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1. Introduction

The axiom of choice entails that if every A is related to at least one B,
then there is a choice function which for every A picks one such B. It does
not, however, guarantee that one can introduce a function symbol for such a
function. This is where Skolem functions come in handy. The now standard
way of adding Skolem functions is to add Skolem axioms—formulas of the
form ∀x̄(∃yA(x̄, y) → A(x̄, fA(x̄))). Such an axiom not only ensures that a
choice function exists, but also introduces a name for it.1

In classical logic one can prove that adding Skolem axioms is conser-
vative; if some formula in the language without Skolem functions is not
derivable from a theory, then it remains non-derivable from the theory ex-
tended by Skolem axioms. This paper shows how to add Skolem functions
to a theory when the theory is formulated in certain non-classical logics. It
will turn out that it is rather trivial to do this provided the logic in question
satisfies some basic principles. What is not trivial though is to show that
Skolem functions can be useful.

In order for Skolem functions to be truly useful, one needs to know
how one can validly reason with them. Skolem functions come in two
different clothings—Skolem functions introduced for functional formulas
and Skolem functions introduced for relational formulas where a formula
A(x̄, y) is functional relative to some theory Θ if ∀x̄∃!yA(x̄, y) is derivable
from it, and relational if not. A Skolem function introduced for a functional
formula is called a definable Skolem function. Reasoning with Skolem
functions introduced for relational formulas has little to it; if fA(x̄) is in-
troduced for a relational formula A(x̄, y), one should only expect the rule
s =̇ fA(t̄) ` A(t̄, s) to be valid. The exception here is if the logic validates the
rule A(x/t),¬A(x/s) ` t ,̇ s, E4: in that case one should furthermore expect
¬A(t̄, s) ` s ,̇ fA(t̄) to hold. This will easily be seen to be the case. Beyond
this, however, there seems little more to it. For definable Skolem functions,
however, there are at least two things one should expect: (1) that there is a
way to translate back and forth between the original language and the lan-
guage extended by definable Skolem functions which preserves derivability,
and (2) that A(t̄, s) and s =̇ fA(t̄) are intersubstitutable. (2), however, requires
that the laws of identity are in sync, so to speak, with the rest of the theory,
and this I will show is not always the case.

1The Skolem axiom ∃xA(x)→ A(cA) is usually called a Henkin axiom. Many presentations
of the completeness theorem for classical logic starts by expanding the theory in question
with Henkin axioms. It is worth noting that neither Leon Henkin nor Thoralf Skolem made
use of such axioms in, respectively, [10] and [21], but instead closed their theories under
the rules ∃xA(x) ` A(cA) and ∀x̄∃yA(x̄, y) ` ∀x̄A(x̄, fA(x̄)).
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The main focus of this paper is on the so-called Strong Kleene Logic,
Kd

3, or more precisely a first-order version of that logic with identity, ∀= Kd
3,

and a first-order version with identity of the Logic of Paradox, ∀= LPd. I
will later also show some results which pertain to relevant logics and to
the three-valued logics ∀= Łd

3 and ∀= RMd
3. The plan for the paper is as fol-

lows: section 2 introduces ∀= Kd
3 and ∀= LPd and gives some basic definitions.

Section 3 then shows how to add Henkin witnesses conservatively. Sec-
tion 4 generalized this result so as to also cover Skolem functions. The
main goal here is to show that ∀= Kd

3 can be conservatively extended by the
rule ∀x̄∃yA(x̄, y) ` ∀x̄A(x̄, fA(x̄)) which governs the introduction of Skolem
functions. It will be plain to see that the proof works just as well for a wide
class of logics, such as the four-valued logic ∀= FDEd, the n ≥ 2-valued log-
ics ∀= RMd

n and Łukasiewicz logics, and intensional logics such as intuition-
istic logic, relevant logics and the infinite-valued Łukasiewicz logic. That
such a rule is possible to add conservatively corrects a proof, and solves a
problem left open by Zach Weber in [24].

Section 5 then focuses on definable Skolem functions. The two standard
ways of defining the unique existential quantifier ∃!—∃x(A(x) ∧ ∀y(A(y) ⊃
y =̇ x)) and ∃x∀y(A(y) ≡ y =̇ x))—come apart in ∀= Kd

3 due to the absence of
the rule A(x/t),¬A(x/s) ` t ,̇ s, E4. The latter entails the former, but not vice
versa. It is argued that unless one is ready to add E4 to the logic, then one
ought to use the weaker version. However, I will show that if one does go for
the weaker version, then although one can always conservatively substitute
s =̇ fA(t̄) for A(t̄, s), this is not always the case when substituting A(t̄, s) for
s =̇ fA(t̄). I also show that one can intersubstitute these formulas provided
one uses the stronger definition of ∃!. It is furthermore shown that there is
a translation to and from the definable Skolem function extended language
which preserves derivability in ∀= Kd

3.
Section 6 focuses on ∀= LPd. I show that the above mentioned translation

also works for ∀= LPd, although not to the same extent: one can only pre-
serve derivability when going from ∀= LPd augmented by a Skolem rule for
functional formulas to ∀= LPd, and not the other way around. It is also shown
that one cannot in general substitute A(t̄, s) for t =̇ fA(t̄), nor s =̇ fA(t̄) for
A(t̄, s), while retaining conservativeness. ∀= LPd is for this reason deemed
unfit for Skolem functions relative to both ways of defining ∃!.

Section 7 focuses on relevant logics. These logics are also shown to
be unfit for Skolem functions relative to several ways of defining ∃!. The
reason for this is basically due to the fact that the rule A(x/t) ` ∀x(t=̇x→ A),
E8, is not derivable in these logics. I then give a brief comment on the
possibility of utilizing the notion of relevant predication to solve the issue,
but conclude that this theory is built upon the unwarranted assumption that
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E8 is relevantly permissible. The unfitness of these logics is mitigated by
the fact that there is a translation which preserves derivability provided the
logic in question validates Ackermann’s δ rule A → (B → C), B ` A →
C, has the Ackermann constant t and validates the strong, but relevantly
permissible version of Leibniz’s law ∀x∀y(A→ ((x =̇ y ∧ t)→ A(x/y))), E7.

Section 8 then briefly looks at the three-valued logics ∀= Łd
3 and ∀= RMd

3.
The issue of how to define ∃! is then related to restricted universal quantifi-
cation, and it is argued that at least one natural way of expressing Leibniz’s
law involves restricted universal quantification. The result concerning the
translation for relevant logics is then generalized and it is shown that related
logics which validates E7 and defines ∃! in terms of the restricted universal
quantifier, also suffice for a derivability-preserving translation.

Relevant logics are like intuitionistic logic in that the the strong linearity
rule A → ∃xB(x) ` ∃x(A → B(x)) called independence of premise fails
in them. I show in the appendix that for a wide range of logics one can
conservatively extend a theory by Henkin axioms if and only the theory in
question is closed under this rule.

2. Definitions

This section presents the three-valued logics ∀= Kd
3 and ∀= LPd, and gives

some basic definitions which will be used throughout this paper. As a
starter, ⊃ and ≡ will be defined connectives:

Definition 1.

A ⊃ BB ¬A ∨ B
A ≡ BB (A ⊃ B) ∧ (B ⊃ A)
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∀
= Kd

3 has the following rules:2

R1 A, B ` A ∧ B
R2 A ∧ B ` A and A ∧ B ` B
R3 A ` A ∨ B and B ` A ∨ B
R4 ¬¬A a` A
R5 ¬(A ∧ B) a` ¬A ∨ ¬B
R6 ¬(A ∨ B) a` ¬A ∧ ¬B
R7 A,¬A ∨ B ` B (disjunctive syllogism)
Q1 ∀xA ` A(x/t) t free for x
Q2 ∀x(A ∨ B) ` A ∨ ∀xB x < FV{A}
Q3 A(x/t) ` ∃xA t free for x
Q4 ¬∀xA a` ∃x¬A
Q5 ¬∃xA a` ∀x¬A
E1 ∀x(x =̇ x)
E2 t =̇ s, A(x/t) ` A(x/s) s & t free for x

I will also consider the logic ∀= Kd
3[E3] got by adding the following rule:

E3 A(x/t) ` ∀x(t =̇ x ⊃ A) t free for x.

Notably lacking from the above set of rules are universal generalization,
reasoning by cases, and existential instantiation. These are sometimes in-
cluded in the list of primitive rules of a logic as follows:

RQ Γ ` A(x/y)
Γ ` ∀xA

y < FV(Γ ∪ {∀xA})
(Universal Generalization)

MR1 Γ, B ` A Γ,C ` A
Γ, B ∨C ` A

(Reasoning by Cases)

MR2 Γ, B(x/y) ` A
Γ,∃xB ` A

y < FV(Γ ∪ {∃xB, A})
(Existential Instantiation)

To set them apart from the ordinary rules, RQ, MR1 and MR2 are often
called meta-rules. These meta-rules are, properly understood, existential
statements about the provability relation; for instance, MR1 is the existen-
tial statement that if there is a proof of A from Γ∪{B} and a proof of A from
Γ ∪ {C}, then there is a proof of A from Γ ∪ {B ∨ C}. These two meta-rules
are derivable in some logics, but are generally not derivable in logics which
lack a deduction theorem such as ∀= Kd

3. The following inductive definition

2The d indicates that the meta-rules MR1 and MR2 are present. A two-way rule A a` B is
short for the rules A ` B and B ` A.
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of what a proof is is designed to make these meta-rules come out as true
statements regarding the defined provability relation.

Definition 2. A proof of A from Γ in the logic L is a finite nested list of
formulas 〈α1, . . . , αn〉 such that αn = A and every αi≤n is either

(1) a member of Γ

(2) a logical axiom
(3) there is a set ∆ ⊆ {α j | j < i} such that ∆ ` αi is an instance of a rule

of L
(4) there is a j < i such that α j is the formula B(x/y), and αi is the

formula ∀xB where y < FV({∀xB} ∪ (Γ ∩ {αm|m < j}))
(5) there is a j < i such that α j is the formula B ∨C, and there is some

αk<i = 〈βk1 , βk2〉 where βk1 is a proof of αi from Γ∪ {B} in the logic L
and βk2 is a proof of αi from Γ ∪ {C} in the logic L

(6) there is a j < i such that α j is the formula ∃xB, and some αk<i =

〈β1, . . . , βm, αi〉 is a proof of αi from Γ∪ {B(x/y)} in the logic L where
y < FV(Γ ∪ {∃xB, αi}).

The existential claim that there is such a proof is written Γ `L A.3

It will later be convenient to work with intersubstitutivity rules. Such
rules will be on the form Γ, θA ` θB and Γ ` θA ? θB, where ? is some
connective, and where θB is obtained from θA by substituting zero or more
instances of the subformula A in θ by B. As an instance of such a rule we
have that ∀x̄(A↔ B) ` θA ↔ θB is a derived rule in any relevant logic.

Definition 3. (Semantics of ∀= Kd
3) The semantics of ∀= Kd

3 is as follows: a
model A with quantification domain |A| and variable assignment function s
interprets variables, names and function symbols in the familiar way; the
model As induces a term assignment function ŝ : T ERM 7→ |A| such that

• if t is a variable, then ŝ(t) = s(t)
• if t is a constant symbol, then ŝ(t) = tA

• if t is a function term f (t1, . . . , tn), then ŝ(t) = f A(ŝ(t1), . . . , ŝ(tn)).
The valuespace of any model is {⊥,n,>}. If A(x̄) is a n-ary atomic predi-
cate, thenA(A) is a function from |A|n to {⊥,n,>}, andAs(A(x̄/t̄))BA(A)(ŝ(t̄)).
The identity predicate, =̇, is treated as a logical relation:

A(=̇)(a, b) = > ⇐⇒ a = b for any a, b ∈ |A|.

As interprets the other logical vocabulary compositionally so that ∧ and ∀
are interpreted as infimum over, and ∨ and ∃ as supremum over the fol-
lowing three-valued Kleene algebra and ¬ is interpreted according to the
3I will often drop the subscript L on the derivability relation. An example of the use of
clauses (5) and (6) can be found in the proof of Lem. 16. I will refer to these clauses as
MR1 and MR2.
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displayed matrix:
>

n
OO

⊥

OO
¬ ⊥ n >
> n ⊥

Truth in a model is defined in the standard way: As � AB As(A) = >, and
semantic consequence, is then defined as preservation of truth in all models:
Θ � AB for all models As, if As � θ for all θ ∈ Θ, then As � A.

From the definition above it is easy to see that As � s =̇ t ⇔ ŝ(s) = ŝ(t),
and so if As � s =̇ t, then a simple induction on the complexity of A will
show that

As(A(x/s, ȳ)) = A(A)(ŝ(s), ŝ(ȳ)) = A(A)(ŝ(t), ŝ(ȳ)) = As(A(x/t, ȳ))

where A(x, ȳ) is any formula and x is any variable for which s and t are
substitutable. Notice, however, that if ŝ(s) , ŝ(t), then As(s =̇ t) could be
evaluated to either ⊥ or n.

