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Abstract

Chakraborty and Banerjee have introduced a rough consequence logic based on
the modal logic S5. This paper shows that rough consequence logics, with many
of the same properties, can be based on modal logics as weak as K, with a simpler
formulation than that of Chakraborty and Banerjee. Also provided are decision
procedures for the rough consequence logics and equivalences and independence
relations between various systems S and the rough consequence logics, based on
them. It also shows that each logic, based on such an S, is theorem equivalent,
but not necessarily equivalent, to the modal logic M-S. The paper also shows that
rough consequence logic, which was designed to handle rough equality, is somewhat
limited for that purpose.

1 Introduction

If α and β are wffs, α ≈ β (α is roughly equal to β) is defined by:

(Lα↔ Lβ) ∧ (Mα↔Mβ)

where L and M are the necessity and possibility operators.
In [5] Chakraborty and Banerjee proposed a rough consequence logic, based on S5,

with two restricted modus ponens rules, designed to handle rough equality. In this paper
we show that one of these rules is superfluous and that many of the interesting properties
of rough consequence logic can be derived when modal logics weaker than S5 are used as
a base logic.

We will consider rough consequence logics based on the simple modal logic K and
stronger logics such as the Deontic logic D, the Feys-von Wright logic T, the Sobocinski
logics S4n (with S4 = S41) and S5n (with S5 = S51) and the logics Mn-S4n , Mn-S5n and
T∗n of B laszczuk and Dziobiak [3]. M-S5 is also, by a mapping of Kotas [10], equivalent
to Jaśkowski’s discussive logic D2, ([8] and [9]).

For each such system S we give a simple decision procedure for Γ |∼S α (α is provable
from Γ in the rough consequence logic based on S) in terms of a decision procedure (if any)
for S, we show how each modal logic is related to its corresponding rough consequence
logic and show that Γ |∼S α implies but is not generally implied by Γ `M−S α. Finally
we look at the properties of rough equality in the various modal and rough consequence
logics.
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2 K and Stronger Modal Logics

Each of the systems we consider includes the axioms of classical propositional logic and
has the operators L and M where Mα =∼ L(∼ α).

K has the usual modus ponens and substitution rules as well as the Rule of Necessi-
tation:

(N) ` α ⇒ ` Lα.

and one extra axiom:

K ` L(p→ q)→ (Lp→ Lq).

Below we will use the Rule of Monotonicity, which holds in K:

(M) ` p→ q ⇒ `Mp→Mq

and the K-theorem (K7 of Hughes and Cresswell [7]):

K1 `M(p→ q)↔ Lp→Mq.

The Deontic Logic D has an extra axiom:

D ` Lp→Mp.

The logic T is K with the extra axiom:

T ` Lp→ p

and includes as theorems D and:

T1 ` p→Mp

The Sobocinski logics S4n have the additional axiom:

A4n `Mn+1p→Mnp.

and the systems S5n, due to B laszczuk and Dziobiak [3], have, in addition to the postulates
of S4n:

A5n `MnLnp→ Lnp.

Note that S41 = S4 and S51 = S5.
For each of the above systems S and each positive integer n, there is a further system

Mn-S = {α| `S Mnα}.

(Note that we will often treat a logical system as the set of its theorems.)
Finally we include the systems T∗n, which have the postulates of T with the additional

rule:
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`Mn+1α ⇒ `Mnα.

B laszczuk and Dziobiak [3] showed, following the work of Kotas [10] in the case n=1
and earlier work of Furmanowski [6] and Perzanowski [11], that the systems T∗n with the
properties given below can be axiomatised in this way (where ⊂ represents “is a proper
subset of ”):

(i) For every modal logic S such that T⊆S, Mn-S= Mn-S4n ⇔ T∗n ⊆ S ⊆ S5n;
(ii) T⊂ T∗n+1 ⊂ T∗n ⊂ S4n ⊂ S5n;
(iii) T∗n is indepenent of S4n+k for positive integers k.

