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Abstract

The object of this paper is to examine two approaches to giv-
ing non-vacuous truth conditions for counterpossibles, counterfactu-
als with impossible antecedents. I first develop modifications of a
Lewis-style sphere semantics with impossible worlds. I argue that this
approach sanctions intuitively invalid inferences and is supported by
philosophically problematic foundations. I then develop modifications
of certain ceteris paribus conditional logics with impossible worlds.
Tableaux are given for each of these in an appendix and soundness and
completeness results are proved. While certain of the latter systems
are shown to have similar problems to logics from the first approach, at
least one relatively weak system appears to offer an adequate uniform
semantics for counterpossibles and counterfactuals.

1 Introduction

Lewis [11] developed a robust account of would and might counterfactuals,
analyzing them as variably strict conditionals. His account has many merits,
but shares with [18] the problem of making all counterpossibles, counterfac-
tuals with impossible antecedents, vacuously true. That this is a problem
can be motivated with a simple example. The conditional “if there were
a counterexample to the law of the excluded middle, Brouwer would have
been right not to trust that law” seems to be true whereas “if there were a
counterexample to the law of the excluded middle, Brouwer would have been
wrong not to trust that law” seems to be false. I will take the unacceptability
of this for granted in what follows.1

1For a recent survey of arguments against vacuism, see [2].
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One approach to rectifying this problem is to simply naively extend Lewis’
system to encompass impossible worlds as well as possible ones.2 Let us write
A� B for “if it were the case that A, it would be the case that B” and call
a world at which A is true an A-world. Then, jettisoning the vacuous case,
the truth conditions for would counterfactuals (informally) become,

(T) A� B is true at world @ if some A-worlds which are B-
worlds, possible or not, are closer to @ than any A-worlds which
are not B-worlds, possible or not (cf. [19, p. 188])

To evaluate “if there were a counterexample to the law of the excluded mid-
dle, Brouwer would have been right to mistrust that law”, we look at worlds
close (similar) to the actual world in which there are counterexamples to
this law (which are, ex hypothesi, impossible worlds). Of these, those where
Brouwer holds the same opinions about the law of the excluded middle that
he actually does hold are closer to the actual world than any worlds in which
he holds different views. So the counterpossible comes out non-vacuously
true on the condition given in (T).

Lewis articulates the crucial notion of similarity using an apparatus of
nested spheres. In the first section, I develop several versions of a Lewis-style
sphere semantics with impossible worlds to accommodate (T). I argue that
this approach is philosophically problematic and sanctions as valid certain
intuitively invalid inferences.

In the second section, I turn to a different approach to giving semantics
for counterfactuals developed by Chellas in [3]-[4] and Priest in [15]-[17]. I
develop several versions of this semantics with impossible worlds (sound and
complete tableaux for these are provided in an appendix). I argue for the
superiority of this approach by indicating how at least one of these systems
avoids the more serious problems of the Lewisian approach while also meeting
certain minimum adequacy conditions.

2 Sphere Semantics

2.1 Language and Semantics

I present a fairly general version of Lewis’ sphere semantics extended with
impossible worlds below. To expedite things, I build this logic on top of a
basic propositional modal language.

2The logics developed below implicitly characterize what impossible worlds are, but
questions about their ontological status are left aside. For a recent discussion of ontological
issues, see [10].
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DEFINITION. The set of formulae are defined by the following recursive
clauses:3

1. Every propositional letter is a formula (assume we have countably
many: P, P0, P1, . . .Q, . . . )

2. If φ is a formula, so are ¬φ, ♦φ and �φ

3. If φ and ψ are formulae, so are (φ∨ψ), (φ∧ψ), (φ→ ψ) and (φ� ψ)

DEFINITION. An interpretation is a structure 〈W,N, {$i : i ∈ N}, ρ〉,
where W is a set of worlds and ∅ 6= N ⊆ W is the set of normal worlds (W−N
is the set of non-normal worlds). $i is a set of subsets of W , {S0, S1, . . . , Sn},4
such that S0 ⊆ S1 ⊆ S2 ⊆ . . . ⊆ Sn = W .5 For all w ∈ W , ρw is a relation
between propositional letters and {0, 1}. Moreover, for all w ∈ W−N , ρw is a
relation between formulae generally and {0, 1}. Finally, for all propositional
letters φ and w ∈ N , either φρw1 or φρw0, but not both. 1 is the designated
value (“true”).

Lewis calls the elements of $i “spheres,” and his intuition is that smaller
spheres contain worlds which are more similar overall to world i than those
found only in larger spheres, and this is supposed to be relevant to the
assessment of counterfactuals at (normal) worlds. Note that all formulae
at non-normal worlds are evaluated directly on the semantics offered here.
Thus, $i does not enter into the truth conditions for counterfactuals at non-
normal worlds.

Because ρw is an arbitrary relation for w ∈ W − N , it can associate a
formula with both, neither or one of {0, 1}. Therefore, not every world is
maximal in the sense that there can be worlds at which not every formula
receives a truth value. The inclusion of such “partial” worlds in the models is
desirable for several reasons which I will not review here (for some unintuitive
consequences which result when partial worlds are not included, see [1]).

DEFINITION. Define [φ] to be {x ∈ W : φρx1}. Truth conditions for
complex formulae at normal worlds (w ∈ N) are given by the following
recursive clauses:

3Following convention, I will typically omit outer parentheses. φ ↔ ψ abbreviates
(φ→ ψ) ∧ (ψ → φ).

4It is assumed, for simplicity, that all $i have finite cardinality. This implies the Limit
Assumption: whenever there is a φ-world, there is at least one closest φ-world. For the
reasons given in [11, pp. 19-20], [12, pp. 229-30] and [2, pp. 640-1], the Limit Assumption
ought not to be made. Problems with the Limit Assumption are entirely orthogonal to
the subject of this paper, however, and will be ignored accordingly.