E2 only ensures that an identity statement s =̇ t comes out true if and
only if s and t denote the same object and is for this reason a very weak
version of Leibniz’s law. For instance, it does not suffice for validating
∀x∀y(x =̇ y ⊃ y =̇ x), nor even the rule t ,̇ s ` s ,̇ t. The standard version
of Leibniz’s law, ∀x∀y(x =̇ y ⊃ (A ⊃ A(x/y))), entails excluded middle for
all formulas, and so collapses ∀= Kd

3 into classical logic. Adding E3 to ∀= Kd
3

does not suffices for this, however. That E3 does not entail excluded middle
for all formulas is easily seen by noting that any two-element model can
assign A(x/t) the value >, t =̇ s the value ⊥ and A(x/s) n as long as A is some
non-logical predicate. However, E3 does entail excluded middle for =̇:

Lemma 1. `∀= Kd
3[E3] ∀x∀y(x ,̇ y ∨ x =̇ y)

Proof.
(1) ∀x(x =̇ y/x) E1
(2) x =̇ y/x 1, Q1
(3) ∀y(x =̇ y ⊃ x =̇ y) 2, E3
(4) ∀x∀y(x ,̇ y ∨ x =̇ y) 3, RQ & def. of ⊃

�

Definition 4. (Semantics of ∀= Kd
3[E3]) A model A is a model for ∀= Kd

3[E3] if
it is a model for ∀= Kd

3 such that A(=̇)(a, b) ∈ {⊥,>} for all a, b ∈ |A|.

E3 also entails the rule

E4 A(x/t),¬A(x/s) ` t ,̇ s s & t free for x

since modus tollens is a valid rule in ∀= Kd
3. One could consider adding E4

as a primitive rule to ∀= Kd
3, but I have found it difficult to find a suitable
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semantic clause which would ensure a sound and complete semantics for
∀
= Kd

3[E4] and so will only consider E4 as a derived rule of ∀= Kd
3[E3] when I

need to appeal to semantic facts.
From the definition of truth in a model, together with the matrix for ¬, it

follows that ∀= Kd
3 regards both n and ¬n as undesignated; if a sentence A is

evaluated to n in a model As, then neither A nor ¬A are true in As. ∀
= Kd

3 is
for this reason called a paracomplete logic.

Graham Priest introduced in [16] a logic which he called Logic of Para-
dox, LP for short. The first-order version of this logic with identity is quite
closely related to ∀= Kd

3, but whereas ∀= Kd
3 regards n as undesignated, ∀= LPd

regards it as designated, so if a sentence A is evaluated to it in a model
As, then both A and ¬A are true in As. ∀

= LPd is for this reason called a
paraconsistent logic.

Proof-theoretically, ∀= LPd is got from ∀= Kd
3 by dropping disjunctive syllo-

gism (R7), and adding excluded middle, A ∨ ¬A.

Definition 5. (Semantics of ∀= LPd) A ∀= LPd-model As is a ∀= Kd
3-model in

all aspects except for the interpretation of =̇; for ∀= LPd-models it is only
demanded that

A(=̇)(a, b) ∈ {n,>} ⇐⇒ a = b for any a, b ∈ |A|.

Truth in a model is defined in the standard way: As � ABAs(A)∈ {n,>},
and semantic consequence is then defined as preservation of truth in all
models: Θ � AB for all models As, if As � θ for all θ ∈ Θ, then As � A.

For consistency with standard notation for ∀= LPd-models, I’ll use ‘b’ in-
stead of ‘n’ when b is a truth-value of a ∀= LPd-model, and ‘n’ when it is a
truth-value of a ∀= Kd

3-model.

Definition 6. Let � be the following ordering:

⊥ >

n
`` >>

Let A andB be two models for ∀= Kd
3 (∀= LPd). A 4 BB |A|= |B|, A andB are

identical with regards to how they interpret names and function symbols,
and for every atomic predicate F, and every variable assignment function
s, As(F) � Bs(F).

Theorem 2. (Monotonicity) ∀= Kd
3, ∀= Kd

3[E3] and ∀= LPd are monotonic with
regards to the ordering �; for any formula A and models A andB, if A 4 B,
then As(A) � Bs(A) for every variable assignment function s.

Proof. An easy induction on the complexity of A. �
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Theorem 3. For any model A and formulas D and E, if As(D) � As(E)
for every variable assignment function s, then As(ψD) � As(ψE) for every
variable assignment function s.

Proof. Assume that As(D) � As(E) for every variable assignment function
s. Now add a new atomic predicate F(x̄) such that x̄ are the free variables
in D and E. Let A′ be identical to A, but let it interpret the new predicate F
such that A′s(F(x̄)) = As(D) for every variable assignment function s. Sim-
ilarly, let A′′s (F(x̄)) = As(E) for every variable assignment function s. Then
A′ 4 A′′ and so it follows from Thm. 2 that A′s(ψF(x̄)) � A′′s (ψF(x̄)). By an
easy induction on the complexity of ψ, it follows that As(ψD)=A′s(ψF(x̄)) and
As(ψE) = A′′s (ψF(x̄)) which suffices for showing that As(ψD) � As(ψE). �

Corollary 4. For any model A and formulas D and E, if As(D) = As(E)
for every variable assignment function s, then As(ψD) = As(ψE) for every
variable assignment function s.

Proof. Immediate from Thm. 3 �

Definition 7. Let ∆ and ∆′ be sets of formulas over, respectively, the lan-
guages L and L′ where L′ extends L. ∆′ conservatively extends ∆ in the
logic L if for every formula A in the language L,

∆′ `L A⇒ ∆ `L A.

Definition 8. A logic L is conservatively extended by a rule Θ ` A if ∆′

conservatively extends ∆ where ∆ is any set of formulas and ∆′ is the closure
of ∆ with respect to L and the rule Θ ` A. Derivatively: if R is a rule, then
the logic L[R]—L strengthened with R—conservatively extends L if L is
conservatively extended by R.

Since I will consider rules which extend the language it is important to
note that I will assume that if Θ ` A is a rule of a logic L which is augmented
with a rule R, then one is entitled to infer B from Ψ in L[R] if Ψ ` B is an
instance of the rule Θ ` A, but with formulas over the augmented language
which R introduced.

3. Henkin constants

This section shows how to conservatively add Henkin constants. Con-
stants are simply 0-ary functions and so Henkin constants are simply 0-ary
Skolem functions. The next section shows how to add n-ary Skolem func-
tions.

Definition 9. Let Θ be a set of formulas in the language L. Let hc(L) be
the languageL extended by adding a Henkin constant cB for every formula
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∃xB in the language of L.

Θc B {B(x/cB) |Θ ` ∃xB}

Θhc B Θc ∪ Θ is called the Henkin-witnessed extension of Θ. B(x/cB) is
called a Henkin witness.4

Theorem 5. Θhc conservatively extends Θ.

Proof. Let Θ∪{A} be a set of formulas over the languageL and assume that
Θhc ` A. Since proofs are finite we have that for some finite subsets Θ′ ⊆ Θ

and {B1(cB1), . . . , Bn(cBn)} ⊆ Θc,

{B1(cB1), . . . , Bn−1(cBn−1)} ∪ Θ′, Bn(cBn) ` A,

where for each Bi, Θ ` ∃xBi. Since the Henkin constant cBn does not occur
in {B1(cB1), . . . , Bn−1(cBn−1)}∪Θ′∪{A}we can simply replace cBn by a variable
y which does not occur in {B1(cB1), . . . , Bn−1(cBn−1)} ∪ Θ′ ∪ {A} so that

{B1(cB1), . . . , Bn−1(cBn−1)} ∪ Θ′, Bn(x/y) ` A.

Using MR2 we can now infer that

{B1(cB1), . . . , Bn−1(cBn−1)} ∪ Θ′,∃xBn ` A.

Repeating the procedure we get that {∃xB1, . . . ,∃xBn} ∪ Θ′ ` A. Since Θ `

∃xBi and Θ′ ⊆ Θ, we have that Θ ` A. �

Note that the only assumption used regarding the logic in Thm. 5 was
that it validates the meta-rule MR2. In fact the converse is also the case:

Theorem 6. If Θhc conservatively extends Θ, then Θ is closed under MR2.

Proof. Assume that Θ, A(x/y) ` B, where y < FV(Θ ∪ {∃xA, B}), that Θ `

∃xA, and that Θhc conservatively extends Θ. The goal is showing that Θ ` B.
Now since Θ ` ∃xA, we get that Θhc ` A(x/cA), where cA is the Henkin con-
stant for A. Since Θ, A(x/y) ` B where y < FV(Θ∪ {∃xA, B}) we can rewrite
the proof using cA instead of y so that Θ, A(x/cA) ` B. By the construction of
Θhc we get that Θhc ` A(x/cA) and so by transitivity of ` that Θhc ` B. Since
B is a formula in the language of Θ and Θhc by assumption conservatively
extends Θ, we can conclude that Θ ` B. �

Definition 10. For any languageL, letLh0BL, Lhn+1Bhc(Lhn) andLhωB⋃
i<ω hc(Lhi). Furthermore let

4It would be more appropriate to use ∃xB instead of B as a subscript in cB—to let c∃xB be
the Henkin constant for the formula ∃xB. I trust that no confusion will arise and so I’ll
stick to the neater, although flawed, naming convention.
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Θhc0 B Θ

Θhcn+1 B Θhcn ∪ {B(y/cB) |Θhcn ` ∃yB}
Θhcω B

⋃
i<ω Θhci

Theorem 7. Θhcω conservatively extends Θ.

Proof. The above theorem shows that Θhc0 is conservatively extended by
Θhc1 . It is easy to see that the proof holds for any n—that Θhcn is conser-
vatively extended by Θhcn+1 . Furthermore, it is obvious that if ∆1 is conser-
vatively extended by ∆2 and ∆2 is conservatively extended by ∆3, then ∆1

is conservatively extended by ∆3, and so Θ is conservatively extended by
every Θhcn . Now since deductions are finite it follows from the assumption
that Θhcω ` A for A∈L, that for some m, Θhcm ` A. Since Θ is conservatively
extended by Θhcm and A ∈ L it follows that Θ ` A. �

Definition 11.
(Henkin rule) ∃yA(y) ` A(y/cA)

where if ∃yA(y) is a formula of Lhn , A(y/cA) is a formula of Lhn+1 .

Corollary 8. Adding the Henkin rule yields a conservative extension.

Proof. This follows from Thm. 7. �

This section has shown that one can add Henkin constants conservatively.
Constants are simply 0-ary functions. The next section shows how to extend
the results in this section so as to cover n-ary functions for arbitrary n.

The results in the next section depends on the strong completeness the-
orem which says that if A holds in every model in which Σ does, then A is
derivable from Σ, or, equivalently, if A is not derivable from Σ, then there
is a model in which Σ holds, but A fails—Σ 0 A ⇒ Σ 2 A. Henkin proved
this theorem in [10] by showing that it is possible to extend Σ into a set of
formulas Γ and construct from it a model for Σ in which A fails. In order to
validate the meta-rule MR2 a model needs to be witnessed—if As � ∃xB,
then As(x/a) � B for some object a ∈ |A|. Adding Henkin constants ensures
that the model is witnessed and the conservativeness property ensures that
such an extension retains the property of keeping A non-derivable.

Fact 1. ∀= Kd
3, ∀= Kd

3[E3] and ∀= LPd are strongly sound and complete with
regards to the semantics defined above:

Θ �∀= Kd
3

A ⇐⇒ Θ `∀= Kd
3

A
Θ �∀= Kd

3[E3] A ⇐⇒ Θ `∀= Kd
3[E3] A

Θ �∀= LPd A ⇐⇒ Θ `∀= LPd A
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This is a substantial result. Proving it, however, would make this pa-
per unnecessarily long, and so I will have to defer it to some other occa-
sion. Soundness and completeness proofs for variants of the logics ∀= Kd

3
and ∀= LPd can be found in Priest’s book [17, ch. 22]. Beyond relying on
the meta-rule MR2 and the fact that any model interprets compositionally,
that is the semantic value assigned to a term or formula depends only on the
semantic values of its subterms/subformulas, the results of the next section,
like the results in this section, will not otherwise depend on any particular
rule of ∀= Kd

3, and so will hold for other logics with a similary sound and
complete algebraic semantics such as ∀= Kd

3[E3] and ∀= LPd, the four-valued
logic ∀= FDEd, the n-valued logics ∀= RMd

n and Łukasiewicz logics, and in-
tensional logics such as intuitionistic logic, relevant logics and the infinite-
valued Łukasiewicz logic. There is a caveat, however: if the logic has any
other version of Leibniz’s law than E2, then the results may not hold.

4. Skolem functions

This section extendeds the results of the previous section by showing how
to conservatively add Skolem functions.

Definition 12. Let Θ be a set of formulas in the language L. Let s f (L)
be the language L extended by adding a Skolem function fB(x̄) for every
formula B(x̄, y) in the language of L.

Θ f B {∀x̄B(y/fB(x̄)) |Θ ` ∀x̄∃yB}

Θs f B Θ f ∪ Θ is called the Skolem extension of Θ.

Theorem 9. Θs f conservatively extends Θ

Proof. Assume that Θ 0 A. Using the completeness theorem we can infer
that Θ 2 A. Let As be any model such that As � Θ and As 2 A. For every
formula ∀x̄B(y/fB(x̄)) ∈ Θ f we have that As � ∀x̄∃yB(x̄, y), and so As(x̄/ā) �
∃yB(x̄, y) for every ā ∈ |A|n. Since every model is witnessed it follows that
WB(x̄,y)

ā B {b ∈ |A| |As(x̄/ā,y/b) � B(x̄, y)} is non-empty for each ā ∈ |A|n. Let the
axiom of choice choose one such element for every ā ∈ |A|n and use it as
the denotation of the Skolem function fB(x̄). Let As f be the model which
results from giving such interpretations to each Skolem function in Θ f . It
then follows that As f

s � Θ f . Since As fω
s is compositional it follows that it

assigns the same values to any term and formula in L, and therefore that
A

s fω
s 2 A. The soundness theorem then ensures that Θs f 0 A. �

If Θ ` ∀x∃y∃zA(x, y, z), then Θs f ` ∀x∃zA(x, f (x), z) for some Skolem
function f . To get rid of the last existential quantifier we need to repeat the
process: (Θs f )s f ` ∀xA(x, f (x), g(x)) for some Skolem function g. The next
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definition and theorem makes this precise and shows how to add Skolem
functions an masse.

