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A MULTI-SORTED VERSION OF SECOND ORDER
ARITHMETIC

FARIDA KACHAPOVA

Abstract. This paper describes axiomatic theories SA and SAR, which are
versions of second order arithmetic with countably many sorts for sets of nat-
ural numbers. The theories are intended to be applied in reverse mathemat-
ics because their multi-sorted language allows to express some mathematical
statements in more natural form than in the standard second order arith-
metic. We study metamathematical properties of the theories SA, SAR and
their fragments. We show that SA is mutually interpretable with the theory
of arithmetical truth PATr obtained from the Peano arithmetic by adding
infinitely many truth predicates. Corresponding fragments of SA and PATr
are also mutually interpretable. We compare the proof-theoretical strengths
of the fragments; in particular, we show that each fragment SAs with sorts
6 s is weaker than next fragment SAs+1.

1. Introduction

Reverse mathematics is one of the current research directions in mathematical
logic. It is based on the formal theories, subsystems of second order arithmetic,
introduced by Simpson [4]. Here we describe two other versions of second or-
der arithmetic that can possibly be used in reverse mathematics. They are
axiomatic theories SA and SAR. Both theories have countably many sorts for
sets of natural numbers, a predicative comprehension axiom and a version of
choice axiom. The difference between the two systems is in the induction axiom:
SA has the full induction and SAR has the induction restricted to formulas of
the form n ∈ x.

We believe that in the multi-sorted language of SA and SAR some mathe-
matical statements can be expressed in a shorter and more natural way than
in the language of the standard second order arithmetic, which has only one
sort for sets of natural numbers. In this paper we study metamathematical
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properties of SA, SAR and their fragments. We construct an interpretation of
SA in the theory of arithmetical truth PATr introduced in [1]. We also con-
struct an interpretation of PATr in SA. Thus, we show that SA and PATr are
equiconsistent. We also prove equiconsistency of fragment SAs of SA with sorts
6 s and corresponding fragment PATrs of PATr (s > 0). We show that each
fragment SAs is proof-theoretically weaker than next fragment SAs+1 (s > 0).
The same is true for fragments of PATr.

In section 2 we give definitions of the axiomatic theories SA, SAR and PATr.
In section 3 we explain the motivation for introducing and studying these the-
ories. In section 4 we construct an interpretation of SA in PATr. In section
5 we construct an interpretation of PATr in SA. In section 6 we compare the
proof-theoretical strengths of fragments of SA and PATr.

In the rest of the introduction we explain some notations and terminology.
All theories considered in this paper are first-order axiomatic theories (a well-

known definition of a first-order axiomatic theory can be found, for example, in
[3]).

The symbol � means “equals by definition”. The symbol � denotes a logical
connective ∧,∨ or ⊃, and the symbol Q denotes a quantifier ∀ or ∃. In each of
our axiomatic theories we have the logical constant ⊥ for falsity and we regard
¬ϕ as an abbreviation for ϕ ⊃ ⊥. The complexity of a formula ϕ is the number
of occurrences of logical symbols (the main three connectives and quantifiers) in
ϕ. For any formula ϕ we denote ¯̄ϕ the closure of ϕ, that is, the formula ϕ with
universal quantifiers over all its parameters. We denote τ [x1, . . . , xn/t1, . . . , tn]
the result of proper substitution of terms t1, . . . , tn for variables x1, . . . , xn in
an expression τ . The complexity of a term t is the number of occurrences of
functional symbols in t.

We fix a one-to-one coding of all finite sequences of natural numbers such
that 0 is the code for the empty sequence. In a theory containing first-order
arithmetic we use the notations:

(n1, . . . , nk) as the code for sequence n1, . . . , nk;
(n)i for the ith element of the sequence with code n;
lh(n) for the length of the sequence with code n.

In particular, (m,n) is the code for pair m,n of natural numbers. For a
natural number n we denote n the formal arithmetical term for n, that is n =
1 + 1 . . .+ 1︸ ︷︷ ︸

n times

.

We assume that for any axiomatic theory K some Gödel numbering of its
expressions is fixed. For an expression q we denote xqy the Gödel number of q
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in this numbering; tm and ϕm denote the term and formula with Gödel number
m, respectively.