5I.e. $i is nested, closed under unions and non-empty intersections and universal [11,
pp. 13-6].
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1. ¬φρw1 if and only if φρw0; 0 otherwise

2. (φ ∧ ψ)ρw1 if and only if φρw1 and ψρw1; 0 otherwise

3. (φ→ ψ)ρw1 if and only if φρw0 or ψρw1; 0 otherwise

4. (φ ∨ ψ)ρw1 if and only if φρw1 or ψρw1; 0 otherwise

5. �φρw1 if and only if N ⊆ [φ]; 0 otherwise

6. ♦φρw1 if and only if N ∩ [φ] 6= ∅; 0 otherwise

7. (φ� ψ)ρw1 if and only if ∃S ∈ $w such that ∅ 6= [φ] ∩ S ⊆ [ψ]; 0
otherwise

Validity is defined as truth preservation at all normal worlds of all inter-
pretations. Call this logic S#. The similarity spheres picture can be used to
motivate a variety of additional constraints on $i. On the grounds that no
world is as similar to a given world i than i itself, Lewis advocated for,6

(SC) {i} = S0

Unfortunately, (SC) licenses the problematic inference φ, ψ |= (φ � ψ).7

Suppose that Fred is a wealthy speculator who invested millions of dollars
in pounds just before the Brexit vote. In spite of his significant loss the
next morning, Fred is still quite rich. Then “Fred invested in the pound just
before Brexit” is true and “Fred is quite rich” is true. But the conditional
“if it were the case that Fred invested in the pound just before Brexit, then
it would be the case that Fred is quite rich” does not seem to be true. More
modestly, it might be required that,

(WC) i ∈ S0

To round out the semantics, constraints on the models pertaining to impos-
sible worlds must be considered.

Nothing in the foregoing requires that every formula φ be satisfied at
some world. In models where certain formulae are not true at any worlds,
possible or not, counterfactuals with those formulae as antecedents will be
false when evaluated from a possible world. Alternatively, following [11], the
truth conditions could be recast so that when φ is not true at any worlds,
counterfactuals with it as an antecedent are true at possible worlds. In
practice, it makes little difference whether such counterfactuals are rendered

6In Lewis’ terminology, $i is “centered on i” [11, p. 14].
7Problems with this inference are noted in [8] and [15, p. 96].
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true or false since there are models in which every formula is true at some
world. For variety, I treat such counterfactuals as true in the alternative
semantics presented in the following section.

If it is thought to be desirable to ensure that, in all models, every formula
is satisfied at some world, a trivial way to do this is to require the existence,
in every model, of an impossible world which satisfies every formula. Call
this trivial world λ (cf. [18, p. 46]). Even if it is not required that λ exist in
all models, its existing in some models neither is nor should be proscribed.
It is as legitimate an impossible world as any other.

How distant should impossible worlds, both extreme (such as the trivial
world) and more mundane, be from a given possible world? It is perhaps
natural to suppose that all possible worlds are more similar overall to a given
possible world than any impossible worlds. This gives rise to a condition
which Nolan calls “strangeness of impossibility” [13, p. 550], and I will refer
to as,

(Dis) N ∈ $i

Similarly, it is plausible to require that the trivial world (if it exists) occur
only in the most distant sphere (cf. [13, p. 544], [2, p. 652]). That is,

(Ab) ∀k < n, Sk ∩ {λ} = ∅

The following extensions of S# should be noted:

S#
1 : S# + (WC)

S#
2 : S# + (SC)

S#
3 : S# + (WC) + (Dis) + (Ab)

S#
1 is the counterpossible correlate of the logic Priest calls S [15, pp. 90-

2]. S#
2 is the most distinctly Lewisian counterpossible logic. S#

3 is, among
counterpossible sphere logics, the one which I take to most nearly capture
prevalent intuitions about the nearness of impossible worlds. In the following
section, I direct criticisms at each of these.

2.2 Formal and Philosophical Issues

While many inference patterns which are valid in Lewis’ systems fail to be
valid in S# and its extensions, they frequently have modal parallels in S#

3

which hinge crucially on (Dis). Two, in particular, should be noted:

R1) �φ,�ψ |=S#
3
φ� ψ
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R2) ♦φ,�(φ→ ψ) |=S#
3
φ� ψ

(R1) corresponds to the inference sanctioned by (SC) in traditional Lewis
semantics and S#

2 (noted above). Consider an arbitrary world w ∈ N of
an arbitrary model such that �φρw1 and �ψρw1. Since w ∈ N ⊆ [φ] and
N ⊆ [ψ], ∅ 6= [φ]∩N ⊆ [ψ]. By (Dis) ∃S = N ∈ $w. Therefore, (φ� ψ)ρw1.

The counterpart of (R2) in Lewis’ preferred system is �(φ→ ψ) |= φ�
ψ. This rule encapsulates the relationship between strict and variably strict
conditionals. To construct a countermodel, just let the strict conditional
hold vacuously at some possible world and let the counterfactual fail because
some sphere contains impossible antecedent-worlds which do not satisfy the
consequent. (R2) is valid in S#

3 though. Consider an arbitrary world w ∈ N
of an arbitrary model such that ♦φρw1 and �(φ → ψ)ρw1. Then ∅ 6= [φ] ∩
N ⊆ [ψ]. Since by (Dis) ∃S = N ∈ $w, (φ� ψ)ρw1.

These inferences are problematic, however. Consider (R1). Let φ be
“there is a counterexample to the law of the excluded middle or there is not
a counterexample to the law of the excluded middle” and ψ be “there is not
a counterexample to the law of the excluded middle.” Since the law of the
excluded middle is valid (ex hypothesi), both of the premises, �φ and �ψ, are
true. But the conclusion, “if it were the case that there is a counterexample to
the law of the excluded middle or there is not a counterexample to the law of
the excluded middle, it would be the case that there is not a counterexample
to the law of the excluded middle,” seems to be false. In evaluating this
conditional, we should take into consideration worlds where each disjunct
holds, i.e. both possible and impossible worlds. This is precisely what (Dis)
rules out.8

The philosophical justification of (Dis) ought to be carefully scrutinized.
Let us say that a logic L holds at (or governs) a world if the world is closed
under the consequence relation of L. For example, classical S5 holds at all
of the possible worlds in S# and its extensions. Among the worlds at which
classical logic holds are many quite bizarre ones. It does not seem entirely
obvious that strange but classically governed worlds are more similar to the
actual world than worlds which are pretty much the same except that some
paraconsistent logic holds. That is, (Dis) seems to depend on a prioritization
of the laws of logic in judgments of similarity that is itself dubious.