Definition 13. For any language L, let Ls0BL, Lsn+1B s f (Lsn) and LsωB⋃
i<ω s f (Lsi). Furthermore let

Θs f0 B Θ

Θs fn+1 B Θs fn ∪ {∀x̄B(y/fB(x̄)) |Θs fn ` ∀x̄∃yB}
Θs fω B

⋃
i<ω Θ

s f
i

Theorem 10. Θs fω conservatively extends Θ.

Proof. Similar to the proof of Thm. 7. �

Definition 14.

(Skolem rule; S) ∀x̄∃yA(x̄, y) ` ∀x̄A(x̄, y/fA(x̄))

where if A(x̄, y) is a formula of Lsn , A(x̄, y/fA(x̄)) is a formula of Lsn+1 .

Lemma 11.
Θ `∀= Kd

3[S] A⇐⇒ Θs fω `∀= Kd
3

A

Proof. Trivially by the definition of Θs fω . �

Corollary 12. ∀= Kd
3[S] conservatively extends ∀= Kd

3.

Proof. This follows from Thm. 10 together with Lem. 11. �

That the Skolem extension of any model validates E2 is quite trivial; if
the extended model validates t =̇ s for t, s ∈ Lsω , then it evaluates these two
terms to the same element, and so the value assigned to A(x/t) will have to be
the same value as that assigned to A(x/s) (assuming that t and s are both free
for x in A). Note, however, that this may not be the case for other versions
of Leibniz’s law than E2. It does, however, hold for E3:

Lemma 13. For any ∀= Kd
3-model As, if As validates E3, then any Skolem

extension of As got from As using the construction in Thm. 9 validates E3
over the full language Lsω .

Proof. Let A be any formula and t any term free for x such that As fω
s (A(x/t))=

>. By Lem. 1 it follows that for any element a ∈ |As fω |, either As fω
s(x/a)(t=̇x)=>

or As fω
s(x/a)(t=̇x)=⊥. If the latter holds, then obviously As fω

s(x/a)(t=̇x ⊃ A)=>, and
if the first holds, thenAs fω

s (A(x/t))=As fω
s(x/a)(A) and so againAs fω

s(x/a)(t=̇x ⊃ A)=>.
Since this holds for any a ∈ |As fω |, it follows that As fω

s (∀x(t=̇x ⊃ A))=>. �

Corollary 14. ∀= Kd
3[S, E3] conservatively extends ∀= Kd

3[E3].
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Intuitionistic logic is often proclaimed as a logic in which one cannot
add Skolem functions conservatively. That this is so goes back to Grigori
Mints’ paper [13]. The standard counterexample is due to Smoryński’s pa-
per [22] in which a countermodel for the formula ∀x1∃y1∀x2∃y2(x1 ,̇ y1 ∧

x2 ,̇ y2 ∧ (x1 =̇ x2 → y1 =̇ y2)) is provided. This formula is easily deriv-
able from ∀x(x ,̇ f (x)) ∧ ∀x∀y(x =̇ y→ f (x) =̇ f (y)) where f is introduced
as a Skolem function for the formula ∀x∃y(x ,̇ y). A function f is said to
be extensional if ∀x∀y(x =̇ y → f (x) =̇ f (y)) holds. Smoryński’s counter-
model then shows that the addition of extensional Skolem functions is not
always conservative. The crucial assumption here is undoubtedly the re-
quirement that f be extensional; intuitionistic logic with E1 and E2 and
using the definition of a proof in this paper, can be shown to be sound
and complete with regards to an algebraic semantics over Heyting alge-
bras. The construction in Thm. 9 therefore also holds for this logic and so
shows that Skolem functions can be added conservatively. The crucial as-
sumption therefore is that of extensionality.5 Note that the same also holds
for ∀= Kd

3: ∀x1∃y1∀x2∃y2(x1 ,̇ y1 ∧ x2 ,̇ y2 ∧ (x1 =̇ x2 ⊃ y1 =̇ y2)) is derivable
from ∀x(x ,̇ f (x)) ∧ ∀x∀y(x =̇ y ⊃ f (x) =̇ f (y)) where f is introduced as a
Skolem function for the formula ∀x∃y(x ,̇ y). Now let the language be the
pure language of identity, |A| = {a, b, c}, and let A interpret =̇ according to
the following matrix:

=̇ a b c
a > n ⊥
b ⊥ > n
c ⊥ n >

It is easy to verify that ∀x1∃y1∀x2∃y2(x1 ,̇y1∧ x2 ,̇y2∧(x1 =̇ x2 ⊃ y1 =̇y2))
is evaluated to n in A: when x1 and x2 are assigned to, respectively, a and b,
there is only one assignment to y1 and y2 which ensures that x1 ,̇y1∧ x2 ,̇y2

is true, namely c and a. However, since A(=̇)(a, b) = n and A(=̇)(c, a) = ⊥,
it follows that A(∀x1∃y1∀x2∃y2(x1 ,̇ y1 ∧ x2 ,̇ y2 ∧ (x1 =̇ x2 ⊃ y1 =̇ y2))) = n.
We therefore have the following corollary:

5Note that intuitionistic logic is most often stated as a logic without identity; the identity
predicate is then regarded as a non-logical predicate and one seeks to derive Leibniz’s law
from the axioms stated for =̇ together with the axioms of the other predicates and function
symbols. For instance, one adds not only ∀x∀y(s(x) =̇ s(y) → x =̇ y) when stating that
the successor function is injective in intuitionistic arithmetic, but also that it is extensional;
∀x∀y(x =̇ y → s(x) =̇ s(y)) is in other words added as a separate arithmetical axiom.
Regardless of this, it is unnecessarily confusing to, as is often the case, claim that Skolem
functions can’t always be conservatively added to intuitionistic logic when intending to
claim that extensional Skolem functions can’t always be conservatively added.
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Corollary 15. ∀= Kd
3 cannot be conservatively extended by ⊃-extensional

Skolem functions.

Note, however, that Skolem functions are derivably extensional in ∀= Kd
3[E3]

which therefore can be conservatively extended by ⊃-extensional Skolem
functions.

Weber, in the second appendix of [24], raised the question whether it is
possible to conservatively extend a logic by adding a rule governing Skolem
functions. Cor. 12 settled this in the positive.6

The Skolem rule allows one to conservatively introduce a function sym-
bol for all n + 1-ary relations which relates all n-tuples of objects to at least
one thing. The more interesting question is what kind of reasoning is war-
ranted when one introduces function symbols for relations which provably
relates all n-tuples to just one thing. Weber, in the above mentioned appen-
dix, considered adding a rule for what he called unique objects, namely the
rule

` ∃xΦ(x) Φ(y) ` x =̇ y
` Φ( fΦ)

.

There are several problems with this rule as it stands. For present purposes
it suffices to notice that the variable x in x =̇ y is free and not bound by the
existential quantifier, and so the premises taken together can’t plausibly be
taken to express the claim that there exists one and only one Φ. The trouble
here is how to define unique existence. As I have not been able to come up
with a variant of Weber’s rule which essentially involves `, and doubt that
there is one, I will only consider the more standard ways of defining ∃!.

The next sections looks at different ways of adding rules for reasoning
with definable Skolem functions and functional formulas, that is a formula
A(x̄, y) for which ∀x̄∃!y(A(x̄, y)) is derivable relative to some theory and
definition of ∃!.

5. Definable Skolem functions

Being able to introduce definitions when arguing is quite essential; in
many cases it would be simply too hard to reason properly, or even artic-
ulate an idea if one were not allowed to use defined terms and relations.
This section introduces definable Skolem functions, defines the unique ex-
istential quantifier, ∃!, and introduces substitutivity rules relating fA(t̄, s) to
A(t̄, s). Before I start, let me note that introducing new predicates/terms for

6[24] contains a proof to the effect that the Skolem rule is conservative with regards to the
truth-constant ⊥. Weber’s proof makes use of Skolem axioms instead of the Skolem rule
and needs the rule called Independence of Premise in order for it to work. For more on this
rule, see the appendix.
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complex formulas/terms is easily seen to be conservative; if A(x̄) is a logi-
cally complex formula and f (ȳ) is logically complex term, one can simply
introduce a new predicate B(x̄) and a new function symbol g(ȳ) and show,
using the soundness and completeness theorem, that the introduction is con-
servative; simply assign the new vocabulary the same semantic value in any
model as the semantic value of the formula or term they are intended to
define.

I showed in the last section that the Skolem rule can be added conserva-
tively to ∀= Kd

3. The Skolem rule in itself is close to useless; the only reason-
ing it by itself warrants is that given that some n + 1-ary relation provably
relates every n-tuple to some object, then one may introduce a function
symbol which picks out one such object for each n-tuple. More precisely,
it does not tell one how to eliminate a Skolem function symbol from a for-
mula and it does not tell one anything about how A(t̄, s) and s =̇ fA(t̄) are
related.

Definition 15. A formula A(x̄, y) is functional in a logic L relative to Θ

and a definition of ∃! if Θ `L ∀x̄∃!yA(x̄, y), and relational if not.

Definition 16. A Skolem function is called definable relative to some defi-
nition of ∃! if it is introduced for a functional formula.

Standard textbooks on classical mathematical logic usually prove the fol-
lowing two propositions regarding Skolem functions.7

Let Φ ∪ {A(x̄, y)} be any set of formulas over the language L such that

Φ ` ∀x̄∃!yA(x̄, y).

Let
L+ B L ∪ { fA}

Φ+ B Φ ∪ {∀x̄∀y(A(x̄, y)↔ y =̇ fA(x̄)}.

(1) Φ+ is a conservative extension of Φ.
(2) There is a translation ∗ : L+ 7→ L such that for any formula B ∈L+,

Φ+ ` B⇐⇒ Φ ` B∗.

The question now is whether these propositions also hold true of other
logics than classical logic. There are two main challenges in simply stating
these propositions for non-classical logics:

(i) How is the unique existential quantifier, ∃!, to be defined?
(ii) Which axioms/rules are appropriate for relating a functional for-

mula A to the Skolem function fA?

7See for instance [20, ch. 4.6] and [23, Thm. 3.4.6].
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Only by first answering these two questions can one hope to fruitfully
answer whether adding such defining axioms or rules yields a conservative
extension (1), and if there is a translation from the extended theory into the
original one which preserves derivability (2).

To even get started I have decided upon answering (ii) first; if one is in
some way able to prove that a formula A(x̄, y) determines the extension of a
function—to prove ∀x̄∃!yA(x̄, y) for some definition of ∃!—then one would
expect that A(t̄, s) and s =̇ fA(t̄) are intersubstitutable where fA is a Skolem
function for A and t̄ and s are any terms which are substitutable for x̄ and y
in A. Although I will show that few logics validates this, I think that this is
a rather unintuitive feature of these logics which ought to be stated clearly.
The following definitions states the idea more precisely:

Definition 17. A logic X is fit for Skolem functions relative to a defini-
tion of ∃! if it can be conservatively extended by the Skolem rule together
with the following two rules:

(deSkolemizer) ∀x̄∃!yA(x̄, y), ψs=̇ fA(t̄) ` ψA(t̄,s)

(Skolemizer) ∀x̄∃!yA(x̄, y), ψA(t̄,s) ` ψs=̇ fA(t̄)

where t̄ and s are substitutable for x̄ and y in A, and ψA(t̄,s) is got from
ψs=̇ fA(t̄) by replacing zero or more instances of s =̇ fA(t̄) in ψs=̇ fA(t̄) by A(t̄, s)
and similarly for obtaining ψs=̇ fA(t̄) from ψA(t̄,s).8

Definition 18. A logic L is semifit for Skolem functions relative to a
definition of ∃! if it can be conservatively extended by the Skolem rule
together with the deSkolemizer.

Definition 19. A logic L is unfit for Skolem functions relative to a defi-
nition of ∃! if it is not semifit for Skolem functions relative to the definition
of ∃!.

«Parenthetical remark. Let me stress that the results on unfitness are
always relative to some definition of the unique existential quantifier. I
nowhere claim that results proven hold for every possible such definition,
although I myself have not been able to come up with any other definitions
which works better than those I mention. The challenge is therefore put to
the defender of this or that logic to find a workable definition of the unique
existential quantifier and to show that there are reasonable laws relating a
Skolem equation s =̇ fA(t̄) to A(t̄, s). End parenthetical.»

The first challenge is to define ∃!—to find a workable way to express the
quantifier phrase there exists one and only one x such that. There are two
standard ways of doing this:

8I will from now on assume that t̄ and s are substitutable for x̄ and y in A.
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Definition 20.

∃!⊃xAB ∃x(A ∧ ∀z(A(x/z) ⊃ z =̇ x))
∃!≡xAB ∃x∀z(A(x/z) ≡ z =̇ x).

These two definitions of ∃! are not equivalent in either ∀= Kd
3 or ∀= LPd as

Fig. 1 makes clear.9

∀
= LPd ∀

= Kd
3

∀x̄∃!⊃yA ` ∀x̄∃!≡yA X %

∀x̄∃!≡yA ` ∀x̄∃!⊃yA % X

∀x̄∃!⊃yA ` ∀x̄∀y(¬A ∨ A) X X

Figure 1. Relations between two definitions of ∃!

In order to make these two definitions of ∃! interderivable in ∀= LPd, one
needs to add the rule t ,̇ t ` B. I think most serious paraconsistentist would
reject this rule, and so I will not discuss it further. In order to make these
two definitions of ∃! interderivable in ∀= Kd

3, one needs to add the rule E4:

Lemma 16. 10

∀x̄∃!⊃yA `∀= Kd
3[E4] ∀x̄∃!≡yA.

