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Abstract

The present paper looks at how to produce a completeness proof
for J.C.C. McKinsey’s syntactical account of modal logic, by comparing
McKinsey ‘models’ with the current approach using frames. It also
looks at the motivation behind the system which we now call S4M;
and uses this motivation to produce a McKinsey semantics for that
system.

In McKinsey 1945, J.C.C. McKinsey produced what he called a ‘syntac-
tical’ account of modal logic, which predated the now standard possible
worlds semantics.1 On p. 83 McKinsey says:

As the intuitive basis for the syntactical definition of possibility,
I take the position that to say a sentence is possible means that
there exists a true sentence of the same form. Thus, for example,
it would be said that the sentence, ‘Lions are indigenous to
Alaska,’ is possible, because of the fact that the sentence, ‘Lions
are indigenous to Africa’ has the same form and is true.2

McKinsey immediately recognises that this needs to be made precise, and
announces the following way of dealing with the problem:

1For a more general account of the history of modal logic see Goldblatt 2006. It is an
honour to be able to contribute to the celebration of Rob’s achievements in this issue of the
Australasian Journal of Logic.

2One can see why he calls his account ‘syntactical’, and why he speaks of a sentence as
possible; but its use of the notion of truth makes it equally accurate to call it a ‘semantics’,
and that is how I will frequently think of it in this paper. A discussion of McKinsey’s
semantics may be found on pp. 165-169 of Humberstone 2015.
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I shall avoid these difficulties by supposing merely that we are
given a certain set of substitutions which take the sentences of a
certain language into other (or sometimes the same) sentences
of the language; and I shall call a sentence possible, if some
substitution of the set takes it into a true sentence.

McKinsey is not specific about what kind of language this is, though his
motivation might suggest that he thinks of it as a regimentation of a natural
language whose sentences have definite truth values. The regimentation
would consist in using ‘constants’ to represent the ‘descriptive’ symbols like
‘Alaska’ and ‘Africa’ in his motivating example, in contrast with the ‘logical’
symbols which determine the ‘logical form’ of the sentence in question. This
of course is in line with Quine 1934 who takes them to express sentences of
a particular natural language whose sentences have definite truth values.
It is perhaps significant that the language introduced on p. 84 contains
no formation rules, and it is not clear just what its atomic sentences are.
Luckily however it is possible to present McKinsey’s account in a language
L of modal propositional logic, and that is the procedure adopted in this
paper.3

1 McKinsey Models

I will base my discussion on a langauge with a primitive necessity operator
2. McKinsey actually follows Lewis in using 3 as a possibility operator
and expressing necessity by „3„, so to avoid confusion with McKinsey’s
languages I will call the language of the present paper L. Assume then a
language L of propositional modal logic, based on the ‘falsum’ K and the
operators Ą and 2, with the usual definitions of the other operators — in
particular with the possibility operator 3 defined so that 3α “df „2„α.
Let the atomic wff of L be K and the members of a set P of propositional
variables p1, p2, ..., pn and so on. The complex wff are made up from the
atomic wff in the usual way. L can be interpreted by what we shall call
McKinsey-models. Adapting McKinsey’s definitions from p. 84 — supple-
mented by his addition of a modal operator on p. 85 — to a language based
on K, Ą and 2, his account can be presented as follows. In addition to a
truth-value assignment M — which assigns exactly one of two truth values
to the atomic wff — assume that Σ is a non-empty set of substitutions, where

3A description of McKinsey’s own procedure and terminology is found in the appendix
to the present paper. (§7)
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Each s P Σ is a function which associates with every p P P
a PC-wff (i.e. a non-modal wff) α. (1)

The extension of the substitutions to cover all PC wff inL can be defined in
the following way. For every substitution s:

SK spKq “ K

SĄ spα Ą βq “ pspαq Ą spβqq

Then, on p. 85, Mckinsey extends the language to a modal language which
he calls L1 and it is his L1 which corresponds to our L . Substitutions in
modal wff are defined by:

S2 sp2αq “ 2spαq4

It is vital to appreciate that although spαq can be a modal formula, since
α itself may contain modal operators, spαq does not introduce any modal
operators not already in α. A McKinsey model for L is a pair xM,Σy where
M is a truth-value assignment to the members of P, and Σ a non-empty set
of substitutions satisfying (1). I write xM,Σy |“ α to indicate that α is true
in xtM,Σy, and xM,Σy ) α otherwise. |“ can be defined for all wff of L by
the rules

For any p P P, xM,Σy |“ p iff M gives p the value true. (2)

xM,Σy ) K (3)

xM,Σy |“ α Ą β unless xM,Σy |“ α and xM,Σy ) β. (4)

xM,Σy |“ 2α iff xM,Σy |“ spαq for every s P Σ. (5)

