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Abstract

In his article “Reassurance via Translation” Marcel Crabbé pro-
posed a formalism to obtain reassurance and classical recapture in the
setting of minimal FDE. His formalism proved to be general enough
to be extended in order to formalize other forms of non-monotonic
systems based on preference relations. It is the aim of this article to
show how his result can be extended in a natural way by combining
two different reasoning systems, namely minimal FDE and circum-
scription, in order to get a paraconsistent and paracomplete version
of circumscription, which we will call paracomplistent circumscription,
which has the advantages of FDE and circumscription but is neither
explosive nor lacks modus ponens in consistent contexts. Furthermore,
we will complete a proof Crabbé left unfinished.

Keywords. circumscription, minimal LP, minimal FDE, paraconsis-
tent and paracomplete reasoning, combining logics, reassurance, clas-
sical recapture

1 Introduction

In 1979 Graham Priest published an article, “The Logic of Paradox” [17],
where he proposed a simple generalization of classical logic which is para-
consistent, namely LP . This logic introduced an at that time new approach
of dealing with paradoxes. Unfortunately, the semantics of LP leads to
the invalidity of modus ponens and the disjunctive syllogism. To overcome
these shortcomings and to construct a paraconsistent logic that recaptures
classical logic in consistent situations Priest developed in [18], “Minimally
Inconsistent LP”, a modified version of LP , which has the default assump-
tion of consistency and is non-monotonic. He introduced a way of measuring
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the degrees of inconsistency via a partial ordering of models in a certain
way, which works perfectly fine on the propositional level. However, on the
First-order level there are some problems regarding properties like reassur-
ance, i.e., the existence of minimal non-trivial models for consistent premise
sets, and classical recapture, i.e., obtaining classical entailment for consis-
tent premise sets. That is why Priest improved his original idea in a revised
version of “Minimally Inconsistent LP” [19]. Nevertheless, some problems,
namely the lack of reassurance, still remain in First-order languages, FOL
languages, with function symbols and equality. Marcel Crabbé in “Reas-
surance for the Logic of Paradox” [6] and “Reassurance via translation”
[7] then proposed a slightly altered definition of minimal LP and extended
it to first-degree entailment (FDE) in order to guarantee reassurance and
classical recapture in FOL languages with function symbols but without
equality.

Since Marcel Crabbé’s results prove to be very general, it is the aim
of this paper to show how these results can be used to combine logics with
preference relations on their models with the example of a paraconsistent and
paracomplete, i.e., a paracomplistent logic and the non-monotonic reasoning
system circumscription.

It should be mentioned that combining non-monotonic and paraconsis-
tent as well as paracomplete reasoning is not new. The whole tradition of
inconsistency-adaptive and paracomplete adaptive logics can be seen as a
very prominent example, see [3]. But in contrast to the adaptive frame-
work we minimize here the abnormality, incompleteness and inconsistency
of objects instead of formulas. Another notable example can be found in the
work of Ofer Arieli and Arnon Avron, cf. [1] and follow-up papers. There,
they generalize the KLM preference semantics to the paraconsistent case,
but without the intention of combining it with circumscription.

But, the only work that we are aware of which combines circumscription
with LP has been presented by Zuoquan Lin, cf. [10] and [11]. In the
appendix you may find a brief discussion of his work.

Below and in the sections 2 and 3 we will give a brief overview of First-
order languages, the non-monotonic logic circumscription, as well as FDE.
In section 4 we will present results from Marcel Crabbé’s paper “Reassur-
ance via translation” [7] because the results of this paper shall prove to
be crucial for our work. In his work, Marcel Crabbé showed how reassur-
ance and classical recapture of a minimal version of FDE can be proved.
The final section generalizes Crabbé’s results to introduce a slightly changed
definition of circumscription and finally it is shown how one can construct
paracomplistent circumscription. Furthermore, in the appendix you will find
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a brief discussion of Zuoguan Lin’s paper “Paraconsistent Circumscription”
[12]. It turns out that his approach contains, unfortunately, some flaws.

Definition 1. Let L be a First-order language. It consists of a countable
number of n-ary relation symbols P , m-ary function symbols F and con-
stants c1, c2, . . . . Furthermore, we have the following connectives ¬,∧,∨
and → as well as the universal quantifier ∀ and the existential quantifier ∃.
Well-formed formulas (wff) are defined as usual. Identity will be omitted.

A structure A is called an FOL interpretation if it contains a non-empty
set of objects, the universe |A|, and every n-ary relation
P (t1, . . . , tn), where t1, . . . , tn are terms, is interpreted by its extension
P+
A , with P+

A ⊆ |A|
n and its anti-extension P−A = |A|n\P+

A . We refer to
P (t1, . . . , tn), where t1, . . . , tn are terms, as an n-ary atomic formula. Con-
stants and function symbols are as usual interpreted by objects oc1 , oc2 . . .
and functions, respectively.

A valuation vA is a function from the set of variables and terms to |A|.
Truth and falsehood of a wff H, in symbols (A, vA) 
+ H and (A, vA) 
− H
respectively, in an interpretation A with respect to a valuation vA are defined
inductively, as follows: Let H and G be wff and P (t1, . . . , tn) an n-ary atomic
formula:

(A, vA) 
+ P (t1, . . . , tn) iff (vA(t1), . . . , vA(tn)) ∈ P+
A

(A, vA) 
− P (t1, . . . , tn) iff (vA(t1), . . . , vA(tn)) ∈ P−A
(A, vA) 
+ ¬H iff (A, vA) 
− H
(A, vA) 
− ¬H iff (A, vA) 
+ H
(A, vA) 
+ H ∧G iff (A, vA) 
+ H and (A, vA) 
+ G
(A, vA) 
− H ∧G iff (A, vA) 
− H or (A, vA) 
− G
(A, vA) 
± H ∨G iff (A, vA) 
± ¬(¬H ∧ ¬G)
(A, vA) 
± H → G iff (A, vA) 
± ¬(H ∧ ¬G)
(A, vA) 
+ ∀xH iff (A, vA [x/o]) 
+ H for all o ∈ |A|
(A, vA) 
− ∀xH iff (A, vA [x/o]) 
− H for at least one o ∈ |A|
(A, vA) 
± ∃xH iff (A, vA [x/o]) 
± ¬∀x¬H

Where vA [x/o] is the modified valuation in which the function value of x is
o and where 
± stands for either 
+ or 
−.

Remark 2. In [7, p. 8] one can find a definition of FDE, which Marcel
Crabbé calls bivalent logic. We used his definition with the modification
that P−A = |A|n\P+

A to define an FOL interpretation.

Definition 3. A wff H is
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1. satisfiable iff there are A and vA with (A, vA) 
+ H.

2. valid in A iff (A, vA) 
+ H for all vA. In this case A is called a model
of H.

3. generally valid iff (A, vA) 
+ H for all A and vA. In this case H is
called a tautology.

Let Σ be a set of wff. Σ entails H (Σ � H), iff if (A, vA) 
+ G for all
G ∈ Σ then (A, vA) 
+ H, for all A and vA.

A structure A is a model of Σ iff (A, vA) 
+ G for all G ∈ Σ and all vA.

Definition 4. Let Σ be a set of wff. Σ is FOL trivial iff Σ � H for all H
of our language

2 Circumscription

Circumscription, introduced by John McCarthy [14], is a form of non-
monotonic reasoning. It attempts to model a certain assumption of common
sense reasoning, namely that things behave like we expect they do, unless
we’re told otherwise. If we know, for example, that usually all PhD candi-
dates have good job opportunities, then we would expect that a certain PhD
candidate called Dan has good job opportunities, unless we are told Dan is
a logician. So, circumscription is a kind of defeasible reasoning. It was in-
troduced syntactically and semantically, even though it is well-known that
semantical and syntactical circumscription are not equivalent (see for exam-
ple [4],[20]). Roughly speaking, syntactical circumscription can be defined
via a translation into a second order language while semantical circumscrip-
tion makes use of a preference relation on the set of all FOL models of a
set of sentences. A sentence can then be evaluated only with respect to
certain preferred models. In the following we will only deal with semantical
circumscription.

