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Abstract

There is a vibrant (but minority) community among philosophical logicians seek-
ing to resolve the paradoxes of classes, properties and truth by way of adopting some
non-classical logic in which trivialising paradoxical arguments are not valid. There
is also a long tradition in theoretical computer science—going back to Dana Scott’s
fixed point model construction for the untyped λ-calculus [35,36]—of models allow-
ing for fixed points. In this paper, I will bring these traditions closer together, to
show how these model constructions can shed light on what we could hope for in a
non-trivial model of a theory for classes, properties or truth featuring fixed points.

1 The Target

One well-worn motivation for non-classical mathematical theories is found in the class
struggle—our attempt to give a coherent theory of classes that allows for a näıve class
abstraction principle

a P tx : φpxqu iff φpaq

according to which any predicate φpxq (with the variable x free) determines a class of all
and only those things satisfying that predicate. It is well known (since Russell’s response
in 1902 to Frege’s use of the class abstraction principle, or Frege’s “Basic Law V” [23])
that class abstraction leads to paradox in any theory of classes in which membership is a
predicate available for use in class abstraction. Substituting the Russell class, tx : x R xu,
into the abstraction principle gives us

tx : x R xu P tx : x R xu iff tx : x R xu R tx : x R xu

a biconditional between a formula (tx : x R xu P tx : x R xu) and its negation, which
is unsatisfiable in classical or in intuitionistic logic. In those logics, the theory of class
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abstraction has no models. The defender of class abstraction in its full form must look
elsewhere to find models for the theory.

The same holds for theories of properties, too. Just as it seems plausible to collect
those objects satisfying the predicate φpxq in a class, it seems plausible that for any
predicate φpxq, there is a property borne by all and only those things satisfying that
predicate. (What property? Why not the property of satisfying φpxq.) We have the
following property abstraction scheme.

a ε λx.φpxq iff φpaq

asserting that the property λx.φpxq of satisfying φpxq is borne by all and only the
objects that satisfy φpxq. Here there is analogue of Russell’s paradox for classes—the
heterological paradox concerning the property of non-self-application, λx.px ­ε xq.

λx.px ­ε xq ε λx.px ­ε xq iff λx.px ­ε xq ­ε λx.px ­ε xq

Paradoxes like these have led many to the conclusion that what is needed in a non-
classical logic for classes and properties is a different, non-classical treatment of negation.
This is true enough, but is not the whole story. Haskell Curry noted [18] that the
conditional gives rise to similar paradoxes. For any statement p, the abstraction scheme
gives us

tx : x P xÑ pu P tx : x P xÑ pu iff tx : x P xÑ pu P tx : x P xÑ pu Ñ p

λx.px ε xÑ pq ε λx.px ε xÑ pq iff λx.px ε xÑ pq ε λx.px ε xÑ pq Ñ p

which are just as paradoxical as Russell’s paradox in classical or intuitionist logic—it
furnishes a proof of p, whatever p happens to be. Curry’s paradox is another example
of what is, in fact a properly general scheme. For any sentence context F p´q we have

tx : F px P xqu P tx : F px P xqu iff F ptx : F px P xqu P tx : F px P xquq

λx.F px ε xq ε λx.F px ε xq iff F pλx.F px ε xq ε λx.F px ε xqq

We can form a statement tx : F px P xqu P tx : F px P xqu (call this f) that is a fixed point
for the context F p´q, in the sense that f holds iff F pfq. Russell’s Paradox is formed
with F pqq set to  q, Curry’s when F pqq is q Ñ p, and there are many other contexts like
these that don’t have fixed points in classical logic or intuitionist logic. The search for
models for theories of classes and properties involves finding formal systems that allow
fo the right kind of fixed points. In the rest of this paper, I will attempt to motivate
some strategies and techniques for finding such models.

However, before we continue, it is worth considering the difference between class
theories and property theories. Classes are determined by their members. Two classes are
identical if they have the same elements. They differ only when they can be distinguished
by way of their members. Properties, on the other hand, need not satisfy a condition of
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extensionality: if it turned out that all renates are cordates, and all cordates are renates,
then while the class of cordates would be identical to the class of renates (since they
have exactly the same members), there is no need to conclude that the property of being
a renate and the property of being a cordate are identical. There are challenges to the
formalisation of extensionality in non-classical theories of classes, and they are not the
focus of this paper. One formulation which I have defended elsewhere [33] is this sequent
rule:

Γ, x P a � x P b,∆ Γ, x P b � x P a,∆

Γ � a “ b,∆

but the rest of this paper will be concerned with model constructions rather than proof
systems. In these model constructions, the semantic value of a class term will be deter-
mined by its extension (in an appropriate sense), so at least the spirit of extensionality
will be respected. I will leave for another time the investigation of what form an exten-
sionality condition is satisfied. One reason for the difficulty in expressing an axiom of
extensinonality in non-classical systems has been the intensionality of the conditional in
the underlying logic and the appropriate formulation of the conditional connection in the
coextensiveness condition, and then betewen coextensiveness and identity. (See Section
A.7 “Extensionality and Identity Determinables” of Routley’s Jungle Book [34] for a
helpful discussion). That, however, is not the problem for a straightforward examination
of extensionality in the models I will explore here. Rather, it is the more fundamental
issue to the effect that it is not clear how best to model identity in these models.

