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Abstract

This work concerns the use of operators for past and future con-
tingency in Priorean temporal logic. We will develop a system named
Ct, whose language includes a propositional constant and prove that
(i) Ct is complete with respect to a certain class of general frames and
(ii) the usual operators for past and future necessity are definable in
such system. Furthermore, we will introduce the extension Ctlin that
can be interpreted on linear and transitive general frames. The theo-
retical result of the current work is that contingency can be treated
as a primitive notion in reasoning about temporal modalities.

1 Introduction

Systems of modal logic are usually based on a language in which there is a
primitive notion of necessity or possibility, while the remaining modalities are
introduced by means of auxiliary definitions. The reason is that an exhaustive
picture of modalities can be easily obtained when an operator for necessity
or possibility and truth-functional connectives are available. For instance, if
the basic language of a system contains an operator �, such that �α means
“α is necessary”, possibility can be defined as ¬�¬α, impossibility as �¬α,
contingency (in the sense of two-sided possibility: to be contingent is to be
neither necessary nor impossible) as ¬�α ∧ ¬�¬α, etc. On the other hand,
the task of defining necessity and possibility from different modal notions
presents some technical difficulties and is interesting to explore in order to
answer the philosophical question whether all modal notions are on the same
conceptual level. Here we are especially interested in languages containing a
primitive notion of contingency or absoluteness, i.e. non-contingency: we will
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summarize the main contributions to this topic available in the literature and
extend some results of definability obtained in a monomodal context to the
bimodal context of tense logic.

2 Contingency logic

Montgomery and Routley considered in [7] a monomodal language where the
primitive operator was chosen between O, representing contingency, and M,
representing non-contingency (or absoluteness), and were able to axiomatize
systems deductively equivalent to KT, S4 and S5.1 For instance, they proved
that adding to PC (Propositional Calculus) the axioms M α ≡M ¬α and
α → (M (α → β)→ (M α →M β)), the rule ` α =⇒ `M α2 and the defini-
tion of �α as α∧ M α (to be necessary is to be true and non-contingent), one
gets a system of non-contingency logic deductively equivalent to KT. Fur-
thermore, they showed that the result of adding to this basis M α→MM α is a
system equivalent to S4, while adding MM α one gets a system equivalent to
S5. However, the problem of axiomatizing contingency and non-contingency
versions of normal systems weaker than KT, which turns out to be, from a
philosophical perspective, the problem of providing a general treatment of
contingency as a primitive modality, was not addressed by Montgomery and
Routley.

Some decades after, Humberstone explored in [3] this crucial issue, pre-
senting a complex axiomatization for the minimal logic of non-contingency,
called NC, and his solution was refined by Kuhn in [5]. For our purposes
we choose to focus on Kuhn’s minimal system K∆, which has the following
axiomatic basis:3

A0 all the theorems of PC
A1 M α→M ¬α
A2 (M α ∧ O(α ∧ β))→ Oβ
A3 (M α ∧ O(α ∨ β))→M (¬α ∨ γ)
R1 if ` α, then `M α

1We say that two systems S and S′ are deductively equivalent iff all the theorems of S
are derivable in S′ and all the theorems of S′ are derivable in S.

2This rule says that all theorems are non-contingent: if α is derivable, then M α is
derivable too. It is a weakening of the necessitation rule used in normal modal systems
with a primitive operator of necessity.

3A remark on A3: any absolute proposition α is either necessary or impossible. In the
first case it is necessarily implied by any other proposition, in the second case it necessarily
implies any other proposition. Furthermore, since what is necessary is also absolute, we
get: M α→ (M (β → α)∨ M (α→ γ)), which is equivalent to A3.
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R2 if ` α ≡ β, then `M α ≡M β
MP if ` α and ` α→ β, then ` β

The operators for contingency and non-contingency are interdefinable by
means of the clause Oα := ¬ M α, so the system is based on a monomodal
language. An interesting problem is that, in spite of the elegance of Kuhn’s
axiomatization, it is not possible to provide a definition of necessity in KM.
As a matter of fact, Cresswell proved in [1] that (i) the equivalence between
�α and α∧ M α used by Montgomery and Routley holds only for systems
of non-contingency logic equivalent to KT or to its normal extensions and
(ii) for many systems weaker than KT there is no formula f(α) containing
only M (or O) and truth-functional operators such that f(α) ≡ �α. Here we
reproduce the first part of Cresswell’s result in order to get acquainted with
the semantic notions that will be used in the following.