One of the core ideas of circumscription is the selection of certain pre-
ferred models via a preference relation. A model is then called minimal
if the extensions of so called abnormal predicates in this model are mini-
mal. Usually abnormal predicates appear as relation symbols (e.g. A(x))
in our premise set within conditionals, like ∀x(L(x)→ A(x)) or ∀x((L(x) ∧
¬A(x)) → G(x)). Those conditionals can be used to formalize exceptions
from the general case, while the main idea is that if nothing is stated about
the abnormality of a certain object, then this object should not have the
property of being abnormal. The above formulas can be read as: if someone
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is a logician he/she is abnormal or if someone is a logician and not abnormal
then he/she has good job opportunities. Circumscription itself has been de-
veloped in great detail, at least in the field of computer science, and a lot
of work has been done to extend McCarthy’s original approach. But in this
article, we will deal only with the simplest case of circumscription [14], i.e.,
we will not discuss pointwise circumscription, prioritized circumscription,
autocircumscription etcetera (cf. [5],[8],[9],[15],[16]). The following defini-
tion is based on the definition found in [9]. We changed the order relation
on models to a preorder, while the definition of minimal models is still based
on a strict partial order. The reason for presenting the definition of circum-
scription in this way is to make it similar to the definition of minimal models
Marcel Crabbé gave in [7].

Definition 5. Let ∆ be a set of n-ary open atomic formulas P (x1, . . . , xn)
and A a model of some set Σ of wff. We define the true part of ∆ in A as
follows:

∆+
A = {〈P, (o1, . . . , on)〉|(o1, . . . , on) ∈ P+

A , P occurs in ∆}

Definition 6. Let ∆ be a set of open atomic formulas and Σ be a set of
wff.

Let A and B be two FOL models of Σ. A preorder ≺=∆ on the set of
all FOL models of Σ is defined as A ≺=∆ B iff

1. |A| = |B|

2. ∆+
A ⊆ ∆+

B

A model A of Σ is called =∆-minimal iff for all models B of Σ if B ≺=∆ A,
then ∆+

A ⊆ ∆+
B. Furthermore,

Σ �=∆ H
iff

all =∆-minimal models of Σ are also models of H

Remark 7. Even though ≺=∆ is a preorder, a =∆-minimal model is defined
as a minimal model relative to the strict partial ordering “B ≺=∆ A and
not ∆+

A ⊆ ∆+
B”. With this definition of minimality we follow [7, pp. 3 &

11].

Remark 8. The main idea of circumscription is the minimization of the
extension of certain predicates in our language. In other words we prefer
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models that are minimal with respect to the true part of ∆. Even though
circumscription is defined for an arbitrary set of predicates ∆, we want that
∆ contains those predicates which represent the abnormalities. But what it
means to be abnormal has to be given from the application context.

Example 9. In order to see how circumscription works, we give give a
simple example:

Let Σ = {∀x((P (x) ∧ ¬A(x)) → G(x)), P (Dan)}, ∆ = {A(x)} and our
universe consists only of the object Dan, then we have the following three
types of models of Σ,

Model P (x) A(x) G(x)

A Dan+ Dan+ Dan+

B Dan+ Dan+ Dan−

C Dan+ Dan− Dan+

where Dan+ and Dan− mean, Dan is in the extension or the complement
of the extension of the respective relation symbol. Obviously we have Σ 2
G(Dan). But after minimizing the abnormalities we get the following order
of models:

B A

C

And it is easy to see that we only have one = ∆-minimal model, namely
C. Therefore we have Σ �=∆ G(Dan) as wanted.

3 Adding gaps and gluts to FOL (FDE)

Definition 10 (See p. 8 in [7]). First-degree entailment can be seen as a
natural generalization of FOL. It uses the same language. A structure A
is called an FDE-interpretation if it contains a non-empty set of objects,
the universe |A|, and every n-ary relation symbol P is interpreted by its
extension P+

A , with P+
A ⊆ |A|

n and its anti-extension P−A ⊆ |A|
n. Constants

and function symbols are interpreted as usual by objects oc1 , oc2 . . . and
functions.

The truth of a wff in an interpretation A with respect to a valuation vA
is defined as in Definition 1.
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Remark 11. The main difference between FDE and FOL is that in FDE
P+
A and P−A don’t need to be complements of each other. In other words,

we allow P+
A ∪ P

−
A 6= |A|

n (gaps) and P+
A ∩ P

−
A 6= ∅ (gluts) for some P .

Definition 12. Let Σ be a set of wff. Σ entails H in FDE (Σ �FDE H), iff
if (A, vA) 
+ G for all G ∈ Σ then (A, vA) 
+ H, for all A and vA.

Validity, models and triviality for FDE are defined as in Definitions 3
and 4.

Furthermore, an FDE-model A is FDE-trivial iff (A, vA) 
+ H for all
vA and all H of our language

Remark 13. If we allow objects to be in the extension and anti-extension
of a relation symbol or to be neither in one of them, the so defined logic,
FDE, is obviously paracomplete and paraconsistent. But this system has
one essential disadvantage: modus ponens and disjunctive syllogism are not
valid and, moreover, FDE has no tautologies at all. Therefore, this logic
can be seen as very weak.
But usually we assume that objects do not display glutty or gappy behavior.
For example, it seems to be the case that in many circumstances only a
few exceptional sentences are inconsistent. One attempt to formalize this
thought in the setting of LP (the logic of paradox [17]) was developed by
Graham Priest in [18], [19] and extended to FDE by Marcel Crabbé [7].
The main idea is the default assumption of the consistency of formulas, i.e.,
a minimal model contains as few contradictions as possible. Necessarily
inconsistent formulas could be formulas like H(x) ∧ ¬H(x) but also the wff
H(x) as a subformula of formulas of the set {H(x) ∧ G(x),¬H(x)}. Like
in circumscription we can construct a preference relation on the set of all
models of a set of sentences. But unlike in circumscription we here minimize
the amount of inconsistency and, since we are in a setting with gluts and
gaps, we minimize the amount of incompleteness as well.
The main idea would be like this: we isolate all incomplete and inconsistent
sentences, and then for the remaining classical sentences we get all of our
FOL inference rules back.

Definition 14. Let A be an FDE-model of some set of wff Σ. We define
the inconsistent part A! of A and incomplete part A? of A in the following
way:

A! = {〈P, (o1, . . . , on)〉|(o1, . . . , on) ∈ P+
A ∩ P

−
A }

A? = {〈P, (o1, . . . , on)〉|(o1, . . . , on) 6∈ P+
A ∪ P

−
A }
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Remark 15. Roughly speaking, A! and A? can be understood as the set of
all couples of some relation symbols P and (tuples of) objects o (o1, . . . on)
that are either in the extension and the anti-extension or neither in the
extension nor anti-extension of P .

Definition 16. Let A and B be two FDE-models of a set of wff Σ. A
preorder ≺⊇!? on the set of all FDE-models of a set of wff Σ is defined as
A ≺⊇!? B iff

1. |A| ⊇ |B|

2. A! ⊆ B! and A? ⊆ B?

A model A of Σ is called ⊇!?-minimal iff for all models B of Σ if B ≺⊇!? A,
then A! ⊆ B! and A? ⊆ B?. Furthermore,

Σ �⊇!?
FDE H
iff

all ⊇!?-minimal models of Σ are also models of H

Remark 17. Crabbé defined minimal FDE slightly differently, cf. Def.
2.1 in [7]. Item 2. of the above definition is as follows A!? ⊆ B!?, where
A!? = A! ∪ A?. The reason we changed Crabbé’s original definition is that
his proof of proposition 2.2, proposition 48 in this paper, is incomplete.
Even though his proof can be completed, the combination of circumscription
and minimal FDE is more straightforward with the definition given above.
See appendix A for the complete proof of Crabbé’s proposition 2.2 based
on his definition of minimal FDE as well as an alternative definition of
paracomplistent circumscription.