The notation K ` ϕ means that formula ϕ is derivable in theory K. The
theory K is consistent if it is not true that K ` ⊥. ProofK(m,n) denotes the
arithmetical formula stating that n is the Gödel number of a formal proof in the
theory K for formula ϕm. The formula PvK(m)� ∃nProofK(m,n) means that
ϕm is derivable in the theory K. The formula ConK � ¬PvK(x⊥y) means that
the theory K is consistent. Thus, a theory A is proof-theoretically weaker than
a theory B (equivalently, B is proof-theoretically stronger than A) if B ` ConA.

In this paper we consider axiomatic theories where variables have superscripts
for sorts. A superscript for a variable is usually omitted when the variable is
used for the second time or more in a formula or in a proof (so its sort is
obvious).

2. Definition of three axiomatic theories

2.1. Axiomatic theory SA. SA stands for arithmetic with sorts. The lan-
guage of theory SA has the following variables:

n1, n2, . . . ,m, n, . . . over natural numbers and

x
(k)
1 , x

(k)
2 , . . . , x(k), y(k), . . . of sort k over sets of natural numbers (k =

1, 2, . . .).

The language of SA has two numerical constants 0 and 1, and functional
symbols · and +. There are the following predicate symbols:

= (equality of natural numbers) and ∈k (k = 1, 2, . . .).

Numerical terms are constructed from numerical variables and constants using
functional symbols. Atomic formulas are:
t = τ ; t ∈k x(k), where t and τ are numerical terms.

Formulas are constructed from atomic formulas and ⊥ using logical connec-
tives and quantifiers. The language of SA is defined.

A formula ϕ of SA is called k-simple if it has no quantifiers over set variables
and it has no variables of sorts greater than k.

Equality of sets is introduced as an abbreviation:

x(k) =k y
(k) � ∀n(n ∈k x ≡ n ∈k y).

For brevity we will often omit indices in =k and ∈k.
Axiomatic theory SA has the following axioms.
1. Classical predicate logic with equality.
2. Peano axioms.
¬(n+ 1 = 0).
n+ 1 = m+ 1 ⊃ n = m.
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n+ 0 = n.
n+ (m+ 1) = (n+m) + 1.
n · 0 = 0.
n · (m+ 1) = n ·m+ n.

3. Induction axiom. ϕ(0) ∧ ∀n[ϕ(n) ⊃ ϕ(n+ 1)] ⊃ ∀nϕ(n),
where ϕ is any formula of SA.

4. Comprehension axiom. ∃z(k)∀n(n ∈ z ≡ ϕ(n)),
where ϕ is a k-simple formula not containing the variable z(k).

5. Choice axiom.

∀n∃!x(k)ϕ(n, x) ⊃ ∃y(k+1)∀n∃x(k)[ϕ(n, x) ∧ ∀m(m ∈ x ≡ (n,m) ∈ y)],

where ϕ is a k-simple formula.
This completes the definition of the theory SA. For s > 0 we denote SAs

the fragment of SA containing only sorts not greater than s. Thus, SA0 is the
Peano arithmetic PA.

2.2. Axiomatic theory SAR. SAR stands for arithmetic with sorts and re-
stricted induction. SAR has the same languge as SA and the same axioms,
except the induction axiom, which in SAR has the following form:

0 ∈ x(k) ∧ ∀n[n ∈ x(k) ⊃ n+ 1 ∈ x(k)] ⊃ ∀n(n ∈ x(k)), k = 1, 2, . . . .

For s > 0 we denote SARs the fragment of SAR containing only sorts not
greater than s. We consider the theory SAR because its induction axiom is the
same as in most of the Simpson’s theories [4].

2.3. Axiomatic theory PATr. PATr stands for Peano arithmetic with truth
predicates. This theory was introduced in [1]. Theory PATr is based on the
axiomatic theory PA for the first-order arithmetic. The language of PATr is
obtained from the language of PA by adding predicate symbols Trk(m, l), k =
1, 2, . . . .

For any s > 1, the language PATrs is obtained from the language of PA by
adding predicate symbols Trk(m, l), 1 6 k 6 s. The language PATr0 is just the
language of PA.