Consider a modal language with � as primitive operator and the defini-
tions M α := �α ∨ �¬α and Oα := ¬ M α. Such language is interpreted
on relational frames F = 〈W,<〉, where W is a non-empty set of worlds and
< ⊆ W ×W an accessibility relation. If v is a valuation function that maps
propositional variables to sets of worlds, we say that M = 〈F, v〉 is a rela-
tional model built on F. The notion of truth at a world w of a model M for
formulas whose main operator is M or O is specified below:

w � Oα iff for some w′ such that w<w′, w′ � α and for some w′′ such
that w<w′′, w′′ 2 α;
w �M α iff either (i) for all w′ such that w<w′, w′ � α or (ii) for all w′

such that w<w′, w′ 2 α.

Take an arbitrary frame F where KT is valid. Since axiom �α → α is
true at all points for any valuation v, we know from correspondence theory
that such frame is reflexive. For reductio, suppose that for some model M
built on F there is a world w such that w 2 �α ≡ (α∧ M α). There are
two cases: (i) w � �α and (ii) w 2 �α. With reference to the first case, we
know that w′ � α for all w′ such that w<w′; hence w �M α. In addition,
since the frame is reflexive, w � α and from this it follows immediately that
w � α∧ M α. Regarding the second case, we know that there is a w′ such
that w<w′ and w′ 2 α. Even if w � α, from reflexivity it follows that w 2M α
and, finally, that w 2 α∧ M α. In both cases we contradict the assump-
tion w 2 �α ≡ (α∧ M α). Consider, instead, a frame F′ containing only a
point u such that ¬u<u (u is a dead-end); then there is a model M′ on F′

such that for some atomic propostion p we have u 2 p and u � �p, hence
u 2 �α ≡ (α∧ M α). This completes the first part of Cresswell’s result. In the
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second part, as we said, he proved that a definition of necessity in terms of
non-contingency is usually not available for systems that can be interpreted
on non-reflexive frames.4 Hence, the important conclusion to draw is that a
straightforward use of contingency as a primitive notion is not possible in all
modal contexts.

3 A general definition of necessity

In recent years two different solutions have been proposed to overcome the
difficulties of defining necessity from contingency or absoluteness in systems
weaker than KT. The first solution, due to Zolin and presented in [12], con-
sists in defining in KM a new operator of necessity � behaving like � even if
not in general truth-implying. Zolin’s � is introduced via an infinitary con-
junction over a subset of KM-formulas; the idea is that, given a world w and
a formula α, w � �α iff w �M (β → α) for every formula β containing only
M and truth-functional operators. Here we suggest an alternative definition
with finitary means:5

Def � �α :=M α ∧ (Oβ →M (β → α))

Such definition is based on a semantic consideration. From the perspective
of a world w every formula β can be classified as necessary, impossible or
contingent: if w � �β, then we have w �M (β → α) iff w �M α (and we
already know this from the first conjunct of the definition); if w � �¬β
then w �M (β → α) as a trivial consequence and if w � Oβ∧ M α, then
w �M (β → α) iff w � �α. Hence, the meaning of �α is: (i) α is absolute
and (ii) if there is a contingent proposition, α is also necessary. This explains
the fact that, as Zolin remarks, the truth of �α implies the truth of �α, but
not the other way round, so � is weaker than �. Indeed, if one considers a
frame with two worlds, w and w′, such that the only relation of accessibility
is w<w′, there can be a model where for some proposition p we have w � �p
(p cannot be contingent at w), but w′ 2 p, whence w 2 �p.