3 Rough Consequence |∼

A basis logic S is a modal logic such that K⊆ S ⊆S5. We will use `S for provability in S
and |∼S for provability in the rough consequence logic based on S, as well as for the name
of the formal system. If the S is omitted in a definition or theorem, the logic is assumed
to be any basis logic, but the same one throughout.

|∼S can be defined (as it was, with S = S5 in Chakraborty and Banerjee [5] and Banerjee
and Chakraborty [2]) by:

Definition 1

(i) ` α ⇒ Γ |∼ α
(ii) α ∈ Γ ⇒ Γ |∼ α

R1
Γ |∼ β `Mβ →Mγ

Γ |∼ γ

(RMP )2
` β Γ |∼ δ → γ ` Lβ → Lδ

Γ |∼ γ

|∼α represents “α is a rough theorem”.

Note that R1 is the notation of Banerjee [1]. The rule is called (DR)1 in Banerjee and
Chakraborty [2] and DR2 in Chakraborty and Banerjee [5]. We now show that (RMP )2
is derivable from the other postulates, for all our rough consequence logics.

Theorem 1 (RMP )2 follows from R1 and (i).

Proof. If ` β and ` Lβ → Lδ then, by (N), ` Lβ and so ` Lδ. K1 then gives
`M(δ → γ)→Mγ. This with Γ |∼ δ → γ and R1 gives Γ |∼ γ.

This theorem was proved independently, for the S = S5 case, in Banerjee [1]. In [1]
she cites an early draft of the present paper that contains this theorem.

A paper, Bunder, Banerjee and Chakraborty [4], examines the relative strengths of
rough consequence logics with various conditions other than `Mβ →Mγ in R1.
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By R1 and (M) we have:

Theorem 2

R′1
Γ |∼ β ` β → γ

Γ |∼ γ

By (S4) and R1 we have:

Theorem 3 If S4 ⊆ S,

R′′1
Γ |∼ Mβ `Mβ →Mγ

Γ |∼ γ

and by T1,

Theorem 4 If S4 ⊆ S, Γ |∼ Mβ ⇔ Γ |∼ β.

The following interesting properties of |∼, for the basis logic S5, are from [2] and [5],
we show that they also apply for rough consequence logics based on other basis logics.

Theorem 5 ` α ⇒ |∼ α.

Proof By (i).

Theorem 6 (The deduction theorem for |∼) Γ, α |∼ β ⇒ Γ |∼ α→ β.

Proof By induction on the derivation of Γ, α |∼ β. Required are ` Mβ → M(α → β),
which comes by (M), and ` Mγ → Mβ ⇒ ` M(α → γ) → M(α → β) which comes
using K1.

Theorem 7 `Mα ⇒ Γ |∼ α.

Proof If `Mα, `M(p→ p)→Mα. Also, by (i), Γ |∼ p→ p, so by R1, Γ |∼ α.

Theorem 8 If D ⊆ S, |∼ α ⇔ `Mα.

Proof ⇐ By Theorem 7.
⇒ By induction on the derivation of |∼ α.
If ` α, we have ` Lα by (N) and, by D, `Mα.
If ` α comes from |∼ β and ` Mβ → Mα, we have ` Mβ by the induction hypothesis
and so `Mα.

Note that this implies that, if D ⊆ S, the rough consequence logic based on S is
theorem equivalent to the logic M-S.

4 Rules for other connectives

The following are easily provable from R1 for all basis logics.
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Theorem 9

Γ |∼ α ` β
Γ |∼ α ∧ β

` α Γ |∼ β

Γ |∼ α ∧ β
Γ |∼ α ∧ β

Γ |∼ α

Γ |∼ α ∧ β
Γ |∼ β

Γ |∼ ∼∼ α

Γ |∼ α
Γ |∼ α

Γ |∼ α ∨ β
Γ |∼ β

Γ |∼ α ∨ β
Γ |∼ α ∨ β ` α→ γ ` β → γ

Γ |∼ γ
` α ∨ β Γ |∼ α→ γ ` β → γ

Γ |∼ γ
` α ∨ β ` α→ γ Γ |∼ β → γ

Γ |∼ γ
Γ |∼ α→ β ` α→∼ β

Γ |∼ ∼ α

` α→ β Γ |∼ α→∼ β

Γ `∼ α

5 Decision Procedures for |∼ and Relations between

|∼S and S

The ` Mβ → Mγ in R1, rather than ` β → γ (or |∼ β → γ), indicates that some Γ |∼ γ
may be provable while Γ 6` γ.