Remark 18. As one can easily see, one obvious difference between circum-
scription and minimizing in the setting of FDE is the relation between the
universes of the models. The use of ⊇ in the above condition(1) seems a
bit odd, because usually we want the models to share the same universe in
order to be comparable. But as a matter of fact, as Crabbé showed in [6],
any other relation or no relation between the models than ⊇ may lead to
a failure of recapture, reassurance or strong reassurance (see Definitions 19
and 20 below). So, the reason why we stick to ⊇ is a technical one, since no
other relation guarantees those wanted properties.

Definition 19. Strong reassurance is the following condition: For any set of
sentences Σ, if B is an FDE-model of Σ, then there exists an FDE-model
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A of Σ with A ≺⊇!? B and A is ⊇!?-minimal or B is already ⊇!?-minimal.
Reassurance is the following condition: If a set of sentences Σ is not FDE-
trivial, i.e., Σ 2FDE H for some H in our language, then we have Σ 2⊇!?

FDE H
for some H in our language.

Definition 20. Classical recapture is the following condition: If a set of
sentences Σ is FOL consistent then we have Σ � H iff Σ �⊇!?

FDE H.

Remark 21. With Definition 19 we follow [6]. Note, that strong reassurance
implies reassurance, but not vice versa. In the course of this article we show
how Crabbé proved reassurance. Whereas, getting strong reassurance for
minimal FDE is still an open problem.
If classical recapture holds, then we get modus ponens for FOL consistent
premises (as intended) and therefore our strongest inference tool back.

Remark 22. Besides the right relation between models, we need to take
care of the language we use. Languages with equality can lead to a failure
of reassurance. An extensive discussion on that subject and under which
conditions ressurance and classical recapture may hold can be found in [6].
In [7] Crabbé explains that his approach (cf. section 4) can solve the reas-
surance problem in such languages, if the treatment of equality is slightly
changed. Nevertheless, we will omit equality for our approach of paracom-
plistent circumscription.

Counterexamples to reassurance, strong reassurance and classical recap-
ture if we use =, ⊆ or have no restrictions on the relation between the
universes of the models can be found for example in [6].

Example 23. To get the general idea of how minimizing in the framework
of FDE works and how we get modus ponens back, we give another short
example.

Let Σ = {∀x(P (x) → G(x)), P (Dan)}. Obviously we have Σ 2FDE

G(Dan), as the models below show us. The entry ∅ means that both exten-
sion and anti-extension are empty.

Model P (x) G(x)

A Dan+ Dan+

B Dan+ Dan+, Dan−

C Dan+, Dan− Dan+, Dan−

D Dan+, Dan− Dan−

E Dan+, Dan− ∅
F Dan+, Dan− Dan+

Australasian Journal of Logic (14:2) 2017, Article no. 1



335

But if we order the models after the amount of inconsistency/ incom-
pleteness, we can see immediately that there is only one type of ⊇!?-minimal
model, namely A.

C E

B DF

A

And since all ⊇!?-minimal Σ-models are models of G(Dan) as well, we
have, as wanted, Σ �⊇!?

FDE G(Dan).

4 Minimal entailment

In order to keep this article self-contained this section is concerned with the
proofs of reassurance and classical recapture in the setting of minimal FDE
for a language with relation symbols and function symbols given by Marcel
Crabbé. Readers who are familiar with [7] can easily skip this section since it
merely provides prerequisites that are made use of in section 5. As mentioned
in section 3, minimal entailment can lead to the failure of reassurance and
strong reassurance. It was Crabbé who showed in [6] and [7] how reassurance
and furthermore classical recapture can be obtained in minimal entailment.
In this section we will present his results but omit most of the proofs, while
in section 5 Marcel Crabbé’s results will be extended to a paracomplistent
version of circumscription.
The first definition is concerned with a general notion of minimality. Instead
of minimizing a certain kind of abnormalities, like inconsistent or incomplete
formulas, the relation ≺F allows minimizing the extension of arbitrary open
formulas of L, where not every variable is in the scope of a quantifier.

Definition 24 (Def. 1.1 in [7]). Let Σ be a set of First-order formulas in a
language without equality, but possibly with function symbols, F be a set
of open formulas, i.e., every H ∈ F has free variables, and A an FOL model
of Σ.

The F-kernel of A, kerF (A), is the set of the objects o in the universe
|A| such that vA(x) = o and (A, vA) 
+ H, for some formula H of F , some
variable x occurring free in H, and some valuation vA.

A transfer relation bF between FOL models of Σ is defined as follows:
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B bF A iff


kerF (B) ⊆ kerF (A) and

if (B, vA) 
+ H, then (A, vA) 
+ H, for all H in F ,
and all valuations vA to kerF (B).

The relation B ≺F A is defined by B bF A and |B| ⊇ |A|.
An FOL model A of Σ is called F-minimal iff for all FOL models B of

Σ if B ≺F A then A bF B.

Remark 25. Note, the above definition of minimality is similar to the
definitions of minimality given earlier. We define a preorder ≺F and based
on this we can define F-minimal models with respect to the strict partial
ordering “B ≺F A and not A bF B” [7, p. 3].
Furthermore, it is important to notice that we define ≺F between FOL
models.

Definition 26 (Def. 1.3 in [7]). Σ �F H iff every F-minimal Σ-model is a
model of H.

Remark 27. Again, it is worth mentioning that the ⊇-relation between
the domains, i.e., |B| ⊇ |A|, seems a bit odd. But it was shown in [6] that
⊆, = or no restriction on the relation between the domains can lead to a
failure of reassurance and/or classical recapture. So, even though the usage
of ⊇ seems to be ad hoc, in the described framework it is the only way to
guarantee reassurance and classical recapture (cf. [6, p. 484]).

Proposition 28 (Prop. 1.1 in [7]). For every F ,Σ and model A of Σ, with
finite F-kernel, there is an F-minimal-model B of Σ such that B ≺F A.

Remark 29. To prove reassurance and classical recapture for minimal
FDE, Marcel Crabbé used properties of FDE in a sophisticated way. First
he showed that those properties hold, when one is dealing with so called
positive formulas and then he used Lyndon’s (cf. [13]) well-known notion of
positive and negative occurrences of relation symbols to translate all FDE
sentences into positive FOL formulas in order to prove reassurance and
classical recapture for minimal FDE.

Definition 30 (p. 9 in [7]). Let H be a formula and P be an n-ary relation
symbol. An occurrence of P in H is positive when the branch of the parse
tree of H leading from this occurrence of P to H itself contains an even
number of formulas ¬F or (F → B), with the corresponding occurrence of
P in F . The occurrence is negative when this number of formulas is odd. A
formula is positive [negative] iff all occurrences of relation symbols in it are
positive [negative].
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Example 31. A simple example would be the following formula:
¬(¬P (x) ∨ Q(x)) ∨ ¬Q(x), where the occurrence of P (x) is positive and
both occurrences of Q(x) are negative.

Definition 32 (Def. 1.2 in [7]). A p-trivial set of formulas is one that entails
all positive formulas of its language.
A model is positively trivial iff every positive formulas is true in it.

Proposition 33 (Prop. 1.2 in [7]). Every non p-trivial positive set of
formula has a finite non-trivial model.

Definition 34 (Def. 1.4 in [7]). F transfers triviality between models of a
positive set of sentences Σ iff whenever B is trivial and B ≺F A, then A is
trivial, for every model A and B of Σ.