In fact, such a prioritization creates even greater problems for S#
3 when

(Ab) is considered. I have suggested that the case for (Dis) rests on some

8(R1) is also open to objections of relevance. For example, take φ to be some banal
instance of the law of the excluded middle (“there is a red thing or there is not a red
thing”) and ψ to be the fundamental theorem of arithmetic. I will not be advocating for
a relevance logic in this paper and intend to bracket such considerations.
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argument which prioritizes logical laws to, among other things, physical laws
and chance occurrences. (Dis) seems to require that the most important
consideration in gauging overall similarity is what logic holds at a world.
The very same considerations militate against (Ab), for among the impossible
worlds (or, at least, the inconsistent worlds), the trivial world, λ, is the one
whose logical structure is the most like that of a possible world: λ is the
only inconsistent world closed under classical S5. Thus, the justification of
(Dis) not only contravenes (Ab), but suggests that λ be among the “nearest”
impossible worlds with the result that counterpossibles end up vacuously true
again.

Of course, one need not take prioritization of logical laws as gospel in
assessments of similarity. The challenge to those who do not is to produce
some other justification of (Dis) and argument for (Ab). While I believe that
most authors who have endorsed (Dis) do have some justification along these
lines in mind, I do not claim that no other justification is possible, nor will I
try to give one. I have already argued that (Dis) licenses intuitively invalid
inferences, so if it lacks justification as well, so much the worse for it and, by
extension, S#

3 .
Since I have already argued against (SC) and S#

2 , let us turn to S#
1 .

Three interesting inference patterns that hold due to (WC) in S#
1 and its

extensions are the following:9

R3) φ,¬ψ |=S#
1
¬(φ� ψ)

R4) φ, φ� ψ |=S#
1
ψ

R5) ¬ψ, φ� ψ |=S#
1
¬φ

For (R3), consider an arbitrary world w ∈ N of an arbitrary model such
that φρw1 and ¬ψρw1. Then by (WC), w ∈ [φ] ∩ S0 * [ψ] since ψρw0. As

9Lewis endorses the Duality Thesis, (DT), which concerns the relationship between
the conditionals � and � (“if it were,... it might be...”) [11, p. 2]. Under (DT),
φ � ψ ≡ ¬(φ � ¬ψ) and so (R3) can be rewritten: φ,¬ψ |= φ � ¬ψ. But (DT)
cannot be allowed to hold in S# or its extensions. Absent the vacuous-truth case in the
truth conditions for � conditionals, it must be the case that φ� ψ |= φ� ψ. Then
there are models in which ∃S ∈ $w such that ∅ 6= S ∩ [φ ∧ ¬φ] ⊆ [φ] ∩ [¬φ]. Then
(φ ∧ ¬φ� φ) ≡ ¬(φ ∧ ¬φ� ¬φ)ρw1. (φ ∧ ¬φ� ¬φ)ρw1 implies (φ ∧ ¬φ� ¬φ)ρw1.
So w, a possible world, satisfies a contradiction. Less formally, it is easy to appreciate
that (DT) is intuitively wrong. “If it were the case that cats were and were not mammals,
it would be the case that cats were mammals” seems true. Similarly, “if it were the case
that cats were and were not mammals, it might be the case that cats were not mammals”
seems true. But (DT) requires the negation of the latter to be true if the first is true. For
other issues with (DT), see [5] and [6].
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@S ∈ $w such that ∅ 6= [φ] ∩ S ⊆ [ψ], (φ� ψ)ρw0. Thus, ¬(φ� ψ)ρw1.
The proofs of (R4) and (R5), modus ponens and modus tollens for �,
proceed similarly.

It is natural to take (R3) through (R5) as inferences that should hold
in any minimally adequate logic for counterfactuals and counterpossibles.
Indeed, they seem to be inferences that should hold in any theory of condi-
tionals at all. Since each depends on (WC), it is worth investigating what the
nested sphere structure on its own validates, i.e. what inferences involving
conditionals are valid in S#. Among these is:

R6) φ� ψ, ψ� φ |=S# (φ� χ)↔ (ψ� χ)

(R6), in its axiomatic guise, is widely known in the literature as (CSO)
[14, p. 160]. Given that it only crucially depends on the nesting of spheres,
it holds in S# and all of its extensions.10 Consequently, any objection to
(R6) is an objection to sphere semantics in general. Consider the following
scenario:11 Fred is teaching George arithmetic. Fred asks George what 5 + 7
is, and George mistakenly responds 13. Fred snidely remarks, “if 5 + 7 were
13, you would have answered correctly.” This is true. What else might be
the case if 5 + 7 = 13? Plausibly, 5 + 6 = 12. Conversely, if 5 + 6 = 12, it
would seem reasonable to expect that 5+7 = 13. From (R6) and the truth of
Fred’s initial remark, we can infer “if 5+6=12, George would have answered
correctly,” which is not obviously true. Repeated application of (R6) may
help make the problem clearer:

1. 5 + 7 = 13� George answered correctly

2. 5 + 7 = 13� 5 + 8 = 14

10The proof of (R6) is somewhat more convoluted than the proofs of the other inferences.
It is useful to first prove the following lemma: if ∃S ∈ $w such that ∅ 6= S ∩ [φ] ⊆ [ψ] and
∃T ∈ $w such that ∅ 6= T ∩ [ψ] ⊆ [φ], then ∃Z ∈ $w such that ∅ 6= Z ∩ [φ] = Z ∩ [ψ].
Suppose the antecedent and the negation of the consequent. Then ∅ 6= C ∩ [φ] ⊆ [ψ] and
∅ 6= D ∩ [ψ] ⊆ [φ]. ∀Z ∈ $w(Z ∩ [φ] 6= Z ∩ [ψ] ∨ ∅ = Z ∩ [φ]) and ∅ 6= C ∩ [φ] imply
C ∩ [φ] 6= C ∩ [ψ]. Since ∅ 6= D ∩ [ψ] ⊆ [φ] implies ∅ 6= D ∩ [φ], by the same reasoning as
above we get D ∩ [φ] 6= D ∩ [ψ]. If x ∈ C ∩ [φ] and x /∈ C ∩ [ψ], x ∈ C ∩ [φ] ⊆ [ψ] implies
x ∈ C ∩ [ψ] which is impossible; so x /∈ C ∩ [φ] and x ∈ C ∩ [ψ]. Parallel reasoning shows
that there is a y such that y ∈ D∩[φ] and y /∈ D∩[ψ]. By nesting, either C ⊆ D or D ⊂ C.
If C ⊆ D, then x ∈ D ∩ [ψ] ⊆ [φ] implies x ∈ C ∩ [φ] which is impossible. But if D ⊂ C,
then y ∈ C ∩ [φ] ⊆ [ψ] implies y ∈ D ∩ [ψ] which is impossible. This proves the lemma.
Now consider an arbitrary world w ∈ N of an arbitrary model such that (φ� ψ)ρw1 and
(ψ� φ)ρw1. By the lemma, ∃Z ∈ $w such that ∅ 6= Z ∩ [φ] = Z ∩ [ψ]. Then it is clear
that Z ∩ [φ] ⊆ [χ] if and only if Z ∩ [ψ] ⊆ [χ], which establishes (R6).

