIAC]j [ [ iDcj iDcj
! } } N JACk iAck
IAC]| iDC] IAC] iDcj } }
iDcj IAC| IAck JACK
wherej wherej
is new is new
T -bd4 T - bd5 T-ABP | T-CWP | T-BWP | T-WBP
IAC]| IAC| iDcj IAC]| IAC]| iDcj
jDck iDck iAck iDck jDck jAck
! } } I ! !
iDck jDck JAcl iDcl iDcl iAcl
kDcl kAcl IAck IDck
wherel wherel wherel wherel
is new is new is new is new
T-BWB | T-WBW | T-WWB | T-BBW | T-WO
iDcCj IAC| IAC] iDcj IAC]|
L | jDck JAck jDck
JAc] iDcj | ! !
iIAck iDck j=k
Table 18

T-WC is equivalent tal - BA andT - ABP is equivalent tal —-CWP (Table
18). Everything that can be proved with- WC can be proved witd — 5.4 and
vice versa, and similarly fof - ABP andT - CWP.

4.2.12 Alethic-boulesic-doxastic rules (abd rules)

T-WNI| T-WNO T-WBP T-BWP T - BMW
IAC| IAC]| IAC| iDcj iDcj
jirk jDck | } JACk
| l jDck JACK |
jDck jrk jrk jrk jrk
wherek is new | wherek is new
Table 19
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4.2.13 Identity rules

T-R= T-S=|T-N= | T-A=|T-D=|T-Idl | T-Idll
* s=t,i a=b,i | a=b,i | a=b,i a(i) a(i)
J A[s/x],i } jAak jDak i=j j=1i
t=ti i a=bh,j ! ! I i
foreveryt | A[t/x],i | foranyj | jAbk jDbk a(]) a(])
on the branch

Table 20

There are two world identity ruled: — I1dl andT - IdIl (both abbreviatedtd).
a(i) is a line in a tableau that includes, ‘and a(j) is like a(i) except thati® is
replaced by J'. Thatis, ifa(i) is A i, thena(j) is A, j; if (i) iskri, thena(j) is
krj; if a(i)isi =k, thena(j) is j = k, etc. Ifa(i) is A,i we only apply the rule
whenA is atomic or of the formWsD, AsD, BsD or CsD given that-Rsi is on the
branch.

(T - S =) is applied only ‘within worlds’, and we usually only apply the rule
whenA is atomic. However, we shall also allow applications of the following kind.
Let M be a matrix wherex, is the first free variable itM anday, is the constant
inM[ay,...,a,...,an/ ?] that replaces,. Furthermore, suppose we hawve b, i,
M[a,...,&...,an/ ?],i and-Ran, i on the branch. Then we may apply { S =)

to obtain an extension of the branch that includgsy, ...,b,...,an/ ?(],i.

4.2.14 Propositional quantifiers

PIT PX P-IT P-x
XA i EXA -IIXAT | -ZXAi
l } ! i
A[B/X],i A[Y/X],i EX-AT | TIX-A
foranyB | whereY is new
to the branch

Table 21

The propositional quantifiers are similar to the possibilist quantifiers. Neneth
less, in these ruleX, Y andB do not refer to individualsX andY are propositional
variables and is a formula, with the usual provisos (see Section 3R)ir * PIT’
stands for ‘propositional’. We can omit the initid”if it is clear from the context
that we are talking about the propositional quantifiers.
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4.3 Tableau systems and some basic proof-theoretical compte

A tableau system is a set of tableau rules. A boulesic-doxastic (tablestajrsyor
logic) is a tableau system that includes the propositional rules, the basizaleth
boulesic and doxastic rules, the rules for the possibilist quantifiers; the-rule
and the identity rules. The smallest boulesic-doxastic system is dafled By
adding various tableau rules #D, we obtain a large class of stronger boulesic-
doxastic systems, and by adding the rules for the propositional quantifiersan
generate a set of ‘augmented systems’. A non-augmented system isopatbed
languagel and an augmented system is based’gqy,

Among all the many boulesic-doxastic systems, which system isdahect
one? | do not think that this question has a simple answéiei2nt systems may be
useful for diferent purposes. However, | would like to mention a logic that seems
particularly interesting to me. This logic contains every tableau rule in Section 4.2
exceptT —-dO, T- MWP, T -WB, T-BWB, T-WWB, T-BWP, T -WO,

T - UR and the propositional quantifiers. Let us call this sysstrang boulesic-
doxastic logic By adding the propositional quantifiers we obtairgmented strong
boulesic-doxastic logic Strong boulesic-doxastic logic includes many redundant
rules and there are many systems that are deductively equivalent tihaincewer
primitive rules. It is beyond the scope of this paper to try to argue for tlsteay
and defend it against various criticisms. It is possible to derive somesiagpand
perhaps prima facie counterintuitive theorems in it, but it nevertheless spetas
attractive to me.

Important proof theoretical concepts like the concepts of proof, theateriva-
tion, consistency, inconsistency in a system, the logic of a tableau systerarestc.
defined in a standard way (for more on the tableau method, see the oefeian
the introduction).

5 Examples of theorems

In this section, | will present some sentences that can be proved in sasysd
tems. The informal reading of the theses should be obvious. A ‘system’amean
a ‘boulesic-doxastic system’ and @-system’ means a ‘boulesic-doxastic system
that includesr .

Furthermore, | use the following abbreviations. We have omitted the initial
‘T-"in the names of the rulesT;.T, stands for a system that includes bdth
and T,, whereT; and T, are some non-basic tableau ruleg, : T, stands for
a system that include$§; or T,. For example, consider Table 274BP.(UR :
(MB.MW.FTR)) means that the theoreBP = IIx(Rx— (AxBxA — BxAxA))
is provable in every logic that includes the tableau rud¢H>, andURor M3, MW
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andFTR In other words, this sentence is a theorem in every system that includes
ABP andUR, and it is a theorem in every system that includd8P, MB, MW
andFTR ABP is also a theorem in every logic that includes the tableau rules
CWP, andURor MB, MW andFTR

Theorem Systems
[IX(RXx— (WxB < -.Ax-B)) Every
IIX(RXx— (-WxB < Ax-B)) Every
[IX(RXx— (Wx-B < -.AxB)) Every
IIX(RXx— (AxB < -Wx-B)) Every
IIX(Rx— (Wx(AA B) < (WxAAWxB))) Every
IIX(RX— ((WxAv WyB) - Wx(AvV B))) Every
IIX(Rx— (Ax(AA B) —» (AxAA AxB))) Every
IIx(Rx— (Ax(Av B) < (AxAv AxB))) Every
IIX(RXx— (Wx(A = B) - (WxA - WxB))) Every
IIX(RX— (Wx(A - B) - (AxA - AyB))) Every
IIX(Rx— (Wx(A - B) - (Wx-B > Wy-A))) | Every
IIX(Rx— (Wx(A - B) - (-WxB - -W\A))) | Every
IIX(RX— (Wx(A < B) - (WxA < WxB))) Every
[IX(RX— (Wx(A < B) - (AxA < AxB))) Every
IIX(Rx— (Wx(A < B) - (Wx-A < Wx-B))) | Every
IIX(Rx—> (Wx(A < B) - (-WxA < -WxB))) | Every

Table 22 (Some pure boulesic sentences that are theorems in every system)

Let A be a theorem in Table 22 and [E{A) be the sentence that is obtained
from A by replacing every occurrence @ by B and every occurrence of by C.
ThenT(A) is a theorem in every system.