Lemma 35 (Lemma 1.1 in [7]). A sufficient condition for F to transfer
triviality between models of Σ is that for every atomic formula P (x1, . . . , xn)
with pointwise distinct variables, there are positive formulas H1, . . . ,Hm in
F such that Σ � (∀x1 . . . ∀xk (H1 ∧ · · · ∧Hm) → ∀x1 . . . ∀xn P (x1, . . . , xn))
(or Σ � ∀x1 . . . ∀xn P (x1, . . . , xn)).

Theorem 1 (Theorem 1.1 in [7]). If F transfers triviality and the positive
set of sentences Σ is not p-trivial, then Σ 2F H, for some positive H.

Remark 36. Theorem 1 shows how we are reassured with the existence of
minimal models in some positive settings, since every non p-trivial positive
set of sentences has minimal models (Propositions 33 and 48) which are not
p-trivial as well, if F transfers triviality.

Note that the notion of transferring triviality is crucial here. If F did
not transfer triviality, one could have a non p-trival set of sentences with a
p-trivial minimal model. Take for instance a language which contains only
one unary predicate P (x), let Σ = ∅ and F = {¬P (x)}. Obviously, Σ is not
p-trivial. Then, per Definition 34, F does not transfer triviality, since in all
F-minimal models P (x) is true (cf. [7, p. 7]).

The next proposition shows that �F can recapture � in some consistent
contexts.

Theorem 2 (Theorem 1.2 in [7]). Let ∀¬F be the set of the universal
closures of the negations of all formulas of F . If ∀¬F ∪Σ is consistent, then
∀¬F ∪ Σ � H iff Σ �F H.

Remark 37. As already mentioned the property of transferring triviality
is important. Without it reassurance would fail (cf. [7, p. 7] for a counter
example).

So, as we can see, the argument for reassurance works as follows:
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• For every model A of a set of formulas Σ with finite F-kernel, there is
an F-minimal model B ≺F A.

• Every non p-trivial positive set of formulas has a finite non-trivial
model.

• If F transfers triviality and Σ is a positive not p-trivial set of formulas,
then there exists an F-minimal not p-trivial (reassurance) model.

In the same positive setting we have in consistent environments a recapture
of our consequence relation � as well. Now, if we could show that there
is a positive system equivalent to FDE we are done, i.e., we have proven
reassurance and classical recapture for FDE. In what follows we will give
a positive translation of FDE by using Lyndon’s notion of positive and
negative occurrences of relation symbols (cf. [13]).

Definition 38 (p. 9 in [7]). We enrich our language L to a language Lpos
by adding a new symbol P for each relational symbol P in L. If we replace
in a formula H of L each occurrence of an atomic formula P (x1, . . . , xn),
with negative occurrence of P , by ¬P (x1, . . . , xn), then we obtain a positive
formula Hpos in Lpos. If we replace similarly each occurrence of an atomic
formula P (x1, . . . , xn), with positive occurrence of P , by ¬P (x1, . . . , xn),
then we obtain a negative formula Hneg.

Example 39. Let H = P (x) ∧ ¬Q(x). Obviously, the occurence of Q(x) is
negative. Therefore, Hpos = P (x) ∧ ¬¬Q(x) and similary, Hneg = ¬P (x) ∧
¬Q(x).

Definition 40 (p. 10 in [7]). To an FDE-interpretation A, we associate in
a natural way a positive interpretation Apos for the language Lpos, with the
same universe and interpretation of the function symbols, and put:

PApos = P+
A

PApos = P−A

for all relation symbols in the language. This means, we interpret the
anti-extension of all predicates as a simple extension.

Lemma 41 (Lemma 2.1 in [7]). We set vA(x) = vApos(x), truth and falsity
in a positive interpretation is then as follows:

(A, vA) 
+ H iff (Apos, vApos) � Hpos

(A, vA) 
− H iff (Apos, vApos) 2 Hneg
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Remark 42. Hpos and Hneg are basically the same formula, but they have
a different interpretation. The positive translation Hpos expresses that H is
true, and the negative translation Hneg that H is not false.

Definition 43. The definition of a positive consequence relation is straight-
forward:

Σpos � Hpos

iff
if (Apos, v) � Gpos for all Gpos ∈ Σpos, then (Apos, v) � Hpos

Proposition 44 (Prop. 2.1 in [7]). From Lemma 41 follows immediately:

Σ �FDE H iff Σpos � Hpos

Remark 45. Within this positive environment, we can even construct the
FOL consequence relation. We only need to guarantee that the extension of
all predicates P (x1, . . . , xn) and P (x1, . . . , xn) are disjoint and their union
not empty.

Proposition 46 (Prop. 2.3 in [7]). Let EM (for excluded middle) be the
set of all sentences ∀x1, . . .∀xn(Px1, . . . , xn∨¬Px1, . . . , xn) of our language,
then we have:

Σ � H iff EMpos, EMneg,Σpos � Hpos

Remark 47. As clear as it is that the positive consequence relation is
equivalent to the FDE consequence relation, this positive translation leads
to nice properties concerning the minimization of models. If we define the set
F properly, we can construct a consequence relation �F which is equivalent
to �⊇!?

FDE and has the properties of reassurance and classical recapture. And
this is exactly what Marcel Crabbé does in [7].

Proposition 48 (Prop. 2.2 in [7]). Let CN (for contradictory) be the set
of all formulas P (x1, . . . , xn) ∧ ¬P (x1, . . . , xn) of our language. If we set
F = CNpos ∪ CNneg the following holds:

1. Σ �⊇!?
FDE H iff Σpos �F Hpos

2. F transfers triviality between models of Σpos

Proof. See [7, p. 11] for 2.
Since we use a slightly different version of minimal FDE than Crabbé

does we have to proof 1.
We proof Σ �⊇!?

FDE H iff Σpos �F Hpos by showing that an FDE-model
A is a minimal Σ-model iff Apos is an F-minimal Σpos-model. This follows
immediately from the fact that
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A! ⊆ B! and A? ⊆ B? iff Apos bF Bpos

which we prove now.
Suppose A! ⊆ B! and A? ⊆ B?, and let v be a valuation to kerF (Apos)

such that (Apos, v) � H for someH ∈ kerF (Apos). We have to distinguish two
cases: (i) H = P (x1, . . . , xn) ∧ ¬¬P (x1, . . . , xn), (ii) H = ¬P (x1, . . . , xn) ∧
¬P (x1, . . . , xn).

In case (i), 〈P, (v(x1), . . . v(xn)〉 ∈ A! ⊆ B!. Therefore, (Bpos, v) �
P (x1, . . . , xn)∧¬¬P (x1, . . . , xn). This also shows kerF (Apos) ⊆ kerF (Bpos).

Cases (ii) is analogous to (i) and left to the reader. Altogether it follows
that Apos bF Bpos.

For the converse, suppose that Apos bF Bpos. We distinguish two cases:
(i) 〈P, (o1, . . . , on)〉 ∈ A!, (ii) 〈P, (o1, . . . , on)〉 ∈ A?. Furthermore, let v be a
valuation such that v(x1) = o1, . . . , v(xn) = on.

In case (i) we have (o1, . . . , on) ∈ P+
A ∩P

−
A , and it follows that (Apos, v) �

P (x1, . . . , xn) ∧ ¬¬P (x1, . . . , xn). Therefore, (Bpos, v) � P (x1, . . . , xn) ∧
¬¬P (x1, . . . , xn) and whence (o1, . . . , on) ∈ P+

B ∩ P−B , i.e.,
〈P, (o1, . . . , on)〉 ∈ B!

Cases (ii) is analogous to (i) and left to the reader. Altogether it follows
that A! ⊆ B! and A? ⊆ B?, which concludes the proof.

Remark 49. Since Crabbé’s original proof of item 1. in proposition 48 is
incomplete, in appendix A you’ll find a corrected version of the proof based
on Crabbé’s definition of minimal FDE.

Theorem 3 (Theorems 2.1 and 2.2 in [7]). For Σpos �F Hpos and therefore
Σ �⊇!?