Let us fix Gödel numbering of expressions of the language PATr. It will be
clear from context whether we use Gödel numbering for expressions of PATr
or SA. Next we introduce some arithmetical formulas.
Form(k,m)� “m is the Gödel number of a formula of PATrk”.
Subform(m, r) � “r is the Gödel number of a subformula of the formula

with Gödel number m”.
Param(m, i) � “ni is a parameter of the expression of PATr with Gödel

number m”.
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The following formula means that a sequence l is an evaluation of all param-
eters of the expression with Gödel number m:
Ev(m, l)� (∀i 6 m)[Param(m, i) ⊃ lh(l) > i].
This formula says that the sequence l is long enough to contains a value for

each parameter of the expression with Gödel number m (the intended value for
variable ni is the i-th element of the sequence l).

We denote eval and subst the primitive recursive functions such that:
eval(m, l) equals the value of term tm under evaluation l;
subst(l, i, n) equals the evaluation l, in which the i-th element is substituted

by n.
Axiomatic theory PATr has classical predicate logic with equality and the

following non-logical axioms.
1. Peano axioms (the same as in SA).

2. Induction axiom. ϕ(0)∧ ∀n[ϕ(n) ⊃ ϕ(n+ 1)] ⊃ ∀nϕ(n), where ϕ is any
formula of PATr.

3. Axioms for truth predicates (for any k > 1).

(Tr1) Trk(m, l) ⊃ Form(k − 1,m) ∧ Ev(m, l);

(Tr2) Ev(m, l) ∧ “ϕm is ti = tj” ⊃ [Trk(m, l) ≡ (eval(i, l) = eval(j, l))];

(Tr3) Ev(m, l) ∧ “ϕm is Trk(ti, tj)”

⊃ [Trk+1(m, l) ≡ Trk(eval(i, l), eval(j, l))];

(Tr4) ¬Trk(x⊥y, l);

(Tr5) Ev(m, l) ∧ “ϕm is ϕi � ϕj” ⊃ [Trk(m, l) ≡ (Trk(i, l) � Trk(j, l))];

(Tr6) Ev(m, l) ∧ “ϕm is Qniϕj” ⊃ [Trk(m, l) ≡ QnTrk(j, subst(l, i, n))].

The axioms (Tr1)-(Tr6) describe Trk as the truth predicate for formulas of
the language PATrk−1; that is, Trk(m, l) means that the formula ϕm is true
under evaluation l.

This completes the definition of the theory PATr. Denote PATrs the frag-
ment of PATr in the language PATrs. Clearly, PATr0 is just the first-order
arithmetic PA.

The following lemma describes some properties of the theories PATrs.

Lemma 2.1. Suppose 1 6 q 6 s.
1. If ψ is an arbitrary formula of PATrq−1 with all its parameters in the list

n1, . . . , nk, then

PATrs ` lh(l) > k ⊃ (Trq(xψy, l) ≡ ψ [n1, . . . , nk/(l)1, . . . , (l)k]) .
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2. PATrs+1 ` 1 6 q 6 s̄ ∧ Form(q − 1,m) ∧ ∀i [Param(m, i) ⊃ i 6 r] ⊃
PvPATRs (xlh(l) > r ⊃ {Trq(m, l) ≡ ϕm[n1, . . . , nr/(l)1, . . . , (l)r]}y) .

Proof. 1. Proof is by induction on the complexity of ψ.
2. This is proven by formalizing the proof of part 1 in PATrs+1. �

3. More about the three axiomatic theories

Simpson [4] described and studied subsystems of second order arithmetic
that are widely used in reverse mathematics. The main five of these theories
are RCA0, WKL0, ACA0, ATR0 and Π1

1 − CA0, in order of their strenghts.
We introduce the theories SA and SAR as other possible axiomatic theories

for reverse mathematics. The theory SAR1 is the same as ACA0 and the theory
SA1 is the same as ACA (ACA0 with full induction). Ordinary mathematics
can be developed in SA in a similar way that Simpson [4] develops it in the
theory ACA0. We believe that some mathematical definitions and statements
can be simplified in SA due to its multi-sorted language but this requires more
research. In this paper we study some metamathematical properties of the
theory SA.

In sections 4 and 5 we show that the theories SA and PATr are mutually
interpretable, and so are their corresponding fragments. The theory PATr was
introduced to clarify the meaning of different sorts of sets (they are defined by
formulas in the predicative comprehension axiom); it is also used in the proof
of Theorem 5.2.