On the other hand, the lack of a Γ before the ` in R1 suggests that there may be a
provable Γ ` γ, for Γ 6= ∅, while Γ 6 |∼γ.

Such results can be derived, for D ⊆ S, from the following simple characterisation of
provability in |∼ in terms of that in `.

Theorem 10 If D ⊆ S, Γ |∼ γ if and only if ` Mγ or there is a β ∈ Γ such that
`Mβ →Mγ.

Proof ⇒ By induction on the derivation of Γ |∼ γ.
Case 1 ` γ. By (N) and D.
Case 2 γ ∈ Γ. We have the result with β = γ.
Case 3 Γ |∼ γ comes by R1 from Γ |∼ α and `Mα→Mγ.
By the induction hypothesis we have ` Mα or a β ∈ Γ such that ` Mβ → Mα. Hence
`Mγ or for a β ∈ Γ, `Mβ →Mγ.

⇐ If ` Mγ the result follows by Theorem 7. If ` Mβ → Mγ, where β ∈ Γ, Γ|∼β, and,
by R1, Γ |∼ γ.

Theorem 10 leads directly to:

Theorem 11 If D ⊆ S, Γ |∼ γ ⇒ Γ `Mγ,

and to Theorem 12 which shows that the converse of Theorem 5 fails for T ⊆ S and the
converses of Theorems 6, 7 and 11 fail for all basis logics. Theorem 12(ii) also shows the
failure of modus ponens in |∼ .
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Theorem 12 (i) If T ⊆ S, |∼ Mα→ α, but 6`Mp→ p
(ii) p→ q |∼ p→ q and p→ q, p 6 |∼ q
(iii) p |∼ p, but 6`Mp
(iv) α, α→Mβ `Mβ, but p, p→Mq 6 |∼ q

Proof The above unprovability results for |∼ are verified (using Theorem 10) by the
unprovability in S5 of ` Mq, ` Mp → Mq,` M(p → q) → Mq, and ` M(p → Mq) →
Mq. These and the unprovability results in S5, and so in any sublogic S, in (i) and (iii)
are all easily confirmed by the decision procedure for S5 in Hughes and Cresswell [7].

By T, ` LMα → Mα so by K1 and Theorem 7, we have |∼ Mα → α, which we need in
(i).

Theorem 13, below, outlines the relations between the basis logics and their corre-
sponding rough consequence logics. To prove some of these we need a definition and a
lemma.

Definition 2 An occurrence of an L in α is an outer occurrence if it is not within the
scope of another L in α.

Lemma 1 If α′ is the result of deleting all outer occurrences of L from α and S = K or
D, then ` α ⇒ ` α′.

Proof By induction on the proof of ` α.

If ` α is an axiom of K or D, the lemma holds as Axiom K becomes ` (p→ q)→ (p→ q)
and Axiom D ` p→∼∼ p.

If α = Lβ and ` α is obtained by (N) from ` β, we have ` α′ as α′ = β.

If ` α is obtained from ` β and ` β → α, then by the induction hypothesis we have ` β′
and ` β′ → α′ and so α′.

We note that this lemma does not apply to the instance ` LMp→Mp of Axiom T.

Theorem 13 (i) If S = K or D, |∼S is a proper subsystem of S.

(ii) If T ⊆ S, |∼S and S are independent.

Proof (i) Given p → q, p 6 |∼ q from Theorem 12(ii), we only need to prove, for S = K
or D, that Γ |∼ α ⇒ Γ ` α. We do this by induction on the proof of Γ |∼ α. If ` α or
α ∈ Γ, this is obvious. If Γ |∼ α comes by R1 from Γ |∼ β and ` Mβ →Mα, we have by
the induction hypothesis and Lemma 1, Γ ` β and ` β → α and so Γ ` α.

