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Abstract

Circular definitions have primarily been studied in revision theory
in the classical scheme. I present systems of circular definitions in the
Strong Kleene and supervaluation schemes and provide complete proof
systems for them. One class of definitions, the intrinsic definitions,
naturally arises in both schemes. I survey some of the features of this
class of definitions.

In this paper, I will study circular definitions from two non-classical per-
spectives, complementing the most developed extant approach, revision the-
ory, which has primarily been executed in the classical scheme. “Circular
definition” is often taken narrowly to mean that the definiendum appears
in the definiens. I will use “circular definition,” and sometimes just “defi-
nition,” more broadly here to encompass definitions that are circular in the
sense just mentioned, that are not circular but are interdependent, and even
ones that fall into neither of those categories.1 Given a countable first-order
language L, the base language, expand the language to L+ by adding at most
countably many new predicate letters Gi, each of which receives a definitional
clause in the set of definitions D .2 The set D may be any set of definitional
clauses, as shown in table 1, where AGi

is any formula of L+, and the only
restriction on the definitional clauses is that no variables other than x̄i may
appear free in AGi

.3

1This usage is in the same spirit as the usage of “partial function” that encompasses
the total functions as well as the properly partial ones.

2I will use uppercase letters from the middle of the alphabet, such as G, H, and J , for
defined predicates of a set of definitions and script letters, D ,E , etc., for sets of definitions.

3I will use bar notation for sequences of terms, e.g. x̄ for x1, . . . , xn and t̄ for t1, . . . , tm,
or of objects, e.g. d̄ for d1, . . . , dk.
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G1(x̄1) =Df AG1(x̄1)
G2(x̄2) =Df AG2(x̄2)

...
Gk(x̄k) =Df AGk

(x̄k)
...

Table 1: The form of circular definitions

The paper will proceed as follows. I will begin presenting two different
motivations for investigating circular definitions: via considerations of truth
(§1.1) and via considerations of meaning (§1.2). Following that, I will provide
some indication of what is gained from looking at circular definitions, in
particular (§1.3). I will then provide some motivation for the approach of this
paper, namely investigating non-classical circular definitions (§1.4). Then I
will look at two non-classical approaches to definitions, based on the Strong
Kleene scheme (§2) and the supervaluation scheme (§3). For each I will
provide sound and complete proof systems for their respective notions of
validity. Next, I will highlight one class of definitions that arises naturally
from model-theoretic considerations and explore some of its features (§4).
Finally, I will close with some directions for future research (§5).

1 Introduction and motivations

There are two roads to circular definitions that I will cover here: via truth,
and via a certain conception of meaning.4 Let us begin with truth.

4There are two other ways into circular definitions besides the ones I will focus on.
Yablo [1993] considers definitions from the point of view of introducing new predicates
into a language along with rules governing their usage. Circular definitions arise in that
context via rules that can invoke themselves and other rules. Motivated by considerations
from logic programming, Schroeder-Heister [1993] considers proof-theoretic frameworks in
which there are rules of definitional reflection that introduce defined atoms. No restrictions
are placed on the rules, so they accommodate circular definitions.
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1.1 From truth to circular definitions

Saul Kripke, and independently Robert Martin and Peter Woodruff, came up
with fixed-point theories of truth.5 In doing so, Kripke showed how to add
to the language of arithmetic an untyped truth predicate for the expanded
language without collapsing into triviality on account of the paradoxes. On
this approach, the semantic value of the truth predicate is taken to be three-
valued, a fixed-point of an operation on three-valued interpretations. Kripke
presented a construction of one of these fixed-points as being built up through
iterations of an operation on interpretations. One starts with a model for
the language with truth and improves the interpretation of the truth predi-
cate by filling out its extension and anti-extension in stages, based on what
sentences receive the values 1 and 0, respectively. The construction is bound
to eventually reach a fixed-point, a point after which further iterations of
the operation yield nothing new. Some sentences do not receive a classical
semantic value in this construction, and the resulting fixed-point has truth-
value gaps. Kripke’s construction works with a range of semantic schemes,
although it requires the use of a non-classical scheme. In the case of the
Strong Kleene scheme, the truth predicate is transparent, in the sense that
for all sentences A and contexts C, C(A) gets the same semantic value as
C(T (pAq)).6

In response to this work on truth, Anil Gupta and, independently, Hans
Herzberger developed revision theories for truth.7 They wanted to develop
an approach to an untyped truth predicate that worked with the classical
scheme, unlike Kripke’s approach. The results were the first revision theories
of truth.

Formally, Gupta and Herzberger used sequences of classical, two-valued
interpretations for the truth predicate. These sequences are generated by an
operation determined by the Tarski biconditionals, T (pAq) iff A, where “iff”
is not understood as the material biconditional. Rather, the biconditional is
taken to determine how to revise the interpretation of the truth predicate:
if A receives the semantic value 1, or 0, at stage α, then T (pAq) receives
the semantic value 1, or 0, respectively, at stage α+ 1. Unlike with Kripke’s

5See Kripke [1975] and Martin and Woodruff [1975]. Their work bears similarities to
that of Gilmore [1974] and Brady [1971] in set theory.

6p·q is an operation that yields names of sentences. ‘T ’ is a truth predicate.
7See Gupta [1982] and Herzberger [1982], as well as Belnap [1982]. See Gupta and

Belnap [1993] for a comprehensive presentation of revision theory.
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construction, these sequences need not reach fixed-points, and in fact often
do not. Certain sentences, however, stabilize as 1 or 0.

According to Gupta and Belnap [1993], the Tarski biconditionals together
provide a circular definition of the truth predicate. The definition is circu-
lar since the set of Tarski biconditionals for the language containing the
truth predicate itself will contain instances with an ineliminable truth pred-
icate occurring in the definiens. Take, for example, T (p∀x∼(Tx&∼Tx)q)
iff ∀x∼(Tx&∼Tx); to evaluate the sentence on the right, one will have to
evaluate an instantiation which is the sentence on the left, which in turn
requires evaluating the sentence on the right. One, then, cannot eliminate
all occurrences of the truth predicate. Gupta and Belnap generalize revision
theory to work for all circular definitions, noting that the pathologies one
sees with truth can be reproduced in many circular definitions as well. They
make the following remark.

Concepts with circular definitions, then, behave in ways that are
remarkably similar to the behavior of the concept of truth. They
exhibit the same kinds of pathological behavior as truth. And
like truth, they can be, and usually are, unproblematic over a
range of cases. . . . [T]he similarities suggest that the perplexing
behavior of the concept of truth might be explainable as arising
from some circularity in its definition.8

They move to circular definitions because they view the semantic paradoxes
as arising due to some circularity in the definition of truth.

Circular definitions arise for Gupta and Belnap from reflection on and
generalization from the case of truth. The set of Tarski biconditionals that
defines the truth predicate constitutes a circular definition.

Let us turn to another route to circular definitions.