9I leave it to the reader to verify these claims.
10The following proof uses both MR1 and MR2. Written out as a nested list in full detail
it can be written on the following form:

〈0 1, 2, 〈1 3, 4, 5, 〈〈2 3, 4, 6, 7, 82〉, 〈3 4, 9, 10, 113〉〉, 12, 13, 14, 151〉, 16, 170〉

The lists 〈2 . . .2〉 and 〈3 . . .3〉 are the MR1-subproofs, whereas the nested list 〈1 . . .1〉 is the
MR2-subproof.
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Proof.

(1) ∀x̄∃y(A(x̄, y) ∧ ∀z(A(x̄, z) ⊃ z =̇ y)) assumption
(2) ∃y(A(x̄, y) ∧ ∀z(A(x̄, z) ⊃ z =̇ y)) 1, Q1
(3) A(x̄, c) ∧ ∀z(A(x̄, z) ⊃ z =̇ c) assumption for MR2
(4) A(x̄, c) 3, R2
(5) ¬A(x̄, z) ∨ z =̇ c 3, Q1, R2, & def. of ⊃
(6) ¬A(x̄, z) assumption for MR1
(7) z ,̇ c 4, 6, E4
(8) z =̇ c ⊃ A(x̄, z) 7, R3, def. of ⊃
(9) z =̇ c assumption for MR1
(10) A(x̄, z) 4, 9, E2
(11) z =̇ c ⊃ A(x̄, z) 10, R3, def. of ⊃
(12) z =̇ c ⊃ A(x̄, z) 5–11, MR1
(13) A(x̄, z) ≡ z =̇ c 5, 12, R1
(14) ∀z(A(x̄, z) ≡ z =̇ c) 3–13, RQ
(15) ∃y∀z(A(x̄, z) ≡ z =̇ y) 14, Q3
(16) ∃y∀z(A(x̄, z) ≡ z =̇ y) 2–15, MR2
(17) ∀x̄∃y∀z(A(x̄, z) ≡ z =̇ y) 16, RQ

�

There are two factors which make the two definitions of ∃! less than
optimal; first that ∀x̄∃!⊃yA ` ∀x̄∀y(¬A ∨ A) holds in ∀= Kd

3. Thus one can’t
state that there is one and only one A, unless excluded middle holds for A.
Secondly, the conditional, ⊃, used in both definitions of ∃! does not obey
modus ponens in ∀= LPd. Note furthermore that ∀= LPd not only lacks modus
ponens for ⊃, but has no definable implication-like connective→ for which
modus ponens holds ([4, Thm. 4.1]). This, as we will see, severely restricts
how one can reason with Skolem functions in ∀= LPd.

Most of the results from here on out will be on functional formulas, and
it will be useful to in fact add such a rule to the logic in question, and not
just consider if it can be added conservatively.

Definition 21. If L is a logic, then L[S⊃] is L augmented with the following
restricted version of the Skolem rule:

(S⊃) ∀x̄∃!⊃yA(x̄, y) ` ∀x̄(A(x̄, fA(x̄)) ∧ ∀y(A(x̄, y) ⊃ y =̇ fA(x̄)))

Obviously, S⊃ is simply a restricted form of S, and so can also be added
conservatively. Furthermore, since

Θs f ⊃ω `∀= Kd
3

A⇐⇒ Θ `∀= LPd[S⊃] A
Θs f ⊃ω `∀= Kd

3[E3] A⇐⇒ Θ `∀= Kd
3[S⊃,E3] A
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where Θs f ⊃ω is got by modifying the construction in Thm. 9 so as to only in-
troduce Skolem functions for functional formulas, and any ∀= Kd

3-/∀= Kd
3[E3]-

model for Θs f ⊃ω can obviously be generated using that construction, we have
the following corollary to Fact 1:

Fact 2. IfM is a class of models, thenMs fω is the class of models generated
fromM using Thm. 9.

(1) ∀= Kd
3[S] and ∀= Kd

3[S⊃] are both sound and complete with regards to
Ms fω whereM is the class of ∀= Kd

3-models
(2) ∀= Kd

3[S, E3] and ∀= Kd
3[S⊃, E3] are both sound and complete with re-

gards toMs fω whereM is the class of ∀= Kd
3[E3]-models.

6. Definable Skolem functions in Strong Kleene Logic

This section shows how definable Skolem functions behave in ∀= Kd
3 and

∀
= Kd

3[E3]. It is shown that ∀= Kd
3 is semifit for Skolem functions relative to

∃!⊃ , fit relative to ∃!≡ , and that ∀= Kd
3[E3] is fit relative to both. It is also

shown that there is a translation fromLsω toL which preserves derivability.

Theorem 17. The rules

Sk ≡olemizer ∀x̄∃!≡yA(x̄, y), ψA(t̄,s) ` ψs=̇ fA(t̄)

deSk ≡olemizer ∀x̄∃!≡yA(x̄, y), ψs=̇ fA(t̄) ` ψA(t̄,s)

are derivable in ∀= Kd
3[S⊃].

Proof. Let As be an arbitrary model for ∀= Kd
3[S⊃], and assume that As �

∀x̄∃!≡yA(x̄, y). The truth-table for ≡ is

≡ ⊥ n >
⊥ > n ⊥
n n n n
> ⊥ n >,

and so As has to assign the same classical value to A(t̄, s) and s=̇ fA(t̄). Since
As is compositional it follows that As(ψA(t̄,s))=As(ψs=̇ fA(t̄)) which suffices for
showing that As validates both deSk ≡olemizer and Sk ≡olemizer. Since As was
arbitrary it follows that any ∀= Kd

3[S⊃]-model validates these rules, and so by
the completeness theorem for ∀= Kd

3[S⊃] it follows that they are derivable in
∀
= Kd

3[S⊃]. �

Corollary 18. ∀= Kd
3 is fit for Skolem functions relative to

≡

∃!.

Corollary 19. ∀= Kd
3[E3] is fit for Skolem functions relative to both

≡

∃! and
⊃

∃!.
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Does this solve the problem for ∀= Kd
3? Let’s assume that one is able

to derive ∀x̄∃!⊃yA(x̄, y). In order to make use of either deSk ≡olemizer or
Sk ≡olemizer, one would first need to derive ∀x̄∃!≡yA(x̄, y), but in order to do
so one generally needs E4 to hold as Lem. 16 above shows. Without E4
it seems needlessly difficult to prove unique existential statements; the the-
ory would need to entail the relevant instances of E4 by itself. One could of
course simply add E4 or E3 as an extra rule. However, E4, which intuitively
says that distinguishable objects are non-identical, is sometimes rejected on
account that it rules out indeterminate identity.11 Regardless of this it seems
worth while to investigate the consequences of using

⊃

∃! as the definition of
∃! before scrapping ∀= Kd

3 for the stronger logic ∀= Kd
3[E3]. The next results

show that ∀= Kd
3 is semifit for Skolem functions, but not fit simpliciter.

Theorem 20. The rule

deSk ⊃olemizer ∀x̄∃!⊃yA(x̄, y), ψs=̇ fA(t̄) ` ψA(t̄,s)

is derivable in ∀= Kd
3[S⊃].

Proof. Assume that As is an arbitrary model for ∀= Kd
3 and extend it to a

model forS⊃. Assume thatAs fω
s � ∀x̄∃!⊃yA(x̄, y). Since the model is arbitrary

it will follow from Fact 2 that the rule is in fact derivable if we can show
that

A
s fω
s (ψs=̇ fA(t̄)) = > ⇒ A

s fω
s (ψA(t̄,s)) = >.

In light of Thm. 3 above it will suffice to show that it is always the case
that

A
s fω
s (s =̇ fA(t̄)) � As fω

s (A(t̄, s)).
I will therefore show the following:

(1) As fω
s (s =̇ fA(t̄)) = > ⇒ A

s fω
s (A(t̄, s)) = >

(2) As fω
s (s =̇ fA(t̄)) = ⊥ ⇒ A

s fω
s (A(t̄, s)) = ⊥

(3) As fω
s (s =̇ fA(t̄)) = n⇒ As fω

s (A(t̄, s)) = ⊥

Assume that As fω
s (s =̇ fA(t̄)) = >. The Skolem rule together with the fact

that As fω
s (∀x̄∃!⊃yA(x̄, y)) = > entails that As fω

s (A(t̄, fA(t̄))) = >. Since As fω
s

validates E2 it follows that As fω
s (A(t̄, s))=>. Assume that As fω

s (s=̇ fA(t̄))=⊥.
The Skolem rule together with the fact that As fω

s (∀x̄∃!⊃yA(x̄, y)) = > entails
that As fω

s (A(t̄, s) ⊃ s =̇ fA(t̄)) = >, and so As fω
s (A(t̄, s)) = ⊥. Lastly, assume

that As fω
s (s =̇ fA(t̄)) = n. Since As fω

s (A(t̄, s) ⊃ s =̇ fA(t̄)) = >, it follows that
A

s fω
s (A(t̄, s)) = ⊥. �

Corollary 21. ∀= Kd
3 is semifit for Skolem functions relative to

⊃

∃!.

11See [15, ch. 3] for a discussion.
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Theorem 22. ∀= Kd
3 is semifit only for Skolem functions relative to

⊃

∃!.

Proof. I will first show that ∃x∀y(y,̇x∨y=̇x) is derivable from ∀x∃!⊃yA(x, y)
using the Sk ⊃olemizer and then show that this amounts to a non-conservative
extension.

(1) ∀x∃!⊃yA(x, y) assumption
(2) ∀x(A(x, fA(x)) ∧ ∀y(A(x, y) ⊃ y =̇ fA(x))) 1, Skolem rule
(3) ∀x∀y(A(x, y) ⊃ y =̇ fA(x)) 2, fiddling
(4) ∀x∀y(y =̇ fA(x) ⊃ y =̇ fA(x)) 3, Skolemizer
(5) ∃x∀y(y ,̇ x ∨ y =̇ x) 4, def. of ⊃, Q1 & Q3

The countermodel to ∃x∀y(y ,̇ x ∨ y =̇ x) is as follows: let |A| be the set
{a, b}, and let =̇ and the non-logical predicate A(x, y) be interpreted accord-
ing to the following matrices:

=̇ a b
a > n
b n >

A a b
a > ⊥
b ⊥ >

It is easy to verify that As(∀x∃!⊃yA(x, y))=>, but that As(∃x∀y(y=̇x∨y,̇x))=
n. By the soundness theorem for ∀= Kd

3 it follows that adding Sk ⊃olemizer to
∀
= Kd

3 yields a non-conservative extension. �

The next goal is to show that there is a translation from the Skolem-
extended language Lsω to L which preserves derivability in both ∀= Kd

3[S⊃]
and ∀= Kd

3[S⊃, E3]. The theorem relies on the following lemma:

Lemma 23. If fA has been introduced by S⊃, then for any formula B(y)
where y does not occur in A( fA(t̄)) and any ∀= Kd

3-model As,

A
s fω
s (∃y(A(t̄, y) ∧ B(y))) = A

s fω
s (B( fA(t̄)))

where As fω
s is any model got from As using the construction in Thm. 9.

Proof. The proof is divided into six subproofs:

(1) As fω
s (∃y(A(t̄, y) ∧ B(y))) = > ⇒ A

s fω
s (B( fA(t̄))) = >

(2) A
s fω
s (B( fA(t̄))) = > ⇒ A

s fω
s (∃y(A(t̄, y) ∧ B(y))) = >

(3) As fω
s (∃y(A(t̄, y) ∧ B(y))) = ⊥ ⇒ A

s fω
s (B( fA(t̄))) = ⊥

(4) A
s fω
s (B( fA(t̄))) = ⊥ ⇒ A

s fω
s (∃y(A(t̄, y) ∧ B(y))) = ⊥

(5) As fω
s (∃y(A(t̄, y) ∧ B(y))) = n ⇒ As fω

s (B( fA(t̄))) = n
(6) A

s fω
s (B( fA(t̄))) = n ⇒ As fω

s (∃y(A(t̄, y) ∧ B(y))) = n
It is plain to see that (2), (4) and (6) follow from (1), (3) and (5) the proof
of which will make frequent use of the following:
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(I) As fω
s (A(t̄, fA(t̄))) = >

(II) As fω
s (∀y(A(t̄, y) ⊃ y =̇ fA(t̄))) = >

(1). Goal: As fω
s (∃y(A(t̄, y) ∧ B(y))) = > ⇒ A

s fω
s (B( fA(t̄))) = >

(1) As fω
s (∃y(A(t̄, y) ∧ B(y))) = > assumption

(2) As fω
s(y/a)(A(t̄, y) ∧ B(y)) = > for some a ∈ |A|

(3) As fω
s(y/a)(A(t̄, y) ⊃ y =̇ fA(t̄)) = > (II)

(4) As fω
s(y/a)(A(t̄, y)) = > 2

(5) As fω
s(y/a)(y =̇ fA(t̄)) = > 3, 4, R7

(6) As fω
s(y/a)(B(y)) = > 2

(7) As fω
s(y/a)(B( fA(t̄))) = > 5, 6, E2

(8) As fω
s (B( fA(t̄))) = > 7

�

(3). Goal: As fω
s (∃y(A(t̄, y) ∧ B(y))) = ⊥ ⇒ A

s fω
s (B( fA(t̄))) = ⊥

(1) As fω
s (∃y(A(t̄, y) ∧ B(y))) = ⊥ assumption

(2) As fω
s (A(t̄, fA(t̄)) ∧ B( fA(t̄))) = ⊥ 1

(3) As fω
s (A(t̄, fA(t̄))) = > (I)