McKinsey’s definition on p. 84 requires that sppq, for any p P P, be a
non-modal wff, and it is easy to justify a prohibition on allowing sppq to
be a modal formula. For suppose that Σ “ ts1, s2u, where s1ppq “ p and
s2ppq “ „2p, and that M assigns the value true to p. Then, xM,Σy |“ p, and
by (5), xM,Σy |“ 2p iff, for, every s P Σ, xM,Σy |“ p and xM,Σy |“ „2p; and
clearly there can be no such model. By restricting sppq to PC wff we can
be sure that in evaluating 2α, spαq, for every s P Σ, will be of lower modal
degree than 2α, and may be assumed to have already been given a value.
(This is so even when α contains modal operators, for, since s substitutes
only PC wff for its atomic wff α’s modal degree will not be raised.)

4Allowing for his different primitives SK and SĄ correspond to McKinsey’s A1 and A2

on p. 84 (C2 and C3 on p. 85). S2 corresponds to C1 on p. 85.
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2 Equivalence of models

Assume the definition of truth in a (Kripke) model xW,R,Vy, as found say,
in Hughes and Cresswell 1996. Our task is to produce, for any denumerable
Kripke model, a McKinsey model which, in a sense to be defined, satisfies
the same formulae. Because McKinsey’s semantics is expressed in terms of
substitutions of formulae in a denumerable language it is necessary in this
construction to have a denumerable Kripke model. The aim of this section
is to prove that for every denumerable Kripke model xW,R,Vy in which R
is serial — that is, in which for every w P W there is some w

1

P W such
that wRw

1

— there is a McKinsey model xMV,ΣRy which is equivalent to
xW,R,Vy.

Let FR be the set of all functions f from W into W such that f Ď R. Then

wRw1 iff for some f P FR, f pwq “ w1. (6)

That R is serial is required to ensure that f (w) is defined for every w P W.5

The key idea in the McKinsey model to be constructed is that, in place of
the truth of a variable p in a world w, we use the truth of a separate but
corresponding variable pw. Where xW,R,Vy is any model, let the set ΣR —
strictly ΣxW,R,Vy — be the set of substitutions based on xW,R,Vy. Assume, for
each w PW, a disjoint copy of P. That is to say, Pw = {pw: p P P}, ensuring that,
for w , w1, Pw X Pw1 “ H. From this it follows that if pw “ pw1 then w “ w1,
Let Pω be the union of all the Pws, and let Lω be the modal propositional
language based on Pω.

For f P FR let sf denote the substitution such that, for every
p P P and every w PW, sf(pw) = pf pwq

(7)

Now define ΣR as

ts : D f p f P FR ^ s “ sf}. (8)

From (7) and (8) we may conclude that ΣR has two properties. The first is:

For any w and w1 such that wRw1, there is some s P ΣR
such that, for every p P P, s(pw) = pw1

(9)

5The theorems which follow can be extended to models in which R is not serial, but we
then need to allow substitutions which are undefined for some variables. That possibility
is ruled out by requiring that Σ be non-empty and that every s P Σ is defined for every p P P.
McKinsey only considers logics which contain p Ą 3p, and therefore 2p Ą 3p as theorems,
and so adapting his definitions to allow undefined substitutions, though possible, not only
introduces complexities, but departs somewhat from his intentions.
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since if wRw1 there is some f P FR such that f (w) = w1. Let s be sf. Then, by
(7), sf(pw) = pf pwq for every p P P, and by (8) s P ΣR. The second property is
that for every w and w1 PW:

For any s P Σ, if s(pw) = pw1 for any p P P, then wRw1. (10)

For suppose that s(pw) = pw1 for some p P P. Since s P ΣR then s will be sf for
some f P FR, where, for every q P P, sf(qw) = qf pwq and wRf (w). In particular
sf(pw) = pf pwq, and so pf pwq = pw1 . So w1 = f (w), and therefore wRw1.

For any wff α in L let αw (in Lω) be α with pw replacing p
for every variable p in α. (11)

It is trivial that:

Kw = K, (α Ą β)w = (αw Ą βw) and (2α)w = 2αw. (12)

From (9) and (12) we have that, for any wff α

For any w and w1 such that wRw1, there is some s P ΣR
such that s(αw) = αw1

(13)

and from (10) and (12) we have that, for any wff α

If s(αw) = αw1 for any wff α in L P P, then wRw1. (14)

For p P P and w P W, let MV be an assignment giving pw the value true if
V(p,w) = 1 and false otherwise. Then xMV,ΣRy is a McKinsey model for Lω
satisfying the condition

xMV,ΣRy |“ pw iff V(p,w) = 1. (15)

theorem 1 For any wff α in L , xMV,ΣRy |“ αw iff V(α,w) = 1.