1.2 From meaning to circular definitions

Frege’s distinction between sense and reference is well known. Recently,
Yiannis Moschovakis has proposed a way to understand this distinction using
algorithms and values.9 In particular, senses are to be understood in terms of
algorithms and reference in terms of values. Moschovakis’s idea is, roughly

8Gupta and Belnap [1993, 117]
9See Moschovakis [1994, 2006].
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this: The sense of a sentence is an algorithm that allows one to compute
its truth value. Atomic formulas are interpreted as relations that can be
immediately checked. To compute a truth-functional compound, one follows
the algorithm for computing a truth function of the values of its parts. To
compute the value of a quantified formula, one computes the value for each
instance and then takes the maximum or minimum value.10

Sentences can be about themselves, and algorithms can call themselves
without problem. Thus, circularity enters into this picture in a straightfor-
ward way. Indeed, Moschovakis cites sentences such as the liar,

(L): (L) is not true,

as motivation. One can understand the meaning of (L) in terms of an al-
gorithm. To determine the semantic value of (L), one gets the value of (L)
and returns 1 if the obtained value is 0, and 0 if the obtained value is 1.
This algorithm loops without end, but there is no conceptual problem with
an algorithm that does not terminate. Indeed, the value of (L) is 1

2
, here

understood as meaning undefined.
Moschovakis formalizes these ideas using first-order logic extended with

explicit self-reference devices. The explicit self-reference devices are new
predicates, Pi, that are defined via formulas drawn from the extended lan-
guage containing the new predicates. These new predicates have partial, i.e.
three-valued, semantics. Their semantic values are fixed-points, which can be
constructed in a way similar to the one indicated by Kripke.11 Moschovakis
is, then, led to a form of circular definitions that is formally equivalent to
what will be presented below.12

Moschovakis’s focus on computation leads him to focus on the Strong
Kleene scheme.13 As mentioned above, the third value is taken to mean
undefined. He interprets the new predicates via fixed-points, focusing on the
least fixed-points.14 Although the formal aspects of the theory focus on the
fixed-point interpretations, the philosophical motivations focus on algorithms

10Some computations will be infinite, in which case Moschovakis suggests using a broader
notion of computation than standard ones.

11This is not surprising, since Kripke’s construction was an instance of the inductive
constructions of Moschovakis [2008].

12It is equivalent when only finitely many predicates are being defined. It is not clear
that the equivalence extends to infinite sets of definitions.

13One might also be led to the Weak Kleene scheme on the basis of these considerations.
14Moschovakis [1994, 233] notes that the approach yields other fixed-points as well.
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and procedures. For example, the value of (L) is 1
2
, but Moschovakis steps

through the process of arriving at that, rather than stating that it has that
value in all fixed-points. The focus on the algorithms and procedures suggests
that the iterative constructions of fixed-points are philosophically important
for Moschovakis. While the constructions do not play an important role
in this paper, they are useful for understanding the semantics of circular
definitions.

If one follows Moschovakis in viewing the sense of a sentence as an algo-
rithm, then one has a natural motivation to study circular definitions. These
will be algorithms that directly or indirectly call themselves and, in some
cases, never return values.

Before proceeding to the immediate motivations for studying non-classical
definitions, I will indicate a couple of potential payoffs of focusing on circular
definitions.

1.3 Upshots

The preceding gave two historical routes philosophers have taken to arrive at
circular definitions. Yet, one might wonder, if one doesn’t take those routes,
what is to be gained from circular definitions, as opposed to truth, properties,
or sets.15 There are four benefits that I will outline here.

First, circular definitions provide new options for analyzing interdepen-
dent concepts. One particular application for which the revision theory of
circular concepts has been used is to develop an alternative account of ratio-
nal choice in game theory.16 While this conception of rationality agrees with
the standard Nash equilibrium view in many cases, there are games that
it evaluates differently and games that it can evaluate but that the Nash
equilibrium view cannot.

Second, a logical upshot is the classification of definitions. In revision the-
ory, certain classes of circular definitions naturally stand out. One prominent
class is the class of finite definitions. This class is defined in terms of the
behavior of the revision sequences involved; for finite definitions, roughly,

15There has been a lot of work on both truth and naive set theory recently. For the
former, see Gupta and Belnap [1993], Field [2008], Beall [2009], Zardini [2011], Scharp
[2013], and French [2016], among others. For the latter, see, for example, Restall [1992],
Petersen [2000], Cantini [2003], Terui [2004], Weber [2010a], Weber [2010b], Weber [2012],
Brady [2014], Omori [2015], and Ripley [2015], and references therein.

16See Chapuis [2003] and Gupta [2000].
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nothing is gained from using transfinite sequences. Although there is no
known syntactic specification of this class, its closure properties, axiomatiz-
ability, and complexity have been studied.17

Third is a philosophical upshot connected to theories of truth and para-
dox. As mentioned, Gupta and Belnap point out that circular definitions
and truth are similar in many ways. If one follows Gupta and Belnap as
taking the latter as a case of the former, then interest in truth should carry
over to circular definitions, as the former is an instance of the latter. Sup-
pose, on the contrary, that one does not follow Gupta and Belnap in taking
truth to be circularly defined, as one might, for example, by denying that
the Tarski biconditionals define truth. Even then, circular definitions can
still appear to be paradoxical, in ways similar to truth and naive properties.
If one thinks that solutions to the semantic paradoxes should be equally ap-
plicable to related concepts, such as sets, properties, and denotation, then
it is natural to ask how how solutions to the paradoxes fair with respect to
circular definitions. Circular definitions, then, can provide another area in
which to compare different approaches to paradox.

Fourth, and finally, circular definitions can provide a different perspec-
tive on important or controversial principles in debates concerning theories
of truth. As an example, I will briefly discuss one such principle: intersub-
stitutivity.

The Intersubstitutivity Principle (IP) says that A and T (pAq) are fully
intersubstitutable in all extensional contexts, which is to say that if B dif-
fers from C only in having some occurrences of A, or T (pAq), replaced with
T (pAq), or A, respectively, then B and C are equivalent. Fixed-point ap-
proaches to truth are often associated with (IP). Some philosophers, such as
Hartry Field and Jc Beall, have claimed that truth must obey (IP) in order
for it to fulfill its generalizing function.18 An example of the generalizing
function is in order. Suppose that Pr picks out the infinitely many provable
sentences of an arithmetic theory with truth, with p1 = 1q among them. The
generalizing function of truth allows one to go from

∀x(Pr(x)→ T (x)),

to
Pr(p1 = 1q)→ 1 = 1.

17See Martinez [2001] and Gupta [2006].
18See, respectively, Field [2008] and Beall [2009]. For a criticism of (IP), see Gupta and

Standefer [2016].
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This is an example of a situation that Quine commented on; he said that the
truth predicate allows one to generalize on sentence position.19 In so doing,
the truth predicate permits one to affirm or deny possibly infinitely many
sentences.

The main arguments in favor of (IP) are concerned with the logical behav-
ior of the truth predicate, although related predicates, such as satisfaction
and, sometimes, validity, are held as essentially obeying versions of (IP).20

Rather than (IP), we can consider an analogous principle of intersubstitu-
tivity for definitions. The arguments for intersubstitutivity face a stumbling
block when adapted to circular definitions, since circular definitions generally
do not have any sort of generalizing function to fulfill. An argument that
circular definitions must obey an analog of (IP) will have to take another
route. I will briefly look at three.

One possibility is to appeal to the Standard Theory of Definitions.21 The
Standard Theory says that it should be possible to eliminate a defined pred-
icate from any context in which it appears. Of course, any theory of circular
definitions cannot fully endorse that requirement, but it can endorse part
of its spirit. While defined terms cannot always be eliminated, the theory
would say that they can be replaced by their definientia, which may or may
not contain the defined term.