2 Model Construction

The study of non-classical theories of classes and properties has featured various kinds
of model construction [10–13, 20, 21, 25, 28, 29, 32], chiefly with an aim to show that the
theory is non-trivial. If a theory has models (and if those models aren’t trivial—if they
distinguish at least some truths from untruths) then the theory is at least, coherent. In
the face of Russell’s and Curry’s Paradoxes, and the ever present threat of trivialisation
through fixed points, such a result is welcome. However, averting the threat of triviality
is not all that we might hope to gain from a model construction. Models can be used for
more than this, and when evaluating the models we seek to use for a theory of properties
and classes, we would do well to keep in mind the variety of ways that models play a
role in the study of theories.

• A central use of models, prior to the role of proving non-triviality is in the definition
of validity. According to the model theoretic analysis of logical consequence, an
argument is valid if and only if every model of the premises is also a model of
the conclusion. Consequence, relativised to a particular theory can be analysed
in a similar way. Given a theory T , an argument is T -valid if and only if every
T -model satisfying the premises aso satisfies the conclusion. Accordingly, if there
is some T -model in which some claims are satisfied and others are not, then at
least some arguments are not T -valid, and the theory is non-trivial. The proof
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of non-triviality relies on the underlying analysis of consequence at least in the
weak sense that if we possess a model in which the premises P are true and the
conclusion C is untrue, then the argument from P to C is invalid. A rich class of
models of a theory provides the materials for an analysis of T -consequence, and
the more we understand the structure of such models, the more hope there is that
we can understand T -consequence and the structure of the theory T itself.

• Models for theories also provide a way to relate distinct theories. If we can build
models of a theory T out of models of another theory T 1 (for example, encoding
models of hereditarily finite sets out of models of arithmetic), then this can pro-
vide way—given sufficient expressive resources—to relate the theories T and T 1.
We find ways of relatively interpreting T in T 1. Another example of this work is
in the geometric models of non-Euclidean geometries, which provide relative in-
terpretability and consistency results for exotic theories [26]. This is another way
that model constructions can be of use in the analysis of a theory.

• In a related fashion, constructions of different models for T can give us a greater
understanding of what the theory T can be taken to be about. Providing a large
class of models for a theory gives us a range of possible ways to interpret the
primitive vocabulary of the theory, and hence, a range of different structures in
which the tools of the theory may be applied.

• The fact that a particular kind of model can be understood as a model of a theory
might also motivate the theory itself. Instead of taking the theory as given and
the model as generated by that theory, we may start with a structure and design a
language to appropriately describe that structure and axiomatise it. The relation
between model and theory may be used in both directions, to motivate or to ground
either the model or the theory.

Consider how these distinctions play out in different models of theories of sets and classes.
Consider the conception of models of classical set theories (zfc and its cousins) motivated
by the iterative conception of set [9,31], according to which sets are constructed in ‘stages’
up the ordinal hierarchy to form ranks Rα at each level α (see Figure 1). A model
construction of this kind not only provides an intuitive motivation for the kind of set
concept under consideration, it also provides the raw materials for relating these models
to other kinds of models, for example, Church–Oswald set theories with a Universal
set [16,22], in which sets can be defined not just by what they include, but also by what
the exclude. This understanding of the structure of models of zfc has also played an
important role in the study of zfc itself, in particular, the proof of the independence
of the continuum hypothesis, and the strength of large cardinal axioms and forcing
conditions.

Models for set theories can take other forms, too. The study of models of set theories
without the axiom of foundation in terms of directed graphs (see Figure ) play a number
of roles in the study of set theories without foundation [2]. They show the relationship
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Rωˆω
Rpωˆωq`1

...

Figure 1: The Iterative Hierarchy

...

tH, tHu, tH, tHuuu an a where a “ tau

Figure 2: Sets as graphs in models of non-wellfounded sets

between wellfounded and non-wellfounded set theories (by showing how sets in one uni-
verse can be modelled inside the other). They also motivate a choice of a replacement
to the anti-foundation axiom. (In Figure 2, the two graphs at the left are in some sense
‘observationally equivalent’—they are bisimilar—as are the two graphs on the right. One
form of anti-foundation axiom takes any two sets that are observationally equivalent to
be identical as sets, so in this case there is only one set a which is identical to its own
singleton tau.) Finally, these models also show where one might expect models of non-
wellfounded set theories to be applicable—where the membership structure allows for
loops like these [8]. Models for traditional, classical set theory—in both its wellfounded
and nonwellfounded forms—provides a rich vein of tools and techniques for the study
and application of those theories.

The same is true for the untyped λ-calculus. This calculus, since its introduction in the
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work of Schönfinkel, Church, Curry and others [14,15,17–19]1 stood in need of a model
theory, not only because the consistency or coherence of the theory was in question, but
because it was altogether unclear how to understand the objects of the theory. In the
untyped calculus, the domain of objects is understood both as a class of functions and
the domain of application of those very functions. In the basic calculus, terms consist of
variables (x, y,. . . ), application terms (where M and N are terms, MN is M applied to
N) and abstraction terms (where M is a term, pλx.Mq is a term, in which the variable x
is now bound), with the constraint that pλx.MqN “ M rx :“ N s, the result of applying
an abstraction term to another term is formed by substitution in the variable bound
by the λ abstractor. In such a calculus, for any term M , the self-application MM is
well-formed. Each object of the calculus can be viewed as a function, and as the domain
of those functions. Each object is in the domain D, and also serves as a function D Ñ D.
This makes finding models for the calculus a subtle matter, because the collection of all
functions D Ñ D has a strictly higher cardinality than D itself—and so, no such set
of all such functions can serve as a model. If we are to find a model in which λ-terms
are indeed modelled by functions, we must be more selective about which functions to
choose.