Proof. The result is defined to hold for the variables, clearly holds forK and
is preserved by Ą. For 2, suppose first that V(2α,w) = 0. Then there is
some w1 such that wRw1 and V(α,w1) = 0. So by the induction hypothesis
xMV,ΣRy ) αw1 . But by (13) there is some s P Σ such that s(αw) = αw1 ,
and therefore xMV,ΣRy ) 2αw, i.e., xMV,ΣRy ) p2αqw. Now suppose that
xMV,ΣRy ) p2αqw. Then xMV,ΣRy ) 2αw, and so for some s PΣ, xMV,ΣRy )

s(αw). Now s(αw) is αw1 for some w1, and so, by the induction hypothesis,
V(α,w1) = 0, and since, by (14), wRw1 then V(2α,w) = 0. �
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It is worth noting that, in the McKinsey model xMV,ΣRy produced in this
construction, for any variable p, and any s P ΣR, s(p) is also a variable. This
means that, for the purposes of theorem 1 we could have imposed an even
more restrictive condition on s(pw) than that it be a PC-wff. It need only be
a variable. However we shall follow McKinsey in defining models to allow
s(p) to be any PC wff.

3 Characterisation Classes

The purpose of this section is to use a class of denumerable models which
characterise a normal system of propositional modal logic in order to de-
fine a corresponding class of McKinsey models which also characterise that
system.6 Assume the standard definition of a normal system of proposi-
tional modal logic. S is normal iff it contains all tautologies of the classical
propositional calculus (PC), the modal formula

K 2(p Ą q) Ą (2p Ą 2q)

and is closed under the rules of uniform substitution, modus ponens and
necessitation. Where $S α indicates that α is a theorem of S the three
transformation rules may be written as:

US If$S α, then$S βwhere β is obtained from α by uniform substitution
of wff for its propositional variables.
MP If $S α and $S α Ą β then $S β.
N If $S α then $S 2α.

In this paper we shall restrict consideration to systems which contain D,
that is to say, normal systems containing the formula

D 2p Ą 3p.

We now prove a theorem about all normal modal systems which corre-
sponds to the well-known canonical model theorem of Kripke semantics.
The models we have in mind cannot be the canonical model for a system S
since, in a canonical model there have to be as many worlds as there are max-
imal S-consistent sets of wff, and W would therefore be non-denumerable.

6It is important here to realise that we are talking about characterisation by a class of
models not by a class of frames. There may be a notion of frame appropriate to a McKinsey
model, but it is not obvious what it is. The set Σ of substitutions in such a model is certainly
independent of the value assignment M, but it is still essentially tied to particular variables
in a way in which a relational frame is not.
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But a canonical model is more than we need, since all we require is that any
S-consistent set Λ of wff can be simultaneously satisfied in a world in a de-
numerable model; and techniques like the ‘subordination’ method found in
Chapter 7 of Hughes and Cresswell 1984 shew how to construct a denumer-
able model of the appropriate kind.7 From this it follows that every normal
modal system S is characterised by what we may call a characterisation class
ES of denumerable models whereby

If $S α then V(α,w) = 1 for every w P W where xV,R,Vy
P ES

(16)

If%S α then there is some xV,R,Vy P ES such that for some
w PW V(α,w) = 0.

(17)

We now let E1
S be the set of McKinsey models which correspond to the

models in ES in the way defined in section 2. Then, by theorem 1 we have:

theorem 2 If $S α then xMV,ΣRy |“ αw for every xMV,ΣRy P E
1
S

If %S α then there is some xMV,ΣRy P E
1
S such that

xMV,ΣRy ) αw.

That is to say, E1
S characterises S if ES does.

4 Completeness

The principal task of this section is to prove the completeness of S4 with
respect to two conditions McKinsey imposes on sets of substitutions. Al-
though completeness results for McKinsey’s semantics have been obtained
in Drake 1962, Drake’s algebraic proofs rely on the finite model property
of the systems in question, and thus will not generalise to all extensions of
D.8 His article predates the emergence of the canonical model method for
completeness based on Kripke-style possible world models, which, as we
have seen, allows a characterisation result in terms of McKinsey models to
be obtained for all extensions of D.

Given a model xM,Σy, call a wff α xM,Σy-true iff xM,Σy|“ α, when 2

is evaluated according to (5), and call α xM,Σy-valid iff β is xM,Σy-true for

7See also Makinson 1966.
8In fact his ‘substitutions’ turn out to be operators in a finite algebra, and seem better

understood as operators on sets of worlds rather than substitutions in McKinsey’s sense.
He then connects these algebras with the modal deductive systems by means of a tableau
completeness proof.
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every β obtained from α by uniform substitution for α’s variables.9 Say that
α is xM,Σy-equivalent to β iff α ” β is xM,Σy-valid. Something like this may
be what McKinsey has in mind:

The provable formulas of the usual systems are, presumably,
to be taken as those which become true when the sentential
variables are replaced by arbitrary constant sentences. (p. 85)

The distinction between truth and validity in a McKinsey model is that
soundness cannot be proved with respect to truth. Although xM,Σy-truth is
preserved by modus ponens it is not preserved either by uniform substitu-
tion or necessitation. For consider a model xM,Σy in which a variable, say
p, is assigned the value true, while another variable, say q, is assigned false,
and in which there is some s P Σ such that s(p) = q. It is easy to see that in
this case xM,Σy |“ p but xM,Σy ) q and xM,Σy ) 2p.