Another possibility bypasses the Standard Theory and appeals to mean-
ing. This view maintains that a definiendum and its definiens have the same
meaning. They are intensionally equivalent, so substituting one for the other
in extensional contexts should not change the truth value of the whole.

This point, however, is not obvious. There is a prima facie asymmetry
in a definition between the definiendum and definiens. The former depends
on the latter. This observation is not restricted to any particular theory. For
example, Albert Visser, writing from a theory-neutral point of view, says,
“Note that [the definitional connection L=Df ∼L] is prima facie asymmetri-
cal: the meaning of the right hand side is in some sense prior to the meaning
of the left hand side.”22

There is a third argument for intersubstitutivity for circular definitions
that has nothing to do with definitions, per se, but rather with the underly-

19Quine [1986]
20See Shapiro [2011], Beall and Murzi [2013], and Zardini [2014] for discussions of a

validity analog of (IP).
21See Belnap [1993] for discussion of the Standard Theory.
22Visser [2004, 168-169]
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ing logic. If definitions are properly formalized using the biconditional of the
logic, and that biconditional licenses a strong form of substitution of equiv-
alents, then a version of intersubstitutivity for definitions will follow. Not
all logics have biconditionals that license substitution of equivalents. Priest’s
LP is one for which the definitions would be formulated using a biconditional
that does not validate substitution of equivalents.23 Note that this point is
dependent on the logical resources of the language, and will need amendment
if, for example, modal operators are in the language.

It is important to note that the character of this argument for intersubsti-
tutivity is rather different from the argument for (IP) in the context of truth.
In the context of truth, (IP) is often taken as necessary to serve a generalizing
role, facilitating quantification over sentences and expressing endorsement.
That argument is not available for circular definitions, and there appears to
be a question about whether and why one should try to salvage a version
of intersubstitutivity for circular definitions.24 As we will see, not all of the
non-classical approaches to circular definitions obey intersubstitutivity for
definitions. The Strong Kleene and LP theories do, but the supervaluation
theory does not in general, putting it in the same camp as revision theory.

Let us turn from payoffs of circular definitions, to the more immediate
motivations of this paper.

1.4 Motivations

I have sketched two ways into the study of circular definitions, as found in
the work of Gupta and Belnap and the work of Moschovakis. This paper will
follow in the spirit of Gupta and Belnap, rather than Moschovakis, primarily
for two reasons. First, I do not adopt Moschovakis’s philosophical motivation
of understanding sense in terms of computation. That provides Moschovakis
a reason to focus on the Strong Kleene scheme, but I do not want to restrict
my attention to only that scheme. Second, I will focus on the logic of circular
definitions. Given that the circular definitions will be interpreted in terms
of fixed-points, the logic is naturally defined in terms of all models and all
fixed-points. Moschovakis, by contrast, is more interested in definability in
structures, which leads him to focus on particular fixed-points in particular
models.

23I will return to the discussion of intersubstitutivity in §3.
24See Orilia and Varzi [1998] for consideration of rejecting intersubstitutivity to avoid

the paradox of analysis.
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I will study circular definitions in non-classical schemes, so I am, to an
extent, departing from the original motivations for revision theory. I am
following in the spirit of Gupta and Belnap in that they took an approach
to truth and generalized it to circular definitions. In a similar vein, I will be
looking at the theories of circular definitions one gets by moving from two
non-classical approaches to truth to corresponding approaches to circular
definitions. Something like this idea was suggested by Gupta and Belnap
themselves, as they say, “The theoretical moves that have been made in
response to the pathological behavior of truth can all be made with respect to
circular concepts.. . . [T]he entire history of the Liar paradox can be mimicked
in the context of circular definitions.”25

This work is part of a larger project to compare non-classical approaches
to circular definitions with the classical revision theories of circular defini-
tions. I will explore circular definitions using the formal apparatus of fixed-
point approaches to truth in two non-classical schemes.26 There are many
options for non-classical approaches to circular definitions, a point I return
to in §5, but here I will focus on two three-valued schemes, with some asides
about other three-valued schemes. I will not be able to provide a detailed
comparison of revision theory with the two non-classical theories, since that
would require more details on revision theory than I can provide here, but I
will make some comparative comments along the way.

I will end this subsection by highlighting two features of revision theory
that will guide some of the discussion to come: proof systems and defining
clauses. First, the proof systems. The revision theory of circular definitions
has a Fitch-style natural deduction proof system and a cut-free sequent sys-
tem.27 One of the important points of the subsequent sections is that the
non-classical approaches have well-behaved proof systems, at least in the
sense of being sound and complete, and so on that score are on equal footing
with revision theory. The second feature concerns the defining clauses. In
general, the quantified material biconditional versions of the defining clauses

25Gupta and Belnap [1993, 117]
26I will not be exploring definitions in revision theory using non-classical schemes. That

project would be interesting, but it would take us too far afield.
27See Gupta and Belnap [1993, Ch. 5B] for more on the Fitch system. See Bruni [2013]

for the sequent system. These proof systems are complete for a weak version of revision
theory. Kremer [1993] has shown that a natural, strong version of revision theory is not
axiomatizable.

Australasian Journal of Logic (14:1) 2017, Article no. 6



157

of a set of circular definitions will not be valid in revision theory.28 As we
will see, not all of the non-classical approaches guarantee the validity of the
quantified material biconditional versions of the defining clauses.

Now that I have presented two paths to thinking about circular definitions
and some motivations for looking at particularly non-classical approaches, I
will proceed to the non-classical definitions, focusing on Strong Kleene and
supervaluation theories. Let us begin with Strong Kleene.

2 Strong Kleene definitions

For this section, I will consider circular definitions in the Strong Kleene
scheme.29 The Strong Kleene scheme has three semantic values, 1, 0, 1

2
, which

are linearly ordered by the logical ordering: 0 ≤L
1
2
≤L 1. The connectives

for Strong Kleene are defined as follows.

∼
1 0
1
2

1
2

0 1

∨ 1 1
2

0
1 1 1 1
1
2

1 1
2

1
2

0 1 1
2

0

Let v be an assignment of values to variables. The universal quantifier has
the semantic clause:

VM,v(∀xA(x)) = min({VM,v[d/x]A(x) : d ∈ D}),

where v[d/x] is the assignment that v′ that agrees with v on assignments
to all variables apart from x, and v′(x) = d.30 The other connectives and
quantifier are defined out of these as usual.

As said at the outset, the base language is interpreted via a classical
ground model M(= 〈D, I〉). Hypotheses are functions from

28This does not mean that the the defining clauses fail to determine the meaning of
the defined expressions. See Gupta and Belnap [1993, 253-255] for discussion. It has,
however, recently been shown how to extend the revision theory with new biconditionals
that validate versions of all the defining clauses; for details, see Standefer [2015] and Gupta
and Standefer [2016].

29The following is based on the ccpo frameworks described in Gupta and Belnap [1993]
and Visser [2004].

30I will generally suppress mention of assignments to variables and use the notation
A(d̄) to indicate evaluation under an assignment whose values on the free variables of A,
x̄, are the objects d̄.
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⋃
n{G : G is an n-ary definiendum of D} × Dn to {0, 1, 1

2
}. For all classi-

cal models M and hypotheses h, a model M + h is just like M except that
h is used to interpret definienda from D , as follows for all n-ary definienda
G and all d̄ ∈ Dn.