Dana Scott’s construction of models for the untyped λ-calculus was an ingenious
solution to the puzzle of finding a suitable domain of functions to interpret the calculus.
Given a starting set D0, ordered by Ď, we can consider D1, the set rD0 Ñ D0s of order
preserving functions on D0, which are themselves ordered pointwise, using the ordering
on D0. (We set f Ď g iff p@xqpfpxq Ď gpxqq.) We can lift D1 into a larger set D2, and
so on, by setting Di`1 to be rDi Ñ Dis and the embedding sends Di into Di`1. This
construction has a limit D8, and it is not difficult to show that D8 is isomorphic (as
a partially ordered set) to rD8 Ñ D8s, the set of continuous functions from D to D
under the partial order topology, and the domain is closed under the operations of the
untyped λ-calculus, and this model construction, and others like it, have given insight
into how the λ-calculus can be interpreted and applied.

Another example of a model construction in a field closely related to theories of classes
and properties with fixed points is the fixed point construction for theories of truth, due
to Kripke [27] and Martin and Woodruff [30, 37]. The construction is now standard.
Take a language L, interpreted in a model M on domain D which includes a denotation
for each quotation name xAy for every formula A in LrT s, the language L extended with
a truth predicate T . We extend M to interpret T in a three-valued evaluation. We start
in M0 by assigning T xAy the value true (1) for all sentences A true in M, the value false
(0) for all sentences false in M, and n otherwise—in particular, sentences A which use
the truth predicate are uninterpreted in M, so T xAy is not yet assigned a classical truth
value. We can repeat the process (as sketched in Figure 3), sending a model Mα to its
successor Mα`1 in which more truth sentences are assigned classical values 1 and 0,

Given that the underlying logic satisfies an important preservation property [expand]
this feature extends to the whole language. More sentences are assigned 1 and 0 at each

1See Alama’s overview [3] for a brisk introduction, or Barendregt’s classic text for details [7].
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T xAy“

Figure 3: Fixed Point construction for truth.

stage. We can extend the hierarchy to limit ordinals, by assigning 1 (or 0) to T xAy at
Mβ iff T xAy was assigned 1 (or 0) at an earlier stage Mα for α ă β. Given that the
language LrT s has some cardinality, it will be outrun by some ordinal, and given that the
evaluations of classically assigned values are monotonically increasing, they will come to
a fixed point. At this stage (Mκ in Figure 3) we have a truth evaluation for the language
LrT s for which T xAy has the same semantic value as A, for every sentence A, including
sentences featuring the truth predicate. This construction has proved important in
understanding the behaviour of truth predicates which allow for fixed points, in which
the semantic value of a truth predication T xAy is identical to that of the sentence A.
This construction is agnostic between different understandings of the semantic value n
assigned in the evaluation. While Kripke and Martin and Woodruff each conceived of
the intermediate value ‘n’ as a truth value ‘gap’—or rather, a failure to assign a genuine
truth value—the construction itself does not necessitate this understanding. It is equally
coherent to conceive of the intermediate value n as a truth value ‘glut’ as a truth value
‘gap’ or to have some other conception of the three values in the construction. In fact, as
we will see in Section 4, there is no need to restrict the interpretation to the three values
0, n, 1 for the construction to work. Provided that the underlying space of semantic
values are partially ordered and the connectives and quantifiers are appropriately order
preserving so as to allow for preservation of semantic value from stage to stage, this
construction will work. It is a robust technique with many applications.

As is now well known, the same kind of construction works for theories of classes and
properties [10, 11, 13, 25].2 We proceed in the same way, except instead of assigning the
extension of the truth predicate, we assign the extension of the membership predicate
‘P’, at each stage by assigning ‘a P tx : φpxqu’ the value in Mα`1 the value of the sentence
‘φpaq’ in Mα. Notice that in this construction, it is the extension of the membership

2Gilmore’s 1974 paper was presented at a 1967 UCLA meeting on Set Theory, and Brady’s work on
consistency and non-triviality proofs for set theories in intensional logics was independent.
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Figure 4: Fixed Point construction for membership.

predicate that varies from stage to stage, not the underlying domain D of the models
Mα. The domain of evaluation, as far as this construction is concerned, is constant. It
is a term model, in which the domain consists of the terms tx : φpxqu for each formula
φpxq. This construction shows what the theory is about in only a very weak sense. It
gives no insight into the structure of the domain of objects under consideration—but it
does give us a way to understand the interpretation of the membership relation, or how
the membership facts could be grounded.

When we reflect on the usefulness of model constructions, it seems clear that this
kind of construction does not tell us much about what the theories of classes or properties
can be about, or how to relatively interpret one theory in another. While it gives some
insight into the membership predicate, and it reassures us that the theories are coherent,
the construction gives us little insight into the nature or structure of classes themselves.
There is an opportunity, therefore, to explore further the world of model constructions
in order to gain insight into the possibilities for class and property theories with fixed
points, and even doing so without prejudging the precise strength or expressive power of
the logic underlying that construction. After all, model constructions give us constraints
on the kinds of logics interpretable on them.3 So, in the rest of this paper I turn to model
constructions that attempt to do for class theories what Scott’s construction did for the
untyped lambda calculus.