Name | Theorem Systems

bD IIX(RXx— -(WxBAWx-B)) | bD

b4 IIX(RXx— (WyxB - WWB)) | b4.(UR: (MW.FTR))

b5 IIX(RXx— (AxB - WxAB)) | b5.(UR: (MW.FTR))

bT | IIx(Rx— Wx(WxB — B)) bT".(UR: (MW.FTR))

bB' IIX(Rx— Wx(AWxB - B)) | bB.(UR: (MW.FTR))

Table 23 (Some pure boulesic sentences that are theorems in varioussyyste
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Name | Theorem Systems

do IIX(RXx— (A — ByA)) do

dT IIX(Rx— (BxA - A)) dT

dD IIX(RX— —~(BxD A Bx-D)) | dD

dB IIx(Rx— (D — BxCxD)) dB.(UR: (MB.FTR))

d4 IMx(Rx— (BxD - BxBxD)) | d4.(UR: (MB.FTR))

d5 IMX(Rx— (CxD —» BxCxD)) | d5.(UR: (MB.FTR))

dT’ IMx(Rx— By(BxD - D)) dT".(UR: (MB.FTR))
dB’ [IX(Rx— Bx(CxBxD - D)) | dB.(UR: (MB.FTR))

Table 24 (Some pure doxastic sentences that are theorems in varioussyste

Name | Theorem Systems
MW | TIX(Rx— (OA = WKA)) MW
WP IIX(Rx—> (WxA - OA)) wC
MW’ | TIX(Rx— Wx(OA - WKA)) MW’ UR
WP | TIX(Rx—=> Wx(WKA — OA)) WC'.(UR: (MW.FTR))
ab4 IMX(Rx— (WxA - ODWKA)) abd.(UR: FTR)
ab5 IIx(Rx— (AxB - 0.AxB)) abs.(UR: FTR)
AMP | TIX(Rx— (Ax0B - 0AxB)) | AMP.(UR:FTR)
WMP | IIX(Rx— WxO A - 0OWxA)) | WMP.(UR: FTR)
MWP | TIX(Rx— (OWxA - WxOA)) | MWP.(UR: FTR)
Table 25 (Some alethic-boulesic sentences that are theorems in variemsys
Name| Theorem Systems
MB | IIX(Rx— (OA - BxA)) MB
BP [IX(RXx— (BxA = OA)) BC
MB’ | TIx(Rx— Byx(OA - BxA)) MB'.UR
BP’ [IX(RX— By(BxA - GA)) BC'.(UR: (MB.FTR))
BM IIX(Rx— (BxA - OA)) BM
ad4 [IX(RXx— (BxA — OBxA)) add.(UR: FTR)
ads IIx(Rx— (CxB — oCxB)) ad5.(UR: FTR)
CMP | TIx(Rx— (Cxo B - 0CxB)) | CMP.(UR:FTR)
BMP | TIX(Rx— (Bxo A— 0OBxA)) | BMP.(UR: FTR)
MBP | TIX(Rx— (OBxA - BxoOA)) | MBP.(UR: FTR)

Table 26 (Some alethic-doxastic sentences that are theorems in variemsys
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Name | Theorem Systems

WB IIX(RX— (WxA — BxA)) WB

BW IIX(Rx— (BxA = WyA)) BW

WC IIX(Rx— (WxA — CxA)) WC : BA

BA [IX(RXx— (BxA - AxA)) BA:WC

BWB | TIX(Rx— (BYWA — BxA)) BWB.(UR: (MB.FTR))

WBW | TIX(Rx— (WxBxA - WxA)) WBW.(UR: (MW.FTR))

Wi IIX(RX— Wx(BxA — A)) WBW.(UR: (MW.FTR))

db4 IIX(RXx— (WA — BYWxA)) dbd.(UR: (MB.FTR))

dbb IIX(RXx— (AxA — BxAxA)) db5.(UR: (MB.FTR))

bd4 IIX(RX— (BxA = WBA)) bdd.(UR: (MW.FTR))

bd5 IIX(RX— (CxA = WxCxA)) bd5.(UR: (MW.FTR))

WWB | TIX(RXx— (WxA = WxBxA)) WWB.(UR: (MW.FTR))

BBW | TIX(Rx— (BxA = BWA)) BBW.(UR: (MB.FTR))

ABP | TIX(Rx— (AxBxA - BxAxA)) | ABP.(UR: (MB.MW.FTR))
CWP.(UR: (MB.MW.FTR))

CWP | IIX(RXx— (CWKA = WCxA)) | CWP.(UR: (MB.MW.FTR))
ABP.(UR: (MB.MW.FTR))

BWP | IIX(Rx— (BYWxA - WyBxA)) | BWP.(UR: (MB.MW.FTR))

WBP | IIX(Rx— (WxBxA - BWxA)) | WBP.(UR: (MB.MW.FTR))

WO IIX(Rx—> Wx(A = BxA)) WO.(UR: (MW.FTR))

Table 27 (Some boulesic-doxastic sentences that are theorems in vgstRms)
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Considedb4. This is a formalisation of (i) iExample 2(see the introduction).
I will now show that this formula is a theorem in every system that inclides4,
T - MB andT - FTR This will illustrate how to use semantic tableaux. To prove
that a sentencA is a theorem in some syste®) we construct a closed semantic
S-tableau that starts withA, 0. An S-tableau is a tableau that has been generated
in accordance with the rules B

(1) -IMx(Rx— (WxA — BxWxA)),0
(2) Zx-(Rx— (WA — BYWXA)),0 [1, -IT]
(3) -(Rc— (WA - BWA)),0[2,Z]
(4)RcO[3,- -]

(5) ~-(WA - BWEA) [3, - =]

(6) W:A,0[5, - ~]

(7) ~-BW:A,0[5, - -]

(8) Cc-WeA,0 [4,7,-8]

(9) ODcl [4, 8,(C]
(10)-W:A, 1[4, 8,C]

(1) 019, T - MB]
(12)Rc1[4,11,T -FTR
(13) Ac-A,1[10, 12,-W]

(14) 1Ac2 [12, 13,A4]
(15)-A,2[12, 13,4]

(16) OAC2 [9, 14, T — db4]
A7)A. 2[4, 6, 16,)V]

(18) * [15, 17]

Theorem Systems
IIx(Rx— (ITyWxD < WiITyD)) | Every
IIX(Rx— (ZyAxD < AyZyD)) | Every
IIX(RXx— (AxIlyD - Iy AxD)) | Every
[Ix(Rx— (ZyWxD — W,2yD)) | Every
X(Rx— (IyBxD < ByIlyD)) Every

(

(

(

X(RX— (ZyCxD < CxZyD)) Every
X(Rx— (CxITyD — ITIyCxD)) Every
X(Rx— (ZyBxD — ByXyD)) Every
Table 28 (Some Barcan-like sentences that are theorems in every system)

II
I1
II
II
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Theorem Systems
IMx(Rx— (0(A - B) = (WxA > WxB))) MW
IMX(Rx— (O(A - B) - (AxA - AB))) MW

IIX(Rx— (O(A— B) > Wx-B - Wx-A))) | MW
IIX(Rx— (O(A—> B) = (-WxB = -WxA))) | MW
IIX(Rx— (O(A < B) - (WxA < WxB))) MW
IIX(Rx— (0(A < B) - (AxA < A;B))) MW
IIX(Rx— (O(A < B) > (Wx-A - Wx-B))) | MW
MIX(RX— (O(A < B) > (-W,A < -WyB))) | MW

Table 29 (Some alethic-boulesic sentences that are theorems in every
MW-system)

Let A be a theorem in Table 29 and [E{A) be the sentence that is obtained
from A by replacing every occurrence B¢ by B and every occurrence of by C.