11This is a variation on an objection of Williamson’s to non-vacuous truth conditions
for counterpossibles discussed in [2, pp. 649-50].
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3. 5 + 8 = 14� 5 + 7 = 13

4. (5 + 7 = 13� George answered correctly) ↔ (5 + 8 = 14� George
answered correctly)

5. 5 + 8 = 14� 5 + 9 = 15

6. 5 + 9 = 15� 5 + 8 = 14

7. (5 + 8 = 14� George answered correctly) ↔ (5 + 9 = 15� George
answered correctly)

8. ...

258. (5 + 99 = 105 � George answered correctly) ↔ (5 + 100 = 106 �
George answered correctly)

259. 5 + 100 = 106� George answered correctly

What is going amiss in this chain of inferences? When we evaluate condi-
tionals like (2), what is salient, given the parallel structure of antecedent and
consequent, is minimizing the aberrance of impossible addition relative to
actual (@) addition like so: +(a, b) = a+@ b+@ k. We restrict the impossible
worlds we consider accordingly; since the antecedent worlds set k = 1, the
consequent holds at each of them. When we come to conditionals like (259),
no such guide is offered and it is not clear what to minimize the aberrance
of impossible addition to. Worlds where addition is just like actual addition
except when one of the arguments is 100 have as much right to be among
the closest impossible worlds as any other. But then, (259) is false.

An advocate for S# might insist that conditionals like (2) are false. They
would suggest that it is a mistake to not include worlds where addition
works just like actual addition except when one of the arguments is 7 among
the nearest impossible worlds. At such worlds, the consequent would not
be true, so the whole conditional would fail. But this is just to beg the
question against the intuitive truth of the pertinent conditional. Similarly,
insisting on the truth of (259) when it seems intuitively false is pointless. One
possible lesson to take away from this is that the worlds to be considered when
evaluating a counterfactual or counterpossible might sometimes depend not
only on the antecedent but on the consequent; how to spell this out without
trivializing counterfactuals is an interesting project, but beyond the scope of
this paper.12

12These issues are discussed by Gabbay in [9].
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Since (R6) is characteristic of the basic sphere semantics I presented, I
have treated the counterexample to (R6) as tantamount to a counterexample
to sphere semantics. Given that there are a number of equivalent formula-
tions of Lewis’ semantics, this may be thought to be somewhat misleading;
the same counterexample will apply to any selection function semantics in
which it is required that fφ(w) ⊆ [ψ] and fψ(w) ⊆ [φ] imply fφ(w) = fψ(w).13

On the other hand, a semantics using spheres might be contrived so as not
to validate (R6). Put in this light, my objection is not so much to the tech-
nical apparatus of sphere semantics as to the notion of overall similarity it
was explicitly developed to capture. It is implicit in this picture that the
system of spheres about a world be invariant under consideration of different
conditionals; the assignment of spheres depends only on the world. Given
this picture, (R6) follows as a matter of course.14

If this objection succeeds, S# and all of its extensions fail. Additional ob-
jections were brought against S#

2 and S#
3 . Even the advocate of a semantics

as weak as S# must contend with the claim that λ is the closest impossible
world, since the argument for that hinges only on intuitions about overall
similarity which motivate each of the accounts. Therefore, sphere semantics
is not the right approach for dealing with counterpossibles.

3 The Alternative

Another account of conditionals, with roots in [3], has been advocated for
by Priest in [16]-[17]: the ceteris paribus account. The logics I present be-
low expand on this work. As a preliminary, it should be noted that Priest
intends for his preferred semantics to apply to conditionals generally, and
not merely counterfactuals [16]. I do not take a stand on whether any of
the logics developed here are adequate as an account of both indicative and
subjunctive conditionals, or whether those are even the categories that we
ought to theorize about conditionals in terms of. I do, however, contend
that at least one of these systems meets certain adequacy conditions for an
uniform treatment of counterfactuals and counterpossibles.

3.1 Semantics

The basic intuition underlying both Lewis’ and Priest’s accounts is the same:
in evaluating a counterfactual, we look to some, but not all, of the worlds
where the antecedent holds. Priest’s suggestion is that “we look at those

13For alternative formulations and this condition, see [18], [11] and [14].
14For a discussion of some of these issues, see [7].
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[antecedent] worlds that are, ceteris paribus, the same as ours” [16, p. 329].
How this idea is formally captured will occupy the remainder of this section.

The logics I develop here are modifications of the logic Priest calls C [15,
p. 85]. For this reason, I will call the most basic system C#. The language
of C# is the same as the language of the previous section, i.e. the language
of propositional modal logic augmented with �.

DEFINITION. An interpretation is a structure 〈W,N, {Rφ : φ ∈ F}, ρ〉,
where W is a set of worlds and ∅ 6= N ⊆ W is the set of normal worlds. F is
the set of wffs and {Rφ : φ ∈ F} is a set of subsets of N ×W , one for each
φ ∈ F . wRφx is read: x is ceteris paribus the same as w with φ true (cf.
[15, p. 85]). For all w ∈ W , ρw is a relation between propositional letters
and {0, 1}. Moreover, for all w ∈ W −N , ρw is a relation between formulae
generally and {0, 1}. Finally, for all propositional letters φ and w ∈ N , either
φρw1 or φρw0, but not both. 1 is the designated value (“true”). Define fφ(w)
to be {x ∈ W : wRφx}.