4. Interpretation of SA in PATr

We want to represent each set of sort k from SA by a formula of PATrk−1.
In the introduction we mentioned Gödel numbering and related notations. In
this section we fix Gödel numbering of all expressions of the language PATr.
For an expression q we denote xqy the Gödel number of q in this numbering;
ϕr denotes the formula with Gödel number r and xni.ϕry denotes the Gödel
number of the expression ni.ϕr.

We define an arithmetical formula St by the following:

St(k,m)� k > 1 ∧ (∃i 6 m)(∃r 6 m)(∃l 6 m)[Form(k − 1, r)

∧m = (k, xni.ϕry, l) ∧ Ev(x∀niϕry, l)].
Here ϕr is a formula of the language PATrk−1 and each parameter of ϕr, ex-

cept ni, is evaluated by a sequence l. So the triple m = (k, xni.ϕry, l) represents
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a set of sort k informally written as x = {ni|ϕr(ni, l)}. Further we will interpret
t ∈ x as ϕr(t, l) being true via Trk. Thus, St(k,m) means that m represents a
set of sort k.

Next we define arithmetical formulas Setk, k = 1, 2, . . ..
Setk(m)� St(k̄,m).
Setk(m) also means that m represents a set of sort k. The difference between

St(k,m) and Setk(m) is that in the first formula k is a variable of the language
PATr and in the second formula k is an external natural number.

Next we define interpretation θ of the theory SA in the theory PATr.
Interpretation tθ of term t is defined by induction on the complexity of t.

- Interpretation of variables: nθi = n(0,i), x
(k)θ
i = n(k,i), k > 1.

- If t = τ + r, then tθ = τ θ + rθ.

- If t = τ · r, then tθ = τ θ · rθ.
For each formula ϕ of SA we define its interpretation θ(ϕ) by induction on

the complexity of ϕ.
θ(t = τ)� tθ = τ θ.

θ(t ∈k x(k))� ∃m, i, l[xθ = (k̄, xni.ϕm, ly) ∧ Trk(m, subst(l, i, tθ))], k > 1.

θ(⊥)� ⊥.
θ(ψ � χ)� θ(ψ) � θ(χ).

θ(Qnψ)� Qnθθ(ψ).

θ(∀x(k)ψ)� ∀xθ[Setk(xθ) ⊃ θ(ψ)], k > 1.

θ(∃x(k)ψ)� ∃xθ[Setk(xθ) ∧ θ(ψ)], k > 1.

Clearly, if ϕ is a formula of SAs, then θ(ϕ) is a formula of PATrs (s > 0).

Theorem 4.1. Suppose s > 0.
1. For any arithmetical formula ϕ with all parameters in the list n1, . . . , nm:

PATrs ` θ(ϕ) ≡ ϕ[n1, . . . , nm/n
θ
1, . . . , n

θ
m].

2. If SAs ` ϕ, then PATrs ` θ( ¯̄ϕ).

3. SAs+1 ` PvSAs(m) ⊃ PvPATrs(xθ(ϕm)y).

Proof. 1. Proof is by induction on the complexity of ϕ.
2. Both PATr0 and SA0 are the same as the first-order arithmetic PA.
For s > 1 proof is by induction on the length of derivation of ϕ. Since logical

connectives are preserved in this interpretation, the statement holds for the
induction axiom and the classical predicate logic. Peano axioms are the same
in both theories. It remains to check the comprehension and choice axioms.
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Suppose ϕ is the comprehension axiom:

∃z(k)∀nγ(nγ ∈k z ≡ ψ).

Here k 6 s; ψ is a k-simple formula with all its parameters in the list x̃, ñ, nγ,

where x̃ is a list of set variables x
(k1)
α1 , . . . , x

(kp)
αp (all different from z(k)) and ñ is

a list of numerical variables nβ1 , . . . , nβv (all different from nγ).
We need to prove in PATrs the interpretation of ¯̄ϕ, which is equivalent to:

∀nθβ1 , . . . , n
θ
βv∀x

(k1)θ
α1

, . . . , x(kp)θαp

{
p∧
j=1

Setkj

(
xθαj

)
⊃ ∃zθ

[
Setk(z

θ) ∧ ∀nθγ (θ(nγ ∈ z) ≡ θ(ψ))
]}
.