ThenT (A) is a theorem in ever B-system.

Name | Theorem Systems
WNI | TIX(RX—=> Wx(BxA - 0A)) | WNL(UR: (FTRMW)
WNO | TIx(Rx—- Wx(OA - BxA)) | WNQ(UR: (FTRMW)
WBP | TIX(RXx— Wx(BxA - OA)) | WBR(UR: (FTRMW)
BWP | IIX(Rx— Bx(WxA - OA)) | BWC(UR: (FTRMB)
BMW | TIX(Rx— Bx(OA - WxA)) | BMW(UR: (FTRMRB)
Table 30 (Some alethic-boulesic-doxastic theorems)
Name| Theorem Systems
UR IIX(Rx—URX) | UR

IIX(Rx— WxRX) | UR: (FTRMW)
Ix(Rx— A,RX) | (URbD): (FTRMW.bD)
[IX(Rx— BxRX) | UR: (FTRMB)
IIX(Rx— CxRX) | (URAD): (FTRMB.dD)

Table 31 (Some theorems concerniig
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Name

Theorem

Systems

(WD Aac=d) > W4D
(AcDAac=d) > A4D
IIXITy((WxD A X =y) = WyD)
IIXITy((AxD A x=y) - AyD)
(BcDAc=d) - ByD
(CcDAc=d) > CqD
IIXITy((BxD A x=y) - ByD)
TIXITy((CxD A x = y) - C,D)
[XIly(x=y -~ Ux=Yy)
[IXIly(X =y —» Ox=y)
IXIy(-x=y > U-x=Y)

IXly(-X=y > 8-X =)

Every
Every
Every
Every
Every
Every
Every
Every
Every
Every
Every
Every

Table 32 (Some theorems that include the identity sign)

1 2 3 4

(a)PBS (a)NBS (a)PBI (a)NBI

B.D — B:.B:D -B:D - Bc-B:D | B:B:D — B:D Bc-B:D — -B:D

(b)NMS (b)PMS (b)NMI (b)PMI

-CcD — Bc-CcD | CcD - B.CcD Bc-CcD - -CcD | B.C:D - C:D

(c)PMC (c)PBC (c)PMM (c)NMM

CCcD - C:D CcBBcD - B:D CcD - CcCcD -CcD - Cc-CcD

(d)NBC (d)NMC (d)NBM (d)PBM

Cc-BcD - -B:.D | Cc—~CcD - -CcD | -BcD — Cc-B:D | B:D - C.B:D
Table 33 (Some boulesic-doxastic principles)

5 6 7 8

(a)PWL (a)NWL (a)PWG (aA)NWG

WeD - W WD -WeD > We-W.D | W WD - W.D We-WeD - -W.D
(b)NAL (b)PAL (b)NAG (b)PAG

-A:D - W:-AD | AD - W AD We-AcD - -A:D | W:AD — A:D
(C)PAP (C)PWP (C)PAA (C)NAA

AcAD - AD AWD - WD AcD - AcAD -AcD - A-AcD
(d)NWP (d)NAP (d)NWA (d)PWA

Aec-WD - -W.D | Ac—AD - -AD -W:D - A:-W:D | W.D - A WD

Table 34 (Some boulesic-doxastic principles)
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9 10 11 12

(a)PWS (a)NWS (a)PWI (a)NWI

WeD = BOWeD | WD = Be=W:D | BOW:D > WD | Be=WD - -W;D
(b)NAS (b)PAS (b)NAI (b)PAI

~AeD > Be=AD | AcD - BeAD Be=AD = ~AD | BoAD - AD
(c)PAC (c)PWC (c)PAM (C)NAM

CcAD - AcD CWD—>WD | AD - CcAD ~AcD > Ce~AD
(d)NWC (d)NAC (d)NWM (d)PWM
Ce-WeD - WD | CcmAD » - AD | =WeD > Cc-WeD | WD - CoWVD

Table 35 (Some boulesic-doxastic principles)

13 14 15 16

(a)PBL (a)NBL (a)PBG (a)NBG

BcD - WcB:D -BcD - We-BcD | WeB:D — B:D We-BcD - -B:D
(b)NML (b)PML (b)NMG (b)PMG

-CcD - We—CcD | CcD - W:C:D We-CcD - -CcD | WeCcD — CcD
(c)PMP (c)PBP (c)PMA (c)NMA

AcCcD — CcD AcBcD - B:D CcD - ALCcD -CcD - Ac-CcD
(d)NBP (d)NMP (d)NBA (d)PBA
Ac-B:D - -B:D | Ac-C:D - -C:D | -B:D = Ac-B:D | B:.D - A:B.D

Table 36 (Some boulesic-doxastic principles)

Consider the principles in tables-336. The firstP and the firstN stand for
‘positive’ and ‘negative’, respectivel8, M, W andA in the second position stand
for ‘belief’, ‘imagination’, ‘want’ and ‘acceptance’, respectivelg, C, |, M, L,
P, G, Ain the third position stand for ‘awareness’ (introspection), (accessf-*
sciousness’, ‘infallibility’, ‘imaginability’, ‘lovability’, ‘approvability’, ‘govern-
ability’ and ‘acceptability’, respectively. S&BS, for example, stands for ‘the
principle of positive belief awarenes$NAI for ‘the principle of negative accep-
tance infallibility’, and so on.

‘1: d4.(UR: (MB.FTR)) means that every principle in 1 (in Table 33) is
provable in every system that includ#$, andUR or MB andFTR given thatcis
perfectly rational, and so on. Hence, we can establish the following results

1:d4.(UR: (MB.FTR)). 2: d5.(UR: (MB.FTR)). 3:d5.(UR: (MB.FTR)).
4: (dD.d4).(UR: (MB.FTR)).

5: b4.(UR: (MW.FTR)). 6: b5.(UR: (MW.FTR)). 7: b5.(UR: (MW.
FTR)). 8: (bD.b4).(UR: (MW.FTR)).

9: db4.(UR: (MB.FTR)). 10: db5.(UR: (MB.FTR)). 11: (db5.dD).(UR:
(MB.FTR)). 12: (db4.dD).(UR: (MB.FTR)).
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13: bd4.(UR: (MW.FTR)). 14: bd5.(UR: (MW.FTR)). 15: (bd5.bD).
(UR: (MW.FTR)). 16: (bd4.bD).(UR: (MW.FTR)).