DEFINITION. Truth conditions for complex formulae at normal worlds
(w ∈ N) are exactly as in S# and its extensions, except for the case involving
counterfactuals:

7. (φ� ψ)ρw1 if and only if fφ(w) ⊆ [ψ]; 0 otherwise

Validity is defined as truth preservation at all normal worlds of all inter-
pretations. It is how the notion of being “ceteris paribus the same as with
φ true” is unpacked that determines the characteristic features of the logic.
Formally speaking, what matters are what properties are imposed on Rφ,
and consequently on fφ(w).15 Some conditions that might be imposed are
the following:

(Tru) fφ(w) ⊆ [φ]

(WC*) If w ∈ [φ], w ∈ fφ(w)

(SC*) If w ∈ [φ], {w} = fφ(w)

(Dis*) If N ∩ [φ] 6= ∅, fφ(w) ⊆ N

15To develop the suggestion that the worlds to be considered in evaluating a counterfac-
tual might depend on both the antecedent and consequent, substitute {Rφ,ψ : (φ, ψ) ∈ F2}
for {Rφ : φ ∈ F} in the definition of an interpretation. Now define fφ,ψ(w) to be
{x ∈ W : wRφ,ψx}. Then (φ � ψ)ρw1 if and only if fφ,ψ(w) ⊆ [ψ]. In this frame-
work, it is possible for (φ � ψ) and (φ � χ) to be evaluated using different worlds.
While it is desirable to require that fφ,ψ(w) ⊆ [φ], requiring that fφ,ψ(w) ⊆ [ψ] would
obviously result in triviality.
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The adoption of (Tru) and (WC*) yield a logic closely related to the sys-
tem Priest calls C+ [15, p. 88]. The arguments for adopting both conditions
are straightforward. (Tru) is a direct consequence of the intuition that coun-
terfactuals are evaluated by looking at worlds where the antecedent holds.
The motivation for condition (WC*) is that, if w is an antecedent world, it
is also such as to be ceteris paribus the same as itself with the antecedent
true.

The arguments for (SC*) and (Dis*) closely parallel the arguments for
their relatives in sphere semantics. To say something briefly about (Dis*),
the idea is that, given a possible antecedent, if some world is ceteris paribus
the same as a given possible world with that possible antecedent holding,
it should be a possible world. Again, some implicit appeal is apparently
being made to the priority of logical laws in judgments of ceteris paribus
similarity. For this reason, (Dis*) raises similar justificatory problems to
(Dis), in addition to licensing similarly problematic inferences (but more on
this anon).

Some extensions of C# that are worthy of note are as follows (C# − C#
3

are non-sphere versions of S# − S#
3 respectively):16

C#
1 : C# + (Tru) + (WC*)

C#
2 : C# + (Tru) + (SC*)

C#
3 : C# + (Tru) + (WC*) + (Dis*)

Using model theoretic reasoning, it is easy to show, for example, ♦φ,�(φ→
ψ) |=C#

3
φ � ψ. Assume that the premises are satisfied at an arbitrary

world w ∈ N of an arbitrary model, but that the conclusion is not. Then
∃x ∈ fφ(w) such that x /∈ [ψ]. By (Tru) and (Dis*), x ∈ [φ] ∩ N . But then
x ∈ [ψ], which is a contradiction.

To show that φ� ψ, ψ� φ 6|=C#
3

(φ� χ)↔ (ψ� χ), we construct

a counter-model. Let W = N = fφ(w0) = [φ] = [ψ] = {w0, w1}, fψ(w0) =
[χ] = {w0}, and fφ(w1) = fψ(w1) = {w1}. Then (φ � ψ)ρw01, (ψ �
φ)ρw01, and (ψ� χ)ρw01, but (φ� χ)ρw00. (R6) fails to be valid in all of
the extensions of C# considered here.

Sound and complete tableaux for C# and its extensions are given in the
appendix.

16It is not entirely clear what would correspond to (Ab) in the C# family, and it does
little harm to leave it aside since λ need not exist in all models.
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3.2 Discussion

The main point in favor of C# and its extensions over S# and its extensions
is that none of the former, but all of the latter, validate (R6). If the objection
against (R6) is persuasive and one of these approaches to giving a semantics
for counterpossibles is correct, then the right semantics for counterpossibles
must be found among the extensions of C#.

A second argument against sphere semantics concerns its underlying mo-
tivation. The idea of ordering worlds into nested spheres according to their
overall similarity raises questions about how to judge overall similarity. If
priority is given to logical laws, it seems that an argument can be made that
the trivial world is among the closest impossible worlds to any given possible
world. But this is clearly an undesirable outcome. However, this argument
leaves the C# advocate in a weaker dialectical position than the first since
similar concerns can be raised about ceteris paribus sameness.

If the foregoing points favor C# and its extensions, they do not deter-
mine which extension should be adopted. The inferences that I noted were
problematic for S#

2 and S#
3 also hold in C#

2 and C#
3 respectively. Therefore,

neither of those extensions should be adopted as a semantics for counterfac-
tuals and counterpossibles.

I suggested that (R3)-(R5) are required of any minimally adequate seman-
tics. C# is too weak to validate these, but they hold in C#

1 . Therefore, of
the options presented in this paper, I believe that C#

1 offers the best seman-
tics for counterfactuals and counterpossibles. Nonetheless, C#

1 is a relatively
weak logic and logics intermediate between, or related to, C#

1 and C#
3 ought

to be explored. That project is beyond the scope of this paper though.17

4 Conclusion

If it is granted that counterpossibles should be given non-vacuous truth con-
ditions, a question remains about how exactly this should be done. One
popular strategy is to develop modifications of Lewis’ semantics with impos-
sible worlds. A counterpossible can then fail when some impossible worlds
where the antecedent is true but the consequent is not are closer to the actual
world than any where both the antecedent and consequent are true.

Above, I developed several versions of Lewis-style sphere semantics and
argued that they are all unsatisfactory. I showed how prima facie appeal-

17To give just a flavor, consider a variant on (Dis*), (WD): If N∩ [φ] 6= ∅, fφ(w)∩N 6= ∅.
The result of adding (WD) to C#

1 can be called C#
1.5. This is a proper extension of C#

1 :

♦φ,�ψ |=C#
1.5
¬(φ� ¬ψ). Note that this inference also fails in C#

3 .
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ing assumptions like (Dis) lead to special justificatory problems and license
intuitively invalid inferences. I contended that all extensions of S# sanc-
tion at least one undesirable inference. Thus, I argued that this approach is
mistaken.