VM+h(G(d̄)) = h(G)(d̄)

The semantic values are partially ordered by the information ordering:
1
2
≤i 1 and 1

2
≤i 0. This is used to define a partial order on the hypotheses

of a given model.

Definition 1. h � h′ iff for all predicates G in D and all tuples d̄ whose
length is the arity of G, h(G)(d̄) ≤i h

′(G)(d̄).

Each of these partial orders has a minimal element.
A set of definitions D yields a jump operator κD ,M that obeys the follow-

ing constraint.
κD ,M(h)(G)(d̄) = VM+h(AG(d̄))

The Strong Kleene scheme is monotonic in the sense that for all truth func-
tions c, if x1 ≤i y1, . . . , xn ≤i yn, then c(x1, . . . , xn) ≤i c(y1, . . . , yn).31 It
follows then that κD ,M is monotonic on �, i.e.

h � h′⇒ κD ,M(h) � κD ,M(h′).

A hypothesis h is sound iff h � κD ,M(h). A hypothesis f is a fixed-point iff
f = κD ,M(f).

Given monotonicity, iterating κD ,M , possibly transfinitely, on a sound h
will yield a fixed-point, f with h � f . For transfinite iterations, the limit
stages are the joins of all previous stages.32 In particular, iterating κD ,M

on the �-minimal hypothesis h0 will yield the minimal, or least, fixed-point.
The fixed-points f will be used to interpret defined predicates.

For a given language L and set of definitions D , we can define Strong
Kleene consequence, or entailment.

Definition 2 (Entailment). Let L be a base language and let D be a set
of definitions. For all sentences A1, . . . , An, B1, . . . , Bm, A1, . . . , An entails

31All of the non-classical schemes discussed in this section and the next are monotonic.
32Not every set of of hypotheses will have a join, but since the hypotheses under consid-

eration form are linearly ordered by �, they do. Their join is the hypothesis that assigns
1, or 0, to a predicate and a tuple just in case some element of the chain assigns 1, or 0,
respectively, to that predicate and tuple.
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B1, . . . , Bm in M on D (in symbols, A1, . . . , An |=SK,M
D B1, . . . , Bm) iff for

all fixed-points f , if for all i ≤ n, VM+f (Ai) = 1, then for some i ≤ m,
VM+f (Bi) = 1.

A1, . . . , An entails B1, . . . , Bm on D (A1, . . . , An |=SK
D B1, . . . , Bm) iff for

all classical ground models M , A1, . . . , An |=SK,M
D B1, . . . , Bm.

A formula is D-free if it contains no definienda. If all the Ai and Bj are
D-free, then entailment will reduce to classical entailment.

Strong Kleene entailment, for each D , is axiomatized by the following
sequent system, which is based on the sequent system for truth developed
by Kremer [1988].33 This system shares all its axioms and rules with Kre-
mer’s system except for the definition rules, which replace the truth rules of
Kremer’s system, and the contraction rules.

Axioms:

A `SKD A

∼A,A `SKD

`SKD B,∼B

`SKD t = t

t 6= t `SKD

In the axiom,
`SKD B,∼B,

B must be D-free.
Structural rules:

X `SKD Y
(K `)

A,X `SKD Y

X `SKD Y
(` K)

X `SKD Y,A

A,A,X `SKD Y
(W `)

A,X `SKD Y

X `SKD Y,A,A
(`W )

X `SKD Y,A

Connective rules:

33In Kremer’s system, each side of the turnstile is a set, but here each side is a multiset.
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X `SKD Y,A
(` ∨)

X `SKD Y,A ∨B

X `SKD Y,B
(` ∨)

X `SKD Y,A ∨B

A,X `SKD Y B,X `SKD Y
(∨ `)

A ∨B,X `SKD Y

∼A,X `SKD Y
(∼∨ `)

∼(A ∨B), X `SKD Y

∼B,X `SKD Y
(∼∨ `)

∼(A ∨B), X `SKD Y

X `SKD Y,∼A X `SKD Y,∼B
(` ∼∨)

X `SKD Y,∼(A ∨B)

A,X `SKD Y
(∼∼ `)

∼∼A,X `SKD Y

X `SKD Y,A
(` ∼∼)

X `SKD Y,∼∼A

Quantifier rules:

A[t/x], X `SKD Y
(∀ `)

∀xA,X `SKD Y

X `SKD Y,A[y/x]
(` ∀)

X `SKD Y, ∀xA

∼A[y/x], X `SKD Y
(∼∀ `)

∼∀xA,X `SKD Y

X `SKD Y,∼A[t/x]
(` ∼∀)

X `SKD Y,∼∀xA

Identity rules:

X `SKD Y,A(s)
(`=)

s = t,X `SKD Y,A(t)

A(s), X `SKD Y
(=`)

s = t, A(t), X `SKD Y

X `SKD Y,A(s)
(`=)

t = s,X `SKD Y,A(t)

A(s), X `SKD Y
(=`)

t = s, A(t), X `SKD Y

X `SKD Y,A(s)
(`6=)

X `SKD Y,A(t), s 6= t

A(s), X `SKD Y
(6=`)

A(t), X `SKD Y, s 6= t

X `SKD Y,A(s)
(`6=)

X `SKD Y,A(t), t 6= s

A(s), X `SKD Y
(6=`)

A(t), X `SKD Y, t 6= s

In (` ∀) and (∼∀ `), the variable y cannot occur freely in the conclusion
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sequents. In the identity rules, t is free for s in A. The system also contains,
for each definitional clause Gx̄=Df AG(x̄) in D , the following four rules.

AG(t̄), X `SKD Y
(Def `)

Gt̄,X `SKD Y

X `SKD Y,AG(t̄)
(` Def)

X `SKD Y,Gt̄

∼AG(t̄), X `SKD Y
(∼Def `)

∼Gt̄,X `SKD Y

X `SKD Y,∼AG(t̄)
(` ∼Def)

X `SKD Y,∼Gt̄

For each set of definitions D , call the sequent system resulting from the
above rules LSK(D). Then, LSK(D) axiomatizes Strong Kleene entailment
on D .

Theorem 1. X |=SK
D Y iff X `SKD Y is derivable in LSK(D).

The soundness direction is proved by a standard induction on the con-
struction of a derivation. The completeness direction is proved by a Henkin-
style argument, in the manner of the completeness proof of Kremer [1988].
Since there are no major changes to the proof, I will omit it.

The system LSK(D) does not have cut,

X `SKD Y,A A,X ′ `SKD Y ′
(cut)

X,X ′ `SKD Y, Y ′

among its basic rules.34 The cut rule is sound, so one can use the soundness
theorem with the premises of cut to obtain entailment analogs, which yield
an entailment analog of the conclusion. Since LSK(D) is complete, one can
then infer that the conclusion of the cut rule is derivable, as desired. Thus,
adding cut would result in no new sequents being provable. In other words,
cut is admissible, so LSK(D), without cut, is strong enough, from a proof-
theoretic point of view. In this setting, however, cut admissibility does not
have the usual consequences. In particular, for some D , the subformula prop-
erty can fail, which is to say that some derivations may contain predicates
and connectives not appearing in their endsequents.35 This can, to an ex-
tent, be remedied by defining an extended sense of subformula that takes as

34For each set of definitions D , there is a sequent system LSK(D). This paragraph
should be read as applying to each of them.