We can employ the principles in tables-&b to define 64 dferent predicates
that can be used to describe various individuals. For every prinBiphee define
a corresponding predicaRxin the following way:IIx(Px < ITY(P[Y/D, x/c])),
whereP[Y/D, x/c] is like P except that every occurrence Dfhas been replaced
by an occurrence of and every occurrence afhas been replaced by an occur-
rence ofx. For example, froniPBS we define the predicat@éBS xin the following
way: IIx(PBS x< IIY(BxY — BxBxY)), which reads asx is (perfectly) posi-
tively belief aware fi for everyY, if x believesY, thenx believes thai believes
Y’. In other words,x is (perfectly) positively belief awarefishe is aware of all
her beliefs. Furthermore, I&Y Zxbe one of the 32 predicates defined in this way
that begins withP, and letNY Zxbe one of the 32 predicates defined in this way
that begins withN. Then we can define 32 new predicates in the following way:
IIX(YZx< (PYZxA NYZX). For example, we define the predic®8 xin terms
of PBS xandNBS xin the following way:TIx(BS x<> (PBS xA NBS %), which
reads asx is (perfectly) belief awarefii x is both positively and negatively belief
aware'. In other wordsx is (perfectly) belief awardii she is aware of all her beliefs
and non-beliefs. Among these predicates, eight are of the BEm eight of the
form WZx eight of the formMZx and eight of the fornrAZx whereZ stands for
S,C, I, M, A G, LorP. LetZ be interpreted in this way. Then, we can define eight
new predicates in the following wayIx(Zx <> (BZxA WZxA MZxA AZX)). For
exampleITx(S X< (BS xA WS xA MS xA AS ¥)). The informal interpretation of
these predicates is as followSx xis perfectly (self-)aware; in other words, some-
one is perfectly (self-) awardfishe is aware of everything she believes and does
not believe, everything she wants and does not want, everything thatgmiatde
or conceivable to her and everything that is not, and everything thatéptable to
her and everything that is ndE;x x is perfectly (self-)(access-)consciols; x is
perfectly (self-)infallible;Mx: x is perfectly (self-)imaginativeAx x is perfectly
(self-)acceptingGx x is perfectly (self-)governing (autonomoud)x: X is per-
fectly (self-)loving; Px x is perfectly (self-)approving. Finally, we will introduce
one more predicate that is defined in terms of these eight basic predicates in th
following way: IIX(EX <> (S XA CXA IXx A MXA AXA GXA LX A PX)), which says
thatx is (perfectly) enlightenedti x is perfectly (self-)aware, and so on.
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Theorem

Systems

IIX(Rx— (PBS xA NMS xA PMCxA NBCX))
IIX(Rx— (NBS xA PMS xA PBCxA NMCX))
IMx(Rx— (PBIXA NMIxA PMMxA NBMX))
IIX(Rx— (NBIXA PMIXA NMMxA PBMX))
TMIx(RX— (PWLxA NALXA PAPxA NWPY)
IIX(RXx— (NWLxA PALXA PWPxA NAPX))
IIX(RX— (PWGxA NAGxA PAAXA NWAX))
IIX(Rx— (NWGxA PAGxA NAAXA PWAX)
IMx(Rx— (PWS A NAS xA PACxA NWCX)
IMX(Rx— (NWS xan PAS xA PWCxA NACX))
IIx(Rx— (PWIxA NAIxA PAMxA NWMX))
IMx(Rx— (NWIxA PAIXA NAMXA PWMX))
IIX(Rx— (PBLXxA NMLxA PMPxA NBPX))
IMx(Rx— (NBLxA PMLxA PBPxA NMPX))
IIX(Rx— (PBGXA NMGxA PMAXA NBAX))
IIX(RX— (NBGxA PMGxA NMAxA PBAX))

d4.(UR: (MB.FTR))
d5.(UR: (MB.FTR))
d5.(UR: (MB.FTR))
(dD.d4).(UR: (MB.FTR))
b4.(UR: (MW.FTR))
b5.(UR: (MW.FTR))
b5.(UR: (MW.FTR))
(bD.b4).(UR: (MW.FTR))
db4.(UR: (MB.FTR))
db5.(UR: (MB.FTR))
(db5.dD).(UR: (MB.FTR))
(db4.dD).(UR: (MB.FTR))
bd4.(UR: (MW.FTR))
bd5.(UR: (MW.FTR))
(bd5.bD).(UR: (MW.FTR))
(bd4.bD).(UR: (MW.FTR))

Table 37 (Some theorems in some systems)

Consider Table 37. We see, for example, tHa{Rx - (PBS xA NMS xa

PMCxA NBCX)) is provable in every system that includ#s andUR or MB and
FTR In other words, in every system that contagids andUR or MB andFTR,

we can prove that every perfectly rational individual is (perfecthgipeely belief
aware, and so on; that is, Xfis (perfectly) rational then for every if x believes

Y then x believes that believesY, and so on. The other results are interpreted

similarly.

Theorem

Systems

IIX(RX— (BS XA MS xA MCxA BCx))
ITX(Rx— (BIxA MIx A MMx A BMX))
ITX(Rx— (WLxA ALXA APXAWPX))
IMX(Rx— (WGxA AGXA AAXA WAX))
ITX(Rx— (WS xA AS xA ACXA WCX))
IIX(Rx— (WIxA AlxA AMXA WMX))
[TX(RXx— (BLXxA MLXxA MPxA BPX))
[IX(RX— (BGxA MGxA MAXA BAX))

(d4.d5)(UR: (MB.FTR))
(dD.d4.d5).(UR: (MB.FTR))
(b4.b5).(UR: (MW.FTR))
(bD.b4.b5).(UR: (MW.FTR))
(db4.db5).(UR: (MB.FTR))
(dD.db4.db5).(UR: (MB.FTR))
(bd4.bd5).(UR: (MW.FTR))
(bD.bd4.bd5).(UR: (MW.FTR))

Table 38 (Some theorems in some systems)
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Theorem Systems

IMx(Rx— Sx | (d4.d5.db4.db5).(UR: (MB.FTR))

IMx(Rx— Cx) | (d4.d5.db4.db5).(UR: (MB.FTR))

IMx(Rx— Ix) | (dD.d4.d5.db4.db5).(UR: (MB.FTR))

IIX(Rx— Mx) | (dD.d4.d5.db4.db5).(UR: (MB.FTR))

IMx(Rx— AX) | (bD.b4.b5.bd4.bd5).(UR: (MW.FTR))

IIX(Rx— GXx) | (bD.b4.b5.bd4.bd5).(UR: (MW.FTR))

IMx(Rx— Lx) | (bD.b4.b5.bd4.bd5).(UR: (MW.FTR))

IMx(Rx— Px) | (b4.b5.bd4.bd5).(UR: (MW.FTR))

IMx(Rx— Ex) | (bD.b4.b5.bd4.bd5.dD.d4.d5.db4.db5).(UR: (MW.MB.FTR))
Table 39 (Some theorems in some systems)

Theorem Systems

IMX 0 X < olIXX; TIXU X < UTIXX Every

IXO X OIXX IXMX < MEXX Every

OIIXX = [IX & X; MITXX — IITXMX Every

2XOX - 0XXX, ZXUX - UXZXX Every

IIX(RX— (ITYWxY < WALIIYY)); IIX(RX— (ITYBxY < ByIIYY)) | Every

IIX(RXx— (ZYAKY < AZYY)); IIX(RXx— (ZYCKY < CxEYY)) Every

IIX(RX— (AXIIYY = TIYALY)); IIX(RX— (CXITYY — IIYCY)) Every

IIX(RX— (ZYWKY = WLEYY)); TIX(RX— (ZYBXY - ByZYY)) Every

Table 40 (Barcan-like theorems involving propositional quantifiers)

6 Soundness and completeness theorems

In this section, | will show that every (non-augmented) system in this paper
sound and complete with respect to its semantics (from now on, ‘system’ means
‘non-augmented system’). The definitions of ‘soundness’ and ‘compsi are
standard (see the introduction for some references).