(4) As fω
s (B( fA(t̄))) = ⊥ 2, 3

�

(5). Goal: As fω
s (∃y(A(t̄, y) ∧ B(y))) = n⇒ As fω

s (B( fA(t̄))) = n

(1) A
s fω
s (∃y(A(t̄, y) ∧ B(y))) = n assumption

(2) A
s fω
s (A(t̄, fA(t̄))) = > (I)

(3) A
s fω
s (B( fA(t̄))) ∈ {n,⊥} 1, 2

(4) A
s fω
s (B( fA(t̄))) = ⊥ assumption for MR1

(5) A
s fω
s(y/a)(¬A(t̄, y) ∨ y =̇ fA(t̄)) = > (II), def. of ⊃, for any a ∈ |A|

(6) A
s fω
s(y/a)(y =̇ fA(t̄)) = > assumption for MR1

(7) A
s fω
s(y/a)(B(y)) = ⊥ 4, 6, E2

(8) A
s fω
s(y/a)(A(t̄, y) ∧ B(y)) = ⊥ 8

(9) A
s fω
s(y/a)(A(t̄, y)) = ⊥ assumption for MR1

(10) A
s fω
s(y/a)(A(t̄, y) ∧ B(y)) = ⊥ 9

(11) A
s fω
s(y/a)(A(t̄, y) ∧ B(y)) = ⊥ 5, 6–10, MR1, for any a ∈ |A|

(12) A
s fω
s (∃y(A(t̄, y) ∧ B(y))) = ⊥ 11

(13) contradiction 1, 12
(14) As fω

s (B( fA(t̄))) = n 3, 4–13, MR1
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Theorem 24. There is a translation ∗ : Lsω 7→ L such that for any set
Θ ⊆ L and formula A ∈ Lsω ,

Θ `∀= Kd
3[S⊃] A⇐⇒ Θ `∀= Kd

3
A∗

Θ `∀= Kd
3[S⊃,E3] A⇐⇒ Θ `∀= Kd

3[E3] A∗

Proof. I’ll show that Θ `∀= Kd
3[E3] A∗ ⇒ Θ `∀= Kd

3[S⊃,E3] A; the other proofs are
similar.

Inductively replace every atomic subformula C(y/fB(t̄)) of A, where C(y)
and t̄ do not contain any Skolem functions, with the formula ∃y(B(t̄, y) ∧
C(y)), and let the resulting formula be A∗. Assume that Θ `∀= Kd

3[E3] A∗. Let
As be an arbitrary ∀= Kd

3[E3]-model such that As(θ) = > for every θ ∈ Θ. By
the soundness theorem for ∀= Kd

3[E3] it follows that As(A∗) = >. Extend As
to As fω

s using Thm. 9. From Lem. 13 it follows that As fω
s is a model for

∀
= Kd

3[S⊃, E3]. Furthermore, As fω
s (θ) = > for every θ ∈ Θ, and As fω

s (A∗) = >.
From Lem. 23 it follows that As fω

s (A) =>. Since As was arbitrary, it follows
from Fact. 2 that Θ `∀= Kd

3[S⊃,E3] A. �

I have shown in this section that ∀= Kd
3 does quite well when it comes to

Skolem functions: it both suffices for the existence of a translation which
preserves derivability both to and from the definable Skolem function ex-
tended language, and one can always substitute A(t̄, s) for the Skolem equa-
tion s =̇ fA(t̄), although not the other way around;∀= Kd

3 is only semifit for
Skolem functions. ∀= Kd

3[E3] was shown to be not only semifit for Skolem
functions, but fit simpliciter. The downside to using ∀= Kd

3[E3], however, is
that all identity statements are classical in ∀= Kd

3[E3].

7. Definable Skolem functions in The Logic of Paradox

I will in this section show that the translation used in the above section,
also works for ∀= LPd although not quite as well, and that ∀= LPd is unfit for
Skolem functions relative to both definitions of ∃!.
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Lemma 25. If fA has been introduced by S⊃, then for any formula B in
which fA(t̄) is substitutable for y and any ∀= LPd-model As,

(1) A
s fω
s (B( fA(x))) = > ⇒ A

s fω
s (∃y(A(x, y) ∧ B(y))) ∈ {b,>}

(2) As fω
s (∃y(A(t̄, y) ∧ B(y))) = > ⇒ A

s fω
s (B( fA(t̄))) = >

(3) A
s fω
s (B( fA(x))) = ⊥ ⇒ A

s fω
s (∃y(A(x, y) ∧ B(y))) ∈ {b,⊥}

(4) As fω
s (∃y(A(t̄, y) ∧ B(y))) = ⊥ ⇒ A

s fω
s (B( fA(t̄))) = ⊥

(5) A
s fω
s (B( fA(x))) = b ⇒ As fω

s (∃y(A(x, y) ∧ B(y))) = b
(6) As fω

s (∃y(A(t̄, y) ∧ B(y))) = b ⇒ As fω
s (B( fA(t̄))) ∈ {⊥,b,>}

where As fω
s is any model got from As using the construction in Thm. 9.

Proof.

(I) As fω
s (A(t̄, fA(t̄))) ∈ {b,>}

(II) As fω
s (∀y(A(t̄, y) ⊃ y =̇ fA(t̄))) ∈ {b,>}

(1). Goal: As fω
s (B( fA(x))) = > ⇒ A

s fω
s (∃y(A(x, y) ∧ B(y))) ∈ {b,>}

(1) As fω
s (B( fA(x))) = > assumption

(2) As fω
s (A(x, fA(x))) ∈ {b,>} 1, (I)

(3) As fω
s (A(x, fA(x)) ∧ B( fA(x))) ∈ {b,>} 1, 2

(4) As fω
s (∃y(A(x, y) ∧ B(y))) ∈ {b,>} 3

�

(2). Goal: As fω
s (∃y(A(t̄, y) ∧ B(y))) = > ⇒ A

s fω
s (B( fA(t̄))) = >

(1) As fω
s (∃y(A(t̄, y) ∧ B(y))) = > assumption

(2) As fω
s(y/a)(A(t̄, y) ∧ B(y)) = > for some a ∈ |A|

(3) As fω
s(y/a)(A(t̄, y) ⊃ y =̇ fA(t̄)) ∈ {b,>} (II)

(4) As fω
s(y/a)(A(t̄, y)) = > 2

(5) As fω
s(y/a)(y =̇ fA(t̄)) ∈ {b,>} 3, 4

(6) As fω
s(y/a)(B(y)) = > 2

(7) As fω
s(y/a)(B( fA(t̄))) = > 5, 6, E2

(8) As fω
s (B( fA(t̄))) = > 7

�

(3). Goal: As fω
s (B( fA(x))) = ⊥ ⇒ A

s fω
s (∃y(A(x, y) ∧ B(y))) ∈ {b,⊥}.

This follows from (2). �
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(4). Goal: As fω
s (∃y(A(t̄, y) ∧ B(y))) = ⊥ ⇒ A

s fω
s (B( fA(t̄))) = ⊥

(1) As fω
s (∃y(A(t̄, y) ∧ B(y))) = ⊥ assumption

(2) As fω
s (A(t̄, fA(t̄)) ∧ B( fA(t̄))) = ⊥ 1

(3) As fω
s (A(t̄, fA(t̄))) ∈ {b,>} (I)

(4) As fω
s (B( fA(t̄))) = ⊥ 2, 3

�

(5). Goal: As fω
s (B( fA(t))) = b⇒ As fω

s (∃y(A(t, y) ∧ B(y))) = b

(1) A
s fω
s (B( fA(t))) = b assumption

(2) A
s fω
s (A(x, fA(t))) ∈ {b,>} (I)

(3) A
s fω
s (A(x, fA(t)) ∧ B( fA(x))) = b 1, 2

(4) A
s fω
s(y/a)(A(t, y) ∧ B(y)) = > assumption; for one a ∈ |A|

(5) A
s fω
s(y/a)(A(t, y) ⊃ y =̇ fA(x)) ∈ {b,>} (II)

(6) A
s fω
s(y/a)(y =̇ fA(t)) ∈ {b,>} 4, 5

(7) A
s fω
s(y/a)(B(y)) = > 4

(8) A
s fω
s(y/a)(B( fA(t))) = > 6, 7, E2

(9) contradiction 1, 8
(10) As fω

s (∃y(A(t, y) ∧ B(y))) = b 3, 4–9

�

(6). Goal: As fω
s (∃y(A(t̄, y) ∧ B(y))) = b⇒ As fω

s (B( fA(t̄))) ∈ {⊥,b,>}
Trivially. �

�

Corollary 26. If fA has been introduced by S⊃, then for every model As fω
s

and every formula ψ and B and every term t,

A
s fω
s (ψ∃y(A(t,y)∧B(y))) � A

s fω
s (ψB( fA(t))).

Proof. This follows from Lem. 25 using (2), (4) and (6). �

Could one improve the above relations in Lem. 25? The answer is no:

Lemma 27. There are modelsAs and Skolem-function extensionsAs fω
s thereof

for ∀= LPd[S⊃] such that

(1) As � ∀x∃!⊃yA(x, y)
(2) As(∃y(A(x, y) ∧ B(y))) = b
(3) As f1

s (B( fA(x))) ∈ {⊥,>}
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Proof. Let A be a model for ∀= LPd and let it interpret the binary predicate
A(x, y), the unary predicate B(y) and the identity predicate =̇ according to
the following tables:

=̇ a b A a b B a b
a > ⊥ a b b > ⊥

b ⊥ > b b b
It is easy to calculate that As(∀x∃!⊃yA(x, y)) = b for every variable assign-

ment function s. Let s and s′ be two such functions such that s(x) = a,
and s′(x) = b. Then As(∃y(A(x, y) ∧ B(y))) = As′(∃y(A(x, y) ∧ B(y))) = b.
One of the possible ways to extend A into a Skolem model which validates
∀
= LPd[S⊃], is to interpret fA as the identity function. It then follows that
A

s f1
s (B( fA(x))) = > and As f1

s′
(B( fA(x))) = ⊥. �

Theorem 28. There is a translation ∗ : Lsω 7→ L such that for any set
Θ ⊆ L and formula A ∈ Lsω ,

Θ `∀= LPd[S⊃] A =⇒ Θ `∀= LPd A∗

Proof. Assume that Θ 0∀= LPd A∗, where A∗ is got from A by inductively
replacing every atomic subformula C(y/fB(t̄)) of A, where C(y) and t̄ do not
contain any Skolem functions, with the formula ∃y(B(t̄, y) ∧ C(y)). By the
completeness theorem for ∀= LPd (Fact 1) it follows that there is some model
As such that As � Θ and As(A∗) = ⊥. Extend As to a model As fω

s of Θs f ⊃ω ,
where Θs f ⊃ω is obtained from Θ by the obvious modification of the method
in Thm. 9. By construction, As fω

s (A∗) =⊥. From Cor. 26 it now follows that
A

s fω
s (A∗) � As fω

s (A), and therefore that As fω
s (A) = ⊥. From the soundness

theorem for ∀= LPd it follows that Θs f ⊃ω 0∀= LPd A. Since it is obvious that

Θs f ⊃ω `∀= LPd A⇐⇒ Θ `∀= LPd[S⊃] A

we can conclude that Θ 0∀= LPd[S⊃] A which ends the proof. �

Notice that it follows from Lem. 27 that Θ `∀= LPd A∗ ⇒ Θ `∀= LPd[S⊃] A fails
for the translation used in Thm. 28. The other obvious translation would
be to replace B( fA(t)) by ∀y(A(t, y) ⊃ B(y)). However, it is easy to see that
the model in Lem. 27 also assigns b to ∀y(A(x, y) ⊃ B(y)) for any variable
assignment function, and so this translation would not fare any better. This
is not to say that there are no translations such that Θ `∀= Kd

3
A∗ ⇔ Θ `∀= Kd

3[S⊃]

A does hold. I have, however, not been able to come up with any other
viable alternatives and doubt that there is one.

I will now show that ∀= LPd is unfit for Skolem functions relative to both
definitions of ∃!. Fig. 1 showed that ∃!⊃ is the stronger definition of ∃! in
the sense that it entails the other in ∀= LPd. Because of this, the Skolemizer
and the deSkolemizer relativized to it are the weakest versions of these rules
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and so it will suffice to show that ∀= LPd is unfit for Skolem functions relative
to ∃!⊃ .

Theorem 29. Adding either of the two rules

(deSk ⊃olemizer) ∀x̄∃!⊃yA(x̄, y), ψs=̇ fA(t̄) ` ψA(t̄,s)

(Sk ⊃olemizer) ∀x̄∃!⊃yA(x̄, y), ψA(t̄,s) ` ψs=̇ fA(t̄)

to ∀= LPd[S] yields a non-conservative extension.

Proof. (deSk ⊃olemizer) Let Θ B {∀x∀y(y ,̇ x),∀x∃!⊃yA(x, y)}, and let fA(x)
be the Skolem function for ∀x∃!⊃yA(x, y). From ∀x∀y(y,̇x), ∀= LPd[S] yields
∀x∀y(y,̇ fA(x)), and so the deSk ⊃olemizer suffices for deriving ∀x∀y(¬A(x, y)).