The second solution is provided by Pizzi in [8], where the author adds
to the axiomatic basis of KM a postulate for the existence of at least one
contingent proposition, i.e. ∃pOp, enriching the language with propositional

4See [1] for some exceptions, which are anomalous normal systems.
5Update: a similar definition for � is independently formulated by Fan, Wang and van

Ditmarsch in [2] to prove results of “almost definability” (local definability on a frame) of
necessity in terms of contingency. Their article suggested some variations in the proof of
completeness for the systems Ct and Ctlin.
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quantifiers. In [9] and [10] this strategy is refined with the use of a proposi-
tional constant, which we can represent as c.6 The remarkable point is that
adding to KM the axiom Oc or the weaker Oc∨ M α it can be proved that
the following definitions hold:7

Def � �α :=M α∧ M (c→ α)
Def ♦ ♦α := Oα ∨ O(c ∧ α)

Hence, one gets an elegant definition of necessity and possibility relative
to a contingent stock of information, c, whose interpretation depends on the
context.8 Pizzi proves also that the c-free fragment of KM +Oc is deductively
equivalent to KD, whereas the c-free fragment of KM +(Oc∨ M α) is deduc-
tively equivalent to K. For further analysis of Zolin’s and Pizzi’s approaches
to the problem of definability we invite the reader to see [4].

4 From a monomodal to a bimodal language

Keeping in mind what we said in the previous sections, we will explore the
use of contingency and non-contingency operators in the bimodal language of
Priorean temporal logic, seeking to get also analogous results of definability
for a temporal notion of necessity. However, before doing that we have to
recall some fundamental aspects of the new modal context. The language
of tense logic includes two primitive operators, � (“it has always been the
case that”) for past necessity and � (“it will always be the case that”) for
future necessity. The minimal system of tense logic is attributed to Lemmon
(see [11]) and called Kt. The axiomatic basis of Kt includes an axiom of
distribution and a rule of theorem necessitation for both operators: �(α →
β) → (�α → �β), �(α → β) → (�α → �β), ` α =⇒ ` �α and
` α =⇒ ` �α; additionally, there are two bridge-axioms expressing an
intuitive connection between past and future, i.e. α → �¬�¬α and α →
�¬�¬α.9 The role of these axioms will be clarified afterwards.

6The original notation is τ but we would like to avoid confusion with the temporal
setting in the following sections.

7The weaker axiom says that either c is contingent or every formula is necessary or
impossible (which would be a trivialization of modalities).

8In [10] some philosophically interesting interpretations of c are proposed, such as “the
moral laws are respected” or “general relativity is accepted by the scientific community”.
These interpretations allow to clarify the idea of “being necessary in relation to something”,
which underlies Def �.

9See [11] and [6] for a detailed presentation of the most important systems of temporal
logic. Here we use an alternative notation for temporal operators, the standard one is H
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Kt is interpreted on frames F = 〈T,<,>〉 where T is a non-empty set of
instants, < is the temporal relation “before” (t < t′ means that t is before
t′) and > is the temporal relation “after” (t > t′ means that t is after t′). A
model M = 〈F, v〉 consists of a frame F and a valuation function v mapping
propositional variables to subsets of T . The notion of truth at an instant t
of a model M is defined as below:

t � p iff t ∈ v(p) for every propositional variable p
t � ¬α iff t 2 α
t � α→ β iff t 2 α or t � β
t � �α iff for every t′ such that t′ < t, t′ � α
t � �α iff for every t′ such that t′ > t, t′ � α

Going back to the axioms α → �¬�¬α and α → �¬�¬α, they define
the class of relevant frames for tense logic as those where the relations < and
> are mutually inverse: ∀t, t′(t < t′ ≡ t′ > t). Such property, which seems
to be essential for time series, means that if an instant t is before an instant
t′, then t′ is after t and the other way round. Here it is worth reproducing
this result of frame definition to focus on the fundamental difference between
temporal and modal structures.

Consider a frame F = 〈T,<,>〉 and suppose that for every model M
build on F, α→ �¬�¬α holds at all instants. Take an arbitrary instant t: if
t 2 α then the validity of the axiom does not require any particular condition
for the frame, since �¬�¬α can be either true or false at t. If t � α, instead,
�¬�¬α is required to be true. In such case, if there is no t′ such that t′ < t,
then �¬�¬α turns out to be trivially true. Otherwise, if there is at least
a t′ such that t′ < t, it is required that there exists a t′′ such that t′′ > t′

and t′′ � α. However, if > is not the inverse relation of <, there is nothing
ensuring that this requirement is satisfied, because even if we have t � α, we
don’t have t > t′. Hence, the assumption that α→ �¬�¬α holds at t could
be falsified. This means that from the validity of α → �¬�¬α in a frame
it follows that > is the inverse relation of <. A similar analysis shows that
from the validity of α→ �¬�¬α in a frame it follows that < is the inverse
relation of >. Taking the two parts of the proof together, we can conclude
that < and > are mutually inverse in the class of Kt-frames.