Lemma 6. (Locality): Let M1 = (D, W,9R,2(,D,v1) and Mz = (D, W, R, 2, D, Vo)

be two models. Since the domain.®f; is identical with the domain of\,:
L(M1) = L{M2). We will call this languageC. Moreover, let A be any closed
formula of £ such that y and » agree on the denotations of all the predicates,
constants and matrices in it. Then for alle W: vy, (A) = Vo, (A).

Proof. Atomic formulas.vi,(Pas...a,) = 1 iff (vi(a1),...,v1(an)) € Vi, (P) iff

(Vz(al), ... ,Vz(an)> € Vsz(P) iﬁVzw(Pal ... an) =1.
Suppose thaty,(Ray) = 0, thatM is a matrix wherexy, is the first free vari-

able inM and thatay, is the constant iM[ay, ..., an/ ?] that replaces,. Then:
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Voo (Ran) = 0 andvy,(M[ay, ..., an/ X]) = Liff (vi(as).....va(@n)) € Vi (M) iff
(va(a1),...,v2(an)) € o, (M) iff vo,,(M[ay, ..., a0/ X]) = 1.

Truth-functional connectives. Straightforward.

(@). vi,(0B) = 1iff for all ' such thatRww', v1,/(B) = 1 iff for all " such
thatRRww', Vo, (B) = 1 [the IH (the induction hypothesis)Fiv,, (0B) = 1.

Other alethic operators. Similar.

(B:.C). Alis of the formB.C. Assume that,,(5:.C) = 1. We have two cases:
vi,(Rc) = 0 orvy,(Rc) = 1. Supposer,(Rc) = 0. Thenv,,(Rc) = 0. Hence,
Vo, (B:C) = 1. And vice versa. Suppose,(Rc) = 1. Then for allw’ such that
Dvi(c)ww’: vi,(C) = 1. Accordingly, for allw” such tha® v, (c)ww': Vo, (C) =
1 [by assumption and the IH]. Furthermoxe,,(Rc) = 1. Hence vz, (B.C) = 1.
And vice versa. Consequently,, (B.C) = 1 iff vo,(B.C) = 1.

Other boulesic and doxastic operators. Similar.

(I0). v, (TIxB) = 1 iff for all ky € £, vi,(B[kg/x]) = 1 iff for all ky €
L, Vo, (Blkd/X]) = 1 [by the IH, and the fact thaty, (ky) = Vo, (kg) = d] iff
v, (TTXB) = 1.

The patrticular quantifier. Similam

Lemma 7. (Denotation): Let M = (D, W,9R,2(,D, V) be a model and let A be any
formula of £L(M) with at most one free variable x. Furthermore, let a and b be
any two constants such thata) = v(b). Then, y,(A[a/x]) = v,,(A[b/x]), for any
weW.

Proof. Atomic formulas. Suppose that the formula has one occurrencg dis-
tinct from eachy. Then,v, (P& ...a...a,) = 1iff (v(a1),...,v(a),...,Vv(an)) €
v, (P) iff (v(a1),...,Vv(b),...,v(an)) € V,(P) iff v,(Pay...b...ay) = 1. Other
cases. Similar.

Suppose,,(Ray) = 0, thatM is a matrix whereq, is the first free variable iM
and thatay, is the constant iM[ay, ..., a,...,an/ ?] (M[ag,....b,...,a,/ ?]) that
replaces<,. (To illustrate, we assume that the formula has one occurrence of *
distinct from eacts; and thaty, is nota (b).) Then:v,(M[ay,...,4a,...,a./ T(]) =
1iff (v(az),...,v(a),...,V(an)) € Vo, (M) iff (v(a1),...,v(b),...,v(an)) € V,(M)
iff v,(M[ay,....b,...,a,/ X]) = 1.

Truth-functional connectives. Straightforward.

(). v,(oB[a/x]) = 1 iff for all " such thatRww’, v, (B[a/x]) = 1 iff for all
w' such thatRwo', v (B[b/x]) = 1 [the IH] iff v,,(OB[b/x]) = 1.

Other alethic operators. Similar.

(B). Ais of the formB;C. Eitherv,(Rt) = 1 orv,(Rt) = 0. We have already
shown that the result holds ¥f,(Rt) = 0. Accordingly, suppose that,(Rt) = 1.
Sincexis the only free variabld,cannot be a variable distinct frora So,t is either
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x or a constant. Supposés x. Thenv,,(BxC[a/x]) = 1 iff v,(BaC[a/x]) = 1 iff
for all " such thaOv(a)ww', v, (C[a/x]) = 1 iff for all ' such thatOv(b)ww’,
V. (C[b/x]) = 1 [by the fact thaw(a) = v(b) and the IH] ff v,,(B,C[b/x]) = 1
iff v,(BxC[b/x]) = 1. Suppos¢ is a constant, sag. Thenv,,(B.C[a/x]) = 1 iff
for all w’ such thatOv(c)ww’, v,y (C[a/x]) = 1 iff for all ' such thatOv(c)ww’,
v, (C[b/x]) = 1 [by the IH] iff v,,(B:.C[b/x]) = 1.

Other boulesic and doxastic operators. Similar.

(IT). If x =y, the result is trivial, for therA[a/x] = A[b/x] = A. So, suppose
that x andy are distinct. Then(ITlyB)[b/x] = Ily(B[b/x]) and (B[b/x])[a/y] =
(Bla/y])[b/x]. v,((IlyB)[a/x]) = 1 iff v,(ITy(B[a/x])) = 1 iff for all ky €
L(M), Voo ((Blayx])[Ke/y]) = 1 iff for all ka e £(M), Vi ((B[ka/y])[8/X]) = 1
iff for all kg € L(M), v,((B[kq/y])[b/x]) = 1 [the IH] iff for all ky € L(M),
Vi ((Blb/x])[ka/y]) = L iff v, (TIy(B[b/x])) = L iff v,,((TlyB)[b/x]) = 1.

The particular quantifier. Similam

6.1 Soundness theorem

Let M = (D,W R, 2, D, Vv) be a model and le be a branch in a tableau. Th&n
is satisfiable inM iff there is a functiorf from 0,1, 2,... to W such that

(i) Aistrue inf(i) in M, for every nodeA,i on 5,

(i) if irj isonB, thenRf(i)f(j)in M,

(iii) if iAcjis onB, thenAv(c)f(i)f(j) in M.

(iv) if iDcj is onB, then®v(c) f(i)f(j) in M.

(v)ifi=jisonB, thenf(i)is f(j).

We shall say that shows thatB is satisfiable inM if these conditions are
fulfilled.