The ∀= LPd-countermodel, As, to ∀x∀y(¬A(x, y)) is as follows: let |A| be
the set {a, b}, and let s(x) = a for every variable x. =̇ and the non-logical
predicate A(x, y) are interpreted according to the following two matrices:

=̇ a b
a b ⊥
b ⊥ b

A a b
a > ⊥
b ⊥ >

It is easy to check that As is in fact a model for Θ. Expand As into
the model As fω

s of Θs fω in accordance with Thm. 9. It is easy to see that
f A

s fω
s

A (a) = a and f A
s fω
s

A (b) = b, that As fω
s � ∀x∀y(y ,̇ fA(x)), but that As fω

s 2

∀x∀y(¬A(x, y)). Thus As fω
s fails to validate deSk ⊃olemizer. ∀x∀y(¬A(x, y))

is a formula in the Skolem-function-free language, and so it follows by
construction of As fω

s that As 2 ∀x∀y(¬A(x, y)). By the soundness theorems
for ∀= LPd it then follows that Θ 0 ∀x∀y(¬A(x, y)) which shows that the
addition of deSk ⊃olemizer yields a non-conservative extension.

(Sk ⊃olemizer) The proof is similar to the previous one: let Θ be the set
{∀x∀yA(x, y),∀x∃!⊃yA(x, y)}. The Sk ⊃olemizer suffices for deriving ∀x∀y(x =̇

y) from Θ. Modify the above model so that

=̇ a b
a > ⊥
b ⊥ >

A a b
a > b
b b >

This model validates Θ, but ∀x∀y(x =̇ y) fails in its Skolem extension. The
same reasoning as above then shows that the addition of the Sk ⊃olemizer
yields a non-conservative extension in ∀= LPd. �

Corollary 30. ∀= LPd is unfit for Skolem functions relative to the two defini-
tions of ∃!.

I have in this section shown that there is a translation which allows one to
eliminate definable Skolem functions while preserving derivability. It did
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not, however, preserve derivability when going from the original language
to the extended language of definable Skolem functions. This is of course a
drawback, but I think that one could in fact live well with it. The positive
result for ∀= LPd guarantees that any theorem derivable using the added bits
of language, is actually a logical consequence of the axioms set forth. That
some theorems are not translatable into the enriched language should not
be of much concern; if it is, then one should rather introduce the function
as a primitive function. I find it more awkward to give up the idea that
one ought to be able to intersubstitute a Skolem equation s =̇ fA(t̄) and the
formula A(t̄, s). The reason one can not do so in ∀= LPd is basically because it
has no conditional which obeys modus ponens; that ⊃ does not obey modus
ponens, makes it quite a strain to accept any of the two definitions of ∃!
using it as credible.

Both ∀= Kd
3 and ∀= LPd do moderately well with regards to Skolem func-

tions; it seems beyond a doubt that ∀= Kd
3 outperforms ∀= LPd, but one should

note that ∀x̄∃!⊃yA ` ∀x̄∀y(¬A ∨ A). Thus ∀= Kd
3 can only express unique ex-

istence for classical formulas. It seems therefore attractive to investigate
whether there are non-classical logics with conditionals which obeys both
identity (A→ A), modus ponens and have the expressive resources to define
∃! in a more credible way which does not preclude non-classicality from the
outset. The next section looks at relevant logics with this in mind.

8. Definable Skolem functions in relevant logics

This section introduces the relevant logics and shows that they too are
unfit for Skolem functions relative to a variety of definitions of ∃!. I also
show that despite this, there is a translation which preserves derivability for
some of these logics.
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The relevant logic ∀= BBdt◦ has the following axioms and rules:

BBAx1 A→ A
BBAx2 A→ A ∨ B and B→ A ∨ B
BBAx3 A ∧ B→ A and A ∧ B→ B
BBAx4 ¬¬A→ A
BBAx5 A ∧ (B ∨C)→ (A ∧ B) ∨ (A ∧C)
BBR1 A, B ` A ∧ B
BBR2 A, A→ B ` B
BBR3 A→ B ` (B→ C)→ (A→ C)
BBR4 A→ B ` (C → A)→ (C → B)
BBR5 A→ ¬B ` B→ ¬A
BBR6 A→ B, A→ C ` A→ B ∧C
BBR7 A→ C, B→ C ` A ∨ B→ C
BBR8 A a` t→ A
BBR9 (A ◦ B)→ C a` A→ (B→ C)
BBQ1 ∀xA→ A(x/t) t free for x
BBQ2 ∀x(A ∨ B)→ (A ∨ ∀xB) x < FV{A}
BBQ3 ∀x(A→ B) ` A→ ∀xB x < FV{A}
BBQ4 A(x/t)→ ∃xA t free for x
BBQ5 A ∧ ∃xB→ ∃x(A ∧ B) x < FV{A}
BBQ6 ∀x(B→ A) ` ∃xB→ A x < FV{A}
E1 ∀x(x =̇ x)
E2 t =̇ s, A(x/t) ` A(x/s) s & t free for x

The logics ∀= BBdt and ∀= BBd are got from ∀= BBdt◦ by deleting, respectively,
BBR9 and BBR8 & BBR9. Since I will use the same definition of what a
proof is, we automatically get RQ, MR1 and MR2. Some defined connec-
tives:

Definition 22.
A↔ BB (A→ B) ∧ (B→ A)
A 7→ BB (A ∧ t)→ B

The semantics of ∀= BBdt◦ is more complicated to describe. It will, how-
ever, suffice to notice that one of the models for the propositional fragment
of ∀= BBdt◦ is Belnap’s model of relevance, B. The propositional logic BBdt◦

is a relevant logic and as such it has the property that if A → B is a logical
theorem where A and B do not contain propositional constants, then A and
B share a propositional variable. To show this Nuel D. Belnap introduced in
[5] the 8-valued model shown in Fig. 2 in which +0,+1,+2 and +3 are all
designated, ¬ and→ are interpreted according to the displayed matrices and
conjunction and disjunction are interpreted as infimum and supremum over
the displayed ordering (a boolean algebra). ◦ is an intensional conjunction,
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often called fusion. Belnap’s model of relevance evaluates A◦B to the same
value as ¬(A → ¬B). The Ackermann constant t is evaluated to the least
designated element, which in B is +0.12

+3

+1

==

−0

OO

+2

aa

−1

OO ==

+0

aa ==

−2

OOaa

−3

aa ==OO

→ −3 −2 −1 −0 +0 +1 +2 +3 ¬

−3 +3 +3 +3 +3 +3 +3 +3 +3 +3
−2 −3 +2 −3 +2 −3 −3 +2 +3 +2
−1 −3 −3 +1 +1 −3 +1 −3 +3 +1
−0 −3 −3 −3 +0 −3 −3 −3 +3 +0
+0 −3 −2 −1 −0 +0 +1 +2 +3 −0
+1 −3 −3 −1 −1 −3 +1 −3 +3 −1
+2 −3 −2 −3 −2 −3 −3 +2 +3 −2
+3 −3 −3 −3 −3 −3 −3 −3 +3 −3

Figure 2. Belnap’s model of relevance

Getting a model for first-order logic with identity from B is quite stan-
dard: add a quantification domain |B| and a variable assignment function
s and let Bs interpret variables, names and function symbols in the same
way a ∀= Kd

3-model does. The quantifiers are also in this case interpreted
as infimum and supremum over the ordering of the valuespace. The only
requirement upon the interpretation of the identity predicate is that for all
a, b ∈ |B|, B(=̇)(a, b) ∈ {+0,+1,+2,+3} ⇔ a = b.

The variable sharing property of relevant logics only applies to the propo-
sitional fragment and it is not evident how to extend it to deal with quan-
tifiers and identity. It is, however, quite common to see relevantists deem
formulas such as

(E5) ∀x∀y(x =̇ y→ (A→ A(x/y)))

inappropriate since it entails s =̇ t → (A → A) for any sentence A. The
reason given is that there need be no relevant connection between s =̇ t and
A→ A.13 The versions

(E6) ∀x∀y((x =̇ y ∧ A)→ A(x/y))

12Belnap introduced this model as a model of the relevant logic E and remarked that it
is also a model for Wilhelm Ackermann’s logic Π′ (first presented in [1]). Π′ contained
disjunctive syllogism (there called γ), that is A,¬A ∨ B ` B. Relevant logics are often as-
sumed to be paraconsistent, that disjunctive syllogism fails in them; for instance, Stephen
Read writes “[...] I claim that the rejection of DS∨ [disjunctive syllogism], is central to the
whole conception of relevant logic.” ([18, p. 66]). Note, however, that γ, and even the
stronger axiom (A ∧ ¬A) 7→ B, holds true in Belnap’s model of relevance.
13See for instance [17, p. 553].
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is not subject to the same “irrelevant” counterexample as E5, and is some-
times taken to be relevantly permissible. Note that E6 can come out false in
Belnap’s model of relevance: let |B| = {a, b} and let it interpret A(x) and =̇

according to the following matrices:

=̇ a b A a b
a +1 −2 +0 −3
b −1 +1

It is then easy to calculate that Bs(∀x∀y((x =̇ y ∧ A) → A(x/y)) = −3.14

I propose the following definition of a relevantly permissible version of
Leibniz’s law:

Definition 23. A version of Leibniz’s law is relevantly permissible if every
instance of it is evaluated to a designated value in any extension of Bel-
nap’s model of relevance into a model for quantified logic with the above
restriction of the interpretation of =̇.

The strongest axiomatic version of Leibniz’s law which come out true on
every way of extending B into a model for first order logic with identity
seems to be the following:15

(E7) ∀x∀y(A→ (x =̇ y 7→ A(x/y))).
I will later show that there is a translation from the Skolem-extended lan-
guage into the original one which preserves derivability in ∀= BBdt strength-
ened by E7 together with Ackermann’s δ rule—A→ (B→ C), B ` A→ C.

The most obvious two ways of defining ∃! in relevant logics are as
14Notice that the values assigned to t =̇ s and s =̇ t may differ as the above model shows;
∀x∀y(x =̇ y 7→ y =̇ x) comes out true in every first-order model over Belnap’s model of
relevance, whereas ∀x∀y(x =̇ y→ y =̇ x) does not.
15See [14, Sec. 7] for a classification of versions of Leibniz’s law in terms of strength
and relevance. It is worth noting that E4 comes out as a relevantly permissible version of
Leibniz’s law on the above definition. Note also that

∀x1, . . . , xn∀y1, . . . , yn(A(x1, . . . , xn)→ (
i=n∧
i=1

xi =̇ yi 7→ A(y1, . . . , yn)))

comes out true in Belnap’s model of relevance, but that

∀x1, . . . , xn∀y1, . . . , yn(A(x1, . . . , xn)→ (©i=n
i=1xi =̇ yi 7→ A(y1, . . . , yn)))

does not, where©i=1
i=1AiBA1, and©i= j+1

i=1 AiB©
i= j
i=1Ai ◦A j+1: simply consider the case when

n = 2 and give the following interpretation to A and =̇:

=̇ a b A a b
a +1 −2 a +0 +0
b −1 +1 b −3 −3

It is then easy to verify that ∀x1∀x2∀y1∀y2(A(x1, x2) → ((x1 =̇ y1 ◦ x2 =̇ y2) 7→ A(y1, y2)))
gets assigned the value −3 (instantiate a for x1 and y2 and b for x2 and y1).
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Definition 24.

∃!→xAB ∃x(A ∧ ∀z(A(x/z)→ z =̇ x))
∃!↔xAB ∃x∀z(A(x/z)↔ z =̇ x).

It is easy to show that ∃!↔xA ` ∃!→xA holds in ∀= BBd and that the converse
is true if E2 is strengthened to E8:

(E8) A(x/t) ` ∀x(t =̇ x→ A) t free for x.

I will first show that any relevant logic is fit for Skolem functions relative
to the latter definition. However, I will argue that defining ∃! in this way
makes it simply too hard to prove uniqueness claims. To remedy this one
would have to add E8. This rule, however, entails E5 and is therefore not
relevantly permissible. I then show that relevant logics are unfit for Skolem
functions relative to the first definition and many variations thereof.

For logics such as ∀= BBd it is possible to prove that if A and B are alike
with regards to free variables, then the rule ∀x̄(A ↔ B) ` θA ↔ θB is
derivable, where θB is obtained from θA by replacing any number of A’s
with B’s. Furthermore, since A ↔ A holds in ∀= BBd, it follows from both
the Skolemizer and the deSkolemizer that A(t̄, s) ↔ s =̇ fA(t̄). It follows
that an extensions of ∀= BBd is, relative to a definition of ∃!, fit for Skolem
functions if and only it can be conservatively extended by the Skolem rule
and the rule

(SkInt) ∀x̄∃!yA(x̄, y) ` ∀x̄∀y(A(x̄, y)↔ y =̇ fA(x̄))

and unfit otherwise. The focus will therefore be on this rule.
From the definition of ∃!↔xA we straight away get that if Θ ` ∀x̄∃!↔yA,

then Θs f ` ∀x̄∀z(A(x̄, z) ↔ z =̇ fA(x̄)). We therefore have the following
theorem:16

Theorem 31. ∀= BBd is fit for Skolem functions relative to ∃!↔.