I then proposed and developed an alternative approach. C# and its ex-
tensions, which take the notion of being ceteris paribus the same with the
antecedent true as basic, form a family of plausible logics for counterfactuals
and counterpossibles. Some of the extensions of C# were shown to be subject
to similar problems as certain extensions of S#. Nevertheless, at least one
extension–C#

1 –met what I suggested were minimum adequacy conditions for
a semantics without validating any of the problematic inferences considered
above. To close on a programmatic note, I believe that fruitful work might
follow by examining logics related to C#

1 and C#
3 .18

A Tableaux for C# and Extensions

A tree is a structure such as the following:

A

B

C D

E

F

A, B and so on are nodes. Nodes have one of the following forms: N(i),
irφj, i = j and φ,±i. The node A is the root of the tree. A branch is a
maximal path, e.g. {A, E, F}. A branch is closed if it contains nodes of the
form φ,+i and φ,−i. A tableau is closed if each branch is closed. A tableau
is complete if every applicable rule has been applied. Where Σ is a (finite)
set of formulae, Σ ` φ if and only if there is a closed tableau whose initial
list consists of nodes of the form ψ,+0 for all ψ ∈ Σ, φ,−0 and N(0). The
tableaux rules are as follows:

1. Extensional Rules (for any branch containing the first two nodes, it can
be extended in any of the following ways):

18I am grateful to Graham Priest and the members of the Logic and Metaphysics Work-
shop of the Graduate Center of the City University of New York for their comments on
earlier versions of this paper. I am also grateful to the anonymous referees of earlier
versions of this paper for suggestions that led to its improvement.
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¬φ,+i

N(i)

φ,−i

¬φ,−i

N(i)

φ,+i

(φ ∧ ψ),−i

N(i)

φ,−i ψ,−i

(φ ∧ ψ),+i

N(i)

φ,+i

ψ,+i

(φ ∨ ψ),+i

N(i)

φ,+i ψ,+i

(φ ∨ ψ),−i

N(i)

φ,−i

ψ,−i

(φ→ ψ),+i

N(i)

φ,−i ψ,+i

(φ→ ψ),−i

N(i)

φ,+i

ψ,−i

2. Intensional Rules I (for any branch containing the first two nodes and
j new):

�φ,−i

N(i)

φ,−j

N(j)

♦φ,+i

N(i)

φ,+j

N(j)

3. Intensional Rules II (for any branch containing the first three nodes,
or first two where i = j):

�φ,+i

N(i)

N(j)

φ,+j

♦φ,−i

N(i)

N(j)

φ,−j

4. C# Rules (in addition to 1-3):

(a) Positive Rule (for any branch containing the first three nodes):

(φ� ψ),+i

irφj

N(i)

ψ,+j
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(b) Negative Rule (for any branch containing the first two nodes and
j new):

(φ� ψ),−i

N(i)

irφj

ψ,−j

5. C#
1 Rules (in addition to 1-3, 4a):

(a) Weak Centering Rule (for any branch containing the first node
and antecedents φ of counterfactuals on the branch):19

N(i)

φ,+i

irφi

φ,−i

(b) Negative Rule (for any branch containing the first two nodes and
j new):

(φ� ψ),−i

N(i)

irφj

φ,+j

ψ,−j

6. C#
2 Rules (in addition to 1-3, 4a, 5):

(a) Strong Centering Rule (for any branch containing the first three
nodes):

19At a presentation of this work, it was asked whether this rule could be replaced with
modus ponens. The tableaux which result from such a replacement are sound, but not
complete.
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φ,+i

irφj

N(i)

i = j

(b) Identity Rules (the reflexivity rule is applied for all old i; the other
rule is applied for any branch containing the first two nodes where
α(j) is an arbitrary j-containing node and α(i/j) is the result of
replacing some occurrences of j by i in α):

.

i = i

i = j

α(j)

α(i/j)

7. C#
3 Rules (in addition to 1-3, 4a, 5; for any branch containing the first

two nodes):

irφj

N(i)

♦φ,−i N(j)

Example. ♦φ,�(φ→ ψ) `C#
3

(φ� ψ)
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�(φ→ ψ),+0

♦φ,+0

φ� ψ,−0

N(0)

φ,+1

N(1)

0rφ2

φ,+2

ψ,−2

♦φ,−0 N(2)

φ→ ψ,+2

φ,−2 ψ,+2

I now prove soundness and completeness for C# and demonstrate how to
extend the proofs for C#

1 − C
#
3 . The proofs and definitions of this section

generally follow the paradigm of those in [15].

DEFINITION. Let I = 〈W,N, {Rφ : φ ∈ F}, ρ〉 be a C# interpretation
and b be a branch of a tableau. I is faithful to b if and only if there is a
function g : Z→ W such that:20

1. If φ,+i is on b, φρg(i)1 in I

2. If φ,−i is on b, not φρg(i)1 in I

3. If N(i) is on b, g(i) ∈ N in I

4. If irφj is on b, g(i)Rφg(j) in I (i.e. g(j) ∈ fφ(g(i)))

LEMMA 1. If I is faithful to b and a C# tableau rule is applied to b, then
I is faithful to at least one of the resulting branches b*

20Z is {0, 1, 2, . . .}.
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Proof. The proof is by cases of the rule applied. This is fairly routine, so I
will only examine the rules which pertain to intensional formulae.

Suppose that I is faithful to b and �φ,−i and N(i) occur on b. Rule (2)
is applied and b is extended to a branch b* with nodes φ,−j and N(j) (for
j new). By the faithfulness of I, since g(i) ∈ N and not �φρg(i)1, �φρg(i)0
in I. Hence ∃w ∈ N such that w /∈ [φ]. Then if h is the same as g except
that h(j) = w, h shows that I is faithful to b*. The case with ♦φ,+i is the
same.

Suppose that I is faithful to b and �φ,+i, N(i) and N(j) occur on b.
Rule (3) is applied and b is extended to a branch b* with node φ,+j. By
the faithfulness of I, �φρg(i)1, g(j) ∈ N and g(i) ∈ N . Then g(j) ∈ N ⊆ [φ]
and I is faithful to b*. The case with ♦φ,−i is the same.

Suppose that I is faithful to b and (φ� ψ),+i, irφj and N(i) occur on
b. Rule (4a) is applied and b is extended to a branch b* with node ψ,+j.
From the faithfulness of I, (φ� ψ)ρg(i)1, g(j) ∈ fφ(g(i)) and g(i) ∈ N in
I. Because (φ � ψ)ρg(i)1, fφ(g(i)) ⊆ [ψ], so g(j) ∈ [ψ]. Therefore, I is
faithful to b*.