We first shew that the system D is sound with respect to the class of
all McKinsey models. It is sufficient to establish that the axioms of D
are xM,Σy´valid in every model xM,Σy; and that the transformation rules
preserve xM,Σy´validity in every xM,Σy. Obviously xM,Σy |“ β for every
instance β of a valid PC wff α. The only modal axioms in D are K, 2(p Ą q)
Ą (2p Ą 2q) and D.

Lemma 3 K is xM,Σy-valid for every model.

Proof. It is sufficient to prove that 2(α Ą β) Ą (2α Ą 2β) is xM,Σy-true for
every α and β. Suppose xM,Σy ) 2(α Ą β) Ą (2α Ą 2β). Then we have (i)
xM,Σy |“ 2(α Ą β), (ii) xM,Σy |“ 2α, but (iii) xM,Σy ) 2β. From (iii) there
is some s P Σ such that xM,Σy |“ spβq. But, from (ii) by (5). xM,Σyspαq, and
then by (4), xM,Σy ) spαq Ą spβq. But pspαq Ą spβqq “ spα Ą βq, and so
xM,Σy ) spα Ą βq, contradicting (i). �

Lemma 4 D is xM,Σy-valid for every model.

Proof. We shew that for any wff α, 2α Ą 3α is xM,Σy-true. Suppose not,
then for some xM,Σy. (i) xM,Σy |“ 2α and (ii) xM,Σy ) 3α. Let s be any
member of Σ. Since Σ is non-empty then there will be some s P Σ. From (i)
xM,Σy |“ s(α), and from (ii) xM,Σy ) spαq, which is a contradiction. �

9β here may be a modal formula, unlike the values of the substitutions for variables,
licensed by Σ. xM,Σy-validity comes close to the ‘Carnap-validity’ defined on p. 58 of
Cresswell 2013, though is of course importantly different from it.
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We now note that the transformation rules preserve xM,Σy-validity in any
model xM,Σy. For US we merely note that if every instance of α is true
in xM,Σy, and β is an instance of α then every instance of β is also true in
xM,Σy. For necessitation suppose that some instance of 2α is not true in a
model xM,Σy, i.e. that xM,Σy ) 2β where β is an instance of α. Then there
is some s P Σ such that xM,Σy ) s(β), and so s(β) is not xM,Σy-true. But s(β)
is an instance of β, and therefore an instance of α, which is to say that α
is not xM,Σy-valid, contrary to the hypothesis. Where S is a normal modal
system axiomatised by a set AxS of wff we can say that a wff α is S-valid
iff it is xM,Σy-valid in every xM,Σy in which all the members of AxS are
xM,Σy-valid. The argument just given ensures that every α which can be
derived from AxS by US, MP and Nec is S-valid:

Theorem 5 Suppose that S is a normal modal system defined by a collection
AxS of axioms, and all members of AxS are xM,Σy-valid. Then if $S α, α is
also xM,Σy-valid.

What theorem 5 means is that in order to prove the soundness, in terms
of xM,Σy-validity, of any extension of D in terms of a set of McKinsey
models, it is sufficient to establish the validity of its proper axioms in that
set of models. And that of course means establishing that where α is one
of these axioms then any substitution instance of α (including instances
where modal wff are substituted for α’s variables) is true in each one of
these models. By analogy with the possible-worlds semantics you can
study particular systems by imposing conditions on Σ. Two conditions on
substitutions which McKinsey imposes are:

Ref There is some s P Σ such that for every wff α, s(α) = α.
Trans For any s and s1 in Σ there is some s2 P Σ such that for all wff α,

s2pαqq “s(s1pαqq.10

It is not difficult to see that these are intuitively plausible conditions to
impose on substitutions. McKinsey proves that these two conditions in
conjunction with 5 give a system at least as strong as S4. The proofs of the
xM,Σy-validity of T (2pĄ p) given Ref and of 4 (2pĄ22p) given Trans are
trivial variants of the proofs found on p. 90 of McKinsey’s article. To obtain
S5 one adds the following condition:

Sym For any s P Σ there is some s1 P Σ such that s1(s(α)) = α for all wff α.