35As usual, for quantified formulas we want to count instances as subformulas.
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subformulas of a defined predicate all subformulas of its definiens, including
subformulas of definientia of defined predicates occurring there, and so on.
The rules preserve subformulas in this extended sense. Depending on the set
of definitions D , the extended sense of subformula may be informative or it
may be trivial. If a set of definitions uses every predicate of the base language
as well as all the logical connectives, then preserving extended subformulas
would not say anything informative. If a set of definitions involves a rela-
tively small fragment of the language, then it may be more informative. The
usual subformula property, however, still holds when attention is restricted
to derivations of sequents containing only base language predicates.

It is worth observing that entailment, as defined above, obeys the analog
of (IP) for circular definitions,

A1, . . . , An |=SK
D B1, . . . , Bm ⇔ A′1, . . . , A

′
n |=SK

D B′1, . . . , B
′
m,

where C and C ′ differ at most by replacing, possibly zero, occurrences of
definientia with their definienda, and vice versa, possibly relabeling bound
variables. This follows straight away from the definition of entailment.

Just as the Tarski biconditionals are not all valid in the Strong Kleene
theory of truth, there are definitions for which the (quantified) material bi-
conditional versions of the definitional clauses are not valid. For example,
the material biconditional version of the definition, Lx=Df ∼Lx, will be in-
valid. I will return to this point after introducing the supervaluation theory
of definitions, to which I now turn.

3 Supervaluation definitions

In this section, I will look at circular definitions in the supervaluation scheme.36

Say that a hypothesis h is classical just in case its range is {1, 0}. If h
is classical, then let CLM+h be the classical valuation of the model M + h.
The supervaluation evaluation SV is defined as follows.

Definition 3.

SVM+h(A) =


1 if CLM+h′(A) = 1, for all classical h′ � h

0 if CLM+h′(A) = 0, for all classical h′ � h
1
2

otherwise

36The notation of this section follows that of Kremer and Urquhart [2008].
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Definition 4 (Validity). Let L be a base language and let D be a set of
definitions. For all sentences A of L+, A is valid on D , |=SV

D A, iff for all
ground models M , for all fixed-points f , SVM+f (A) = 1.

The supervaluation logic for D is {A ∈ SentL+ : |=SV
D A}.

I have defined the supervaluation logic as a set of sentences, rather than a
consequence relation, as for Strong Kleene definitions. This is motivated by
results due to Kremer and Urquhart [2008], building on the work of Kremer
and Kremer [2003], that suggest that the consequence relations for arbitrary
definitions may be very complex.37

We can axiomatize the supervaluation logic for D , following Kremer and
Urquhart. Let the system HSV (D) be the following.

• All classical, first-order logical truths.

• From A, infer any classical consequence of A.

• From B ⊃G(ā), infer B ⊃ AG(ā), where B is D-free.

• From B ⊃∼G(ā), infer B ⊃∼AG(ā), where B is D-free.

• From B ⊃ AG(ā), infer B ⊃G(ā), where B is D-free.

• From B ⊃∼AG(ā), infer B ⊃G(ā), where B is D-free.

In the third and fourth rules, ā must be free for x̄ in AG(x̄). Define `SVD A
to mean that there is a proof of A in HSV (D), with proof defined as usual
for a Hilbert-style system.

Theorem 2. Let L be a base language and let D be a set of definitions.
Then, for all sentences A of L+,

(1) If `SVD A, then |=SV
D A.

(2) If |=SV
D A, then `SVD A.

Part (1) is soundness and part (2) is completeness. The soundness proof
proceeds by the usual induction on construction of derivations.

37The results just mentioned deal with truth, rather than circular definitions, but they
are suggestive. Cf. Kremer [1993] on the complexity of definitions in revision theory.
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The completeness proof proceeds much the same as that of Kremer and
Urquhart [2008]. One starts by assuming 6`SVD A. One then uses a Henkin-
style construction to obtain a canonical, maximal, consistent fixed-point
model which is, in general, three-valued and in which A does not receive
semantic value 1. One then uses another Henkin-style construction to ex-
tend the three-valued model to a maximal, consistent classical model that
assigns A the value 0. The classical model then serves as the hypothesis
witnessing the fact that the canonical model does not assign A value 1. The
primary difference between the proof for circular definitions and Kremer and
Urquhart’s original proof is a simplification: Kremer and Urquhart’s proof,
given for a language with a truth predicate, requires additional complications
to account for the syntactic theory used for naming the sentences of the lan-
guage. Since in this setting there is no syntactic theory that is added with
the definitions, that aspect of the proof does not come in. The other major
steps of the proof proceed here as there. Since there is substantial overlap, I
omit the proof.

The supervaluation logic for D is defined for as a set of formulas. Define
logical consequence for D as follows, where X is a set of sentences: X |=SV

D B
iff for all ground models M , for all fixed-points f over M , if SVM+f (A) = 1,
for all A ∈ X, then SVM+f (B) = 1. It is plausible that for some, although
not all, sets of definitions, consequence can be axiomatized in a way similar
to that of the supervaluation logics. For example, let D be an ordinary
definition, in the sense that no definiens contains any definienda. In that
case, for each model, there is a unique fixed-point, and it is classical. It
is plausible that consequence for such a D is axiomatizable. There is a
question as to what conditions on definitions are sufficient to guarantee that
the associated sense of logical consequence is axiomatizable.38

The systemHSV (D) is, arguably, natural, although it is not user-friendly,
being a Hilbert-style axiom system. It would be good to have an alternative
proof system, and I will provide one such here. I will define the Fitch-style
natural deduction system FSV (D) as follows. Let the rules for the connec-
tives be any of the standard packages of complete rules for classical logic.39

38There are other ways of defining logical consequence in a supervaluation setting. The
question holds for those as well.

39For example, the rules in Gupta and Belnap [1993, ch. 5B], minus the superscripts,
will work.
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To these rules, I add the following definition rules.

...

AG(t̄)

G(t̄) DefIn

...

∼AG(t̄)

∼G(t̄) ∼DefIn

...

G(t̄)

AG(t̄) DefElim

...

∼G(t̄)

∼AG(t̄) ∼DefElim

In these the last two rules, t̄ must be free for x̄ in AG(x̄). In all four of the
definition rules, all of the assumptions in whose scope the displayed formulas
appear must be D-free. Define `FSV

D A to mean that A is derivable in
FSV (D) outside the scope of any assumptions. One can show that `SVD and
`FSV

D are coextensive.

Theorem 3. Let D be a set of definitions. The following are equivalent for
all sentences A.

(1) `SVD A

(2) `FSV
D A

Proof. For (2) to (1), it is clear that all the first-order logical truths are
derivable in FSV (D), and all classical logical consequences of a given formula
will follow from the classical completeness of the underlying Fitch system. I
will show that that the definition rules are also derivable by doing one case,
the others being similar. I will show that if B ⊃ AG(t̄) is derivable, then
B ⊃ G(t̄) is derivable, where B is D-free. Assume B ⊃ AG(t̄) is derivable.
The FSV (D) proof then looks like the following.

1 B ⊃ AG(t̄)

2 B Hyp

3 B ⊃ AG(t̄) Reit 1

4 AG(t̄) ⊃Elim 2, 3

5 G(t̄) DefIn 4

6 B ⊃G(t̄) ⊃In 2–5
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Note that the DefIn rule at line 5 is justified because AG(t̄) is only within
the scope of B, which is, by assumption, D-free.