for past necessity and G for future necessity. Priorean languages for temporal logic are
based on the distinction between “past”, “present” and “future” instead of the distinction
between “earlier” and “later”, even though the latter notions play a fundamental role from
a semantic perspective.
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5 The system Ct

In order to develop a system of temporal logic with two primitive operators
of contingency, which we will represent as H and O, the mutual inversity of
< and > must be granted in some way, because this is the distinctive feature
of temporal frames. A possible approach, following the suggestions in [10],
consists in introducing a propositional constant k and using it to formulate
some axioms able to force that property on frames. We will consider a system
named Ct, which stands for “temporal contingency”, whose axiomatic basis
is defined below:

A0 All the theorems of PC
A1.1 Hα→ H¬α
A1.2 Oα→ O¬α
A2.1 (Nα ∧ Nβ)→ N(α ∧ β)
A2.2 (M α∧ M β)→M (α ∧ β)
A3.1 (Nα ∧ H(α ∨ β))→ N(¬α ∨ γ)
A3.2 (M α ∧ O(α ∨ β))→M (¬α ∨ γ)
A4.1 α→ N(β ∨ Oα ∨ O(k ∧ α))
A4.2 α→M (β ∨ Hα ∨ H(k ∧ α))
A5 Hk ∧ Ok
R1.1 if ` α then ` Nα
R1.2 if ` α then `M α
R2.1 if ` α ≡ β then ` Nα ≡ Nβ
R2.2 if ` α ≡ β then `M α ≡M β
MP if ` α and ` α→ β then ` β

As in the monomodal case, we assume a definition of non-contingency oper-
ators, Nα := ¬Hα and M α := ¬Oα. Some comments on this list: A1.1-A3.2
and R1.1-R2.2 represent, with few variations, the bimodal version of the
axiomatic basis for the system KM in [5]; A4.1-A4.2 are our bridge-axioms
for past and future modalities, playing the same role as α → �¬�¬α and
α→ �¬�¬α in Kt, as we will see below; finally, A5 says that k is contingent
before and after an arbitrary point, i.e., it is the bimodal version of one of
the axioms used in [10] to grant definability. Any stock of information which
corresponds to a proposition contingent in the past and in the future of every
instant can be a suitable interpretation for k.10

10For instance, k may represent the well-known Aristotelian proposition that a sea-battle
is taking place: in such case Oα would mean “it is contingent whether a sea-battle takes
place in the future” and Hα “it is contingent whether a sea-battle took place in the past”.
However, it must be noted that in order to provide an accurate formalization of Aristotle’s
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Given the presence of a propositional constant, we want the system Ct to
be interpreted on structures where only some valuations for k are admitted.
Hence we make use of general frames G = 〈T,<,>,Π〉 where T , < and > are
defined as usual and Π is a set of admissible valuations for propositional terms
(variables and constants). The set Π is closed under the boolean operations
and the additional operations hH and hO:

• if X ∈ Π, then T −X ∈ Π

• if X, Y ∈ Π, then X ∩ Y ∈ Π

• if X ∈ Π, then hH(X) ∈ Π

• if X ∈ Π, then hO(X) ∈ Π

where hH(X) = {t ∈ T |∃t′, t′′(t′ < t ∧ t′ ∈ X ∧ t′′ < t ∧ t′′ 6∈ X)} and
hO(X) = {t ∈ T |∃t′, t′′(t′ > t ∧ t′ ∈ X ∧ t′′ > t ∧ t′′ 6∈ X)}. The following
admissibility conditions define valuations for our class of general frames:11

• v(p) ∈ 2T , for every propositional variable p;

• ∀t∃t′, t′′((t′ < t ∧ t′ ∈ v(k)) ∧ (t′′ < t ∧ t′′ /∈ v(k))) and ∀t∃t′, t′′((t′ >
t ∧ t′ ∈ v(k)) ∧ (t′′ > t ∧ t′′ /∈ v(k))).