3Think of Kripke frames for intuitionist logic, in which propositions are interpreted as upwardly closed
sets of points—in these models, boolean negation is not definable, because it violates the upward closure
condition, while a weak paraconsistent negation (´A holds at point x if and only if A fails to hold at
some point y ď x) is definable. Here the model constrains the logic interpretable on that model, but
does not sharply define it.
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3 Classifying Class Theories

To present a richer conception of a model construction for theories of classes and proper-
ties with fixed points, we should be a little more specific about how the uuderlying logic
is to be conceived. As we saw in the first section, negation is an issue in the paradoxes,
but it is not the only issue. The most pressing issue is the availability of fixed points.
For any formula context F p´q we need to allow for the presence of a formula A which
is, in some sense, equivalent to F pAq, for the comprehension scheme tells us that

tx : F px P xqu P tx : F px P xqu iff F ptx : F px P xqu P tx : F px P xquq

The first crucial distinction to be drawn, then, is not between truth value gaps or gluts,
whether the language is paraconsistent or paracomplete, or what connectives and quan-
tifiers are present—but the status of the equivalence in the comprehension scheme itself.
What is the status of the ‘if and only if’ in comprehension? One answer is that given in
the constructions for truth or classes in the previous section (or equivalently for Scott’s
construction for the untyped λ-calculus), and that is semantic identity. In our models,
we will take the membership claim a P tx : φpxqu to have the same semantic value as
the predication φpaq. A different answer is to settle for a weaker semantic connection
between membership and predication, perhaps according to which the deduction be-
tween a P tx : φpxqu and φpaq is valid though not preserving semantic value in every
sense,4 or perhaps the connection is even weaker still, in that the material biconditional
a P tx : φpxqu ” φpaq is at least true, despite the fact that we may have one side desig-
nated and the other undesignated.5 There are reasons to consider all sorts of conceptions
of the status of the comprehension scheme, none the least that it is a difficult area and
one in which it seems important to consider all options to evaluate their costs and ben-
efits, but in this paper I will consider only the strong conception of the comprehension
scheme, according to which a P tx : φpxqu has the same semantic value as φpaq, whatever
the field of semantic values for formulas turns out to be. For the time being, let us think
of the domain of semantic values of formulas as a collection Ω. These could be thought of
as truth values, or some other structured collection of propositional values. The details
of Ω are not yet impotant.

So, to keep the analogy with Scott’s construction to the fore, we are looking for a
construction in which we model classes by what they do. For the λ calculus, a term
was interpreted as a function in rD Ñ Ds, on a domain D isomorphic to the class of
functions rD Ñ Ds itself. In our case, a class can also be conceived of as a function,
but the function is not from a domain D to itself, but from a domain to Ω. Given an
underlying domain D, we can consider a class of D objects as a function assigning to
each D object d a value in Ω, where that value is the semantic value of the statement ‘the
object d is in this class.’ If the values in Ω were simply the Boolean values t0, 1u such a

4Perhaps the sentences are either both designated or both undesignated, so the deduction from one
to the other preserves designation status, even though they might differ in semantic value

5In the paraconsistent logic LP, for example, we could have one side both true and false and the other
false only [32].
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function would be a characteristic function of the class. In a non-classical universe, the
function is richer.

So, if we are classifying objects in some given D and we are working with an untyped
universe of classification where we can also classify those classifications themselves, we
are looking for a domain C of classes such that

C – rpC YDq Ñ Ωs

That is, the classes C can be considered in two ways: as objects themselves, or as
functions assigning for each object (either a class in C or an underlying domain object
D) a semantic value in Ω. As with the untyped λ-calculus, Cantor’s theorem forces us
to not consider every possible function to Ω,6 but to look to a restricted class of such
functions. If we can find such a class, and if each formula φpxq in the language of the
theory determines a well-behaved function in that class, then we have a universe in which
the strong comprehension scheme is satisfied. In the next section I will unpack this claim
in some more detail, and examine some of its features in the case of a particular choice
of the field Ω of semantic values.

However, before we get there, let us consider a little of what remains of the distinction
between properties and classes, and the status of an extensionality condition in this
setting. Recall, an extensionality condition is the claim that coextensive classes are
identical. In this setting, we have said nothing about the internal conception of identity
of classes. (Such a conception could be modelled by a function in rC ˆC Ñ Ωs, sending
a pair of classes to a semantic value, but we have made no claims about such a predicate
yet, and nor will we.) The choices for how to interpret such a notion are difficult and
contested. The external conception of extensionality seems clearer. At the very least,
classes in this model are totally determined (identified with) the classification functions
in rpC Y Dq Ñ Ωs. If it turned out that the ‘cordate’ classification function classified
objects in just the same way that the ‘renate’ classification function, then these are
identical objects in any model of this form. At least in this external sense, extensionality
is satisfied in the stronger sense than in term models for classes. In term models, the
term tx : Fx^Gxu is distinct as a term to the term tx : Gx^ Fxu, for example, even
though they may have the same members—and do in any model in which Fx ^ Gx
always receives the same semantic value as Gx ^ Fx. In this sense, extensionality is
externally respected to some degree in these models for class theories, but the way that
this could to be modelled internally is an active research question.