Does this solve the problem? Whatever the answer it seems at least that it
begets yet another problem: E8 is needed in order to derive ∀x̄∃y∀z(z =̇y→

16This assumes that S can be added conservatively to ∀=BBd. The construction in Thm. 9
relied on the strong soundness and completeness theorems, and so it is worth noting that
relevant logics can be generally be shown to be strongly sound and complete with regards
to a certain algebraic semantics. For details, see [6], [7] and [19].
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A(x̄, z)) from ∀x̄∃yA(x̄, y):

(1) ∀x̄∃yA(x̄, y) assumption
(2) ∃yA(x̄, y) 1, Q1
(3) A(x̄, v) assumption for MR2
(4) v =̇ z→ A(x̄, z) 3, E8
(5) x/z =̇ z E1
(6) z =̇ v→ x/v =̇ z 5, E8
(7) z =̇ v→ A(x̄, z) 4, 6, transitivity of→
(8) ∀z(z =̇ v→ A(x̄, z)) 7, RQ
(9) ∃y∀z(z =̇ y→ A(x̄, z)) 7, BBQ4
(10) ∃y∀z(z =̇ y→ A(x̄, z)) 3–9, MR2
(11) ∀x̄∃y∀z(z =̇ y→ A(x̄, z)) 10, RQ

E8 is a strong version of Leibniz’s law. Since the problem of Skolem
functions was raised by Weber in the context of naïve set theory, I should
note that E8 is too strong in that setting; Andrew Bacon has recently shown
that E8 turns naïve set theory trivial ([2, §2.2]).17 What is more dire for the
relevantist, however, is that E8 makes the logic into an “irrelevant” one—it
is easy to see that E8 entails the relevantly impermissible version of Leib-
niz’s law E5:

(1) A→ A(x/x) BBAx1
(2) ∀y(x =̇ y→ (A→ A(x/y))) 1, E8
(3) ∀x∀y(x =̇ y→ (A→ A(x/y))) 2, RQ

Thus it seems contrary to the doctrine of relevant logics to demand that E8
should be a rule of logic. I therefore take it that ∃!↔ is an inappropriate
definition of ∃! for relevant logics as it makes it simply too hard to prove
that A(x̄, y) is functional.

«Parenthetical remark. There is one possible argument for holding on to
∃!↔ as the best relevant definition of ∃!; J. Michael Dunn introduced in [9]
the notion of relevant predication where “a relevantly has the property of
being (an x) such that A” is defined as

(%xA(x))aB ∀x(x =̇ a→ A(x)).

The relevantist could utilize this definition and define “A(x̄, y) is relevantly
functional” to be

∀x̄∃y((%zA(x̄, z))y ∧ ∀v(A(x̄, v)→ v =̇ y)),

which is easily seen to be nothing over and above ∀x̄∃!↔yA(x̄, y). Since other
definitions of ∃!, as we will see, do not secure that (SkInt) can be conserva-
tively added, the relevantist could argue that A(t̄, s) and s =̇ fA(t̄) ought not

17See [14, Sec. 9] for a triviality proof using ∀=BBd strengthened by the rule version of E7.
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be intersubstitutable unless A(x̄, y) is relevantly functional. Providing such
an argument is, however, a task better left to the relevantist. Let me note
that it is somewhat surprising that Dunn, in explaining why “if anyone is
Socrates then he is wise” is true while “if anyone is Reagan then Socrates
is wise” is not, appeals E8 which he deems to be “presumptively at least, a
relevantly valid argument” [9, p. 350]. Also, in iterating Dunn’s example,
Philip Kremer calls E8 “plausibly a relevant principle” in both [11, p. 350]
and [12, p. 39].18 Notice furthermore that Belnap’s model of relevance can
be used to show that Socrates can fail to be relevantly wise while at the same
time validating “if anyone is Reagan then Socrates is wise”: let the language
consist of the names s and r together with the unary predicate Wise(x). Let
|B| = {S ocrates,Reagan} and let sB = S ocrates and rB = Reagan. Further-
more, let Wise(x) and =̇ be interpreted according to the following matrices:

=̇ S ocrates Reagan Wise S ocrates Reagan
S ocrates +1 −3 +2 −2

Reagan −3 +2

It is then easy to calculate thatBs(∀x(x =̇ s→ Wise(x)))=−3 andBs(∀x(x =̇

r → Wise(s))) = +2; that is “if anyone is Socrates then he is wise” comes
out false, whereas both “Socrates is wise” and “if anyone is Reagan then
Socrates is wise” comes out true. I take this to undermine the whole concept
of relevant predication, but will not argue the issue further. End parentheti-
cal.»

Since ∃!↔ is an inappropriate definition of ∃!, it seems worth while to
investigate whether ∃!→, or some variation thereof, fares better. Non that I
have been able to come up with do, as I will now show.

Theorem 32. If L is a first-order logic with identity extending ∀= BBd for
which any way of extending Belnap’s model of relevance into a model for
first-order logic with identity is a model, then L is unfit for Skolem functions
relative to ∃!→.

Proof. Let Θ B {∀xA(x, x),∀x∃!→yA(x, y)}. If ∀x∀z(A(x, z) ↔ z =̇ fA(x)) is
added to Θ, then ∀x(A(x, x)↔ x =̇ x) becomes derivable:

18Both Dunn and Kremer do make a note of the fact that

(E9) ∀x∀y(A→ (x =̇ y→ A(x/y)))

has to fail in ∀=Rd. However, since ∀=Rd validates the permutation rule A → (B → C) `
B→ (A → C) it is easy to see that E9 is derivable from E8: as I showed above, E8 entails
E5 from which the permutation rule yields E9.
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(1) ∀x∃!→yA(x, y) assumption
(2) ∀x∀z(A(x, z)↔ z =̇ fA(x)) 1, SkInt
(3) A(x, x)↔ x =̇ fA(x) 2, Q1
(4) ∀xA(x, x) assumption
(5) A(x, x) 4, Q1
(6) x =̇ fA(x) 4, 5, BBR2
(7) A(x, x)↔ x =̇ x 3, 6, E2
(8) ∀x(A(x, x)↔ x =̇ x) 1–7, RQ

If L were fit for Skolem functions, this formula should be derivable with-
out using SkInt, and should therefore, using the soundness theorem for L
and the assumption of this theorem, be true in any way of extending B into
a Θ-model. I will now show forth such a model in which it fails.

Let Bs be Belnap’s model of relevance with the quantification domain
{a, b}, and let it interpret A(x, y) and =̇ according to the following tables:

=̇ a b
a +1 −3
b −3 +2

A a b
a +0 −3
b −3 +0.

It is easy to verify thatBs is in fact a model for Θ, but that Bs(∀x(A(x, x)↔
x =̇ x)) = −3 which shows that the addition of ∀x∀z(A(x, z) ↔ z =̇ fA(x))
makes for a non-conservative extension, and therefore that L is unfit for
Skolem functions relative to ∃!→. �

Thus using either of ∃!↔ and ∃!→ has severe consequences: if ∃!→ is taken
as the definition of ∃!, then one can’t intersubstitute A(t̄, s) and s =̇ fA(t̄),
whereas taking ∃!↔ as the definition of ∃! makes it exceedingly difficult to
prove unique existence claims due to the absence of E8.

This is not to say that it is impossible to find a definition of ∃! such that
the rule ∀x̄∃!yA(x̄, y) ` ∀x̄∀y(A(x̄, y) ↔ y =̇ fA(x̄)) can be added conserva-
tively. One possibility would be to use the defined connective 7→ instead of
→. 7→ is often utilized when defining restricted universal quantification for
relevant logics so as to ensure that “every A is B” follows from “everything
is B”.19 It would therefore be natural to replace → with 7→ in ∃!→, which
would then be a natural translation of the English phrase “there exists one
A which every A is identical to”:

Definition 25.

∃!7→xAB ∃x(A ∧ ∀z(A(x/z) 7→ z =̇ x)).

19See [3] for a discussion of restricted quantification in relevant logics.
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However, since A → B ` A 7→ B holds in Belnap’s model of relevance,
the non-conservativeness proof above would still work. This generalizes: if
� is any conditional such that A→ B ` A� B holds in Belnap’s model of
relevance, then the above non-conservativeness proof also holds for ∃!�.20

Thus conditionals weaker than→will not do.21 One could consider stronger
conditionals; for instance, the conditional A � BB > → (A → B), where
> is the Church constant axiomatized by the axiom A → >, is strictly
stronger than →; A → B ` A � B fails in Belnap’s model of relevance.
Even so ∀x∃!�yA(x, y) holds in the model, and so the non-conservativeness
proof covers it too. Note also that replacing the extensional conjunction ∧
with the intensional one ◦ would not help; the rule A, B ` A ◦ B is deriv-
able using BBAx1 and BBR9, and so for any two operators ∇ and ∂, if
defining ∃! as ∃x(∇(A) ∧ ∂(A(y), y =̇ x)) does not work, then neither will
∃x(∇(A) ◦ ∂(A(y), y =̇ x)). One could also try to replace↔ with some other
biconditional in ∃!↔. One such attempt would be A ! BB A ↔ (B ∧ t).
Note, however, that ∀x∃!!yA(x, y), unlike ∀x∃!↔yA(x, y), holds in the above
model, and so the non-conservativeness proof covers it too.

There are undoubtedly many other ways to define ∃! and it might be that
one of them is strict enough to ensure that (SkInt) can be added conser-
vatively while at the same time not making it needlessly difficult to prove
unique existence claims. I doubt that this is possible, but at this point I can
do no better than to leave the finding of such a definition as a challenge for
the relevantist.

Note that the rule version of E7—a relevantly permissible version of
Leibniz’s law—suffices for making ∀x̄∃yA(x̄, y) ` ∀x̄∃y∀z(z =̇ y 7→ A(x̄, z))
derivable.22 Thus if one defines ∃! as ∃!!, then any logic with the rule ver-
sion of E7 will be able to prove uniqueness claims when appropriate, while
at the same time having the following version of (SkInt) derivable:

(SkInt!) ∀x̄∃!!yA(x̄, y) ` ∀x̄∀y(A(x̄, y)! y =̇ fA(x̄))
This then shows that it is possible to at least intersubstitute A(t̄, s) and
s =̇ fA(t̄)∧ t when A is!-functional. The question therefore is whether E2
can be strengthened to E7 without making the addition of the Skolem rule

20For instance, A → B ` A ⊃ B holds in the Belnap model of relevance—for all i, j there
is some k such that +i→ − j = −k.
21One of the restrictions on restricted universal quantification set fourth by Beall et. al. in
[3] is that ∀x(A(x) → B(x)) ` Πx(A(x), B(x)) should hold where the binary quantifier Π is
the restricted universal quantifier. This then entails that relevant logics are unfit for Skolem
functions relative to any way of defining the universal restricted quantifier provided ∃!xA
is to be defined as ∃x(A ∧ Πy(A(x/y), y =̇ x)).
22That this is so is easily seen from the derivation above of ∀x̄∃y∀z(z =̇ y → A(x̄, z)) from
∀x̄∃yA(x̄, y) using E8.
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non-conservative. The following theorem shows that this is at least the case
for 7→-definable Skolem functions:

Lemma 33. The rule

∀x̄∃!7→yA(x̄, y) ` ∀x̄(B( fA(x̄))↔ ∀y(A(x̄, y) 7→ B(y))),

where B(y) is any formula in which fA(x̄) is substitutable for y, is derivable
in ∀= BBdt[S7→, δ, E7]—∀= BBdt augmented with

(S7→) ∀x̄∃!7→yA(x̄, y) ` ∀x̄(A(x̄, fA(x̄)) ∧ ∀z(A(x̄, z) 7→ z =̇ fA(x̄)))
(δ) A→ (B→ C), B ` A→ C

(E7) ∀x∀y(A→ (x =̇ y 7→ A(x/y)))

Proof. The following proof makes use of the derivable rules:

(I) A→ (B 7→ C),D 7→ B ` A→ (D 7→ C)
(II) A ` A ∧ t.

(1) ∀x̄∃y(A(x̄, y) ∧ ∀z(A(x̄, z) 7→ z =̇ y)) assumption
(2) ∀x̄(A(x̄, fA(x̄)) ∧ ∀z(A(x̄, z) 7→ z =̇ fA(x̄))) 1, S 7→

(3) ∀z(A(x̄, z) 7→ B(z))→ (A(x̄, fA(x̄)) 7→ B( fA(x̄))) BBQ1
(4) A(x̄, fA(x̄)) ∧ t 2, BBQ1 & II
(5) ∀y(A(x̄, y) 7→ B(y))→ B( fA(x̄)) 3, 4, δ
(6) B( fA(x̄))→ ( fA(x̄) =̇ y 7→ B(y)) E7 & BBQ1
(7) A(x̄, y) 7→ y =̇ fA(x̄) 2, BBQ1
(8) x/y =̇ y→ (y =̇ fA(x̄) 7→ fA(x̄) =̇ y) E7
(9) A(x̄, y) 7→ fA(x̄) =̇ y 7, 8, fiddling
(10) B( fA(x̄))→ (A(x̄, y) 7→ B(y)) 6, 9, I
(11) B( fA(x̄))→ ∀y(A(x̄, y) 7→ B(y)) 10, RQ & BBQ3
(12) B( fA(x̄))↔ ∀y(A(x̄, y) 7→ B(y)) 5, 11, BBR1
(13) ∀x̄(B( fA(x̄))↔ ∀y(A(x̄, y) 7→ B(y))) 12, RQ

�

The above lemma used ∃!7→ as the definition of ∃!. However, since

∃!↔yA(y) ` ∃!→yA(y)
∃!→yA(y) ` ∃!7→yA(y)

∃!!yA(y) ` ∃!→yA(y)
the result also holds for either of the other three definitions of ∃! (and of
course any definition ∃!( of ∃! such that ∃!(yA(y) ` ∃!7→yA(y)).

Theorem 34. ∀= BBdt[S 7→, δ, E7] conservatively extends ∀= BBdt[δ, E7].