A model M = 〈G, v〉 is obtained with a valuation v which maps proposi-
tional terms to elements of Π in agreement with the admissibility conditions.
Appealing to the terminology used in [10], any admissible valuation will be
called k-forked. Truth-conditions for Ct-formulas whose main operator is H
or O are specified below:

t � Hα iff for some t′ such that t′ < t, t′ � α and for some t′′ such that
t′′ < t, t′′ 2 α

argument about future contingencies one needs a language with metric operators [11]:
indeed it is required not only to say that a given proposition is contingent in the future, but
also that there are different possibilities related to the same future instant. In particular,
the non-metric operator of future contingency turns out to be either too strong or too weak.
Take O1s for “it is contingent whether a sea battle takes place tomorrow”: if we define Os
as ∀i, 1 ≤ i,Ois, then Os→ O1s, but not vice versa; if we define Os as ∃i, 1 ≤ i,Ois, then
O1s→ Os, but not vice versa.

11The admissibility condition on v(p), for any propositional variable p, is trivial, whereas
the admissibility condition on v(k) ensures that all interpretations of k satisfy A5. Note
that this axiom is specific for k (not closed under uniform substitution) and requires models
to have at least two instants. Indeed, minimal models for A5 are built on a general frame
where T = {t1, t2}, the relations < and > are universal and, for any valuation v, either
v(k) = {t1} or v(k) = {t2}.
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t � Oα iff for some t′ such that t′ > t, t′ � α and for some t′′ such that t′′ > t,
t′′ 2 α

We will prove that Ct is complete with respect to the class of general frames
where the relations < and > are mutually inverse (as required by the tempo-
ral context), every instant is preceded and followed by at least two instants
and only k-forked valuations are admitted. For the sake of simplicity, such
class of general frames will be called Θ0.

Theorem 5.1 Ct is sound with reference to the class Θ0.

Proof Take an arbitrary frame G of the class defined. Axioms A1.1-A1.2
are valid as an immediate consequence of the truth conditions assigned to H
and O and of bivalence. For axiom A2.1 consider a model on G where for
some instant t we have t � Nα ∧ Nβ and suppose t 2 N(α ∧ β). Then for
every t′ such that t′ < t α has the same value and β has the same value.
But this means that either α ∧ β is always true or always false in the past
of t, hence N(α ∧ β) is true at t. Axiom A2.2 can be tested in a similar way.
Regarding axiom A3.1 suppose we have a model where t � Nα ∧ H(α ∨ β)
and t 2 N(¬α∨γ). Then either α is always true or always false in the past of
t but, if we want H(α∨ β) to be true at t, α must be always false in its past.
Hence, ¬α is always true in the past of t, as well as ¬α∨ γ, and N(¬α∨ γ) is
true at t. Axiom A3.2 can be tested in a similar way. For A4.1 suppose t � α
and t 2 N(β ∨ Oα ∨ O(k ∧ α)). At every instant t′ such that t′ < t we have
that α is possible in the future, but this means either t′ � Oα or t′ � O(k∧α).
Since t′ is an arbitrary instant preceding t, then β ∨Oα ∨O(k ∧ α) is neces-
sary in the past of t and t � N(β ∨Oα ∨O(k ∧ α)). The same holds, mutatis
mutandis , for A4.2. The validity of A5, Modus Ponens, R1.1 and R1.2 is
straightforward. For rules R2.1 and R2.2 consider that α ≡ β is valid in a
model built on G in three cases: (i) α and β hold at every instant, (ii) α and
β hold at no instant, (iii) there are some instants where both α and β hold
and at all other instants neither α nor β hold. In cases (i) and (ii) we have
that, at an arbitrary instant t, Nα and Nβ, as well as M α and M β, hold. In
case (iii) if for some instant t we have t 2 Nα we also have t 2 Nβ and if for
some instant t′ we have t′ 2M α we also have t′ 2M β. Therefore, in all cases
Nα ≡ Nβ and M α ≡M β hold.
Q.E.D.