Lemma 8. (Soundness Lemma): Let5 be any branch of a tableau and &l be
any model. I8 is satisfiable inM and a tableau rule is applied to it, then there is
a modelM’ and an extension d$, B, such thai3’ is satisfiable inM’.

Proof. Let f be a function that shows that the brarigls satisfiable inM.

Connectives and modal operators. Straightforward.

(W). Suppose tharc i, WC,i, andiAcj are onB, and that we apply thgV-
rule. Then we get an extension Bfthat include<C, j. SinceB is satisfiable inM,
WCis trueinf (i) andRcis true inf (i). Moreover, for any andj such thatAcj
isonB, Av(c)f(i)f(j). Thus by the truth conditions fon.C, C is true inf ().

(C). Suppose thaRci andC:B,i are on5 and that we apply thé-rule. Then
we get an extension d$ that includes nodes of the foridcj andB, j. SinceB3
is satisfiable inM, bothC.B andRcare true inf(i). Accordingly, for somew in
W, Dv(c) f(i)w andBis true inw [by the truth conditions fo€:B and the fact that
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Rcis true inf(i)]. Let f’ be the same aé except thatf’(j) = w. Sincef and
f’ differ only atj, f’ shows that3 is satisfiable inM. Moreover, by definition
Dv(c)f'(i)f'(j), andBis true inf’(j).

Other boulesic and doxastic cases. Similar.

(IT). Suppose thdixA i is onB and that we apply thH-rule. Then we get an
extension of3 that includes a node of the forA{a/x],i. SinceB is satisfiable in
M, M makeslIxAtrue in f (i). Accordingly,Alkq/X] is true inf (i) in M, for all
Kqg € L(M). Letd be such thav(a) = v(kq). By the Denotation LemmaA[a/x]
is true inf (i) in M. Hence, we can také1’ to be M.

(X). Suppose th&xA, i is on5 and that we apply thE-rule to get an extension
of B that includes a node of the forAjc/x],i (wherecis new).ExAis true inf (i)
in M, for B is satisfiable inM. Accordingly, there is somi&y € £(M) such
that M makesA[ky/x] true in f(i). Let M’ = (D,W, R, 2, D,V') be the same as
M except thatv/(c) = d. A[kq/x] is true inf(i) in M’ sincec does not occur
in Alka/x], by the Locality Lemma. By the Denotation Lemma and the fact that
V'(c) = d = V(kq), Alc/x] is true in f(i) in M’. Furthermore M’ makes all
other formulas on the branch true at their respective worlds as well, yottadity
Lemma, since does not occur in any other formula on the branch.

(-IT) and (X). Straightforward.

Accessibility rules. Here is one example.

(T = WNI). Suppose thatAcj and jrk are onB, and that we applyT -
WNI) to give an extended branch containifigck. SinceB is satisfiable inM,
Av(c)f(i)f(j) andRf(j)f(k). Hencev(c)f(j)f(k) sinceM satisfies condi-
tion C — WNI. Consequently, the extensionBfis satisfiable inM.

Other cases. Similam

Theorem 9. (Soundness Theorem): Every system S in this paper is strongly sound
with respect to its semantics.

Proof. Let M be the class of models that correspondSitdNe show the ‘contra-
position’. So, suppose th&tdoes not follow froni" in M. Then the premises i

are true and the conclusidhfalse in some worldv in M. Consider arS-tableau
whose initial list consists of, 0 for everyA ¢ I" and-B, 0, where ‘0’ refers taw.
Then the initial list is satisfiable iN . If we apply a rule to this list, it produces at
least one extension that is satisfiablen(by the Soundness Lemma). Hence, we
can find a whole branch such that every initial section of this branch idiahtes

in M. Suppose this branch is closed. Then some sentence is be both truésand fa
in some possible world iM . Still, this is impossible. Consequently, the tableau is
open. In conclusiorB is not derivable fronT'in S. m
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6.2 Completeness theorem

Definition 10. (Induced Model): Let B be an open complete branch of a tableau,
leti, j, k, etc. be numbers of, and let | be the set of numbers ¢h We shall
say thati= jjustin casei= j,or‘ = jor‘j =i occurs onB. = is an
equivalence relation anfi] is the equivalence class of i. Moreover, let C be the
set of all constants oi#8. Define a~ b to mean that a= b,0 is on the branch.

a ~ b is obviously an equivalence relation. Let] be the equivalence class of a
under~. The modelM = (D,W R, 2, D,v) induced byB is defined as follows.
D = {[a]:a€C} (or, if C = @, D = {0} for an arbitrary 0). (o is not in the
extension of anything.) W {a)m :ioccurs onB}, Ropijwrj) Iff irj occurs on

B, Av(a)wyjjwrj) iff iAaj and Dv(a)wpjjwrj) iff iDaj occurs onB. v(a) = [a],
and([a.],...,[an]) € Vi, (P) iff Pas...an,1is on B, given that P is any n-place
predicate other than identity. HRan,i occurs on5 and M is an n-place matrix
with instantiations on the branch (wherg, is the first free variable in M andgis
the constantin Nlay, ..., an/ ?] that replaces x), then([a1], ..., [an]) € Vo (M)

if M[ay,...,an/ i],i occurs onB. (Due to the identity rules this is well defined.)
When we have a b,0, b = ¢, 0, etc. we choose one single object for all constants
to denote.

If a tableau system does not incluie dOor T-WO, = is reduced to identity
and[i] = {i}. Hence, in such systems, we may takKeo be{w; : i occurs on5}
and dispense with the equivalence classes.

Lemma 11. (Completeness Lemma): Let B be an open branch in a complete
tableau and letM be a model induced b§. Then, for every formula A:

(i) if A,iis on B, then v, (A) = 1, and
(i) if =A,iisonB, then Vo (A) =0.

Proof. Atomic formulas. Pa;...a,,i is on B = ([a1]....,[an]) € Vo (P) =
(V(&1), ..., V(an)) € Vi (P) = Vi (Pa...an) = 1.

-Pay...ap,iisonB = Pay...ay,iis notonB (B open)= ([ai],...,[an]) ¢
Vo, (P) = (V(a1), ..., V(an)) € Vuy, (P) = Vo, (Par...aq) = 0.

Suppose thaM is a matrix wherexy, is the first free variable and, is the

constant inM[ay, ...,an/ X] that replaces, and thatv,,;(Ram) = 0. Then:
Mlay.....an/ X].ioccurs o8 = ([a].....[an]) € Vi, (M) = (V(ay).....V(an))
€ Vo, (M) = Vo (M[ag,.... a0/ X]) = 1. Furthermore-M([ay. ..., a,/ X].i oc-
curs onB = M[ay,...,an/ X],iis notons (B open)= ([a1]....,[an]) ¢ Voo, (M)
= (V(a1).....V(an)) £ Vuy, (M) = Vo, (M[ay,.... a0/ X]) = 0.
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a=b,iisonB=a~b(T-N-=)=[a]=[b] = v(a) =Vv(b) = v,,(a=b) =
1.

-a=Db,iisonB = a=0b,0is not onB (B open)= it is not the case that ~ b
= [a] # [b] = v(a) # v(b) = v, (a=b) =0.