Let us fix nθβ1 , . . . , n
θ
βv
, x

(k1)θ
α1 , . . . , x

(kp)θ
αp and assume

∧p
j=1 Setkj

(
xθαj

)
. Then

each xθαj
(j = 1, 2, . . . , p) has the form:

xθαj
= (kj, xnγj .ψjy, qj),

where Form(kj − 1, xψjy) and Ev(x∀nγjψjy, qj). Every ψj is a formula of
PATrk−1, since kj 6 k.

We obtain a formula ψ′ from ψ by changing each numerical subterm t to tθ

and then each atomic subformula tθ ∈ x
(kj)
αj to the formula ψj, in which nγj

is replaced with tθ and all other parameters are replaced with corresponding
values from the evaluation qj. Thus, ψ′ is a formula of PATrk−1 with all its
parameters in the list nθγ, ñ

θ.

Fix an evaluation l of all parameters of ∀nθγψ′ such that:

(l)i =

{
nθβj if i = (0, βj), j = 1, 2, . . . , v,

0 otherwise.

Let us take r = (k, xnθγ.ψ
′y, l). We will use r as the value for z(k)θ. We have

Setk(r), and it remains to prove:

∀nθγ
{
θ(nγ ∈ z)[zθ/r] ≡ θ(ψ)

}
.

By the definition of the interpretation θ we have:

(1) ∀nθγ
{
θ
(
nγ ∈ z(k)

)
[zθ/r] ≡ Trk

(
xψ′y, subst(l, (0, γ), nθγ

)
)
}
.

Since ψ′ is a formula of PATrk−1, by Lemma 2.1.1) we have for any nθγ:

Trk
(
xψ′y, subst(l, (0, γ), nθγ)

)
≡ ψ′

[
nθγ, n

θ
β1
, . . . , nθβv/n

θ
γ, (l)(0,β1), . . . , (l)(0,βv)

]
≡ ψ′
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by the definition of l. So

(2) ∀nθγ
[
Trk

(
xψ′y, subst(l, (0, γ), nθγ)

)
≡ ψ′

]
.

By (1) and (2), it is sufficient to prove:

(3) ∀nθγ [ψ′ ≡ θ(ψ)] .

Proof of (3)

We prove (3) by induction on the complexity of ψ.
Case 1 : ψ is t = τ .

Then ψ′ ≡ (tθ = τ θ) ≡ θ(ψ).

Case 2 : ψ is t ∈ x(kj)αj .

Then xθαj
has the form: xθαj

= (kj, xnγj .ψjy, qj) and ψ′ is the formula ψj, where

nγj is replaced with tθ and all other parameters are replaced with corresponding
values from the evaluation qj. So

θ(ψ) ≡ Trkj
(
xψjy, subst(qj, γj, t

θ)
)
≡ ψ′

by Lemma 2.1.1) and the definition of ψ′.

Case 3 : ψ is χ � η. Then

ψ′ ≡ χ′ � η′ ≡ θ(χ) � θ(η) ≡ θ(ψ)

by the inductive assumption.

Case 4 : ψ is Qniχ. Then

ψ′ ≡ Qnθiχ
′ ≡ Qnθi θ(χ) ≡ θ(ψ)

by the inductive assumption.

Since ψ is a k-simple formula, it contains no quantifiers over set variables.
This completes the proof for the case of the comprehension axiom.

Next we consider the case when ϕ is the choice axiom:

∀m∃!z(k)ψ(m, z) ⊃ ∃y(k+1)∀m∃z(k)[ψ(m, z) ∧ ∀j(j ∈ z ≡ (m, j) ∈ y)],

where k + 1 6 s and ψ is a k-simple formula with all its parameters in the

list x̃, ñ,m, z(k). As before, x̃ denotes a list of set variables x
(k1)
α1 , . . . , x

(kp)
αp (all

different from z(k)) and ñ denotes a list of numerical variables nβ1 , . . . , nβv (all
different from m).