With Ref and Sym alone you get the soundness of the system B, which is T
10Ref and Trans are McKinsey’s A3 and A4 on p. 84, where he calls the s in Ref, s1. The

s, s1, and s2 in Trans are called sn, sm and st. Note that by SK-S2, provided Ref and Trans
hold for the variables, they will hold for every formula.
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together with the axiom B („pĄ2„2p). S5 is S4 + B. Sym is not intuitively
plausible for substitutions. For while it makes sense to obtain p Ą p from p
Ą q by substitution p for q, it does not make sense to think of obtaining p Ą
q by substituting q for p in p Ą p. There are of course substitutions which
do satisfy Sym. An example would occur if we restricted the substitution
rule so that distinct variables must be replaced by distinct variables, since
it is easy to see that this construal validates B.11

We now use theorem 1 to prove the completeness of S4 with respect
to McKinsey models.

Theorem 6 If a wff α is xM,Σy-valid in every model xM,Σy which satisfies
Ref and Trans then $S4 α.

Proof. We know that S4 is characterised by a classES4 of denumerable Kripke
models in which R is reflexive and transitive, and therefore we know, from
theorem 1, that there is also a corresponding class E1

S4 of McKinsey models
which characterises S4. It therefore suffices to shew that since xW,R,Vy in
ES4 is reflexive and transitive then the corresponding xMV,ΣRy obtained
from xW,R,Vy by the method of section 2 satisfies Ref and Trans.

From the definition of ΣR in (8) we know that for any w and w1 such that
wRw1, there is some s P ΣR such that, for every p P P,

sppwq “ pw1 (18)

and since R is reflexive in S4 this means that for every w P W there is some
s P ΣR such that, for every p P P,

sppwq “ pw. (19)

Although that is not quite sufficient to shew that there is a single s P ΣR for
which 19 holds, we can, nevertheless, augment ΣR by adding an additional
s* which satisfies 19 for every w PW. The only change to the proof of theorem
1 is to note that (14) still applies when ΣR is replaced by ΣR Y {s*}, and that
it is sufficient to shew that for any w P W, if s*(pw) = pw1 then wRw1. But if
s*(w) = w1 then w = w1, and in that case, since xW,R,Vy is a model for S4, R

11That is, B is xM,Σy-valid when substitutions are restricted to distinct variables for distinct
variables. This may be proved as follows. Suppose that xM,Σy ) 2„2α. Then there will
be a wff α1 obtainable from α by replacement of distinct p1,...,pn in α by q1,...,qn (where, for
1 ď i ď n and 1 ď j ď n, pi may be the same as qj but pi , pj and qi , qj for i , j) such that
xM,Σy ) „2α1. So xM,Σy |“ 2α and so xM,Σy |“ β, where β is any wff obtained from α1 by
any replacement of distinct variables. One of these replacements will be that of qi by pi, and
in that case β is α, and so xM,Σy |“ α, and therefore xM,Σy ) „α.
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is reflexive and therefore wRw1.
To satisfy Trans we need to require that for any s1 and s2 P ΣR we

can add an s3 to ΣR with the property that, for every w P W, and every p P
P, s3(pw) = s1(s2(pw)). So suppose that there are s1 and s2 such that, where
wRw1 and w1Rw11,

(i) s1(pw) = pw1 , and s2(pw1) = pw11 .

If we add to ΣR an s3 such that

(ii) s3(pw) = pw11

all we need is that wRw11, and this is guaranteed by the transitivity of R. �

5 S4M

In section 2 of his paper (pp. 91-93) McKinsey uses an example to shew
that his semantics does not satisfy S5. This is because „(1 = 2) is possible,
since it is true. But it is not necessarily possible since when 1 is substituted
for 2 we obtain a falsehood, because „(1 = 1) is false. McKinsey notes, on
p. 92, that the substitution used in this example, which he calls s2 has the
property that where α is any sentence and sn any substitution the formula

snrs2pαqs ” s2pαq (20)

is valid, which validates a wff he calls (F), which, in our notation is:

F p23p^23qq Ą 3pp^ qq

It is known that in the presence S4, F is derivable from

M 23p Ą 32p.

M is nowadays called the McKinsey Axiom and S4 + M is called S4M.12

In Kripke frames for S4M we add a ‘finality’ condition ensuring that each
world can see a world which can only see itself. (See Hughes and Cresswell
1996, p. 131). This corresponds to a condition that McKinsey discusses on
p. 92:

There is some s2 P Σ such that, for every s P Σ and every
wff α, s(s2(α)) = s2(α). (21)

12the name M is due to Lemmon and Scott 1977, p. 74. McKinsey 1945 p. 92, called S4M,
S4.1, but, as he notes on p. 93, it is not contained in S5, and is therefore today not normally
referred to as S4.1. Sobociński 1964 p. 77 called the system K1, and it is discussed on pp.
131-134 of Hughes and Cresswell 1996, where a derivation is provided of F from M.
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While that may enable a completeness proof it does not really highlight
what it is about s2 which makes it satisfy 20 — that where you have a
substitution which turns a wff into a tautology or a contradiction then no
further substitution can change the truth value of that formula. In a sense
that is what happens in final worlds, and also what happens in any formula
made up entirely from logical constants. Call a wff ofL a constant wff iff its
only atomic formulae are J and K, where Jmay be defined as K Ą K.

lemma 7 If α is a constant wff then either α is xM,Σy-equivalent to J or α is
xM,Σy-equivalent to K.