The definition of canonical models for logics of contingency is due to [3] and
[5]. Here we appeal to the specific technique used in [8] for a logic contain-
ing a propositional constant. Let Gc = 〈Tc, <c, >c,Π〉 be the general frame
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of the canonical model, where only k-forked valuations are allowed and any
instant t ∈ Tc is a maximal set of formulas consistent with Ct. The relations
“earlier” and “later” can be defined thanks to the functions p and f : if t is a
maximal consistent set of formulas then p(t) = {α|Nα ∧ N(α ∨ k) ∈ t} and
f(t) = {α| M α∧ M (α ∨ k) ∈ t}. We say that t′ < t iff p(t) ⊆ t′ and t′′ > t iff
f(t) ⊆ t′′. The canonical model of Ct, Mc = 〈Gc, vc, 〉, is such that:

• vc is a k-forked valuation (it satisfies the admissibility conditions de-
fined above);

• t � p iff p ∈ t, for every propositional variable p and instant t.

Lemma 5.2 For every formula α and every instant t in Mc, t � α iff α ∈ t.

Proof This fact holds by definition of Mc for propositional variables and
is preserved by boolean operators. The interesting cases are α ≡M β and
α ≡ Nβ. We do the first case. Suppose M β ∈ t. Then either β ∈ f(t)
or ¬β ∈ f(t), otherwise we would have, according to the definition of f(t),
O(β ∨ k) ∈ t and O(¬β ∨ k) ∈ t, which would make t inconsistent. Indeed,
β∨k and ¬β∨k are together contingent in the future of t only if β is neither
always true nor always false after t, which means Oβ ∈ t, whence M β 6∈ t,
contrarily to the initial hypothesis. If β ∈ f(t) then, for induction on the
complexity of β, for any instant t′ such that t′ > t, t′ � β and this entails
t �M β; if ¬β ∈ f(t), instead, for any instant t′ such that t′ > t, t′ 2 β, and
t �M β as well.

Conversely, suppose M β 6∈ t. Then the sets t′ = f(t) ∪ {β} and t′′ =
f(t) ∪ {¬β} are consistent. Indeed if t′ were not consistent there would be
{γ1, ...γn} ⊆ f(t) such that γ1 ∧ ...∧ γn → ¬β and we could derive ¬β ∈ f(t),
whence M β ∈ t. The same argument shows the consistency of t′′. Further-
more, for induction on the complexity of β, t′ � β and t′′ 2 β, which means
t � Oβ, that is t 2M β.
Q.E.D.

Theorem 5.3 Ct is complete with reference to the class Θ0.

Proof The fact that every instant is preceded and followed by two instants
is an immediate consequence of the validity of axiom A5. Thus, it rests for
us to prove that < and > are mutually inverse. Suppose t′ < t for some
t and t′ belonging to Mc: this means that p(t) ⊆ t′. Additionally, sup-
pose that for some formula γ, M γ∧ M (γ ∨ k) ∈ t′: we must prove γ ∈ t
to obtain t > t′. For reductio, assume γ 6∈ t, then ¬γ ∈ t. In such case
¬γ → N(β ∨ Oγ ∨ O(k ∧ ¬γ)) ∈ t, as a consequence of the fact that axiom
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A4.2 belongs to every maximal set of formulas consistent with Ct. We need
to consider some possible substitutions of β, which is an arbitrary formula
in A4.2. For β = k, since Hk ∈ t, then k ∨ Oγ ∨ O(k ∧ ¬γ) must be true at
every instant preceding t and, in particular, it must be true at t′. We can
safely assume ¬k ∈ t′ and concentrate on the other two disjuncts; otherwise,
if k ∈ t′, we may use the very same argument for the substitution β = ¬k. If
Oγ ∈ t′ then M γ 6∈ t′, but we assumed M γ ∈ t′, so there is a contradiction.
If O(k ∧ ¬γ) ∈ t′, then γ is somewhere false in the future of t′; but we also
know that M γ ∈ t′, so we must say that γ is always false in the future of
t′. However, in this situation we get O(k ∨ γ) ∈ t′, because Ok ∈ t′. Hence,
M (k ∨ γ) 6∈ t′, which contradicts our assumption. We must conclude that
γ ∈ t and this means t > t′. A similar argument can be used to prove t′ < t
from t > t′: the relations “before” and “after” are mutually inverse in Mc

and its frame belongs to the class Θ0.
Q.E.D.

Corollary 5.4 The operators � and � are definable in Ct.