Denote:

χ(nγ)� ∃mθ, jθ, z(k)θ[nγ = (mθ, jθ) ∧ Setk(zθ) ∧ θ(ψ(m, z)) ∧ θ(j ∈ z)],

where nγ is a new variable.
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Since ψ is a k-simple formula of SAs, then it is a k-simple formula of SAk, so
θ(ψ) is a formula of PATrk and χ is a formula of PATrk with all its parameters
in the list nγ, ñ

θ, x̃θ.
We need to prove in PATrs the interpretation of ¯̄ϕ, which is equivalent to:

(4) ∀nθβ1 , . . . , n
θ
βv∀x

(k1)θ
α1

, . . . , x(kp)θαp

{
p∧
j=1

Setkj

(
xθαj

)
∧∀mθ∃!z(k)θ[Setk(zθ) ∧ θ(ψ(m, z))] ⊃ ∃y(k+1)θ

{
Setk+1(y

θ)

∧∀mθ∃z(k)θ[Setk(zθ) ∧ θ(ψ(m, z)) ∧ ∀jθ [θ(j ∈ z) ≡ θ((m, j) ∈ y)]]
}}

.

Let us fix nθβ1 , . . . , n
θ
βv
, x

(k1)θ
α1 , . . . , x

(kp)θ
αp and an evaluation l of parameters of

the formula ∀nγχ such that:

(l)i =


nθβj if i = (0, βj), j = 1, 2, . . . , v,

xθαj
if i = (kj, αj), j = 1, 2, . . . , p,

0 otherwise.

Assume the premises of (4) and take r = (k + 1, xnγ.χy, l). We will use r as
the value for y(k+1)θ. Since χ is a formula of PATrk and Ev(x∀nγχy, l), we have
Setk+1(r). It remains to prove:

(5) ∀mθ∃z(k)θ
{
Setk(z

θ) ∧ θ(ψ(m, z))

∧∀jθ
{
θ(j ∈ z) ≡ θ

(
(m, j) ∈ y(k+1)

)
[yθ/r]

}}
.

By the definition of the interpretation θ we have for any mθ, jθ:

θ
(
(m, j) ∈ y(k+1)

)
[yθ/r]

≡ Trk+1

(
xχy, subst(l, γ, (mθ, jθ))

)
[ by Lemma 2.1.1) ] ≡

χ
[
nγ, n

θ
β1
, . . . , nθβv , x

θ
α1
, . . . , xθαp

/(mθ, jθ), (l)(0,β1), . . . , (l)(0,βv), (l)(k1,α1),

. . . , (l)(kp,αp)

]
≡ [ by the definition of l ] ≡ χ

(
(mθ, jθ)

)
≡ ∃z(k)θ[Setk(zθ) ∧ θ(ψ(m, z)) ∧ θ(j ∈ z)].

Therefore for any mθ, jθ:

(6) θ
(
(m, j) ∈ y(k+1)

)
[yθ/r] ≡ ∃z(k)θ[Setk(zθ) ∧ θ(ψ(m, z)) ∧ θ(j ∈ z)].

Now we will prove (5). Let us fix m. From the premises there exists a unique
u(k)θ such that

(7) Setk(u
θ) ∧ θ(ψ(m,u)).
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It remains to prove that for any jθ:

(8) θ(j ∈ u) ≡ θ
(
(m, j) ∈ y(k+1)

)
[yθ/r].

Proof of (8)

⇒. This part follows immediately from (6) and (7).
⇐. Suppose θ

(
(m, j) ∈ y(k+1)

)
[yθ/r]. Then by (6) there exists z(k)θ such that

Setk(z
θ) ∧ θ(ϕ(m, z)) ∧ θ(j ∈ z). By the uniqueness of u we have zθ = uθ and

θ(j ∈ u).
3. This is proven by formalizing the proof of part 2 in SAs+1. �

Corollary 4.2. If SA ` ϕ, then PATr ` θ( ¯̄ϕ).

Proof. Follows from Theorem 4.1.2). �

Corollary 4.3. Suppose s > 0.
1. If SARs ` ϕ, then PATrs ` θ( ¯̄ϕ).

2. SARs+1 ` PvSARs(m) ⊃ PvPATrs(xθ(ϕm)y).

Proof. 1. The proof is the same as for Theorem 4.1.2). Alternatively, it follows
from Theorem 4.1.2) because SARs is a subsystem of SAs.

2. This is proven by formalizing the proof of part 1 in SARs+1. �

In [2] we constructed an interpretation ϕ∼ of PATr in SA and proved the
following theorem.

Theorem 4.4. 1. For an arithmetical formula ϕ, ϕ∼ is the same as ϕ.
2. For s > 0 : if PATrs ` ϕ, then SAs ` ( ¯̄ϕ)∼.

Corollary 4.5. If PATr ` ϕ, then SA ` ( ¯̄ϕ)∼.