4 Order and Continuity

In order to examine the properties of classes C such that

C – rpC YDq Ñ Ωs
6Well, it forces us in the case where Ω has at least two members. A monistic or nihilistic universe in

which there is at most one semantic value for statements seems beyond the scope of this paper.
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it is impotant to say a little more about the properties of field Ω of semantic values.
It is important to say something, but it helps to not be too specific. As we have seen,
one of the features of the term model construction is an underlying syntactic sensitivity.
The domain of evaluation, such as it is, is determined by the syntax of class terms.
One small change to the underlying syntax (adding a new connective or even replacing
one choice of primitive connectives by another) and the domain of evaluation changes
completely. That is a cost of the approach using term models. Hopefully, we can do
better, in finding a model construction in which the generation of the domain depends
on different features of the class Ω of semantic values, but does not depend so tightly
on an arbitrary choice of syntax. The core idea behind the fixed point constructions of
truth and abstraction is the preservation properties of the vocabulary of the underlying
logic. The core feature is this: the semantic values in Ω are ordered by some partial
order Ď such that all connectives and quantifiers in the vocabulary are appropriately
Ď-preserving. We call Ď the refinement ordering on Ω, but we hold little store on any
particular interpretation of refinement. In the case of a binary connective 7, if x Ď x1

and y Ď y1 then x 7 y Ď x1 7 y1, and this generalises to other operators and arities. In the
case of the three valued logic with semantic values 0, ˚, 1 (where we use the ambiguous
label ‘˚’ for the intermediate value, and not n, to clarify that we really do not care if
the value is to be thought of as ‘neither true nor false’ or ‘both true and false’). The
underlying ordering on this choice of Ω is

˚

0 1

where this ordering is not to be confused with the entailment ordering on Ω. As regards
entailment, we have 0 ă ˚ ă 1. For refinement we have ˚ Ă 0 and ˚ Ă 1. The usual
truth evaluations for negation, conjunction and disjunction on a three valued logic,

^ 0 ˚ 1
0 0 0 0
˚ 0 ˚ ˚

1 0 ˚ 1

_ 0 ˚ 1
0 0 ˚ 1
˚ ˚ ˚ 1
1 1 1 1

 

0 1
˚ ˚

1 0

are refinement preserving, as are many other operators. However, the conditionals for
the three valued logic  L3 and RM3 are not refinement preserving, and neither are the
strong or weak negation operators ´ and „.7

Ñ L3
0 ˚ 1

0 1 1 1
˚ ˚ 1 1
1 0 ˚ 1

ÑRM3 0 ˚ 1
0 1 1 1
˚ 0 ˚ 1
1 0 0 1

´

0 1
˚ 0
1 0

„

0 1
˚ 1
1 0

7In ˚ Ñ L3
˚ is 1, but 1 Ñ L3

0 is 0. This is a counterexample to the preservation of refinement, since
˚ Ď 1 and ˚ Ď 0, but p˚ Ñ L3

˚q Ę p1 Ñ L3
0q. Similarly, 1 ÑRM3 ˚ is 0, but 1 ÑRM3 1 is 1. With the

negations, ´˚ is 0 while ´0 is 1. Similarly, „˚ is 1, while „1 is 0.
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For the construction, we do not care which connectives and quantifiers are present in
our language, only that those that are preserve refinement.

This structure is not the only candidate for Ω that can do the job. Other choices are
possible: for example, we could order the four valued set t0, 1, ‹, ˚u familiar from first
degree entailment, as follows:

˚

0 1

‹

or indeed, we could restrict our attention to the Boolean values t0, 1u, and order them
like this: 0 Ă 1. Then ^,_, 0, 1 are order preserving, but  and Ą are not order
preserving. Richer structures are possible, too. However, for the rest of this note, we
will focus on 3 “ t0, ˚, 1u as our choice for Ω where being specific makes any difference.

5 Order Models

In this section we will look at the behaviour of order models for class and property
theories, for these have distinct properties, not shared by all models of class and property
theories. Here is the precise definition, first of order models themselves, and then we
will give an account of how to interpret a formal language in an order model.

definition 1: Given an order algebra xΩ,Ďy of semantic values, and a domain D of
urelements, xC,Ď,ò,óy is a xD,Ω,Ďy-order model iff the following three conditinos
are satisfied:

• Ď is a partial order on C.

• ò : C Ñ rC YD Ñ Ωs is order preservering and invertible, where rC YD Ñ Ωs is
the set of order preserving functions from C YD to Ω.8

• ó : rC YD Ñ Ωs Ñ C, where ó “ ò´1, is also order preserving.

For shorthand, we write ‘òpcq’ as ‘cò’ and ‘ópfq’ as ‘fó.’ So, for each c P C, còó “ c and
for each f P rC YD Ñ Ωs, fóò “ f .

To understand the significance of ò and ó, if b P C YD and c P C, then còpbq is the
semantic value of the statement to the effect that the object b (either a class in C or an
urelement in D) is in the class c. In other words, we could think of the membership fact
còpbq as a binary membership relation over C ˆ pC YDq. As the folloing result shows,
this relation is quite well behaved.

8This allows for the possibility that D, too, is ordered under refinement, but no assumptions are
made here about that ordering. In particular, D may be completely unordered by refinement.
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fact 1: In any xD,Ω,Ďy-order model xC,Ď,ò,óy, membership is order preserving in
both coodinates, in the sense that for any x, x1 P C and any y, y1 P C YD, if x Ď x1 and
y Ď y1 then xòpyq Ď x1òpy

1q.