Proof A straightforward adaptation to the temporal context of a result al-
ready obtained in [8]; the definability of past/future necessity in terms of
past/future non-contingency in Ct is granted once it is proved that �α ≡
(Nα∧N(k∨α)) and �α ≡ (M α∧ M (k∨α)) are valid in every model for Ct.
Suppose there is an instant t of a model M at which �α and Nα ∧N(k ∨ α)
have different values. There are two cases to be analysed: what happens when
�α is true and what happens when it is false. In the first case, α is always
true in the past of t, hence Nα is true at t, as well as N(k ∨α) and we easily
get a contradiction with the initial hypothesis that the two formulas involved
in the definition have different truth values. In the second case there is an
instant t′ preceding t and such that α is false at t′. We can infer that either
α is not possible or it is contingent in the past of t; if it is contingent, then
Nα∧N(k∨α) cannot be true, whereas if it is not possible, we have Nα true at
t. But what about N(k ∨α)? Given the validity of axiom A5, k is sometimes
true and sometimes false in the past of t, hence we have H(k ∨ α) true at
t and this implies that Nα ∧ N(k ∨ α) is false at t, contrarily to our initial
assumption. A similar analysis shows that �α and M α∧ M (k ∨ α) cannot
have different values at any instant of a model for Ct.
Q.E.D.
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6 The system Ctlin

In this section we will be concerned with an extension of Ct interpreted on
transitive and linear structures. Within a deterministic view of time the prop-
erty of temporal contingency can be ascribed to propositions which change
their truth value in the past or in the future of a given instant, even if there is
no actual branching of possibilities. Let the axiomatic basis of Ct be enriched
with the following formulas:12

A6.1 Nα→ N(Nα ∨ β)
A6.2 M α→M (M α ∨ β)
A7.1 (Nα ∧ N(α ∨ k)∧ M α∧ M (α ∨ k) ∧ α)→ N(β∨ M (α ∨ γ))
A7.2 (Nα ∧ N(α ∨ k)∧ M α∧ M (α ∨ k) ∧ α)→M (β ∨ N(α ∨ γ))

Hereafter the resulting system will be called Ctlin. Such a system is in-
terpreted in the subclass of Θ0 containing only transitive and linear general
frames. For the sake of simplicity, this class will be named Θ1.

Theorem 6.1 Ctlin is sound with reference to the class Θ1.

Proof Take a model M built on a frame G ∈ Θ1 and suppose for some
instant t we have t � Nα but t 2 N(Nα∨β). We know that in the past of t α
has the same value and transitivity entails that for every instant t′ such that
t′ < t, the past of t′ is also the past of t, hence we have t′ � Nα and t′ � Nα∨β.
Then it results t � N(Nα ∨ β), contrarily to our assumption. An analogous
proof can be given for A6.2. In the case of A7.1 suppose for an instant t we
have t � (Nα∧N(α∨ k)∧ M α∧ M (α∨ k)∧α) but t 2 N(β∨ M (α∨ γ)); this
means that t � H(β∨ M (α ∨ γ)) and, in particular, there is an instant t′ < t
such that t′ � ¬(β∨ M (α ∨ γ)), so t′ � ¬ M (α ∨ γ), i.e. t′ � O(α ∨ γ); this,
in turn, entails that there is an instant t′′ > t′ such that t′′ � ¬(α ∨ γ), so
t′′ � ¬α. Linearity tells us that either t′′ < t or t′′ > t or t′′ = t; however, we
know that α is true at t and Corollary 5.4 tells us that α is also true at any
instant in the past or in the future of t, so we reached a contradiction. The
same holds, mutatis mutandis , for A7.2.
Q.E.D.

Theorem 6.2 Ctlin is complete with reference to the class Θ1.

12A6.1 and A6.2 represent a duplication for past and future modalities of an axiom used
by Kuhn in [5] for a logic interpreted on transitive frames.
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Proof The canonical model Mc for Ctlin is built in the same way as for
Ct. We have to demonstrate that the canonical model is linear and transi-
tive. The proof of transitivity is a slight adaptation to the temporal context of
a result in [5]. Here we analyse only the case of transitivity towards the past,
since the temporal relations are mutually inverse. Let t, t′ and t′′ be three
instants in Mc such that t < t′ and t′ < t′′. Suppose Nα ∧ N(α ∨ k) ∈ t′′ but
α 6∈ t, so ¬α ∈ t. Given that t′′ satisfies A6.1, it follows that N(Nα ∨ β) ∈ t′′
as well as N(N(α ∨ k) ∨ β) ∈ t′′. Consider the substitution β = k and sup-
pose k 6∈ t′ (otherwise the same argument for β = ¬k). Since Hk ∈ t′′, then
N(α∨ k) ∈ t′ and Nα ∈ t′. From the definition of temporal precedence in the
canonical model we get α ∈ t, contrarily to our assumption, and conclude
t < t′′.