For (1) to (2), the proof is a variation on the usual proof showing Hilbert
and Fitch systems equivalent.40 Given a Fitch-style proof with no undis-
charged assumptions, we show how to generate a Hilbert-style proof of the
same conclusion. First, we inductively turn each innermost subproof into a
sequence of conditionals whose antecedents are the assumption of the sub-
proof, prefixing the conditionals with universal quantifiers in the case of
quantified subproofs. The result will be a sequence of conditionals that are
derivable in FSV (D), but which sequence may not form a FSV (D) proof.
We then show that each conditional in this sequence is derivable in HSV (D).

Each conditional in the sequence corresponds, in a straightforward way,
with a step of the Fitch proof, which has an associated rule justifying it.
For the steps labelled with rules of classical logic, it is clear that one can
derive the corresponding conditionals in HSV (D) using classical axioms and
rules from what came before. It remains to show that the definition rules
can be obtained. I will do one case, DefIn. There are two subcases. In case
AG(t̄) appears outside the scope of any assumptions in the original Fitch-style
proof, then the corresponding “conditional” is simply AG(t̄), which implies
>⊃AG(t̄), whence one derives G(t̄) from a definition rule and modus ponens.
Otherwise, the conditional for this step has the form B1 ⊃ (B2 ⊃ . . . (Bn ⊃
AG(t̄)) . . .). This implies (B1 & . . . &Bn)⊃AG(t̄). Since all of the Bi are D-
free, by assumption, we can apply the definition rule in HSV (D) to obtain
(B1 & . . . &Bn)⊃G(t̄), whence we obtain the desired B1 ⊃ (B2 ⊃ . . . (Bn ⊃
G(t̄)) . . .). The cases for the other definition rules are similar.

Gupta [2006] asks whether there is a natural sound and complete calculus
for finite definitions in the supervaluation scheme. This section shows that
there is an arguably natural calculus, HSV (D). I have offered an improve-
ment, albeit modest, on this in the form of FSV (D), which I think answers
Gupta’s question in the affirmative. It would be good to have additional al-
ternative proof systems, and I will briefly mention two possible directions to
pursue to this end. Recently, Welch [2009] presented games for determining
membership in the least supervaluation fixed-point for truth over the stan-
dard model of arithmetic, and Meadows [2015] presented a tableau system
for membership in that fixed-point. It seems promising to use their ideas to
develop a tableau system for supervaluation validity.

40See Anderson and Belnap [1975] for examples of this method of proof.
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The previous section ended with a look at intersubstitutivity and defini-
tional equivalences, and I will close this section in the same way. In contrast
to the Strong Kleene consequence relation, the supervaluation logic does
not obey the intersubstitutability principle. There are definitions for which
C(Gt̄) is valid but C(AG(t̄)) is not. For example, let D be Lx =Df ∼Lx.
Then, La ∨ ∼La is valid while ∼La ∨ ∼La is not. Equivalence between
definiens and definiendum holds, however, in freestanding contexts, so Gt̄ is
valid iff AG(t̄) is valid and ∼Gt̄ is valid iff ∼AG(t̄) is valid.

It is also worth observing that, as with the Strong Kleene theory of def-
initions, not all (quantified) material biconditional versions of the defining
clauses will be valid. For the definition of the previous paragraph, the cor-
responding material biconditional would be ∀x(Lx ≡ ∼Lx), which will be
contravalid, as it is false in all classical hypotheses. The supervaluation and
Strong Kleene theories of definitions will differ on the validity of the material
biconditional versions of some definitions. For example, the defining clause
Hx =Df Hx will have as its material counterpart ∀x(Hx ≡ Hx), which is
valid in the supervaluation theory but not in the Strong Kleene theory.

Before turning to the discussion of a particular class of definitions, I will
remark on alternative schemes. The schemes on which I have focused have
natural duals, namely the LP and subvaluation schemes.41 These schemes
evaluate formulas in the same way as the Strong Kleene and supervaluation
schemes, respectively, but they take both 1 and 1

2
to be designated. The proof

system of §2 can easily be adapted to LP. It is an open question whether
one can obtain an axiomatization of the subvaluation logic for D by any
straightforward adaptation of HSV (D).

There is a feature of the LP and subvaluation theories of circular defini-
tions to which I want to draw attention. As mentioned above, the material
biconditional versions of the defining clauses are not always valid in the
Strong Kleene and supervaluation theories. They are, however, always valid
in the LP theory. For some definitions, the negations of the biconditionals
are also valid, as one might expect. The subvaluation theory, by contrast,
shares with the supervaluation theory, as well as classical revision theory, the
feature of validating only the negation of some of the material biconditionals.
On this front, then, the LP theory has a striking advantage over the other

41For more on LP, see, for example, Priest [1979] or Priest [2008]. For more on the
subvaluation scheme, see Hyde [1997] or Cobreros [2013]. I would like to thank Graham
Priest for pointing me towards the subvaluation scheme.
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fixed-point theories mentioned: The material biconditionals corresponding to
the definitional equivalences are always valid. Although it is not a decisive
point, the lack of such valid biconditionals does leave a question hanging over
the theories, namely, how can one express the relevant sense of definitional
connection? This question is, I think, most pressing for the theories in which
the negations of some of the biconditionals are valid.

Let us now turn from definitions in general to a particular class of them.

4 Intrinsic definitions

As mentioned in §1.3, different theories of definitions will highlight differ-
ent classes of definitions. One class that emerges naturally in the Strong
Kleene and supervaluation theories is the class of intrinsic definitions. The
idea, based on an idea from Kripke [1975], is that hypotheses for intrinsic
definitions do not make any arbitrary assignments. Many definitions are not
intrinsic, in the sense to be defined. In the four-valued FDE scheme, by
contrast, every definition is intrinsic. For the remainder of the paper, I will
focus on the intrinsic definitions.

Definition 5. Given language L, a set of definitions D , and a model M , let
a fixed-point h be κ-intrinsic, or σ-intrinsic, just in case for all fixed-points
h′, there is a fixed-point h′′ such that h � h′′ and h′ � h′′, in the Strong
Kleene, respectively supervaluation, scheme.

Let a definition D be κ-intrinsic, or σ-intrinsic, iff for all models, all
fixed-points for D are κ-intrinsic or σ-intrinsic, respectively.

The κ- and σ-intrinsic definitions are naturally isolated classes of defini-
tions in the Strong Kleene and supervaluation theories of definitions, respec-
tively. Every definition, intrinsic or not, will have a greatest intrinsic fixed-
point, although in some cases it may simply be the minimal fixed-point.42

Some examples are in order. Two simple κ- and σ-intrinsic definitions are

Lx=Df ∼Lx

and
Hx=Df Hx ∨ ∼Hx.

42See Gupta and Belnap [1993, 69] for a proof. Gupta and Belnap attribute the point
to Kripke [1975].
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On these definitions, in both the Strong Kleene and supervaluation schemes,
sentences of the form La can only the value 1

2
in any fixed-point, and sentences

of the form Ha cannot take the value 0 in any fixed-point. An example of a
definition that is not intrinsic is

Kx=Df Kx.

Suppose that a ∈ D; then there are fixed-points f and g for this definition
such that f(K)(a) = 1 and g(K)(a) = 0, which suffices for f and g to be
incomparable with respect to �.