Proof: We have xòpyq Ď xòpy
1q, since y Ď y1 and xò is order preserving as a function

of x. But we have xò Ď x1ò, since x Ď x1 and ò is order preserving. It follows that
xòpy

1q Ď x1òpy
1q, by the definition of Ď for functions.

It turns out, then, that any xD, 3,Ďy-order model xC,Ď,ò,óy may be used to interpret
a language in which the membership predicate P is explicit. An evaluation for such a
language may be given as follows:

definition 2: For a language L involving the predicate P, an interpretation of L an
order model M “ xC,Ď,ò,óy relates sentences to models by way of an assignment of
the values to the variables, where each assignment α, takes variables to values in CYD.
Relative to such an assignment α of values and variables, we can define the extensions
rrtssM,α and rrAssM,α of a terms and formulas as follows:

• rrxssM,α “ αpxq is the interpretation of the variable x. (We abbreviate this as
‘rrxss’ when the choice of M and α is clear.)

• rrs P tssM,α is rrtssòprrsssq when rrtss P C, and is 0 when rrtss P D.9

• For any binary connective 7 interpreted as a refinement order preserving function
rr7ss on 3, rrA 7 BssM,α “ rrAssM,α rr7ss rrBssM,α. Connectives of other arities and
quantifiers are interpreted in the same way, as usual.

We can expand the language to explicitly include abstraction terms:

tx : φpxqu

for each formula φpxq. Since rrφpxqssM,αrx:“vs is order preserving in v we can use that
function, in rC Y D Ñ 3s, to choose as the extension rrtx : φpxquss of the abstraction
term. That is,

rrtx : φpxqussM,α “ pλv.rrφpxqssM,αrx:“vsqó

This choice of extension of the abstraction term is suitable because of the following
result.

fact 2: For any order model, the strong comprehension axiom is satisfied.
9This is the point at which the selection of Ω as 3 is important, at least in the choice of 0 as a

distingushed ‘false’ value.
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Proof: Here is a proof of the comprehension equivalence in the strong form. We show
that in every order model, rrt P tx : φpxquss is the same value as φptq.

rrt P tx : φpxqussM,α “ rrtx : φpxqussαòprrtssαq
“ pλv.rrφpxqssαrx:“vsqóòprrtssαq

“ pλv.rrφpxqssαrx:“vsqprrtssαq

“ rrφpxqssαrx:“rrtssαs
“ rrφptqssM,α

In order models, since the domain rpCYDq Ñ Ωs contains all order preserving functions,
we know that the domain contains particular special functions, in particular the constant
functions on Ω. So, in the case where Ω is 3, we have the three logical constant functions,
whose outputs are 0, ˚ and 1 respectively, and the corresponding classes

Λ ΛV V

since those functions into Ω are order preserving. The point wise ordering on these
functions generates the corresponding ordering on the classes, as follows:

˚

0 1

ΛV

Λ V

In fact, we not only have ΛV Ď Λ and ΛV Ď V, in our models. We also have ΛV Ď c for
every every class c P C, since ΛV is the constant function returning the Ď-minimal value
˚, and revinement on classes is defined pointwise. From now, we’ll use ‘Λ’, ‘V’ and ‘ΛV’
as both the class terms in the language, and as their denotations, names for objects in
C.

It is beyond the scope of this article to go into the detail of how order models for
classes might be constructed (for discussions of the technique, look here [4–6, 28, 29]),
but it is appropriate to sketch a little of the behaviour of finite stages of the construction
process, to draw our attention beyond the very simple classes Λ, ΛV and V.

In an iterative process of constructing order preserving functions from rDi Ñ 3s, the
next stage after D1 “ tΛ,ΛV,Vu (which are isomorphic to the constant functions from
a singleton class to Ω) is D2, the set of order preserving functions rD1 Ñ 3s. There
are eleven members of D2. They are ordered by Ď as indicated in Figure 5, where the
notation for each function has the form s{t where the left of the slash indicates the
members of D1 sent to 0 while the right of the slash indicates the members of D1 sent
to 1. So, ΛV{ is the function sending both Λ and V to 0, while sending ΛV to ˚. This
function is refined only by the constant 0 function ΛΛVV{. The function Λ{ on the other
hand, can be refined by three functions: Λ{V, or ΛV{ and further by ΛΛVV{. It is clear
that D1 is represented within D2 by way of the constant functions {, ΛΛVV{ and {ΛΛVV.
The functions in D3 “ rD2 Ñ Ωs provide a much richer structure. It turns out that
there are 397 members of D3. They are presented in Figure 6.

The diagrams for D2 and D3 bring to light a general phenomenon in order models.
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{

Λ{ {V V{ {Λ

Λ{V ΛV{ {ΛV V{Λ

ΛΛVV{ {ΛΛVV

Figure 5: The eleven members of D2 “ rD1 Ñ 3s

definition 3 rsharp classess: In a model M, a class c is sharp if and only if for each
object b in C YD, còpbq takes the value 0 or 1.

In our order models, Λ and V are sharp. But ΛV is not sharp. In fact, almost no classes
are sharp.

fact 3: If còpbq “ 1 and còpb1q “ 0, then còpΛVq “ ˚.

