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Abstract

In this note we provide a simple proof of the incompactness over
Routley-Meyer B-frames of the V; fragment of the second order propo-
sitional relevant language. Moreover, we observe that this fragment is
clearly still recursively enumerable.
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Introduction

We will call basic second order propositional relevant logic to the result of
adding propositional quantifiers Vp and Jp to the standard language of rele-
vant logic when interpreted over Routley-Meyer structures for the system B
(cf. [7]).!

The idea of the present note is to show how the incompactness argument
for the system KW from [3] (pp. 178-179)? can be adapted to establish the
incompactness of the V; fragment (where all quantifiers are universal and

'In the literature, Routley-Meyer structures for the system R have received the most at-
tention in this context (see, for example, [4]).

2Which gives virtually immediately the incompactness of second order propositional
modal logic.
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come at the front)* of the second order propositional relevant language over
Routley-Meyer B-models.

Recall that a logic can be said to be compact if for any collection of sen-
tences I', I does not have a model only if some finite ' < I' does not have
a model either. This terminology comes from Rasiowa in [6], with the obvi-
ous topological reference. Hence, by incompactness we mean the failure of
compactness.

So, in this article, we establish that there is a set of V; second order propo-
sitional relevant formulas that is finitely satifiable on the class of Routley-
Meyer B-models even though it is not satisfiable on this class. Incidentally,
this also provides an example in relevant logic of a system (with a language
more expressive than the standard relevant language) which is recursively ax-
iomatizable but incompact. Observe that the obvious expressive extensions of
standard propositional relevant languages which could be hoped to be incom-
pact, namely, infinitary extensions, cannot be recursively axiomatized since,
for starters, their syntax is not arithmetizable.

We start by reviewing the Routley-Meyer semantics in §1 and establish the
recursive axiomatizability of the V; fragment of basic second order proposi-
tional relevant logic. In §2, we prove the main theorem of the paper and a
lemma also implying that the V; fragment of the second order propositional
relevant language is more expressive than the standard propositional relevant
language. Finally, in §3 we summarize the work.

1 Preliminaries

The second order propositional relevant language L, will contain a countable
list PROP of propositional variables p,q,r ... and the logical symbols: ~
(negation), A (conjunction), v (disjunction), o (fusion), — (implication), t
(the Ackermann constant), Vp, dp (propositional quantifiers). Formulas are
constructed in the usual way:

pu=plt]~plond|ovi|o—vl[¢oy|Vpe|Ip.g,

for p € PROP. The V; fragment of L, will contain all formulas equivalent to
formulas of the form Vpy, . . . p,,.¢, where ¢ is quantifierless.

3In classical second order logic, restriction to second order universal quantifications also
suffices for incompactness: the property of well-foundedness is I13 .
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In this paper, a Routley-Meyer frame for

L,

is a structure § = (W, R, =, O), where W is a non-empty set, &J # O < W,
+1s an operation » : W — W, and R € W x W x W satisfies p1-p5 below.
In the standard way, we will abbreviate 32(Oz A Rzxy) by x < v.

pl.
p2.
p3.
p4.
pS.
po.

T <

If z < y and Ryzv then Rzzv.

If z < y and Rzyv then Rzxwv.

If v < y and Rzvx then Rzvy.

If z < y then y*

<z*.

Ifz <yandz e Othenye O.

The relation < is a preorder. We can see this as follows. By pl, we have
reflexivity. Now if 2 < y (i.e., 32(0Oz A Rzzy)) and y < z (i.e., Jv(Ov A
Rzyz)), by p3, we have that Ju(Ov A Rzxz),ie., z < 2.

A Routley-Meyer model for Lo is a pair (§,V), where V' : PROP —
©(W) is a function such that for any p € PROP, V' (p) is upward closed under
the < relation, that is, z € V(p) and = < y implies that y € V' (p). We define
satisfaction at w in M recursively as follows:

M,wi-t iff
M,w - p iff
M, w - ~¢ iff
Mwi-¢ A iff
Mwi-¢vy iff
M,wi-¢—1 iff
M,wi-¢or iff
M,w-VYp.¢  iff

M, w |- 3p.¢ iff

w e O,

w e V(p),

M, w* - ¢,

M,w I+ ¢and M, w I+ 1,

M, w I+ ¢ or M,w I+,

for every a, b such that RMwab, if M, a |- ¢ then M, b |- 1,
there are a, b such that RMabw, M, a I~ ¢ and M, b |- 1.
for all upwards closed subsets S of W, M[p — S|, w I+ ¢,
where M|[p — S] is the model identical to M except that
is the model identical to M except that V' (p) = S.

there is an upwards closed subset S of W

such that M[p — S],w I+ ¢.