(ii) By Theorem 12(i) and p→ q, p 6 |∼ q.

Theorem 14 For S = K or D, |∼S and S are theorem equivalent.

Proof By Theorem 5 and the proof of Theorem 13(i).

Lemma 1 also allows a counterpart to Theorem 10 for K:

Theorem 15 Γ |∼Kα if and only if `K α or there is a β ∈ Γ such that ` β → α.

Proof Similar to that of Theorem 10, but using Lemma 1.
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Theorems 10 and 15 reduce the decision procedure for any |∼S to that for S.

The Weakening Theorem for |∼ holds by an easy induction, Cut Elimination can also be
proved for |∼.

Theorem 16 (Weakening Theorem) Γ1 |∼ α ⇒ Γ1,Γ2 |∼ β.

Theorem 17 (Cut Elimination Theorem) Γ1 |∼ α, Γ2, α |∼ β ⇒ Γ1,Γ2 |∼ β.

Proof If S=K and Γ, α |∼ β we have, using Theorem 15, ` α → β or, for some γ in Γ2,
` γ → β. By (M) we have either `Mα→Mβ or, for that γ, `Mγ → Mβ.

If D ⊆ S and Γ, α |∼ β, by Theorem 10, we also have either ` Mα → Mβ or, for such a
γ, `Mγ → Mβ.

If Γ1 |∼ α, by weakening, Γ1,Γ2 |∼ α, so by R1, if `Mα→ Mβ, we have Γ1,Γ2 |∼ β.

If `Mγ → Mβ, by Γ1,Γ2 |∼ γ and R1 we also have Γ1,Γ2 |∼ β.

6 M-S and |∼S
We have by Theorem 8:

Theorem 18 If D ⊆ S, M-S and |∼S are theorem-equivalent.

If we extend the definition of M-S to natural deduction systems by:

Definition 3 Γ `M−S α iff ΓM `Mα where ΓM = {Mβ|β ∈ Γ},

we have:

Theorem 19 If D ⊆ S, M-S is stronger than or equivalent to |∼S.

Proof If Γ |∼S α, by Theorem 10, there are two cases:

Case 1 `S Mα, so then `M−S α and so Γ `M−S α.

Case 2 For some β ∈ Γ, `S Mβ → Mα. Also Mβ ∈ ΓM i.e. ΓM `S Mβ and so
ΓM `S Mα, i.e. Γ `M−S α.

Thus |∼S is a subsystem of M-S.

Theorem 20 M-S5n is strictly stronger than |∼S5n .

Proof By A5n,

MnLnp, Lnp→Mq `S5n Mq,

so, using K1,

Mn−1Lnp, Ln−1p→ q `M−S5n q.

By Theorem 10, this result does not hold for |∼S5n . Hence by Theorem 19, M-S5n is strictly
stronger than |∼S5n .

The question as to whether, for weaker systems S, M-S is strictly stronger than |∼S
remains open.
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7 |∼ and ≈
In this section we consider the properties of rough equality (≈) in the various modal and
rough consequence logics.

Theorem 21 (i) ` α ≈ α
(ii) ` α ≈ β → β ≈ α
(iii) ` α ≈ β → β ≈ γ → α ≈ γ
(iv) |∼ α ≈ β ⇒ |∼ β ≈ α
(v) |∼ α ≈ β, ` β ≈ γ ⇒ |∼ α ≈ γ
(vi) ` α ≈ β ⇒ α |∼ β.

Proof (i) to (iii) By propositional logic.