Proof. It is sufficient to shew that either xM,Σy |“ α for all xM,Σy, or else
xM,Σy ) α for all xM,Σy, since, in the former case α will be equivalent to
J and in the latter case to K. Since, for any xM,Σy either xM,Σy |“ α or
xM,Σy ) α, all that is required is to establish that where xM,Σy and xM1,Σ1y

are any models xM,Σy |“ α iff xM1,Σ1y |“ α. The proof is by induction on
the construction of α. The only atomic case is K, and xM,Σy ) K, for every
xM,Σy, and so xM,Σy |“ K iff xM1,Σ1y |“ α. xM,Σy |“ α Ą β iff either xM,Σy
) α or xM,Σy |“ β, iff (by the induction hypothesis) either xM1,Σ1y ) α or
xM1,Σ1y |“ β, iff xM1,Σ1y |“ α Ą β. xM,Σy |“ 2α iff xM,Σy |“ s(α) for every s P
Σ. Since α is constant s(α) is α, and, by the induction hypothesis, xM,Σy |“
α iff xM1,Σ1y |“ α. �

Call s a final substitution iff

For every variable p either s(p) = J or s(p) = K. (22)

Call xM,Σy a final model iff Σ satisfies Ref and Trans, and contains a final
substitution. For soundness we prove that M is valid in every final McK-
insey model xM,Σy. As noted in p. 70 of Cresswell 2013 M is trivially
equivalent to:

M1 3p3p Ą 2pq

and so it is sufficient to prove that M1 is xM,Σy-valid. That is to say

theorem 8 For any wff α and any final model xM,Σy, 3(3α Ą 2α) is xM,Σy-
true.

Proof. Let xM,Σy be any final model. Then there will be a final s P Σ, and in
that case,by lemma 7 s(3α Ą 2α) will be equivalent to either J Ą J or K Ą
K, and in either case xM,Σy |“ s(3αĄ2α), and so xM,Σy |“3(3αĄ2α). �
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For completeness we produce, for any final Kripke model, a particular final
McKinsey model; and shew that the same formulae satisfy it as satisfy the
Kripke model. We assume that our system S is S4M, and that we have a final
S4M model xW,R,Vywith a set FR defined as in section 2. To take account of
the finality condition we add a set F* of final substitutions defined so that s
P F* iff for every non-final w PW and every final w1 PW, such that wRw1:

For every p P P, s(pw) = J if V(p,w1) = 1 and s(pw) = K if
V(p,w1) = 0. (23)

Notice that, since Kripke models for S4M are based on transitive frames, if
w1 can see a final world w2, and if w3 can see w1 then w3 can also see w2.
This ensures that if in F* there is some s which satisfies (23) and for some
w3, s(pw3) = pw2 then there is already some s1 P F* such that s1(pw3) satisfies

For every p P P, s1(pw) = J if V(p,w1) = 1 and s1(pw) = K if
V(p,w1) = 0. (24)

In defining xM,Σywe now require that F*Ď Σ. Using sf as defined in (7) we
have, in place of (8), that Σ is

ts : D f p fR ^ s “ sfqu Y F˚ (25)

αw (in Lω) has also to be defined a little differently from (11).

(i) For non-final w, αw is α with pw replacing p for every
variable p
(ii) For final w, αw is α with J replacing p if V(p,w) = 1,
and K replacing p if V(p,w) = 0.

(26)

At this point there is a problem of labelling. Where w is a non-final world,
any variable p in α becomes pw in αw. But where w is final then it will be
either J or K, and will not be pw. To indicate this where there may be a
danger of confusion I shall use the notation αw

c to indicate the constant wff
formed by replacing p byJ orK according as V(p,w) = 1 or V(p,w) = 0. That
is to say, where w is a final world αw is αw

c. The assignment to variables is
as in (15). We have to prove an analogue of theorem 1. First a lemma:

Lemma 9 If w is a final world in xW,R,Vy and xM,Σy is constructed from
xW,R,Vy in accordance with 15 and 25 then xM,Σy |“ αw

c iff V(α,w) = 1.