Proof: Since ΛV Ď b, we have còpΛVq Ď còpbq “ 1. Since ΛV Ď b1, we have còpΛVq Ď còpb
1q “

0. It follows that còpΛVq “ ˚. The class c fails to be sharp.

In other words, once a class includes something and excludes something, it is indecisive
about ΛV. It follows from this that there are severe constraints on the kind of behaviours
we can expect from classes in order models. They cannot play the role of classical
recapture through the behaviour of sharp classes. One way to provide a rapproachment
between classical set theories and non-classical class theories is to hope to find the
classical sets inside the larger non-classical universe. A straightforward hope would be
that we could find a universe of well-behaved classical sets whose membership predicate
behaves classically, and any non-classical behaviour is relegated to the purely paradoxical
objects.10 Any such hope is vain in order models. There are no properly classical sets
at all other than Λ and V. The set ΛV is properly paradoxical in that is weaker in the
refinement ordering than every set, and hence (by the order preservation of membership),
once you decide on the membership status of ΛV, you have decided the membership status
of everything.

Nonetheless, even though there are no properly classical objects, you can see in
Figures 5 and 6 that there are objects that behave classically enough. These are what

10See Section 3 of my “Note on Näıve Set Theory in LP” for a discussion of this [32].
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Figure 6: The 397 members of D3 “ rD2 Ñ 3s

we might call the crown of the diagram, in Figure 5 for D2, they are the four elements
Λ{V, ΛΛVV{, {ΛΛVV, V{Λ which determine their membership as much as possible—these
functions are at the top of the refinement ordering. In Figure 6 for D3, there are sixteen
such elements.11

In an order model, special sets are are what we will call the singletons and the
antisingletons.

definition 4 rsingletons and antisingletonss: In any xD, 3,Ďy-order model, the
singleton ttu and anti-signetons utt of an object t are as follows:

Singletons: rr ttu ssα is the class representative of the function that (1) assigns 1 to x iff
rrtssα Ď x; (2) assigns 0 to x iff there is no z where x Ď z and rrtssα Ď z, (3) and assigns
˚ otherwise.

Antisingletons: rr utt ssα is the class representative of the function that (1) assigns 0 to x
iff rrtssα Ď x, (2) assigns 1 to x if there is no z where x Ď z and rrtssα Ď z, (3) and assigns
˚ otherwise.

11You may need to look very closely to find them.
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These classes are not crisp (except in the very special case of tΛVu which is identical
to V and uΛVt which is identical to H—at least in the pure theory of classes, in which
there are no urelements), but, for object t, the singleton ttu contains t (and any object
it refines into) and it excludes as much as possible, consistent with that fact. Similarly,
the antisingleton excludes t (and any object it refines into) and it includes as much as
possible, consistent with that fact. As you can see, in the special case of tΛVu, which
contains every class, and uΛVt, which excludes every class, there are some very strange
‘singletons’ and there are many other classes like them, waiting to be discovered in order
models.

6 Limitations and Future Work

There is much left to do to gain a comprehensive understanding of order models for class
and property theories. They seem to provide a rich mathematical structure which can
be studied fruitfully, using a range of mathematical and logical techniques. Here is a list
of questions that would reward further study.

• Study pure order models (where D is empty),

. . . and impure order models for different sets D of urelements.

• Find perspicuous ways to construct order models.

• Relate these constructions to other known model constructions, and characeterise
their strength and expressive power.

• Axiomatise the logic of order models for different choices of the language.

• Characterise identity in order models. What forms of identity can be specified in
order models?

• Examine different motivations of order models. How are we to understand re-
finement? In domain models for computation, refinement has a straightforward
reading in terms of computation [1]. (In such models, s Ď t just when s is the
result of a partial computation which can be further elaborated into t.)

These order models provide a rich and significant class of structures, which look to
reward further exploration. However, we must be aware of their limitations. For one,
order models provide us a significant and rich external account of identity of classes
(a class is determined by its extension, its map from the universe to Ω), but it seems
very difficult to reflect this external notion of identity inside an order model [29, §9.10].
And if identity is difficult to state, then an axiom of extensionality eludes us, and we
do not have an expressive class theory. Monotonic surrogates for the external notion of
identity (say, taking x and y to be witnessed to be distinct when we have some member
determined to be inside x and outside y, or vice versa) seems appropriately monotonic,
but weak. What is it for the judgement that x “ y to be true?
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Furthermore, the condition that the logical connectives be monotonic is a strong
constraint on the expressive power of the language. If we choose 3 “ t0, ˚, 1u for Ω,
then the connectives ^, _ and  are refinement preserving, but as we have seen, the
conditionals  L3 or of RM3 are not. The situation does not improve in richer structures,
either. We know of no connective anything like a conditional — satisfying identity and
modus ponens — that is order preserving in a natural structure like Ω. This does not
mean, however, that order models have no place in specifying class theories, even if we
have a commitment to interpreting conditionals satisfying modus ponens and identity.
Generalisations of order preservation and other closure conditions may generalise our
results, or we may be able to find other ways to interpret conditionals in the class of
propositions defined on these structures. Regardless, they provide a rich and wide terrain
for future researchers to explore.
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ślȩzak, guoyin wang, marcin szczuka, ivo düntsch, and yiyu yao, editors, Rough Sets,
Fuzzy Sets, Data Mining, and Granular Computing: Rough Sets, Fuzzy Sets, Data Mining, and
Granular Computing, volume 3641 of Lecture Notes in Artificial Intelligence, pages 94–103, 2005.

[7] h. p. barendregt. The Lambda Calculus: Its Syntax and Semantics. North Holland, second
edition, 1984.

[8] jon barwise and john etchemendy. The Liar. Oxford University Press, Oxford, 1987.