Finally, suppose that I is faithful to b and that (φ� ψ),−i and N(i)
occur on b. Then rule (4b) is applied and b is extended to a branch b* with
nodes irφj and ψ,−j (for j new). Since I is faithful to b, g(i) ∈ N but not
(φ� ψ)ρg(i)1 in I; that is, (φ� ψ)ρg(i)0 in I. Hence ∃w ∈ fφ(g(i)) such
that w /∈ [ψ]. Then if h is the same as g except that h(j) = w, h shows that
I is faithful to b*.

THEOREM 1 (Soundness). If Σ `C# φ,Σ |=C# φ

Proof. Suppose that Σ ` φ but it is not the case that Σ |= φ. Then there
is an interpretation I such that ∃w ∈ N for which ∀χ ∈ Σ, χρw1 and φρw0.
As Σ ` φ, there is a closed tableau T and I is faithful to the initial segment
of T (i.e. the nodes antecedent to rule applications) because of the function
g(0) = w. By repeated application of Lemma 1, there is a branch b of T such
that I is faithful to each segment of b. If T is closed, however, b must be as
well; then b has nodes of the form ψ,+k and ψ,−k. This is a contradiction,
since by faithfulness, both ψρg(k)1 and not ψρg(k)1 in I.

DEFINITION. The interpretation I = 〈W,N, {Rφ : φ ∈ F}, ρ〉 induced
by an open branch b is such that:

1. W = {wi : i on b}

2. N = {wi : N(i) on b}

3. For counterfactual antecedents (on b) φ,wiRφwj if and only if irφj on
b
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4. For wi ∈ W −N, φρwi
1 if and only if φ,+i on b

5. For wi ∈ W −N , not φρwi
1 if and only if φ,−i on b

6. For propositional letters ψ and wi ∈ N,ψρwi
1 if and only if ψ,+i on b

7. For propositional letters ψ and wi ∈ N,ψρwi
0 if and only if ψ,−i on b

LEMMA 2 (Truth Lemma). If b is an open, complete branch of a tableau
and I is an interpretation induced by b, then:

1. If φ,+i occurs on b, φρwi
1 in I

2. If φ,−i occurs on b, not φρwi
1 in I

Proof. Proof is by induction on the complexity of φ. Once again, I will only
examine the cases which pertain to intensional formulae.

Suppose that φ is of the form �ψ and φ,+i is on b. Then if N(i) does
not occur on b, the result holds by definition. Alternatively, if it does, then
for every j such that N(j) occurs on b, ψ,+j is on b since b is complete
and rule (3) has been applied. By the induction hypothesis, N ⊆ [ψ], which
implies φρwi

1 in I. Suppose instead that φ,−i is on b. If N(i) does not
occur on b, the result holds by definition. If it does, then there is a j such
that ψ,−j and N(j) occur on b. By the induction hypothesis, wj ∈ N but
wj /∈ [ψ], so φρwi

0, which implies not φρwi
1 in I. The case where φ is of the

form ♦ψ is the same.
Suppose that φ is of the form (θ� ψ) and φ,+i is on b. Then if N(i)

does not occur on b, the result holds by definition. Alternatively, if it does,
then for every j such that irθj is on b, ψ,+j is on b since b is complete and
rule (4a) has been applied. By the induction hypothesis, fθ(wi) ⊆ [ψ], which
implies φρwi

1 in I. Suppose instead that φ,−i is on b. If N(i) does not occur
on b, the result holds by definition. If it does, then there is a j such that
irθj and ψ,−j each occur on b. By the induction hypothesis, wj ∈ fθ(wi)
but wj /∈ [ψ]. So φρwi

0, which implies not φρwi
1 in I.

THEOREM 2 (Completeness). If Σ |=C# φ,Σ `C# φ

Proof. Suppose that it is not the case that Σ ` φ. Then the attempted proof
results in a completed open tableau with at least one complete open branch
b. Let I be an interpretation induced by b. Then in I, ∀ψ ∈ Σ, ψρw01 but
φρw00 (by Lemma 2). So it is not the case that Σ |= φ.

To prove the soundness of C#
1 , the definition of faithfulness is the same

except that the interpretation is now a C#
1 interpretation.
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LEMMA 3. If I is faithful to b and a C#
1 tableau rule is applied to b, then

I is faithful to at least one of the resulting branches b*

Proof. I examine only the two cases that differ from C#.
Suppose that I is faithful to b and N(i) appears on b. Rule (5a) is applied

which extends b to b* with φ,+i and irφi or b* with φ,−i. In I, g(i) ∈ N .
By (WC*), either φρg(i)0 or if 1, g(i) ∈ fφ(g(i)). In the first case, I is faithful
to b* with φ,−i; in the second, it is faithful to b* with φ,+i and irφi.

Suppose that I is faithful to b and that (φ� ψ),−i and N(i) occur on
b. Then rule (5b) is applied and b is extended to a branch b* with nodes
irφj, φ,+j and ψ,−j (for j new). Since I is faithful to b, g(i) ∈ N but not
(φ� ψ)ρg(i)1 in I; that is, (φ� ψ)ρg(i)0 in I. Hence ∃w ∈ fφ(g(i)) (and
by (Tru), also in [φ]) such that w /∈ [ψ]. Then if h is the same as g except
that h(j) = w, h shows that I is faithful to b*.

THEOREM 3 (Soundness). If Σ `C#
1
φ,Σ |=C#

1
φ

Proof. The proof proceeds exactly as in the case of C#.

For the proof of the completeness of C#
1 , the third condition in the def-

inition of the interpretation induced by an open branch b is modified as
follows:

3. For counterfactual antecedents (on b) φ,wiRφwj if and only if irφj on
b; otherwise, wiRφwj if and only if wj ∈ [φ]

The proof of the Truth Lemma proceeds almost exactly as before (there is
only one insignificant change: if θ� ψ,−i and N(i) are on b, then there
is a j such that irθj, θ,+j and ψ,−j all occur on b). It must, however, be
verified that the induced interpretation is indeed a C#

1 interpretation.