Proof. The proof is by induction on the construction of α. Observe first that
since w is final then, for every wff β, V(2β,w) = V(β,w). For any p P P, pw

c is
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defined so that the lemma holds. It holds trivially for K and is preserved
by Ą, given that (β Ą γ)w

c is (βw
c Ą γw

c). For 2, given that (2α)w
c is 2αw

c,
if xM,Σy ) 2αw

c then, for some s P Σ, xM,Σy ) s(αw
c). But αw

c is a constant
wff, and so, by lemma 7, xM,Σy ) αw

c, and so, by the induction hypothesis,
V(α,w) = 0, and so V(2α,w) = 0. Conversely, if V(2α,w) = 0 then, since w is
final, V(α,w) = 0, and so xM,Σy ) 2αw

c. �

theorem 10 For any wff α in L, xM,Σy |“ αw iff V(α,w) = 1.

Proof. Given lemma 9 we may assume the theorem for final w, since in that
case αw is αw

c. So suppose that w is non-final. The result is defined to
hold for the variables, and clearly holds for K and is preserved by Ą. For
2, suppose first that V(2α,w) = 0. Then there is some w1 (which may be
w) such that wRw1 and V(α,w1) = 0. So by the induction hypothesis or by
lemma 9 xM,Σy ) αw1 . So by 13, there is some s P Σ such that s(αw) = αw1 ,
and therefore xM,Σy ) 2αw, i.e., xM,Σy ) (2α)w. Now suppose that xM,Σy
) (2α)w. Then xM,Σy ) 2αw, and so for some s P Σ, xM,Σy ) s(αw). Now
s(αw) is αw1 for some w1, and so, by the induction hypothesis or lemma 9,
V(α,w1) = 0, and since, by 14, wRw1 then V(2α,w) = 0. �

6 Full models

Although what we have proved goes some way towards articulating McK-
insey’s motivating idea it does not go all the way. One tempting way of
articulating this idea is set out on p. 68 of Cresswell 2013:

xM,Σy |“ 2α iff xM,Σy |“ α1 for every wff α1 which can be
obtained from α by uniform substitution for the proposi-
tional variables of α.

(27)

Although (27) seems natural, it does, as noted in that article, have some
problems. One of these is that it appears to allow the substitution of modal
wff for the propositional variables, which leads to problems of the kind
mentioned in section 1 of the present paper, since it can result in cases
where, in order to evaluate the truth of 2α you might already have to know
its truth value. Of course modal wff can simply be ruled out by fiat as done
in section 1. More importantly, not only does (27) permit complex PC-wff
to be substituted for variables — it seems to require that every PC-wff is
eligible. That is to say it requires a model xM,Σy to be full in the sense of
requiring that Σ contain every substitution which takes variables into PC-
wff. What this means is that „2p is xM,Σy-true in every McKinsey model.
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This is because in a full model there is some s P Σ such that xM,Σy ) s(K),
and so, in every full model, xM,Σy ) 2p, so that xM,Σy |“ „2p, which is
not a theorem of S4M. In itself this may not be a problem, since, although
„2p may be true in every full McKinsey model, it is not valid in every full
model since „2J is false in every McKinsey model, and for that reason
„2p has a false instance in every model, and so is not valid.13 Full models
are certainly final, and therefore their logic, whether axiomatisable or not,
contains S4M. One might therefore be tempted to conjecture that S4M is
characterised by the class of full McKinsey models. I have no proof that
this conjecture is true or that it is false.

7 Appendix14

While I believe that the paper is faithful to McKinsey’s intentions there are
certainly differences between the presentation offered here and McKinsey’s
own. The purpose of this Appendix is to shew how the results established
here apply to McKinsey’s own presentation. To that end I will shew how
to obtain what I have called a ‘McKinsey model’ from McKinsey’s own
exposition.

McKinsey first introduces a language L of ‘sentences’ whose nature
is unspecified except that it contains the symbols„ and ‘.’. (It could equally
have beenĄ andK.) He then assumes a subset T of L which is understood to
be the set of ‘true’ sentences of L.„ and . are understood as logical constants
which have a fixed interpretation. Adapting T to a language based on Ą
and Kwe can say that T is so constrained that K < T, and αĄ β P T iff either
α < T or β P T. The difference between McKinsey’s way of proceeding, and
that of the present paper is that McKinsey seems to feel that L and T are
fixed, and that, in particular, T is not provided by a model. This may be
because he would feel that any reference to a model could compromise the
‘syntactic’ emphasis of his work.

Even when he extends L to L1 by the addition of the modal operator
3 (in our case 2) McKinsey reminds us on p. 85 that his system contains
‘only constant sentences’, and that the modal logic it leads to is not any of
the usual ones. To obtain a modal logic of the usual sort McKinsey moves

13Unlike truth in a model, where „α is true iff α is false it is not the case that „α is valid
in the model just because α is not valid in that model. So we cannot conclude that „2p is
valid just because 2p. is not.