[9] george boolos. “The Iterative Conception of Set”. The Journal of Philosophy, 68(8):215–231,
1971.

[10] ross t. brady. “The Simple Consistency of a Set Theory Based on the Logic CSQ”. Notre Dame
Journal of Formal Logic, 24:431–449, 1983.

[11] ross t. brady. “The Non-Triviality of Dialectical Set Theory”. In graham priest, richard
routley, and jean norman, editors, Paraconsistent Logic: Essays on the Inconsistent, pages
437–470. Philosophia Verlag, 1989.

[12] ross t. brady. Universal Logic. CSLI, Stanford, 2006.

Australasian Journal of Logic (14:1) 2017, Article no. 8



244

[13] ross t. brady and richard routley. “The Non-Triviality of Extensional Dialectical Set
Theory”. In graham priest, richard routley, and jean norman, editors, Paraconsistent
Logic: Essays on the Inconsistent, pages 415–436. Philosophia Verlag, 1989.

[14] alonzo church. “A set of postulates for the foundation of logic”. Annals of Mathematics,
33(2):346–366, 1932.

[15] alonzo church. The Calculi of Lambda-Conversion. Number 6 in Annals of Mathematical
Studies. Princeton University Press, 1941.

[16] alonzo church. “Set theory with a Universal Set”. In leon henkin, editor, Proceedings of the
Tarski Symposium, volume XXV of Proceedings of Symposia in Pure Mathematics, page 297308.
Providence RI, 1974.

[17] haskell b. curry. “The Combinatory Foundations of Mathematical Logic”. Journal of Symbolic
Logic, 7:49–64, 1942.

[18] haskell b. curry. “The Inconsistency of Certain Formal Logics”. Journal of Symbolic Logic,
7:115–117, 1942.

[19] haskell b. curry and r. feys. Combinatory Logic, volume 1. North Holland, 1958.

[20] hartry field. “Saving the Truth Schema from Paradox”. Journal of Philosophical Logic,
31(1):1–27, 2002.

[21] hartry field. Saving Truth From Paradox. Oxford University Press, 2008.

[22] thomas forster. Set Theory with a Universal Set, volume 31 of Oxford Logic Guides. Oxford
University Press, Second edition, 1995.

[23] gottlob frege. Grundgesetze der Arithmetik, Begriffsschriftlich abgeleitet. Verlag Hermann
Pohle, Jena, 1893–1903. Parts translated in Gottlob Frege: Logical Investigations [24].

[24] peter geach and max black. Translations from the Philosophical Writings of Gottlob Frege.
Oxford University Press, 1952.

[25] paul c. gilmore. “The Consistency of Partial Set Theory without Extensionality”. In Axiomatic
Set Theory, volume 13 of Proceedings of Symposia in Pure Mathematics, pages 147–153,
Providence, Rhode Island, 1974. American Mathematical Society.

[26] marvin jay greenberg. Euclidean and non-Euclidean geometries: Development and history. W.
H. Freeman, 1993.

[27] saul kripke. “Outline of a Theory of Truth”. The Journal of Philosophy, 72(19):690–716, 1975.

[28] thierry libert. “Models for a paraconsistent set theory”. Journal of Applied Logic, 3(1):15 – 41,
2005. A Paraconsistent DecagonThe Workshop on Paraconsistent Logic.

[29] thierry libert. “Semantics for Naive Set Theory in Many-Valued Logics: Technique and
Historical Account”. In johan van benthem, gerhard heinzmann, manuel rebuschi, and
henk visser, editors, The Age of Alternative Logics: Assessing Philosophy of Logic and
Mathematics Today, pages 121–136. Springer, 2006.

[30] r. l. martin and p. w. woodruff. “On Representing “true-in-L” in L”. Philosophia (Israel),
5:213–217, 1975.

[31] charles parsons. “What is the Iterative Conception of Set?”. In r. butts and j. hintikka,
editors, Proceedings of the 5th International Congress of Logic, Methodology and Philosophy of
Science 1975, Part I, pages 339–345. Reidel, 1977.

[32] greg restall. “A Note on Näıve Set Theory in LP”. Notre Dame Journal of Formal Logic,
33(3):422–432, 1992.

[33] greg restall. “What are we to accept, and what are we to reject, when saving truth from
paradox?”. Philosophical Studies, 147(3):433–443, 2010.

[34] richard routley. Exploring Meinong’s Jungle and Beyond. Philosophy Department, RSSS,
Australian National University, 1980. Interim Edition, Departmental Monograph number 3.

Australasian Journal of Logic (14:1) 2017, Article no. 8



245

[35] dana scott. “Models for Various Type-Free Calculi”. In patrick suppes, leon henkin,
athanase joja, and gr. c. moisil, editors, Logic, Methodology and Philosophy of Science IV,
pages 157–187. North Holland, Amsterdam, 1973.

[36] dana scott. “Lambda Calculus: Some Models, Some Philosophy”. In j. barwise, h. j. keisler,
and k. kunen, editors, The Kleene Symposium, pages 223–265. North Holland, Amsterdam, 1980.

[37] peter w. woodruff. “Paradox, Truth and Logic. Part I: Paradox and Truth”. Journal of
Philosophical Logic, 13(2):213–232, 1984.

Australasian Journal of Logic (14:1) 2017, Article no. 8


	The Target
	Model Construction
	Classifying Class Theories
	Order and Continuity
	Order Models
	Limitations and Future Work