Proof. Let L be the Skolem function free language, and Lsω the Skolem-
enriched language. Furthermore, let E7�L be E7 restricted to L. Assume
that Θ 0∀= BBd[δ,E7�L] C for some formula C ∈ L. The goal is to show that
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Θ 0∀= BBd[S7→,δ,E7] C. By the completeness theorem there is a model As which
validates Θ, but not C. Extend As to As fω

s in line with Thm. 9 so as to
validate the 7→-functional Skolem rule. As fω

s obviously validates E7�L.
Now for every instance ψ B ∀x∀y(C → (x =̇ y 7→ C(x/y))) of E7 over
Lsω , inductively replace every atomic subformula B( fA(t̄)) by the formula
∀z(A(t̄, z) 7→ B(z)), where both t̄ ∈ L and B(z) ∈ L and z is a variable
which does not occur in ψ. Note that B(z) is a L-formula. Let the result-
ing formula be ψ∗. ψ∗ is obviously an instance of E7�L, and so holds in
A

s fω
s . Notice furthermore that one only needs E7�L in Lem. 33 in order to

derive ∀x̄(D( fE(x̄)) ↔ ∀y(E(x̄, y) 7→ D(y))) so long as D is in L. Thus
E7�L suffices for deriving the sentence ∀x̄(B( fA(x̄))↔ ∀z(A(x̄, z) 7→ B(z))).
Since the intersubstitutivity rule ∀x̄(D ↔ E) ` θD ↔ θE holds, it follows
that Θ `∀= BBd[S 7→,δ,E7�L] ψ ↔ ψ∗, and since ψ∗ is an E7�L-instance, it fol-
lows by modus ponens that Θ `∀= BBd[S 7→,δ,E7�L] ψ. Thus As fω

s also validates E7
over the full language Lsω . By the soundness theorem it now follows that
Θ 0∀= BBd[S 7→,δ,E7] C. �

I have shown in this section that if one is willing to add E7, a rather
strong, but relevant, version of Leibniz’s law, then one may translate back
and forth between the definable Skolem function extended language and
the original language while preserving derivability. However, I think that
the best result with regards to intersubstituting s =̇ fA(t̄) and A(t̄, s) one may
hope for when applying a relevant logic is that s =̇ fA(t̄) ∧ t and A(t̄, s) may
be instersubstituted.

9. A brief glance at other logics

What of non-classical logics other than relevant logics? ∀= LPd and ∀= Kd
3

have two natural extensions, namely the three-valued logics ∀= RMd
3 and

∀
= Łd

3. A model for ∀= RMd
3/∀

= Łd
3 is got from a ∀= LPd/∀

= Kd
3-model by inter-

preting the conditional→ according to the following two matrices:
RM3
→ > b ⊥
> > ⊥ ⊥

b > b ⊥
⊥ > > >

Ł3
→ > n ⊥
> > n ⊥
n > > n
⊥ > > >

∀
= RMd

3 is an extension of ∀= LPd, whereas ∀= Łd
3 is an extension of ∀= Kd

3. In
both cases it can be shown that E8 fails. However, in both logics it is natural
to define restricted universal quantification using a different conditional—
in ∀= RMd

3 since → does not satisfy weakening; A 0 B → A, and so ∀xA `
∀x(B→ A) fails, in ∀= Łd

3 because it does not satisfy restricted modus ponens—
∀x(A → (B → C)),∀x(A → B) does not suffice for deriving ∀x(A → C)
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since contraction, the rule A → (A → B) ` A → B, does not hold for
→ in ∀= Łd

3. There are two good candidates to overcome these difficulties,
namely A→ (A→ B) in the case of ∀= Łd

3 and (A→ B) ∨ B, or equivalently
A 7→ B, in the case of ∀= RMd

3. Note also that one natural way to formulate
Leibniz’s law vernacularly is if b is A, then everything identical to it is also
A, which is most naturally formalized using restricted universal quantifica-
tion: ∀x(A → Πy(x =̇ y, A(x/y))), where Π is the, defined or not, restricted
universal quantifier. It is also natural to use the settled upon definition of the
restricted universal quantifier in order to define unique existential quantifi-
cation as ∃x(A∧Πy(A(x/y), y=̇x)). By defining Πx(A, B) as ∀x((A→ B)∨B)
in the case of ∀= RMd

3 and as ∀x(A→ (A→ B)) in the case of ∀= Łd
3, it is easy

to see that ∀x(A→ Πy(x =̇ y, A(x/y))) holds in any model. By modifying the
proof in Lem. 33 ever so slightly it is then possible to prove that

∀x̄∃!ΠyA(x̄, y) ` ∀x̄(B( fA(x̄))↔ Πy(A(x̄, y), B(y)))

is derivable in both logics. Thus both logics suffice for the existence of a
translations which preserves derivability back and forth between the defin-
able Skolem function extended language and the original one. However,
neither of the logics can be conservatively extended by the rule

∀x̄∃!ΠyA(x̄, y) ` ∀x̄∀y(A(x̄, y)↔ y =̇ fA(x̄))

The proof of ∀x(A(x, x) ↔ x =̇ x) in Thm. 32 also works in the case of
∀
= RMd

3 and it is evident that there are countermodels to this formula also in
∀
= RMd

3. We therefore have the following corollary:

Corollary 35. ∀= RMd
3 is unfit for Skolem functions relative to both the defi-

nitions ∃x(A∧∀y(A(x/y)→ y =̇ x)) and ∃x(A∧∀y((A(x/y)→ y =̇ x))∨ y =̇ x)
of ∃!.

There is a similar argument showing that ∀= Łd
3 is unfit for Skolem func-

tions relative to both ∃x(A ∧ ∀y(A(x/y) → y =̇ x)) and ∃x(A ∧ ∀y(A(x/y) →
(A(x/y)→ y =̇ x))): first derive ∀x∀y(A(x, y)∨ (A(x, y)↔ ¬A(x, y))) from the
set ΘB {∀x∃!ΠyA(x, y),∀x∀y(x =̇ y ∨ (x =̇ y ↔ x ,̇ y))}, where Πx(A, B)B
∀x(A→ (A→ B)), using the rule

∀x̄∃!ΠyA(x̄, y) ` ∀x̄∀y(A(x̄, y)↔ y =̇ fA(x̄)).

The following model validates Θ and ∀x∃!→yA(x, y), but fails to validate
∀x∀y(A(x, y) ∨ (A(x, y)↔ ¬A(x, y))):

=̇ a b
a > n
b n >

A a b
a ⊥ >
b > n.
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Corollary 36. ∀= Łd
3 is unfit for Skolem functions relative to both the defini-

tions ∃x(A∧∀y(A(x/y)→ y =̇ x)) and ∃x(A∧∀y(A(x/y)→ (A(x/y)→ y =̇ x)))
of ∃!.

The moral seems to be this: if one wants to add definable Skolem func-
tions as a mere façon de parler, that is as bits of language which one can
translate into and away from while retaining any theorem, then one needs
to find a way to express restricted universal quantification and use it to ex-
press unique existential quantification and Leibniz’s law. However, if one
demands that ∀x̄∃!yA(x̄, y) ` ∀x̄∀y(A(x̄, y)↔ y =̇ fA(x̄)) should be derivable
or at least conservatively addable, then the safest bet would be to make sure
that the logic validates E8.

10. Summary

This paper has shown how to conservatively extend a theory formulated
in non-classical logics by a rule governing Skolem functions (Cor. 12). It
was shown that this is possible in quite weak logics. I then showed that there
is a translation for definable Skolem functions which preserves derivability
in ∀= Kd

3 (Thm. 24), and to a lesser extent also in ∀= LPd (Thm. 28). I showed
that it matters greatly how one defines the unique existential quantifier in
∀
= Kd

3 when it comes to what kind of reasoning one validly can do when
confined to conservatively introduced Skolem functions. It was shown that
∀
= LPd, even though the Skolem rule can be added conservatively to it, cannot
validate the intersubstitutability of the equation s =̇ fA(t̄) and A(t̄, s) even
though the latter formula is functional (Thm. 29). ∀= LPd was for this reason
deemed unfit for Skolem functions. ∀= Kd

3 was shown to fare better—s =̇

fA(t̄) and A(t̄, s) can be intersubstituted conservatively if ∃! is defined as
∃x∀z(A(x/z) ≡ z =̇ x) (Thm. 17), and A(t̄, s) can be conservatively substituted
for s=̇ fA(t̄) if ∃! is defined as ∃x(A∧∀z(A(x/z) ⊃ z=̇x)) (Thm. 20). However,
for this definition of ∃! it was shown that substituting s =̇ fA(t̄) for A(t̄, s)
can result in non-conservativeness (Thm. 22).

I also showed that ∀= BBd is fit for Skolem functions provided that ∃! is
defined as ∃x∀z(A(x/z)↔ z =̇ x)) (Thm. 31). However, defining ∃! this way
makes it needlessly hard to prove unique existence claims due to the ab-
sence of the relevantly impermissible rule A(x/t) ` ∀x(t =̇ x → A), E8. I
furthermore showed that relevant logics are unfit for Skolem functions rel-
ative to the definition ∃x(A(x) ∧ ∀y(A(y) → y =̇ x)) of ∃! (Thm. 32). A
solution to the intersubstitutability problem in terms of relevant predication
was suggested for the relevantist, although this theory was criticized for as-
suming E8. A translation which preserves derivability was also shown forth
for certain relevant logics (Thm. 34). These two results was then shown to
hold also for the three-valued logics ∀= RMd

3 and ∀= Łd
3 (Cor. 35 & Cor. 36).
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Appendix - Henkin axioms and Independence of Premise

In many presentations of Henkin’s completeness theorem one adds so-
called Henkin axioms instead of Henkin witnesses; instead of expanding
Θ to Θhc one rather adds every formula on the form ∃xA(x) → A(cA). In
classical logic this comes to the same thing. This is easily seen by noting
that for every formula ∃xA(x) and every model As, (a) if As � ∃xA(x),
then As � A(cA) ⇒ As � ∃xA(x) → A(cA), and (b) if As 2 ∃xA(x), then
As � ¬∃xA(x), and so trivially As � ∃xA(x) → A(cA). However, (a) fails to
be true for logics which do not validate the weakening rule A ` B→ A such
as relevant logics. (b) generally fails in logics with models where both A
and ¬A can be assigned to a non-designated truth-value such as is the case
with ∀= Kd

3, ∀= BBdt◦, intuitionistic logic and the fuzzy logic IMTL.23 The case
with ∀= LPd is somewhat special; it can be shown that one can add Henkin
and Skolem axioms conservatively, but since modus ponens does not hold
for its conditional, the interesting property is in this case that the rules can
be added conservatively.

It is natural to think that the adding of Henkin/Skolem axioms and the
Henkin/Skolem rule come apart because of a lack of a deduction theorem
on the form Γ, A ` B ⇔ Γ ` A → B. Such a deduction theorem fails in
relevant logics, ∀= LPd and ∀= Kd

3. Note, however, that it holds in intuitionistic
logic, yet intuitionistic logic can only be conservatively extended by the
Henkin/Skolem rules and not by their axiomatic counterparts.

The proof given in this essay that one may conservatively add the Henkin
and Skolem rules conservatively applies to a range of logics for which the
same is not the case with Henkin and Skolem axioms. For some of these
logics, however, there is a simple property which suffices for making such
an axiomatic extension conservative. I will now show that if we assume that
the logic in question is sound and complete with regards witnessed models
and validates some rather innocuous rules, then one may conservatively
extend Θ by Henkin axioms if and only if Θ is logically closed under the
strong linearity rule called Independence of Premise:

(IoP) A→ ∃xB ` ∃x(A→ B) x < FV(A),

where Θ is logically closed under the rule just if Θ `L A→ ∃xB entails that
Θ `L ∃x(A→ B), where x is not a free variable of A.
23For a presentation of the latter, see [8].
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Besides being a derivable rule in classical logic, IoP is also derivable in
Łukasiewicz infinite-valued logic and in Gödel-Dummett logic. It is not,
however, derivable in intuitionistic logic, relevant logics, nor in the fuzzy
logic IMTL.

Definition 26.
Θa B {∃xB(x)→ B(x/cB) | B ∈ L})

Θhae BΘa ∪Θ is called the Henkin axiom extension of Θ and ∃xB(x)→
B(x/cB) is called a Henkin axiom.

Theorem 37. If Θ is formulated in a logic which is sound and complete
with regards to witnessed models and validates

(Q3) A(x/t) ` ∃xA t free for x
(BBAx1) A→ A
(transitivity) A→ B, B→ C ` A→ C,

then Θhae is a conservative extension of Θ if and only if Θ is logically closed
under IoP.

Proof. [=⇒] Assume that Θ can be conservatively extended by Henkin ax-
ioms and that Θ ` A→ ∃xB(x) where x < FV(A).

(1) A→ ∃xB(x) assumption
(2) ∃xB(x)→ B(cB) Henkin axiom
(3) A→ B(cB) 1, 2, transitivity
(4) ∃x(A→ B(x)) 3, Q3

Since Θ is extended conservatively and ∃x(A → B(x)) is a formula in the
language of Θ, it follows that Θ is logically closed under IoP.

[⇐=] Assume that that Θ is logically closed under IoP and that Θ 0 A
for some A in the language of Θ. The goal is to show that Θhac 0 A. The
completeness theorem entails that there is a model As such that As � Θ and
As 2 A. By assumption of BBAx1 and IoP we have that for every formula
B, As � ∃x(∃xB(x) → B(x)). Since As is witnessed it follows that for some
b ∈ |A|, As(x/b) � ∃xB(x)→ B(x). So for every formula B we have that the set
WB B {b ∈ |A| |As(x/b) � ∃xB(x) → B(x)} ,̇ ∅. By the axioms of choice there
is a function which picks one element from each set WB. Let this choice
function determine the denotation of the Henkin constants cB and let Ahae

s
be got from As by adding this interpretation. Ahae

s is obviously a model for
Θhae. The value that Ahae

s assigns to A depends only on the objects assigned
to the terms of A and the values assigned to the atomic subformulas of A.
Since cB does not occur in A it follows that Ahae

s has to assign A the same
value as As and so Ahae

s 2 A. It follows now from the soundness theorem
that Θhae 0 A. �
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