FDE H we have:

1. Reassurance

2. Classical recapture

Remark 50. Note, that strong reassurance doesn’t hold with this definition
of minimality. To see this just take the Example 3.1 in [6]. Nevertheless, as
Christian Straßer mentioned in personal communication, it is possible to re-
gain strong reassurance for minimal FDE by slightly changing the definition
of minimality and making use of the cardinality of the set of inconsistent and
incomplete objects. But, for now we will leave this topic for future research.

This section was a recapitulation of the work of Marcel Crabbé (cf. [7]).
As one could see, the properties of reassurance and classical recapture in
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an FOL language without equality but possibly with function symbols were
proven via a positive translation technique.

But since the proofs of reassurance and recapture are very general, they
work not only if one wants to minimize inconsistency and incompleteness.
For example, in the setting of FDE there are a number of different mini-
mizing strategies possible (cf. [2]). One could minimize over the so called
knowledge order or the truth order or even just certain relation symbols.
This all depends on the choice of F . But if this choice is suitable then we
have, according to Marcel Crabbé, reassurance and recapture.

5 Paracomplistent circumscription

With the positive translation technique at hand we are almost in the position
to construct a paracomplete and paraconsistent version of circumscription.
There is only one more step to be taken.

In section 4 it was argued that in order to guarantee reassurance and
classical recapture the relation between the universes of two models A and
B with A ≺ B should be |A| ⊇ |B|, but the relation between the universes
of two models in circumscription is =. So, in order to combine both circum-
scription and minimal FDE we need to change the = of circumscription to
⊇.

Note, that a definition of ⊇-circumscription is not necessary if one wants
to combine minimal FDE and circumscription iteratively, i.e., one first min-
imizes inconsistencies and incompleteness and then minimizes the abnormal-
ities of the remaining models. But, one of the purposes of this paper is to
show, that Crabbe’s technique is general enough to combine different mini-
mization techniques simultaneously.

Definition 51. Let ∆ be a set of open atomic formulas and Σ be a set of
wff. Let A and B be two FOL models of Σ. A preorder ≺⊇∆ on the set of
all FOL models of Σ is defined as A ≺⊇∆ B iff

1. |A| ⊇ |B|

2. ∆+
A ⊆ ∆+

B

A model A of Σ is called ⊇∆-minimal iff for all models B of Σ if B ≺⊇∆ A,
then ∆+

A ⊆ ∆+
B. Furthermore,

Σ �⊇∆ H
iff

all ⊇∆-FOL minimal models of Σ are also models of H
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Remark 52. Definition 51 needs a bit more discussion. In classical cir-
cumscription (see Definition 6) it is required that two models always have
the same domain and therefore, are comparable. This requirement is re-
laxed in ⊇-circumscription for one purpose, namely to minimize inconsis-
tency, incompleteness and abnormalities simultaneously, and to show the
generality of Crabbe’s result. To investigate and discuss the properties of
⊇-circumscription will be left for future research. Nevertheless, we will show
that classical recapture holds for ⊇-circumscription.

The next proposition shows how circumscription works in a positively
translated FDE setting.

Proposition 53. Let ∆ be a set of open atomic formulas and F = ∆, then

Σ �⊇∆ H iff EMpos, EMneg,Σpos �F Hpos

Proof. As in the proof of Proposition 48, one has to show that every ⊇ ∆-
minimal FOL model is an F-minimal model and vice versa, and this follows
from

∆+
A ⊆ ∆+

B iff Apos bF Bpos

which will be proven now:
Suppose that ∆+

A ⊆ ∆+
B and let v be a valuation to kerF (Apos), such

that (Apos, v) � P (x1, . . . , xn) for some P (x1, . . . , xn) ∈ F . Then we have
〈P, (v(x1), . . . , v(xn))〉 ∈ ∆+

A ⊆ ∆+
B. But therefore we have (Bpos, v) �

P (x1, . . . , xn). And this also means that kerF (Apos) ⊆ kerF (Bpos).
For the converse, suppose that Apos bF Bpos and let 〈P, (o1, . . . on)〉 ∈

∆+
A and v be such a valuation that v(x1) = o1, . . . , v(xn) = on. Now, we have

(o1, . . . , on) ∈ P+
A and it follows that (Apos, v) � P (x1, . . . , xn). Therefore,

(Bpos, v) � P (x1, . . . , xn) and (o1, . . . , on) ∈ P+
B , i.e.,

〈P, (o1, . . . on)〉 ∈ ∆+
B.

Proposition 54. Let ∆ be a set of open atomic formulas, Σ ∪H a set of
sentences and ∀¬∆ the universal closure of the negations of the formulas of
∆. If ∆ ∪ ∀¬∆ is consistent we have

Σ �⊇∆ H iff ∀¬∆,Σ � H

Proof. The proof of this propositions follows immediately in light of Theo-
rem 2 and Proposition 53.

Now we are in the position to define paracomplistent circumscription.
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Definition 55. Let ∆ be a set of open atomic formulas and Σ be a set of
wff. Let A and B be two FDE-models of Σ. A preorder ≺⊇!?∆ is defined
as A ≺⊇!?∆ B iff

1. |A| ⊇ |B|

2. A! ⊆ B! and A? ⊆ B? and ∆+
A ⊆ ∆+

B

An FDE-model A of Σ is called ⊇!?∆-minimal iff for all models B of Σ if
B ≺⊇!?∆ A, then ∆+

A ⊆ ∆+
B and A! ⊆ B! and A? ⊆ B?. Furthermore,

Σ �⊇!?∆
FDE H
iff

all ⊇!?∆-minimal models of Σ are also models of H

Lemma 56. Let F = CNpos ∪ CNneg ∪ ∆ for some set of open atomic
formulas ∆, then

1. Σ �⊇!?∆
FDE H iff Σpos �F Hpos

2. F transfers triviality between models of Σpos

Proof.

1. We proof Σ �⊇!?∆
FDE H iff Σpos �F Hpos by showing that an FDE-

model A is a minimal Σ-model iff Apos is an F-minimal Σpos-model.
This follows immediately from the fact that

A! ⊆ B! and A? ⊆ B? and ∆+
A ⊆ ∆+

B iff Apos bF Bpos

which we prove now.

Suppose A! ⊆ B! and A? ⊆ B? and ∆+
A ⊆ ∆+

B, and let v be a valuation
to kerF (Apos) such that (Apos, v) � H for some H ∈ kerF (Apos) with
free variable xi and v(xi) = oi. We have to distinguish three cases:
(i) H = P (x1, . . . , xn) ∧ ¬¬P (x1, . . . , xn), (ii) H = ¬P (x1, . . . , xn) ∧
¬P (x1, . . . , xn), (iii) H = P (x1, . . . , xn).

In case (i), 〈P, (v(x1), . . . v(xn)〉 ∈ A! ⊆ B!. Therefore, (Bpos, v) �
P (x1, . . . , xn)∧¬¬P (x1, . . . , xn). This also shows kerF (Apos) ⊆ kerF (Bpos).

Cases (ii) and (iii) are analogous to (i) and left to the reader.

Altogether it follows that Apos bF Bpos.
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For the converse, suppose that Apos bF Bpos. We distinguish three
cases: (i) 〈P, (o1, . . . , on)〉 ∈ A!, (ii) 〈P, (o1, . . . , on)〉 ∈ A?, (iii) 〈P, (o1, . . . , on)〉 ∈
∆+

A . Furthermore, let v be a valuation such that v(x1) = o1, . . . , v(xn) =
on.

In case (i) we have (o1, . . . , on) ∈ P+
A ∩P

−
A , and it follows that (Apos, v) �

P (x1, . . . , xn)∧¬¬P (x1, . . . , xn). Therefore, (Bpos, v) � P (x1, . . . , xn)∧
¬¬P (x1, . . . , xn) and whence
(o1, . . . , on) ∈ P+

B ∩ P
−
B , i.e., 〈P, (o1, . . . , on)〉 ∈ B!