Australasian Journal of Logic (16:1) 2019 Article no. 1



A formula ¢ is said to be true in a model M if M, w I+ ¢ forall w € O. ¢ is
said to be valid in a frame § (in symbols § |- ¢) if ¢ is true in any model M
based on §.

Lemma 1. (Hereditary Lemma) For any second order relevant formula ¢,
model M based on a Routley-Meyer frame, and worlds x,y of M, v < y
implies that M, x |- ¢ only if M,y I ¢.

Proof. By induction on formula complexity. 0

Consider a monadic second order language that comes with one function
symbol #, a constant 7', a distinguished three place relation symbol R, and
a unary predicate variable P for each p € PROP. Following the tradition in
modal logic, we might call this a correspondence language LS for L. Now
we can read a model M as a model for L5 in a straightforward way: W is
taken as the domain of the structure, V' specifies the denotation of each of the
predicates P, (), ..., the collection O is the object assigned to the predicate
O, while = is the denotation of the function symbol * of .Z5°"" and R the
denotation of the relation R of .Z5"".

Where ¢ is a term in the correspondence language, we write ¢/* for the
result of replacing x with ¢ everywhere in the formula ¢. Let us abreviate
the formula of L™ which expresses that the value of a given predicate P
is upwards closed under < by Up<(P). As expected, it is easy to specify a
translation from the formulas of the relevant language into formulas of first
order logic with one free variable as follows:

T,(t) Oz
T.(p) = Pz
T, (~¢) —Ty(¢)"/
To(pntp) = Tu(o) ATe(¥)

(¢)
To(pvp) = Tu(¢) v T(¥)
To(p =) = Vy,z(Reyz A To(¢)¥" > Tp(4)7*)
To(porp) = 3y z2(Ryza A Tp(@)¥" A Tp(1)*/7).
T,(Vp.¢) = VP(Up<(P)>T.(¢))
T,(3p.¢) = 3P(Up<(P) A T:(0))

The symbols — and O represent, respectively, boolean negation in classi-
cal logic and material implication either in classical or relevant logic (which
should not be confused with ~ and —).
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Next we prove a proposition to the effect that our proposed translation is
adequate. While |I- stands for satisfaction as defined for relevant languages,
= will be the usual Tarskian satisfaction relation from classical logic.

Proposition 2. For any w, M, w |- ¢ if and only if M &= T,(¢)[w].
The next result is easily established using Proposition 2.

Proposition 3. For any relevant formula ¢(py, ..., p,), Routley-Meyer frame
$ and world w of §, the following holds:

SIFoiff § =VP,...,P,(Up<(P1) A+ AUp<(P,) D Yw(Ow >
T.(¢)"/7)).

The V; fragment of the second order propositional relevant language is
more expressive over B-models than the relevant language without proposi-
tional quantifiers. For the latter is less expressive than first order logic while
the former can express some non-first order concepts (cf. Lemma 5 and [1]).

Proposition 4. The set of V-validities of basic second order propositional
relevant logic is recursively axiomatizable.

Proof. First observe that a formula ¢ of the form Vpy.1, ..., pmt(po, - - ., Pk)
is an Vy-validity iff VP, ..., Py, Pit1, - -+ s Po(/N\icin Up<(Pi) 2 YV (Ow >
T,()7/*)) is a logical consequence (in the sense of classical logic) of o,
where o is the conjunction of pl-p4. The symbols Fy, ..., P, do not occur
in 0, so ¢ is an Vy-validity iff A\;_,, Up<(P;) > Yw(Ow > T,(¢)7/*) is a
logical consequence of o. By the recursive enumerability of the set of validi-
ties of first order logic, the collection of all V;-validities of basic second order
propositional relevant logic is also recursively enumerable.

Now we use Craig’s trick (see Theorem 1 in [5]). Let f(0), f(1), f(2),...
be one such enumeration of the V,-validities. For any second order proposi-
tional relevant formula ¢, define recursively ¢° =4 ¢ and @™+ =4 @™ A .
Then A = {f(k)* : k < w} is a recursive set of second order propositional
relevant formulas. Moreover, since ¢ g ¢* and ¢* g ¢ for any k where
g is the deducibility relation of the system B, we see that the collection A

of formulas is a recursive axiomatization of the set of all V;-validities.
O
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2 Incompactness

In this section we establish the main result of the paper (Theorem 6) by par-
alleling an argument from [3] in the context of relevant logic.

Put R*zy =4 32(Rryz v Rxzy) andMp =4 (p v ~p — p) A (~p —
p A ~p). Observe that for any frame §, and world x € W, there is T" €
O such that R#*Tx holds. In any frame § where Vz(2* < o A z < %),
using the Hereditary Lemma, we see that a formula of the form ~¢ v ¥
behaves essentially as a material implication in a classical language at the
level of models based on §. Also, for any valuation V' in any such frame 3§,
(F, V), w |- Wpiff for all x, y such that Rwzy, (§F,V),z I+ pand (§, V), y |-
p iff for all  such that R*wz, (§, V), z I p.