As far as linearity is concerned we must prove that for every three instants
t, t′ and t′′ such that t < t′ and t < t′′ either t′ < t′′ or t′′ < t′ or t′ = t′′.
Assume that none of these three conditions hold: then we must have, for some
formulas φ, ψ and χ, that the set Γ = {M φ∧ M (φ∨k),Nψ∧N(ψ∨k), χ} is a
subset of t′ but φ, ψ and χ do not belong to t′′. This means ¬(φ∨ψ∨χ) ∈ t′′.
Let α be a shorthand for φ ∨ ψ ∨ χ, then it can be easily proved that also
the set Γ′ = {M α∧ M (α ∨ k),Nα ∧ N(α ∨ k), α} is a subset of t′. From
A7.1 we can infer N(β∨ M (α ∨ γ)) ∈ t′. Consider the substitution β = k
and assume k 6∈ t (otherwise the same argument for β = ¬k): since Hk ∈ t′,
then M (α ∨ γ) ∈ t; now, consider the substitution γ = k and assume k 6∈ t′′
(otherwise the same argument for γ = ¬k): since Ok ∈ t, then α ∈ t′′, which
means φ ∨ ψ ∨ χ ∈ t′′, contrarily to our assumption. As a conclusion, either
t′ = t′′ or one precedes the other. The proof of linearity towards the past is
analogous, so the frame of Mc is in Θ1.
Q.E.D.

7 Final remarks

We developed two systems of Priorean temporal logic based on a language
with two primitive operators of contingency, one for past reference and the
other for future reference, ensuring the fundamental property of the relations
“before” and “after”, i.e. mutual inversity. The stronger system is interpreted
on linear and transitive structures. The proofs of completeness were based on
general frames in order to point out the restriction on admissible valuations
for the propositional constant k; thanks to this constant and its character-
istic axiom we were able to introduce the usual operators of past necessity
and future necessity. Such result shows that the notion of contingency can be
used to define (in an indirect way) the other modalities even in a temporal
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context. Further research can be done in order to develop systems of tem-
poral contingency of different strength, which may be suitable for reasoning
on other classes of temporal structures and to establish their relation with
traditional systems of tense logic.
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B. Kooi, and A. Kurucz, editors, Advances in Modal Logic, Volume 10,
pages 178–196. 2014.

[3] L. Humberstone. The logic of non-contingency. Notre Dame Journal of
Formal Logic, 36:214–229, 1995.

[4] L. Humberstone. Zolin and Pizzi: defining necessity from noncontin-
gency. Erkenntnis, 78:1275–1302, 2013.

[5] S. Kuhn. Minimal non-contingency logic. Notre Dame Journal of Formal
Logic, 36:230–234, 1995.

[6] R. McArthur. Tense Logic. Dordrecht. Reidel, 1976.

[7] H. Montgomery and R. Routley. Contingency and non-contingency bases
for normal modal logics. Logique et Analyse, 9:318–328, 1966.

[8] C. Pizzi. Contingency logics and propositional quantification.
Manuscrito, 22:283–303, 1999.

[9] C. Pizzi. A logic of contingency with a propositional constant. In E. Ballo
and M. Franchella, editors, Logic and Philosophy in Italy, pages 141–151.
Milano. Polimetrica, 2006.

[10] C. Pizzi. Necessity and relative contingency. Studia Logica, 85:395–410,
2007.

[11] A. Prior. Past, Present and Future. Oxford. Clarendon Press, 1967.

[12] E. Zolin. Completeness and definability in the logic of non-contingency.
Notre Dame Journal of Formal Logic, 40:533–547, 1999.

Australasian Journal of Logic (12:2) 2015, Article no. 2