Cases (ii) and (iii) are analogous to (i) and left to the reader.

Altogether it follows that A! ⊆ B! and A? ⊆ B? and ∆+
A ⊆ ∆+

B, which
concludes the proof.

2. The proof is exactly as in [7, p. 11].

Lemma 57. Let F1 = CNpos ∪ CNneg and F2 = ∆ for some set of open
atomic formulas ∆, and let F = F1 ∪ F2. We have for Σpos �F1∪F2 H

pos

and therefore Σ �⊇!?∆
FDE H

1. Reassurance

2. Recapture of �⊇∆ (⊇-circumscription) if the premises are FOL con-
sistent and normal, i.e., not abnormal for every model of Σ

Proof.

1. If Σ is not FDE-trivial, then Σpos is not p-trivial and every non p-
trivial theory has a non-trivial minimal model. Furthermore F trans-
fers triviality.

2. If Σ is FOL consistent and normal, then it is FOL consistent with
∀¬F1 and we have
Σpos �F Hpos iff ∀¬F1,Σ

pos �F2 Hpos iff
EMpos, EMneg,Σpos �F2 H

pos iff Σ �⊇∆ H

Remark 58. The last lemma shows that the recapture of �⊇∆ only holds for
FOL consistent and normal premises, i.e., premises that are not necessarily
glutty or abnormal. The motivation, why we needed to restrict the lemma to
normal premises as well, can be given through an example. We would like to
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thank an anonymous referee of an earlier version of this article for pointing
this out. Let Σ be the following set of sentences: Σ = {P (a),¬P (a)∨Q(a)}
with ∆ = {Q(x)}. It is easy to see that Σ �⊇!?∆

FDE Q(a) doesn’t hold, while
Σ �⊇∆ Q(a) is obviously valid.

Example 59. The next and last example is an example of how we get
modus ponens back in consistent subsets of Σ and that a necessarily incon-
sistent sentence in the model doesn’t lead to explosion. It illustrates how
paracomplistent circumscription works.

Let Σ = {∀x((P (x)∧¬A(x))→ G(x)), P (Dan), Ph(Dan)∧¬Ph(Dan)}
with ∆ = {P (x), A(x)}. Obviously we have Σ � H and Σ �⊇∆

FOL H for all
H of our language, since Σ is inconsistent. Furthermore we have Σ 2FDE

G(Dan).

Models P (x) A(x) G(x) Ph(x)

A Dan+ Dan+ Dan+ Dan+, Dan−

B Dan+ Dan+ Dan+, Dan− Dan+, Dan−

C Dan+ Dan+ Dan− Dan+, Dan−

D Dan+ Dan+ ∅ Dan+, Dan−

E Dan+, Dan− Dan+ Dan+ Dan+, Dan−

F Dan+, Dan− Dan+ Dan+, Dan− Dan+, Dan−

G Dan+, Dan− Dan+ Dan− Dan+, Dan−

H Dan+, Dan− Dan+ ∅ Dan+, Dan−

I Dan+ Dan+, Dan− Dan+ Dan+, Dan−

J Dan+ Dan+, Dan− Dan+, Dan− Dan+, Dan−

K Dan+ Dan+, Dan− Dan− Dan+, Dan−

L Dan+ Dan+, Dan− ∅ Dan+, Dan−

M Dan+, Dan− Dan+, Dan− Dan+ Dan+, Dan−

N Dan+, Dan− Dan+, Dan− Dan+, Dan− Dan+, Dan−

O Dan+, Dan− Dan+, Dan− Dan− Dan+, Dan−

P Dan+, Dan− Dan+, Dan− ∅ Dan+, Dan−

Q Dan+ Dan− Dan+ Dan+, Dan−

R Dan+ Dan− Dan+, Dan− Dan+, Dan−

S Dan+ ∅ Dan+ Dan+, Dan−

T Dan+ ∅ Dan+, Dan− Dan+, Dan−

The table above shows all types of models of Σ and the only ⊇!?∆-
minimal model is Q, therefore Σ �⊇!?∆

FDE G(Dan).
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Remark 60. It is worth mentioning that the results presented in this ar-
ticle can be used to obtain paraconsistent circumscription or paracomplete
circumscription, since we have the following equivalences [7]:

• Σ �LP H iff EMpos,Σpos � Hpos

• Σ �K3 H iff EMneg,Σpos � Hpos

where �LP is the consequence relation of LP and �K3 the consequence re-
lation of the strong Kleene logic.

In a comment on an earlier version of this paper it was worried that in
the paracomplistent circumscription framework minimizing incompleteness
seems to be fully effective for any premise set, i.e., for any premise set Σ,
excluded middle is always valid. This would have posed the question why
one should bother minimizing incompleteness after all. But a closer look at
Example 59 shows that this can’t be the case. Take for example model D
which is minimal with respect to inconsistencies but excluded middle doesn’t
hold for G(x).

6 Final Remarks

The present article focused on the combination of two logical reasoning sys-
tems - minimal FDE and ⊇-circumscription. As it was shown it is possible
to combine both systems in a straightforward way to obtain a new reasoning
system one may call paracomplistent circumscription. This system is able
to deal with glutty and gappy formulas as well as it allows to reject once
drawn conclusions in light of new information and satisfies reassurance and
classical recapture. Paracomplistent circumscription is not able to withdraw
inconsistent sentences. This means if a set of formulas contains H and ¬H
then those sentences will stay inconsistent. In the proposed setting it is not
the job of the reasoning system to get rid of those inconsistencies. This has
to be done outside of the logic.
Minimal FDE, as described here is only one way of minimizing within the
setting of FDE. There are other minimizing methods that are described
in [2] for example. There, the minimizing is done in a propositional setting
but it is natural to ask if minimizing after the amount of information or the
truth in the usual four-valued partial order a) can be done for the First-order
case, b) satisfies reassurance and c) can be combined with circumscription
as in this paper.
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Another natural question would be that of a proof theory. = - circum-
scription can be done proof-theoretically with the so called circumscription
axiom, which is a second order formula. But it is not clear at all if ⊇-
circumscription has a corresponding axiom. If so, it might be possible to
give a proof theoretic account of paracomplistent circumscription in a posi-
tively translated language.
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Appendix A - Crabbé’s minimal FDE and Para-
complistent Circumscription revisited

In this appendix we first want to revisit Crabbé’s original version of minimal
FDE, complete his proposition 2.2 based on the suggestion of the referee
of an earlier version of this article and then, based on this, define another
version of paracomplistent circumscription. On top of that, we address
another referee’s suggestion and present a further modify paracomplistent
circumscription.

We start in defining minimal FDE according to Crabbé.

Definition 61. Let A be an FDE-model of some set of wff Σ. We define
the inconsistent and incomplete part A!? of A in the following way:

A!? = {〈P, (o1, . . . , on)〉|(o1, . . . , on) ∈ P+
A ∩ P

−
A or (o1, . . . , on) 6∈ P+

A ∪ P
−
A }

Definition 62. Let A and B be two FDE-models of a set of wff Σ. A
preorder ≺⊇!? on the set of all FDE-models of a set of wff Σ is defined as
A ≺⊇!? B iff

1. |A| ⊇ |B|

2. A!? ⊆ B!?

A model A of Σ is called ⊇!?-minimal iff for all models B of Σ if B ≺⊇!? A,
then A!? ⊆ B!?. Furthermore,

Σ �⊇!?
FDE H
iff

all ⊇!?-minimal models of Σ are also models of H

Remark 63. In Proposition 2.2 in [7], Crabbé proved Σ �⊇!?
FDE H iff Σpos �F

Hpos, from the fact that Apos bF Bpos iff A!? ⊆ B!?. However, it turned out
that his proof is incomplete. He actually just proved Proposition 64. In the
following we’ll complete his proof based on the suggestions of an anonymous
referee of an earlier version of this paper.