14I am grateful to a referee for this journal for reminding me of the importance of the dif-
ference between the way of proceeding in the bulk of this paper and McKinsey’s. Although
they turn out to be equivalent, this requires to be proved.
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to a language L2 (in effect our L ) which is like L1 except that its formulae
are made up of propositional variables. A formula α(p1, ..., pn) is in T2 iff
α(α1, ..., αn) is in T 1 for all α1, ..., αn where α1, ..., αn are sentences of L1. The
aim is to shew that where xM,Σy is a McKinsey model as in §1 above we can
define a translation πxM,Σy which takes sentences from the fixed xL1,T1y and
translates them into formulae of L which are true in xM,Σy iff the originals
are in T1.

Since both L1 and L are denumerable languages we may assume
that the variables of L may be put into 1-1 correspondence with the non-
logical sentences of L1 (i.e., sentences without any occurrence of K,Ą or 2).
For any such sentence α let pα be the propositional variable in L associated
with α. Where xM,Σy is a McKinsey model as defined in §1 above let πxM,Σy

be a 1-1 function from the non-logical sentences of L1 to the propositional
variables of L or their negations, satisfying the condition that (i) If α P T1,
then πxM,Σy(α) is pα if xM,Σy |“ pα and πxM,Σy(α) is „pα if xM,Σy ) pα and
(ii) if α < T1, then πxM,Σy(α) is „pα if xM,Σy |“ pα and πxM,Σy(α) is pα if xM,Σy
) pα. It is clear that for every xM,Σy there is some πxM,Σy(α) which satisfies
the condition. πxM,Σy can then be extended to all wff of L1 by requiring that
for any α and β in L1, πxM,Σy(K) = K, πxM,Σy(α Ą β) = (πxM,Σy(α) Ą πxM,Σy(β)),
and πxM,Σy(2(α)) = 2πxM,Σy(α). Since Σ is a set of substitutions relative to L
we need to specify an equivalent set SΣ of substitutions in L1, in which for
every non-logical sentence α of L1 s(α) is a sentences of L1 which does not
contain 2. Let SΣ be the set of all all substitutions in L1 which correspond
with some s P Σ in the sense that for every variable pα, s(pα) = πxM,Σy(sΣ(α)).

Lemma 12 For every sentence α of L1, xM,Σy |“ πxM,Σy(α) iff α P T1.

The proof is by induction on the construction of α. The lemma clearly holds
for K. Consider a sentence of L1 without logical constants. There are two
cases to consider. (i) If α P T1, thenπxM,Σy(α) is pα if xM,Σy |“ pα andπxM,Σy(α)
is„pα if xM,Σy ) pα. So in this case xM,Σy |“ πxM,Σy(α) iff α P T1. (ii) If α < T1,
then πxM,Σy(α) is „pα if xM,Σy |“ pα and πxM,Σy(α) is pα if xM,Σy ) pα, so in
this case also xM,Σy |“ πxM,Σy(α) iff α P T1. For Ą, πxM,Σy(α Ą β) = (πxM,Σy(α)
Ą πxM,Σy(β)), and xM,Σy |“ (πxM,Σy(α) Ą πxM,Σy(β) iff xM,Σy ) (πxM,Σy(α) or
xM,Σy |“ πxM,Σy(β) iff α < T1 or β is in T1. For 2 we note that since πxM,Σy(2α)
is 2πxM,Σy(α) then it is always of higher degree than πxM,Σy(α) and so we
may assume that the result has already been established not only for α itself
but for any substitution instance of α, because substitutions only involve
the substitution of modal-free wff for the non-logical formulae. So suppose
that xM,Σy ) 2α. Then for some s P Σ, xM,Σy ) s(πxM,Σy(α)), and therefore
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where sΣ P SΣ corresponds with s, xM,Σy ) πxM,Σy(sΣ(α))), and so α < T1, and
then 2α < T1. Similarly, if 2α < T1 then for some sΣ P SΣ, sΣ(α)) < T1, and
therefore, where s corresponds to sΣ, xM,Σy ) s(πxM,Σy(α)), and so xM,Σy )
2πxM,Σy(α), i.e. xM,Σy ) πxM,Σy(2α).

Conclusion

One lesson which emerges from this work is an appreciation of the superi-
ority of the current possible worlds semantics based on frames and models,
both in terms of an intuitive understanding of modality, and also in terms
of the ease of working with particular systems. In the final section of his
paper McKinsey hopes to deal with semantic issues ‘in a later paper’ (p. 94)
which, as far as I am aware was never written. It would be interesting to
know whether he would have thought that the use of ‘possible worlds’ in
current semantics compromises the aim of producing a ‘sytactical’ account
of necessity.15
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