Thus, due to corollaries 4.2 and 4.5, the theories SA and PATr are mutually
interpretable.

5. Comparing the proof-theoretical strengths of fragments

Corollaries 4.2 and 4.5 imply that the theories SA and PATr are equicon-
sistent. Theorems 4.1.2) and 4.4.2) imply that fragments SAs and PATrs are
equiconsistent (s > 0).

Lemma 5.1. For s > 0:
1. PATrs+1 ` PvPATrs(m) ∧ Ev(m, l) ⊃ Trs+1(m, l).

2. PATrs+1 ` ConPATrs .
3. PATrs+1 ` ConSAs .
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Proof. 1. Proof is by induction on the length of derivation of ϕm using Lemma
2.1.2).

2. We describe derivation in PATrs+1 informally.
Assume PvPATrs(x⊥y). Then by part 1, Trs+1(x⊥y, l) for the empty evalua-

tion l. This contradicts the axiom (Tr4).
So ¬PvPATrs(x⊥y), that is ConPATrs .

3. We describe derivation in PATrs+1 informally. Assume PvSAs(x⊥y). Then
by Theorem 4.1.3), we get PvPATrs(x⊥y), which contradicts part 2. �

Theorem 5.2. For s > 0, SAs+1 ` ConSAs .

Proof. By Lemma 5.1.3), PATrs+1 ` ConSAs . Since ConSAs is a closed arith-
metical formula, we have by Theorem 4.4, SAs+1 ` ConSAs . �

This theorem shows that each fragment SAs is weaker than next fragment
SAs+1 (s > 0). The same is true for fragments of PATr (Lemma 5.1.2).

6. Discussion

In this paper we described the axiomatic theories SA and SAR that can
have applications in reverse mathematics. These theories are versions of second
order arithmetic with countably many sorts for sets of natural numbers. Their
multi-sorted language allows to state some mathematical statements in more
natural form than in the language of second order arithmetic but this requires
more research. We studied metamathematical properties of the theories SA
and SAR. In particular, we showed that SA is mutually interpretable with
the theory of arithmetical truth PATr introduced in [1]. We showed that each
fragment SAs is proof-theoretically weaker than next fragment SAs+1.

In [4] Simpson used model theory to compare different subsystems of second
order arithmetic. Here we study metamathematical properties of the theories
using the interpretation technique. Unlike the model method, the interpretation
technique may be adjusted to intuitionistic versions of the axiomatic theories,
which can be used in constructive reverse mathematics.

Next we plan to investigate further the metamathematical properties of SAR;
some of the proofs for SA do not apply to SAR because of its restricted induc-
tion axiom. We also plan to develop some parts of reverse mathematics with
respect to the theories SA, SAR and their fragments, and some parts of con-
structive reverse mathematics with respect to intuitionistic versions of these
theories.

Australasian Journal of Logic (13:5) 2016, Article no. 3



135

Acknowledgements

The author is grateful to the editor and referee for valuable comments and
suggestions that helped to improve this paper.

References

[1] F. Kachapova. Interpretation of constructive multi-typed theory in the theory of arith-
metical truth. Lobachevskii Journal of Mathematics, 36(4):332–341, 2015. URL: http:

//link.springer.com/article/10.1134%2FS1995080215040034.
[2] F. Kachapova. Metamathematical properties of a constructive multi-typed theory. To be

published.
[3] E. Mendelson. Introduction to Mathematical Logic. Chapman and Hall/CRC, Boca Raton,

Florida, 2009.
[4] S.G. Simpson. Subsystems of Second Order Arithmetic. Cambridge University Press, 2010.

Auckland University of Technology, Auckland, New Zealand
E-mail address: farida.kachapova@aut.ac.nz

Australasian Journal of Logic (13:5) 2016, Article no. 3

http://link.springer.com/article/10.1134%2FS1995080215040034
http://link.springer.com/article/10.1134%2FS1995080215040034

	1. Introduction
	2. Definition of three axiomatic theories
	2.1. Axiomatic theory SA
	2.2. Axiomatic theory SAR
	2.3. Axiomatic theory PATr

	3. More about the three axiomatic theories
	4. Interpretation of SA in PATr
	5. Comparing the proof-theoretical strengths of fragments
	6. Discussion
	Acknowledgements
	References