Other truth-functional connectives and modal operators. Straigtdaforw

Boulesic and doxastic operators.f). Suppose-B:D,i is onB. Furthermore,
suppose thaRc i is not onB. Then-Rgi is onB [by CUT]. Hence,B.D is false
in wrj) by definition and previous steps. Supp&&ei is on 5. Then the-B-rule
has been applied te3.D,i and we have.-D,i on B. For the branch is com-
plete. Then th&-rule has been applied ©.-D, i, since the branch is complete.
Hence, for some neyj, iDcj and-D, j occur onBB. By the induction hypothesis,
’Dv(c)w[i]wm, andD is false inwp;;. SinceRgi is on B, v(c) is perfectly rational
in wp;. Consequently3:D is false inwyj), as required.

Other boulesic and doxastic operators. Similar.

Quantifiers. ). Suppose thaExD,i is on the branch. The tableau is com-
plete; so, E) has been applied. Hence, for someD[c/x],i is on the branch.
Accordingly, v,,;, (D[c/X]) = 1, by (IH). For somekq ¢ £(M), v(c) = d, and
V(kg) = d. Therefore,v, (D[ks/x]) = 1, by the Denotation Lemma. In con-
clusion,vw[i](ZxD) = 1. Suppose thatZxD,i is on the branch. The tableau is
complete; so,+X) has been applied. HencHx-D,i is on the branch. Again,
since the tableau is completH)(has been applied. Accordingly, for ale C,
-D[c/x],i is on the branch. It follows that,; (D[c/x]) = O for all ¢ € C [by
the induction hypothesis]. Ky € £(M), then for somee € C, v(c) = v(kq). By
the Denotation Lemma, for aly € L£(M), Vi, (D[ka/x]) = 0. In conclusion,
Vi, (XD) = 0.

The case fofT is similar. m

Theorem 12. (Completeness Theorem): Every system in this paper is strongly
complete with respect to its semantics.

Proof. First we establish that the theorem holds for the weakest sy8®nThen
we show how it can be extended to stronger systemsMLie the class of models
that corresponds tB8D.

We prove the ‘contraposition’. Suppose tiats not derivable fronT" in BD.
Then it is not the case that there is a clogde-tableau whose initial list comprises
A, 0 for everyAin T and-B, 0. Lett be a completdsD-tableau whose initial list
comprisesA, 0 for everyA in T and-B,0. Thent must be open. Accordingly,
there is at least one open branch,say 8. The model induced by makes all
the premises i true andB false inw(o;. Consequently, it is not the case tliat
follows fromT in M.
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To show that all extensions @D are complete with respect to their semantics,
we have to check that the model induced by the open branch in each cdislkeds
right kind. To do this we first go through every single semantic conditiom, e
combine each of the individual arguments. Here is one step in the proof toatieis
the method.

C - WBP. Suppose thallv(c)wjjwyj- TheniAcj occurs on3 [by the defini-
tion of an induced model]. Sindgis complete T-WBP has been applied. Hence,
for somek, jDck andjrk are onB. Accordingly, for somevy, Dv(C)wyjjwpy and
Rw(jjwk as required [by the definition of an induced model].

Other cases. Similam

7 Some examples

In this section, | will prove some examples that were mentioned in the introduction
First, | will show that the following instance of (ii) ikxample 2is a theorem in
every system that includds- MB, T - WP andT —ab4: if xis perfectly rational,
thenx wants to pass right through this stonewall only elieves that it is possible

to pass right through this stonewall. This instance of (ii) can be symbolise@ in th
following way in our systemsiIx(Rx - (WxPx — Bx & Px)). The following
tableau establishes this result:

(1) -IIxX(Rx— (WxPx— Bx < Px)),0
(2) Zx-(Rx—> (WxPx— By & Px)),0 [1, -IT]
(3) =(Rc> WcPc— B <& Pc)),0[2,%]
(4)RcO[3,- -]

(5) -(WcPc— B: ¢ Pc),0[3, - -]
(6) WcPc, 0[5, - —]

(7) -Bc © Pc 0[5, - -]

(8)Ce~ ¢ Pc,0[4, 7,-8]

(9) ODcl [4, 8,C]

(10)- ¢ Pc 1[4, 8,C]
(11)0-Pc 1 [10, -]

(12) 01 [9, T - MB]

(13) 1AC2 [T - WP]

(14) Ir2 [T - WP]

(15) 0Ac2 [12, 13,T - ab4]
(16)Pc, 2[4, 6, 15WV]
(17)-Pc 2 [11, 14,0]

(18) * [16, 17]

Australasian Journal of Logic (16:3) 2019, Article no. 3



126

Since the system that includds— MB, T - WP andT - ab4 is valid with
respect to the class of all models that satiSfy M3, C - WP andC - ab4 (by the
soundness theorems in Section 6), it follows tHatRx - (WxPx — By & PX))
is valid in the class of all models that satisfy these conditfdr@.E.D.

Second, we will turn tal'he Doctoral Student Argument (seeExample 3.
Recall that this argument includes the following premises and conclusions:

(P1) Every student in the room wants to become a doctor some time in the
future. (P2) Carl is a student in the room. So, (C3) Carl wants to becatoetar
some time in the future. (P4) Carl believes that it is (historically) necessaréh
will become a doctor some time in the future only if he studies hard. Hence, (C5)
if Carl is perfectly rational (wise), Carl wants to study hard.

This argument can be symbolised in the following way:JPIx(S x— WxDx)
(Every student in the room wants to become a doctor some time in the future),
where S X stands for X is a student in the room’ andx' for ‘ x will become a
doctor some time in the future’. (B2Sc(Carl is a student in the room), where
‘c’ refers to Carl. (C3 W,Dc (Carl wants to become a doctor some time in the
future). (P4) B. o (Dc — Hc) (Carl believes that it is (historically) necessary that
he will become a doctor some time in the future only if he studies hard), where
‘Hc’ stands for t (Carl) studies hard’. (C% Rc -~ W,Hc (If Carl is perfectly
rational (wise), Carl wants to study hard). (C&llows from (P1) and (P2) in
every system in this paper. (G%ollows from (C3) and (P4) in every system that
includes the tableau rulés— dT andT — MW. Let us now show this. WP’ is
an abbreviation of Modus Ponens, which is a rule that is derivable inysterss.)

(3) is the ‘negation’ of (C3.

(1) IIx(S x— WxDx), 0 [P1]
(2)Sc0[P2]
(3) -W:Dc, 0 [The ‘negation’ of C3
(4) Sc—~ W.Dc,0[1, 1]
(5) W.Dc,0[2, 4, MP]
(6) = [3, 5]

Now we use the conclusion (Q3s a premise in a new argument for (L%3)
below is the ‘negation’ of (C5.