Proposition 64. Let F = CNpos ∪ CNneg, then

1. if A!? ⊆ B!? then kerF (Apos) ⊆ kerF (Bpos)

2. if Apos bF Bpos then A!? ⊆ B!?
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Proof. See [7] and the proof of Proposition 2.2.

Lemma 65. Let A be an FDE-model of a set of sentences Σ and F =
CNpos ∪ CNneg. Then, there exists a model B of Σ such that:

1. B!? = {〈P, (o1, . . . , on)〉|(o1, . . . , on) ∈ P+
A ∩ P

−
A }

2. |B| = |A|

3. B ≺⊇!? A

4. Bpos ≺F Apos

Proof. We define B exactly as A except for each P we set P+
B = P+

A ∪
{(o1, . . . , on) ∈ |A|n|(o1, . . . , on) 6∈ P+

A ∩ P
−
A }.

1.-3. then follow directly from the definition of B. As for 4., we need to
show that Bpos bF Apos and |Bpos| ⊇ |Apos|. The latter follows immediately
because of |Bpos| = |B| = |A| = |Apos|.
Now, by Proposition 64 we have kerF (Bpos) ⊆ kerF (Apos). Suppose for
some H ∈ F and some valuation v to kerF (Bpos), (Bpos, v) � H. We have
to distinguish two cases: 1. H = P (x1, . . . , xn) ∧ ¬¬P (x1, . . . , xn) and 2.
H = ¬P (x1, . . . , xn) ∧ ¬P (x1, . . . , xn).
In case 1, (v(x1), . . . , v(xn)) ∈ P+

B ∩ P
−
B and by the construction of B also

(v(x1), . . . , v(xn)) ∈ P+
A ∩ P

−
A and therefore (Apos, v) � H. Assume for con-

tradiction 2., (v(x1), . . . , v(xn)) 6∈ P+
B∪P

−
B , but we also have (v(x1), . . . , v(xn)) 6∈

P+
A ∪P

−
A . But this means by the construction of B, (v(x1), . . . , v(xn)) ∈ P−A ,

which is a contradiction.
Altogether we have shown Bpos bF Apos.

We still need to show that B is a model of Σ. This can be done via
induction by showing that if A �± H then B �± H. The proof is left to the
reader.

Remark 66. We are now in the position to proof the equivalence from
Proposition 2.2 in [7].

Proposition 67. Let Σ ∪ H be a set of sentences and let F = CNpos ∪
CNneg, then Σ �⊇!?

FDE H iff Σpos �F Hpos.

Proof. We show that an FDE-model A is a minimal model of Σ iff Apos is
an F-minimal model of Σpos.

Assume Apos is not an F-minimal model of Σpos. But this means there
is a model Bpos of Σpos for which
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1. Bpos ≺F Apos

2. Apos 6bF Bpos

We now show that B ≺⊇!? A and A!? 6⊆ B!?, which shows that A is not
minimal.
By 1. we have Bpos bF Apos and |Bpos| ⊇ |Apos| and by Proposition 64
we have B!? ⊆ A!?. And because of |B| = |Bpos| and |A| = |Apos| we have
|B| ⊇ |A| and therefore B ≺⊇!? A.
We still have to show that A!? 6⊆ B!?. By 2. either i) kerF (Apos) 6⊆
kerF (Bpos) or ii) there are H ∈ F and some valuation v to kerF (Apos)
for which (Apos, v) � H while (Bpos, v) 2 H.
Suppose i). By Proposition 64 we have A!? 6⊆ B!?.
Suppose ii). We have to distinguish two cases. H = P (x1, . . . , xn) ∧
¬¬P (x1, . . . , xn) or H = ¬P (x1, . . . , xn) ∧ ¬P (x1, . . . , xn).
Suppose firstH = P (x1, . . . , xn)∧¬¬P (x1, . . . , xn). Then we have (v(x1), . . . , v(xn)) ∈
P+
A ∩P

−
A and therefore 〈P, (v(x1), . . . , v(xn))〉 ∈ A!?, while (v(x1), . . . , v(xn)) 6∈

P+
B ∩ P

−
B . Assume now for contradiction that 〈P, (v(x1), . . . , v(xn))〉 ∈ B!?.

Then (v(x1), . . . , v(xn)) 6∈ P+
B ∪ P

−
B and hence (Bpos, v) � ¬P (x1, . . . , xn) ∧

¬P (x1, . . . , xn). But by 1. we have then (Apos, v) � P (x1, . . . , xn)∧¬P (x1, . . . , xn)
and therefore (v(x1), . . . , v(xn)) 6∈ P+

A ∪P
−
A which is contradicting (v(x1), . . . , v(xn)) ∈

P+
A ∩ P

−
A . Therefore A!? 6⊆ B!?.

The case H = ¬P (x1, . . . , xn) ∧ ¬P (x1, . . . , xn) is analogously and left to
the reader.

Suppose A is not a minimal FDE-model of Σ. We distinguish two cases.

1. {〈P, (o1, . . . , on)〉 ∈ A!?|(o1, . . . , on) 6∈ P+
A ∪ P

−
A } 6= ∅

2. {〈P, (o1, . . . , on)〉 ∈ A!?|(o1, . . . , on) 6∈ P+
A ∪ P

−
A } = ∅

Suppose 1. By Lemma 65 there is a Σ-model C for which a) Cpos ≺F Apos

and b) C!? = {〈P, (o1, . . . , on)〉 ∈ A!?|(o1, . . . , on) ∈ P+
A ∩ P

−
A }. Now,

take any 〈P, (o1, . . . , on)〉 ∈ A!? such that (o1, . . . , on) 6∈ P+
A ∪ P

−
A . By b)

〈P, (o1, . . . , on)〉 6∈ C!?. Since also (Apos, v) � ¬P (x1, . . . , xn)∧¬P (x1, . . . , xn)
where v(xi) = oi (for 1 ≤ i ≤ n), while (Cpos, v) 2 ¬P (x1, . . . , xn) ∧
¬P (x1, . . . , xn), we have Apos 6bF Cpos. By a) and c) Apos is not an F-
minimal model of Σpos.
Suppose 2. We know there is a Σ-model B for which B ≺⊇!? A and
A!? 6⊆ B!?. Thus, B!? ⊂ A!?. By Lemma 65, there is a Σ-model C for
which Cpos ≺F Bpos, C ≺⊇!? B, |C| = |B| and C!? = {〈P, (o1, . . . , on)〉 ∈
B!?|(o1, . . . , on) ∈ P+

B ∩P
−
B}. We now show that Cpos ≺F Apos and Apos 6bF
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Cpos.
Since C!? ⊆ B!? ⊂ A!?, we also have C!? ⊂ A!? and by Proposition 64,
kerF (Cpos) ⊆ kerF (Apos). Now, suppose (Cpos, v) � H for some H ∈ F and
some v to kerF (Cpos). Since there are no gaps in Cpos, H is of the form
P (x1, . . . , xn) ∧ ¬¬P (x1, . . . , xn). Therefore 〈P, (v(x1), . . . , v(xn))〉 ⊆ C!? ⊆
A!?, which means (Apos, v) � H, remember A. Since we also have |C| =
|B| ⊇ |A| it follows that Cpos ≺F Apos. Now, let 〈P, (o1, . . . , on)〉 ∈ A!?\C!?.
Hence, (Apos, v) � P (x1, . . . , xn) ∧ ¬¬P (x1, . . . , xn), while
(Cpos, v) � P (x1, . . . , xn)∧¬¬P (x1, . . . , xn) and therefore Apos 6bF Cpos.

Remark 68. In an earlier version of this paper we used Definition 62 to con-
struct paracomplistent circumscription. However, we changed our definition
to the current one in order to shorten proofs and to not further complicate
the combination of ⊇-circumscription and minimal FDE. Nevertheless it is
possible to define paracomplistent circumscription based on Definition 62.
In the following we will give this definition but omit the proofs of reassurance
and recapture.