Now, for any frame § and valuation V on it, (§, V) I+ Vp,q((p A ~p —
QO A(g—opvep)iff §F = Vo(a* <z Az <a*). Let 6 =4 ~Hl~,
then on a frame § where Vz(z* < x A x < z*) holds, for any valuation V/,
(F, V), w |- #piff there some z such that R#wz and (§, V), z |- p.

Lemma 5. (§, V) I Vp,q((pA~p —q)A(qg—pv ~p) A ((H(Hp > p)A
p) > W) iff (i) § & Vo (a* < x A x < x*)and (ii) there is T € O s.t. there
is no infinite sequence of worlds sg, $1, o . .. suchthatT = sy € s;(0<i<w)
and R7 sys1, R 5159, R7 5953, . ..

Proof. Let § be an arbitrary Routley-Meyer frame. We have that if (i) holds,
Vp(H(Hp S p) A p > Mp) implies (ii). For suppose (ii) fails, then for every
T € O there is an infinite sequence of worlds 7" = sg € s1, S5 ... such that
R# 5451, R 5159, R" 5953, ... Now take any valuation V based on § such that
V(p) = {w: w £ s;,0<i<w}. By transitivity of <, V(p) is upwards closed
under <. For each s;, s; < s;, 50 (§,V),s; ¢ p. Hence, (§,V),T |V Hp.
Also, by assumption, T’ € s; (0<i<w), which mean that (§, V), T |- p. Now
let R#Tv and suppose that (F,V),v |- Bp but (§,V),v |¢ p. The latter
means that v < s; for some 0<i<w, however since (§,V),s;11 ¥ p and
R#s;8;,1, it must be that (§,V),s; |* Mp, and by the Hereditary Lemma,
(F, V), v | Bp. Hence, (F,V), T |- B(Hp > p). This concludes the left to
right direction of the proposition.

For the converse suppose (5, V), T | B(Hp > p) A p > Wp. If (i) holds,
one can build the desired sequence to falsify (ii) by taking x such that R* Tz
while (§,V),x I p and applying (§,V),T |- H(Hp > p) in conjunction
with the observation that § = Va(R#Tz).

]
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Theorem 6. The Y, fragment of basic second order propositional relevant
logic is incompact.

Proof. This time consider the set

©={¥p,g((pr~p—>aq) A(@g—pv~p) A ((B(lp>p)Ap)>
Wp))}u{~p i <w}u{®po}u {B(p; D #pis1) 1 <wl.

First we note that this set is unsatisfiable. For if there were a model M such
that © holds at every 1" € O, M would contain a sequence of the sort forbid-
den by Yp((l(Hp > p) A p) > Mp) according to Lemma 5. To see this note
that since M, T |- 4po there is y such that R#* Ty and M,y |- py. Obviously,
T < y by the Hereditary Lemma and the fact that M, T" |- ~py. Put 51 = y.
Having obtained the n + 1 element of the chain, s, (and guaranteeing that
M, s, |- p, by construction), we get s,.o as follows. Recall that for every
world z, for some 7" € O, R*T"x. Since M, s, I p,, and for every T € O,
M, T I+ W(p, > p,+1), then M, s, 1 |- #p,.2, that is, there is z such that
R¥ 8,1z and M, z |- p,1o. We simply let s, be 2. Again, T < z by the
Hereditary Lemma and the fact that M, T" |- ~p,, 2.

Now we show that O is finitely satisfiable. Suppose ©y < O is finite. For
each n>0, let §§,, be the frame where W,, = {k: k < n}, R, = {{0,4,i) : i <
n}u{{j,j+ 1,7+ 1):j<n}, O has only one memeber, T, which is simply
the number 0, and =, is the identity. Now let m be the biggest natural number
such that B(p,,, © #p,,11) € ©p. Then consider a valuation V' on the domain
of the frame §,,.» such that V(p;) is an arbitrary upwards closed subset of
Winio fori > m+1, while V(p;) = {i + 1} (which is always upwards closed
in §,,.2) fori < m + 2. Itis not difficult to see, using Lemma 5, that then O,
is satisfied at 7" in (§,,12, V).

[

3 Conclusion

We showed that, on the class of Routley-Meyer B-frames, there is a set of
v, second order propositional relevant formulas which is finitely satisfiable
but not satisfiable. This fragment of L is rather powerful, indeed, for it can
express some non-first order concepts. However, it is still recursively axiom-
atizable. As a referee points out, the problem of whether this incompactness
carries over to the alternative semantics from [2] is still open.
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