LEMMA 4. If b is an open, complete branch of a tableau and I is an
interpretation induced by b, I satisfies the C#

1 constraints on fφ(w)

Proof. There are two constraints to consider: (Tru) and (WC*). If φ does
not occur as an antecedent, the constraints are satisfied by the definition of
Rφ in I. Otherwise, each of the two cases must be considered individually.
Suppose that wiRφwj in I. Then by the definition of I, irφj occurs on b.
This node can occur only as a result of the application of one of two rules
(5a, b), each of which also introduce φ,+j. By the Truth Lemma, φρwj

1 in
I.Thus, fφ(wi) ⊆ [φ]. Suppose that wi ∈ N and φρwi

1. Then N(i) occurs on
b and so do either φ,+i and irφi or φ,−i by (5a). The Truth Lemma rules out
the latter, so by the definition of the induced interpretation, wi ∈ fφ(wi).
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THEOREM 4 (Completeness). If Σ |=C#
1
φ,Σ `C#

1
φ

Proof. The proof proceeds exactly as in the case of C#.

Proving the soundness of C#
2 requires the addition of another condition

to the definition of faithfulness:

5. If i = j is on b, g(i) = g(j) in I

LEMMA 5. If I is faithful to b and a C#
2 tableau rule is applied to b, then

I is faithful to at least one of the resulting branches b*

Proof. I examine the cases that differ from C#
1 .

Suppose that I is faithful to b and φ,+i, irφj and N(i) occur on b. Rule
(6a) is applied and b is extended to a branch b* with node i = j. By the
faithfulness of I, φρg(i)1, g(j) ∈ fφ(g(i)) and g(i) ∈ N . By (SC*), since
g(i) ∈ [φ], {g(i)} = fφ(g(i)) implying that g(i) = g(j). Therefore, I is
faithful to b*.

Suppose that I is faithful to b, i occurs at some node on b and the
reflexivity rule is applied extending b to b* with node i = i. Since i is on b,
clearly g(i) = g(i) in I. Therefore, I is faithful to b*.

Lastly, suppose that I is faithful to b, i = j and α(j) occur on b and
the substitution rule is applied which extends b to b* with α(i/j). Then
g(i) = g(j) in I. It is easily verified that I is faithful to b* for each case of
α. For example, if α(j) is krφj and α(i/j) is krφi, g(j) ∈ fφ(g(k)) and so
g(i) ∈ fφ(g(k)) in I, which implies that I is faithful to b*.

THEOREM 5 (Soundness). If Σ `C#
2
φ,Σ |=C#

2
φ

Proof. The proof proceeds exactly as in the case of C#.

The proof of the completeness of C#
2 requires two key modifications to the

definition of an interpretation induced by an open branch. First, I introduce
some additional notation.

DEFINITION. x ∼ y if and only if x = y occurs on tableau branch b

Remark. ∼ is an equivalence relation. Let ‖x‖ = {y : x ∼ y}.

In the definition of the induced interpretation, all subscripts are now
equivalence classes. Moreover, the third condition is modified as follows:

3. For counterfactual antecedents (on b) φ,w‖i‖Rφw‖j‖ if and only if irφj
on b; otherwise, w‖i‖Rφw‖j‖ if and only if w‖j‖ ∈ {w‖i‖} ∩ [φ]

Australasian Journal of Logic (14:4) 2017, Article no. 1



405

The proof of the Truth Lemma proceeds as in the case of C# except the
subscripts are equivalence classes.

LEMMA 6. If b is an open, complete branch of a tableau and I is an
interpretation induced by b, I satisfies the C#

2 constraints on fφ(w)

Proof. There are two constraints to consider, one of which–(Tru)–was already
verified in the case of C#

1 . If φ does not occur as an antecedent, (SC*)
is satisfied by the definition of Rφ in I. Otherwise, suppose that w‖i‖ ∈
N, φρw‖i‖1 and w‖i‖Rφw‖j‖. Then N(i) and irφj occur on b, as do either
φ,+i and irφi or φ,−i by (5a). The Truth Lemma rules out the latter. But
if N(i), irφj and φ,+i occur on b, so does i = j by (6a). Then w‖i‖ ∈ fφ(w‖i‖)
and, since i ∼ j, w‖i‖ = w‖j‖.

THEOREM 6 (Completeness). If Σ |=C#
2
φ,Σ `C#

2
φ

Proof. The proof proceeds as in the case of C# except the subscripts are
equivalence classes.

To prove the soundness of C#
3 , the definition of faithfulness is the same

as in the case of C# except that the interpretation is a C#
3 interpretation.

LEMMA 7. If I is faithful to b and a C#
3 tableau rule is applied to b, then

I is faithful to at least one of the resulting branches b*

Proof. Only one rule differs from the case of C#
1 .

Suppose that I is faithful to b and N(i) and irφj occur on b. Rule (7) is
applied and b is extended to a branch b* that either contains a node ♦φ,−i or
N(j). In I, g(i) ∈ N and g(j) ∈ fφ(g(i)). From (Dis*), either ∀w ∈ N, φρw0;
or if w ∈ fφ(g(i)), w ∈ N . In the first case, I is faithful to b* with ♦φ,−i;
in the second, it is faithful to b* with N(j).

THEOREM 7 (Soundness). If Σ `C#
3
φ,Σ |=C#

3
φ

Proof. The proof proceeds exactly as in the case of C#.

For the proof of the completeness of C#
3 , the third condition in the C#

definition of the interpretation induced by an open branch b is modified as
follows:

3. For counterfactual antecedents (on b) φ,wiRφwj if and only if irφj on
b; otherwise, wiRφwj if and only if wj ∈ N ∩ [φ]

The proof of the Truth Lemma proceeds just as in the case of C#.
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LEMMA 8. If b is an open, complete branch of a tableau and I is an
interpretation induced by b, I satisfies the C#

3 constraints on fφ(w)

Proof. There are three constraints to consider, but two of them are just those
of C#

1 . If φ does not occur as an antecedent, (Dis) is satisfied by the definition
of Rφ in I. Otherwise, suppose that wi ∈ N,∃wk ∈ N ∩ [φ] and wiRφwj.
Then N(i) and irφj occur on b, and so do either ♦φ,−i or N(j) by (7). By
the Truth Lemma, it cannot be the first; so it must be that fφ(wi) ⊆ N .

THEOREM 8 (Completeness). If Σ |=C#
3
φ,Σ `C#

3
φ

Proof. The proof proceeds exactly as in the case of C#.
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