(iv) If D ⊆ S and |∼ α ≈ β we have `M((Lα↔ Lβ)∧(Mα↔Mβ)) and by propositional
logic, `M((Lβ ↔ Lα) ∧ (Mβ ↔Mα)), which is |∼ β ≈ α.
If S=K, the result follows by (ii) and Theorem 14.
(v) If D ⊆ S and |∼ α ≈ β we have `M((Lα↔ Lβ) ∧ (Mα↔Mβ)), ` β ≈ γ gives
` (Lβ ↔ Lγ) ∧ (Mβ ↔Mγ), so propositional logic gives `M(α ≈ γ) i.e. |∼α ≈ γ.
If S=K, |∼ α ≈ β and |∼ β ≈ γ we have ` α ≈ β and ` β ≈ γ and so ` α ≈ γ by (iii).
Hence |∼ α ≈ γ.
(vi) If |∼ α ≈ β, we have `Mα→ Mβ and by α |∼ α and R1, α |∼ β.

We therefore have that ≈ is an equivalence relation in `S, and in |∼S as (i) to (iii) hold
there as well. However as we don’t have Modus Ponens, properties such as

|∼ α ≈ β, |∼ β ≈ γ ⇒ |∼ α ≈ β

can fail unless S=K.

Most properties, so far, have held for all basis sytems. For substitution of rough
equality in |∼S, however we need S = S4 or S5.

Theorem 22 (i) If S=S5, |∼ α ≈ β, Γ |∼ α ⇒ Γ |∼ β
(ii) If S4 ⊆ S, Γ|∼ α ≈ β, |∼α ⇒ Γ |∼ β
(iii) If S=S5, |∼ α ≈ β, Γ, α |∼ γ ⇒ Γ, β |∼ γ.

Proof (i) If S=S5 and |∼ α ≈ β, we have by Theorem 11, ` M(α ≈ β) and so, using
` M(p ∧ q)→ Mp ∧Mq, ` M(Mα → Mβ) and by K1, ` LMα → M2β. By A41 and
A51 we then have `Mα→Mβ. This and Γ |∼ α, by R1 give Γ |∼ β.
(ii) If S4 ⊆ S and Γ |∼ α ≈ β, there are two cases by Theorem 10.
(a) If `M(α ≈ β), we have, as above, `M(Mα→Mβ), so if |∼ α, i.e. `Mα, we have
by (M), `M2β and by A41, `Mβ i.e. Γ |∼ β.
(b) If for some γ in Γ, `Mγ →M(α ≈ β) then as in (a), by A41, we have `Mγ → Mβ
and as Γ |∼ γ, by R1, Γ|∼ β.
(iii) If Γ, α |∼ γ, there are, by Theorem 10, three cases.
(a), (b) If `Mγ or γ ∈ Γ then, Γ, β |∼ γ.
(c) If α = γ and |∼ α ≈ β, then |∼ γ ≈ β, so as Γ, β |∼ β, by (i), Γ, β |∼ γ.
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Note that we cannot generalise these results in the most obvious way, as by Theorems
10 and 15,

α, α ≈ β 6 |∼β.
It seems that we can have such results for weaker basis logics only if we replace a |∼ by a
` (as in Theorem 21). For example we have:

Theorem 23 If D ⊆ S, (i) |∼ α ≈ β ⇒ |∼ α→ β
(ii) |∼ α, ` α ≈ β ⇒ |∼ β.

Proof (i) If D ⊆ S and ` α ≈ β, by D we have ` Lα → Mβ and by K1, ` M(α → β)
and so, by Theorem 7, |∼ α→ β.
(ii) If |∼ α and ` α ≈ β, we have, by Theorem 8, `Mα and `Mα→Mβ and so `Mβ
i.e. |∼ β.

Some interesting rough equivalences and non-rough equivalences are given in the final
theorem.

Theorem 24 (i) If T ⊆ S, |∼ Lα↔ α
(ii) If T⊆ S, |∼ Mα↔ α
(iii) 6 |∼S5 Lp ≈ p
(iv) 6 |∼S5 Mp ≈ p.

Proof (i) By T1, ` Lα→MLα, so by K1, `M(α→ Lα) and by Theorem 7, |∼ α→ Lα.
Using T, we have, by Theorem 9 (i) |∼ Lα↔ α.
(ii) T1, Theorem 12(i) and Theorem 9(i) give the result.
(iii) and (iv) By Theorem 10 and the fact that 6`S5 Mp→M(Lα).
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