Intrinsic definitions in the two schemes are not identical, as there are
definitions that are κ-intrinsic but not σ-intrinsic. Here is an example.43 Let
D contain just

Gx=Df ∼Gx and Hx=Df Hx ∨ (Gx&∼Gx),

and consider a model M . The Strong Kleene fixed-points are all intrinsic,
since they can assign only 1

2
to the G parts of H, which makes it impossible

to have f(H)(a) = 0. On the other hand, CLM+h(Ga&∼Ga) = 0, for
all classical hypotheses h, so there will be fixed-points f and g such that
f(H)(a) = 1 and g(H)(a) = 0.

The intrinsic definitions arise naturally when considering features of fixed-
points. There is another feature of intrinsic definitions that is worth mention,
especially for comparison with revision theory. For this brief comparison, I
will focus on the Strong Kleene fixed-point approach and κ-intrinsic defini-
tions. The κ-intrinsic definitions can be split into several sets, but there are
two of particular interest. One set has, roughly speaking, few fixed-points
per model. In some cases, this results in the definition’s fixed-points assign-
ing only 1

2
to tuples. In other cases, it results in unique fixed-points, which

are classical. The other set has, intuitively, many fixed-points, which has the
result that its consequence relation is, in a sense, highly discriminating for
atoms containing the defined predicate. Rather than going into the details
of the two sets here, I will give some examples. I will assume that there are
countably many names in the language, a and bi, i ≥ 0.

Example 1. Let L be Lx =Df ∼Lx. L is κ-intrinsic, and it has only one
fixed-point f per model M , namely f(G)(d) = 1

2
, for each d ∈ D. We have

the following.

43I owe this example to Anil Gupta.
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• a 6= bi, La |=SK
L Lbi.

• For all sentences B, La |=SK
L B.

Example 2. Let H be Hx =Df Hx ∨ ∼Hx. Again, H is κ-intrinsic, but
this time it has at least 2 fixed-points per model. For every a ∈ D, there are
fixed-points f, g, with f(G)(a) = 1

2
and g(G)(a) = 1 and f(G)(b) = g(G)(b),

for b 6= a. We then have the following.

• a 6= bi, Ha 6|=SK
H Hb.

• It is not the case that for all sentences B, Ha |=SK
H B.

What is the connection to revision theory? Although there are some caveats,
revision theory and the Strong Kleene fixed-point theory take roughly dual
stances on these definitions and definitions similar to them. Take L from the
first example above. The consequence relation for this definition, as given
by revision theory, will behave like that in the second example. By contrast,
the revision-theoretic consequence relation for H will behave like that in
the first example, at least with respect to atoms involving H.44 The reason
is that when there are not many values for the Strong Kleene semantics to
assign to atoms with defined predicates, there are many values in the revision
semantics, but the Strong Kleene semantics can assign a range of values in
cases in which revision semantics can assign only one. Rather than pursue
this point, I will leave it and turn to some features of intrinsic definitions.

There is a simple sufficient condition for a definition being κ- or σ-
intrinsic. Say that a sentence B has the form of a classical validity, or con-
tradiction, if it is a substitution instance of a classical, first-order validity, or
contradiction, respectively.

Lemma 1. If a set of definitions D is such that each definiens has the form
of a classical logical validity, then there is no model M and fixed-point f such
that VM+f (G(ā)) = 0, or SVM+f (G(ā)) = 0.

Theorem 4. If a set of definitions D is such that each definiens has the
form of a classical logical validity, then D is both κ- and σ-intrinsic.

44The consequence relation will, however, lack the second feature, namely Ha entailing
B, for all sentences B.
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Proof. Suppose not, so that each definiens of D has the specified form but
that there are two incomparable fixed-points. So, there is a model M , fixed-
points f and g, and a tuple ā from M such that f(G)(ā) = 1 while g(G)(ā) =
0. Since AG(ā) has the form of a classical validity, by the previous lemma,
VM+g(AG(ā)), and SVM+g(AG(ā)), cannot be 0. But, M , f , g, and ā were the
witnesses to the assumed existence of incomparable fixed-points. Therefore,
D is intrinsic.

This sufficient condition is not necessary. It admits dualization, since if
each definiens has the form of a classical contradiction, then the definition
will also be intrinsic. One can also mix and match for definitions with mul-
tiple clauses. The condition readily admits generalization and refinement,
some of which I will present now.

The propositions shown for Strong Kleene definitions involve valid or
contradictory forms, which end up being simply 1 or 0, respectively, in the
supervaluation scheme. An example of a definition that is σ-intrinsic and
that can take the value 1

2
is the following.

Gx=Df Hx Hx=Df Hx ∨ ∼Gx

The fixed-points cannot assign 0, and each object receives the same value for
both G and H.

Say that a definition is pure just in case it contains no base language
predicates, including identity, function symbols, or names. One can use
tableau methods to settle whether a pure definition is κ-intrinsic. The rules
for the tableaux are those for classical logic, together with the following
rules.45

• Extend a branch containing a node Gt̄ with AG(t̄), and

• extend a branch containing a node ∼Gt̄ with ∼AG(t̄).

As usual, a tableau is complete if all rules that can be applied have been
applied. A branch in the tableau is closed if it contains both B and ∼B,
for any formula B. A tableau is closed if all branches are closed. Define an
intrinsic tableau to be a complete tableau generated by the above rules.

45For a presentation of classical tableaux, along with proofs of standard metatheoretic
results, see Smullyan [1995] or Priest [2008], among others.
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Lemma 2. Let D be a pure definition containing only the definitional clause,
Gx̄ =Df AG(x̄). Let M be a ground model and let f be a fixed-point. If the
premiss nodes in an intrinsic tableau get the value 1 in M + f , then at least
one of the conclusion nodes does.

Proof. The proof is by induction on the construction of the tableau. The
classical rules are immediate from the standard soundness proofs. The cases
covering the two definition rules are immediate from the definition of fixed-
point.

Proposition 1. Let D be a pure definition with one definitional clause,
Gx̄ =Df AG(x̄). Add new names ā to the language. If the intrinsic tableau
for either ∼Gā or Gā closes, then D is κ-intrinsic.

Proof. Suppose that the intrinsic tableau for ∼Gā closes but D is not κ-
intrinsic. Then there is a model M and there are fixed-points f and g such
that f(G)(ā) = 1 and g(G)(ā) = 0. Then M + g is a model assigning the
top node of the tableau the semantic value 1. By the previous lemma, there
is a branch in which every node gets the value 1. But, that branch closes,
so there is a formula B such that B and ∼B receive 1, which is impossible.
Therefore D is κ-intrinsic.

The case in which Gā closes is similar.

Following Martinez [2001], it is natural to ask whether the intrinsic defi-
nitions are closed under any syntactic operations. The results are primarily
negative. For the rest of this section, I will not restrict attention to the pure
definitions.

To start, I need to define some notation. If G and H are both n-ary, let
the formula B[H/G] be the result of replacing all occurrences of G in B with
H but keeping the argument of each occurrence of H. For example, Gt̄[H/G]
is Ht̄. If a definiens AG is under consideration, I will use the notation A[H/G]

to mean AG[H/G].
Define the negation of a definition Gx̄=Df AG(x̄) to be Hx̄=Df ∼A[H/G]

Proposition 2. The κ-intrinsic definitions are not closed under negation.