“Note thatllx(Rx — (WxPx — Bx & Px)) also can be proved in many other systems in this
paper, for example, in every system that inclu@les WP andT — db4. Similar remarks apply to
many other theorems that are mentioned in this paper.
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(1) W.Dc,0 [C3]

(2) B.o (Dc - Hc),0 [P4]
(3) =(Rc— W¢Hc),0 [The ‘negation’ of CH
(4)RcO[3,- -]

(5) -WcHc,0[3, - =]

(6) Ac—Hc,0[4, 5,-W]

(7) OAcl [4, 6, A]

(8) -Hc, 1[4, 6, A]
(9)Dc,1[4, 1, 7,WV]

(10) ODcO [T - dT]
(11)o(Dc — Hc),0[4, 2, 10,5]
(12) 01 [7,T - MW)]
(13)Dc - Hc, 1 [11, 12,0
(14)Hc, 1 [9, 13,MP]

(15) * [8, 14]

The tableaux above show that both subargumeniBhim Doctoral Student
Argument are ‘syntactically’ valid. In the first argument, we have not used any
special tableau rules. Hence, the conclusion is derivable from the @®misvery
system in this paper. By the soundness results (see Section 6) it folloiwhieha
argument is valid in the class of all models. In the second subargument,wee ha
used the tableau rul§s- MW andT —-dT. Hence, the conclusion is derivable from
the premises in every system that includes these rules. By the soundselés in
Section 6 it follows that the argument is valid in the class of all models that satisfy
C - MW andC - dT. It follows thatThe Doctoral Student Argumentis valid in
the class of all models that satisB/- MW andC - dT. Q.E.D.

Third, we will now show that the conclusion Fhe Doctoral Student Argu-
ment Il (seeExample 4) is not derivable from the premises in our weakest system
BD. Recall that this argument consists of the following premises and conclusion
(P1) Every student in the room wants to become a doctor some time in the future.
(P2) Carl is a student in the room. (P3) Carl believes that it is (historicadiggs-
sary that he will become a doctor some time in the future only if he studies hard.
Hence, (C4) Carl wants to study hard. These sentences can be sygdhnlibe
following way: (P1) IIx(S x -~ WxDx), (P2) S¢ (P3) B. o (Dx - Hx) and
(C4) WcHc, where the predicates are interpreted as in The Doctoral Student Ar-
gument. To show this, we construct a semantic tableau that starts with the remise
and the negation of the conclusion. More precisely, our tableau will beitfirthe
following nodes: (P}, 0, (P2), 0, (P3), 0 and- (C4), 0.
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(1) I1x(S x— WxDx), 0 [P1]
(2)Sc0[P2]
(3) B. o (Dc - Hc),0 [P3]
(4) -WcHc,0 [The ‘negation’ of C4]
(5) Sc—W:Dc,0[1,11]

v N
(6)-ScO[5,~] (1) WcDc, 0[5, -]
(8) * [2, 6] v N
(99RcO[CUTR (10) -RGO[CUTR

(1)c=c0[T-R<]

The branch in the middle can be extended further. However, the brartloh to
right is open and complete. Hence, we can use this branch to feadcounter-
model. This countermodel can then be used to verify that the argumentialitbt
in the class of all models.

The matrix of B 0 (Dc - Hc) is By, 0 (Dx2 — Hx3); the matrix ofW:Hc is
Wy, HXo; and the matrix o#AV:Dc is Wy, Dxz.

W = {wo}, D = {[c]}, v(c) = [c], and the extensions @ andH are empty
in wo. M, A and® are empty. v, (By, O (Dx2 - HxX3)) is the extension of
Bx, O (Dx2 = HX3) in wo, V,,(Wx, Hx2) is the extension oWy, Hxz in wp, and
Voo (Wx, Dx2) is the extension oWy, Dx; in wo.

S¢O0 is on the branch. Accordingly¢] is in the extension 08 in wg in M.
Hence,Scis true inwp in M. -R¢ 0 is on the branch. Thereforg] is not in the
extension oRin wg in M, and soRcis false inwg in M.

If —Ray,i is on the open brancB and M is an n-place matrix with instan-
tiations onB (where xy, is the first free variable irM and a, is the constant
in M[ay,...,an/X1,..., %] that replacesy), then([ai],...,[an]) € Vi, (M) iff
M[as,...,an/X1,...,Xa],1 OCCUrS ON5.

By, (Dx2 = Hxz)[c,c, /X1, X2, X3],0 (= B¢(Dc — Hc),0) is on the branch.
c is the constant irBy, (Dxz — HX3)[C,C,C/x1, X2, X3] that replaces; and xi
is the first free variable iBy,(Dx2 — Hxsz). Therefore,([c],[c],[c]) is an el-
ement inv,,,(Bx,(Dx2 - Hxg)). If Rcis false inwg in M, thenBy, (Dx; —
Hx3z)[C, C,C/X1, X2, X3] IS true inwg in M iff (v(c), v(C),V(C)) IS NV, (Bx, (DX -
Hxz)). It follows that By, (Dx2 — HX3)[C,C,C/X1, X2, X3] iS true inwq in M iff
(v(c),v(c),v(c)) is in V,(Bx,(Dx2 — Hxg)). (v(c),v(c),v(c)) is in
Vo (Bx, (DXx2 - HX3)). So, we conclude thasy, (Dx2 - Hx3z)[c,C, ¢/X1, X2, X3]
is true inwg in M. By, (Dx2 = Hx3)[C, C,C/X1, X2, X3] = Bc(Dc — Hc). It follows
thatB:(Dc - Hc) is true inwg in M.

If Rcis false inwg in M, then Wy, Hxz[c,c/x1, X2] is true inwg in M iff
(v(c),v(c)) is an element in/,,(Wy,Hx2). ConsequentlyWy, Hxa[cC, ¢/x1, X2]
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is true inwg in M iff (v(c),v(C)) € Vu,(Wx, HX2). Wy, HX2[C,C/X1, %2],0 (=
WcHc,0) is not on the branchc is the constant ilWy, Hxz[cC, c/X1, X2] that re-
places the first free variable Wy, Hxp, namelyx;. Hence,([c],[c]) is not an
element inv,,(Wy, DX2) (Vu,(Wx, DX2) is empty). Therefore(v(c),v(c)) is not
in Ve, (Wyx HX2). So, itis not the case thatty, Hxz[ €, ¢/X1, X2] is true inwg in M.
It follows that it is not the case that/.Hc is true inwg in M, that is,W:Hc is
false inwg in M. ForWy Hxo[c, c/xq, X2] = WeHC.

Wy, Dxa[C, /X1, X2], 0 (that is,)V:Dc,0) is on the branch. The first free vari-
able in Wy, Dxz is x1 andc is the constant inVy, Dxz[c, c/x1, X2] that replaces
x1. So,([c],[c]) is an element irv,,,(Wx,Dx2). If Rcis false inwg in M, then
Wiy, DXo[C, C/X1, X2] IS true inwg in M iff (v(c),v(C)) € Vv,,(Wx,Dx2). Hence,
Wiy, DXo[C, €/ X1, X2] is true inwg in M iff (v(C), V(C)) € Vi, (Wyx, DX2). (V(C),V(C))
€ Vo,(Wx,Dx2).  Consequently, Wy, Dxa[C,C/X1, X2] iS true in wg in M.
Wy, DXo[C, ¢/X1, X2] = W,Dc. In conclusion)V:Dc is true inwg in M.

We have shown thé& cis true inwg in M and thatW;Dc is true inwg in M.
Hence,S c— W¢Dcis true inwg in M. Since[c] is the only object in our domain,
it follows thatIIx(S x— WxDX) is true inwg in M.

It follows that all the premises ithe Doctoral Student Argument Il are true
in wg in M, while the conclusion in this argument is falsedgin M. Hence, the
argument is invalid in the class of all models. Q.E.D.
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