Definition 69. Let ∆ be a set of open atomic formulas and Σ be a set of
wff. Let A and B be two FDE-models of Σ. A preorder ≺⊇!?∆ is defined
as A ≺⊇!?∆ B iff

1. |A| ⊇ |B|

2. A!? ⊆ B!? and ∆+
A ⊆ ∆+

B

An FDE-model A of Σ is called ⊇!?∆-minimal iff for all models B of Σ if
B ≺⊇!?∆ A, then ∆+

A ⊆ ∆+
B and A! ⊆ B! and A? ⊆ B?. Furthermore,

Σ �⊇!?∆
FDE H
iff

all ⊇!?∆-minimal models of Σ are also models of H

Remark 70. In Lemma 57 it was shown that recapture only holds for
FOL consistent and normal contexts. As a referee of an earlier version of
this article suggested it is possible to weaken this restriction by minimally
modifying Definition 69. In the modified definition the minimization of gluts
and gaps is prioritized over the minimization of abnormalities.

Even though it is worthwhile to investigate the following definition, since
it seems to be case that Crabbé’s results can be applied to this relation as
well, we will leave this topic for future research.
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Definition 71. A ≺prio
FDE B iff

1. |A| ⊇ |B|

2. A!? ⊂ B!? or (A!? = B!? and ∆+
A ⊆ ∆+

B)

Appendix B - Lin’s Paraconsistent Circumscrip-
tion

In 1995 ([12], [11]) Lin proposed a paraconsistent version of circumscription
with LP as base logic. In what follows we will shortly describe his approach
and stress some of its problematic aspects. The interesting point of his
approach is that Lin also minimizes inconsistencies and abnormalities in
one step. But the main difference between Lin and the approach of this
article is that he doesn’t distinguish between the set of abnormal objects and
the set of inconsistent/ incomplete objects which leads to some unwanted
properties.

Lin’s approach is basically a plain combination of circumscription and
minimal LP . He starts with an LP model of a set of wff Σ and minimizes a
subset of the relation symbols contained in Σ after inconsistency and truth.
In order to analyse this approach, we need to introduce his way of defining
a glutty FOL interpretation. For every A and vA one defines a function πvA
from the set of all wff to {0, 1/2, 1} in the following way. Let H be a wff:

πvA(H) = 1 iff (A, vA) 
+ H and (A, vA) 1− H
πvA(H) = 1/2 iff (A, vA) 
+ H and (A, vA) 
− H
πvA(H) = 0 iff (A, vA) 1+ H and (A, vA) 
− H

As one can easily check, this interpretation gives us the LP truth-tables for
¬,∧,∨,→ and finally we have Σ �LP H, iff if πvA(G) ∈ {1, 1/2} for all G ∈ Σ,
then πvA(H) ∈ {1, 1/2} for all πvA . Note that we don’t have truth-value gaps,
i.e., for every predicate the union of the extension and anti-extension exhaust
the entire universe.

Lin defines his minimal semantics as follows (see Definition 10 in [12]):
Let Σ be a set of wff, ∆ be a set of open atomic formulas and let A, A′ be
two LP -models of Σ. He then defines A′ ≺Lin A, iff

1. |A| = |A′|
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2. for every P (x1, . . . , xn) ∈ ∆,
if πvA′ (P (x1, . . . , xn)) = 1 then πvA(P (x1, . . . , xn)) = 1;
and if πvA′ (P (x1, . . . , xn)) = 1/2 then πvA(P (x1, . . . , xn)) = 1/2, and

3. there is at least one Q(x1, . . . , xm) ∈ ∆ such that
πvA(Q(x1, . . . , xm)) = 1 but πvA′ (Q(x1, . . . , xm)) 6= 1; or there is at
least oneQ ∈ ∆ such that πvA(Q(x1, . . . , xm)) = 1/2 but πvA′ (Q(x1, . . . , xm)) 6=
1/2.

A model A of Σ is said to be ≺Lin-minimal iff there is no model A′ of
Σ such that A′ ≺Lin A. The semantic entailment of paraconsistent circum-
scription LPc can then be defined as usual: Let Σ be a set of wff and H a
wff, then Σ �LPc H iff all ≺Lin-minimal models of Σ are also models of H.

Lin now claims that his approach is a good account of reasoning in
inconsistent and defeasible environments. But, as can be easily shown, his
approach might lead to a failure of modus ponens and even the example he
used doesn’t work as Lin wants it to.

Let us start with an example which is structurally similar to one given
by Lin. The failure of this example is due to the persistence of the values
1/2 and 1 from smaller to greater models defined above.

Let Σ = {∀x((P (x)∧¬A(x))→ G(x)), P (Dan), Ph(Dan)∧¬Ph(Dan)}
with ∆ = {P,A}

Now, let A be a model which assigns the value 1/2 to all formulas under
consideration. Then A′ (cf. table below) is minimal.

Model P (Dan) A(Dan) Ph(Dan) G(Dan)

A 1/2 1/2 1/2 1/2

A′ 1/2 0 1/2 0

Therefore, G(Dan) can not be inferred in every minimal model, as in-
tended, even though the inconsistent formula does not even occur in the
conditional. This shows that the persistence of the values 1/2 and 1 can
lead to unintended minimal models. The persistence of these values is due
to item 2 of the definition of minimal models above, to be exact the word
“and” is problematic. It is easy to check that the approach of the present
article gives the intended minimal models.

As an anonymous referee pointed out Lin’s definition of minimality might
have been rushed and not check-read thoroughly and may be replaced by a
more charitable reading:
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2.’ for every P ∈ ∆,
if πvA′ (P (x1, . . . , xn)) = 1 then πvA(P (x1, . . . , xn)) = 1
or πvA(P (x1, . . . , xn)) = 1/2;
and if πvA′ (P (x1, . . . , xn)) = 1/2 then πvA(P (x1, . . . , xn)) = 1/2

This adjusted definition seems to solve the problem of persistence at least
in the example above, but the other issues we will point out seem to remain
since modus ponens still might fail and because of the identity |A| = |A′| we
have some doubts that reassurance is satisfied.

Another issue of Lin’s approach is that instead of minimizing all incon-
sistency in a model, he minimizes only a subset of the premise set Σ after
inconsistency. But this means that every predicate P (x) not contained in ∆
can be evaluated with 1/2 even though it is not necessarily inconsistent. On
the other hand, one reason to construct minimal LP , as stated before, was
the failure of modus monens in LP . And one would expect from a paracon-
sistent version of circumscription with minimal LP as core logic that the
consistent part of Σ satisfies modus ponens. But since only predicates in ∆
are minimized, all other predicates which may occur in a set of sentences Σ
are left out. In the worst case this could lead to a failure of modus ponens.
Consider for example the following Σ = {∀x(L(x) → A(x)), L(Dan)} with
∆ = {A}. Then, clearly, we can not infer A(Dan) as intended, since there
are ≺Lin-minimal models A with πvA(L(Dan)) = 1/2 and πvA(A(Dan)) = 0.
Therefore, it seems to be rather important to minimize all inconsistency in
a model and not just a subset. Of course, one might argue, Lin leaves open
the possibility of minimizing all predicates in L but this would presumably
undermine the idea of circumscription.

Finally, we just note that because of the =-relation between the models
in his definition of minimality, Lin’s approach doesn’t seem to satisfy re-
assurance and strong reassurance. To see this, one just need to apply the
examples of [6] to Lin’s approach. To be fair the construction of minimal
models as presented in this article doesn’t satisfy strong reassurance either,
while reassurance is satisfied in lanaguages without equalitiy, but since Lin
claimed it does satisfy both, it is a problem worth noting.

Lin’s work was one of the motivations of this article. In the present arti-
cle we hope we could show how to avoid some of the problematic aspects of
Lin’s approach when creating a paraconsistent (and paracomplete) version
of circumscription.

Australasian Journal of Logic (14:2) 2017, Article no. 1