Proof. The definition Lx=Df ∼Lx is κ-intrinsic but Mx=Df ∼∼Mx is not.
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Two operations under which the set of intrinsic definitions is not closed
are modus ponens and self-composition.46 Let D be Gx̄=DfAG(x̄) and let D ′

be Gx̄=DfBG(x̄), with both Gs n-ary. Let D⊃D ′ be Gx̄=DfAG(x̄)⊃BG(x̄).
Say that a class of one clause definitions is closed under modus ponens just
in case if D and D ⊃D ′ are both in the class, then so is D ′.

Proposition 3. The κ-intrinsic definitions with one clause are not closed
under modus ponens.

Proof. I show that D and D ⊃D ′ can both be κ-intrinsic without D ′ being
so. Let D be Gx=Df x 6= x and let D ′ be Gx=Df Gx. The definition D⊃D ′

is Gx=Df x 6= x⊃Gx. Clearly, D is intrinsic, as is D ⊃D ′. D ′, however, is
not.

Define the n-fold self-composition Dn of a definition D Gx̄=Df AG(x̄) as
follows.

• A0
G(x̄) = Gx̄

• An+1
G (x̄, G) = An

G(x̄)[AG(t̄)/Gt̄], where the right-hand side is obtained
by substituting AG(t̄) for each occurrence of Gt̄ in An

G(x̄), relettering
bound variables if needed.

Say that a class of definitions is closed under self-composition iff if D is in
the class, then Dn is in the class, for all n ≥ 1.

Proposition 4. The κ-intrinsic definitions are not closed under self-composition.

Proof. The definition L Lx=Df∼Lx is κ-intrinsic, but L 2 is Lx=Df∼∼Lx,
which is not intrinsic.

Let D contain only Gx̄=Df AG(x̄) and let E contain only Hx̄=Df BH(x̄),
with both defined predicates n-ary. Let the conjunction of the definitions be
Jx̄=Df A[J/G](x̄) &B[J/H](x̄). Similarly, if D contain only Gx̄=Df AG(x̄) and
E contain only Hx̄=DfBH(x̄), then say their disjunction is Jx̄=DfA[J/G](x̄)∨
B[J/H](x̄). Finally, given a definition D containing only G(x̄, y)=Df AG(x̄, y),
its universal quantification is Jx̄ =Df ∀yA[J/G](x̄). It is an open question
whether the n-ary κ-intrinsic definitions are closed under these operations.

46These operations are studied in the context of the finite definitions of revision theory
by Martinez [2001].
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There is a related, but trivial, sort of closure to distinguish from closure
under conjunction, disjunction, and universal quantification. Say that a def-
initional abstraction of a formula A(x̄) is a defining clause Gx̄ =Df A(x̄) for
a new predicate, G. Closure under conjunction, disjunction, and quantifiers
should not be confused with the trivial closures under abstractions. Given
two definitions, Gx̄=DfAG(x̄) and Hx̄=DfBH(x̄), construct a new definition
containing the previous two clauses and Jx̄ =Df AG(x̄) &BH(x̄), which is a
definitional abstraction. The fixed-points for J can be determined in terms
of the fixed-points for G and H. The fixed-points for the conjunction of two
definitions, by contrast, does not appear to be straightforwardly definable in
terms of the fixed-points of the conjoined definitions.

I have focused on the κ-intrinsic definitions, which exhibit many of the
same failures of closure that the finite definitions of revision theory do. The
κ-intrinsic definitions are not, however, closed under self-composition. The
question of whether the κ-intrinsic definitions are closed under some other
plausible closure conditions, such as closure under conjunction, has been
left open. I did not investigate LP-intrinsic definitions explicitly, because
there is no need. The definition of intrinsicality appealed only to fixed-
points and their ordering, which in turn depend only on the evaluation of
formulas and the definitions involved. Since LP and Strong Kleene use the
same evaluations for their connectives, fixed-points in the two schemes are
identical; their differences emerge at the level of consequence. I have not,
however, touched the closure properties of the σ-intrinsic definitions.

5 Conclusions

In this paper, I motivated the study of circular definitions and presented
the basics of two different theories of circular definitions, the Strong Kleene
and supervaluation theories. In the context of those theories, I identified
and explored a particular class of definitions, the intrinsic definitions. Even
considering just three-valued schemes, there is still more to explore. As I indi-
cated in §3, the LP and subvaluation theories provide interesting contrasts to
the Strong Kleene and supervaluation theories. Of the theories mentioned,
only the LP theory validates all the material biconditional versions of the
definitional clauses. A more detailed comparison between classical revision
theory and theories in three-valued schemes would be illuminating, although
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I will not pursue that here.47

There are, of course, other non-classical logics that could be used for
circular definitions. I will mention two that seem particularly worth in-
vestigation, both of which involve relevant conditionals. First is the logic
defended by Brady [2006], which is a depth relevance logic based on the con-
cept of meaning containment. One could take the definitional clauses to be
quantified biconditionals in this logic and then add them as object language
axioms to theories. A plausible philosophical picture emerges: One takes
the meaning of the definiendum to be identical to that of the definiens, as
expressed by the object language biconditional. The second is the relevant
logic R of Anderson and Belnap [1975].48 It is well known that adding all
the Tarski biconditionals or all of the set comprehension axioms to R results
in triviality.49 Suppose one takes definitional clauses to be quantified R bi-
conditionals. Some definitions will be trivial, e.g. Cx=Df Cx→⊥. Others,
however, would not be, including Lx =Df ∼Lx and Kx =Df Kx→ p, the
latter of which might be odd, as the particular p would be derivable, but still
non-trivial. One does not have to use all circular definitions at once, so one
could use circular definitions to analyze some concepts without necessarily
running into the trivializing paradoxes of the full comprehension scheme of
naive set theory.
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Pablo Cobreros, Paul Égré, Robert van Rooij, and David Rip-
ley. Reaching transparent truth. Mind, 122(488):841–866, 2013.
doi:10.1093/mind/fzt110.

Australasian Journal of Logic (14:1) 2017, Article no. 6

http://dx.doi.org/10.5840/jphil2013110336
http://dx.doi.org/10.1007/BF00989671
http://dx.doi.org/10.1007/BF00302340
http://dx.doi.org/10.1305/ndjfl/1093894366
http://dx.doi.org/10.1007/s10992-012-9262-2
http://dx.doi.org/10.1007/s11225-012-9402-2
http://dx.doi.org/10.1023/A:1025159016268
http://dx.doi.org/10.1111/phc3.12030
http://dx.doi.org/10.1093/mind/fzt110


177

Hartry Field. Saving Truth From Paradox. Oxford University Press, 2008.

Rohan French. Structural reflexivity and the paradoxes of self-
reference. Ergo, an Open Access Journal of Philosophy, 3, 2016.
doi:10.3998/ergo.12405314.0003.005.

Paul C. Gilmore. The consistency of partial set theory without extensionality.
In Thomas Jech, editor, Axiomatic Set Theory, volume 13 of Proceedings
of Symposia in Pure Mathematics. American Mathematical Society, 1974.

Anil Gupta. Truth and paradox. Journal of Philosophical Logic, 11(1):1–60,
1982. doi:10.1007/BF00302338.

Anil Gupta. On circular concepts. In André Chapuis and Anil Gupta, ed-
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