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1 Introduction

Gödel’s Ontological Argument, the most sophisticated and formal of onto-
logical arguments, relies heavily on the notion of positive property, which
according to Gödel, is a property “independent of the accidental structure
of the world”; “pure attribution,” as opposed to privation; “positive in the
moral aesthetic sense.”1 Pure attribution seems likely to be related to the
Leibnizian concept of perfection2.

Gödel’s Ontological Argument is even more distinctive because it employs
a third-order modal logic with a property abstraction operator and property
quantification into modal contexts. Gödel presents his argument without
ever presenting the details of the formal system of logic being employed.
The omission is serious because without it the philosophical presuppositions
are hard to assess. Furthermore, Gödel never discussed an applied semantics
to both explicate the modal operators and relate the formal representations
in the argument to the intended meanings. In Gödel’s Ontological Argument
(2000)3, the formal syntax and semantics of third-order modal logic with
property abstraction were constructed, and a completeness theorem for third
order modal Logic with property abstraction for faithful models was proved.
I argued that it was not possible to develop a sufficient applied third-order
modal semantics for Gödel’s ontological argument nor was it possible for

1Sobel (1987:241-242)
2Feferman (1995:389)
3Randolph Rubens Goldman, Gödel’s Ontological Argument, Dissertation, University

of California at Berkeley (2000)
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Gödel to distinguish between properties that clearly are distinct with regard
to intensionality. Due to S5 modal redundancy some properties with multiple
modal operators that can differ in meaning can be the same function from
worlds to their extensions, and each can have the same extension in each
world; consequently, their meaning cannot be distinguished in this system.
In Types, Tableaus, and Gödel’s God4, Melvin Fitting reiterated this position
with the problem for intensionality and reiterated the approach to examining
the argument through the formal semantics of higher order modal logic.

However, there are far deeper problems with Gödel’s ontological argument
than the inability to distinguish meaning. Some problems are indicative of
a ubiquitous problem within modal logic in general, namely the problem of
creating an adequate applied semantics from formal modal logics with the
use of possible worlds. A formal higher order modal logic argument may be
an inappropriate forum for any author to formulate some natural language
arguments involving enormous ontological cost. Other problems are unique
to Gödel’s use of third order modal logic and the property abstraction op-
erator that can create properties from any third order modal logic formula
with a free variable. I contend that Gödel’s use of the property abstraction
operator in the context of formal third order modal logic creates implicit
philosophical assumptions that commit him to both possibilism (the belief
in merely possible objects) and modal realism (the belief in possible worlds).
In the first part of this paper I will present the formal syntax and seman-
tics of third order modal logic with property abstraction, and in the second
part I will discuss problems with the reasoning in Gödel’s argument and the
problematic implicit philosophical assumptions.

Jordan Howard Sobel has shown that Gödel’s system is seriously defec-
tive and suffers from a kind of modal collapse, in that it can be derived that
every existent has necessary existence, and that if any proposition is true, it
is necessarily true 5. I will therefore be addressing C. Anthony Andersen’s re-
vision of Gödel’s Ontological Argument that at least is immune to the modal
collapse discovered in Gödel’s original argument 6. As this was later revised

4Fitting, Types, Tableaus, and Gödel’s God, Kluwer (2002)
5Sobel (1987: 250 - 253)
6Anderson I does not suffer the fate of the original argument, and Sobel’s objection

is blocked. The reason is that Sobel’s objection relied on a consequence of the original
version, which was that if x is God-like and has a property then that property is entailed by
the property of being God-like. Thus, Sobel was able to create arguments which basically
ran as follows: Let x possess the God-like property and imagine a world that has a y
distinct from x having a certain essence, ϕ. Then the necessarily existing God-like being
would have the property in that world of being such that there is something distinct
from it having essence ϕ. Therefore this property would be positive and hence necessarily
positive, and hence entailed by the necessarily exemplified property of God-likeness, and
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I will refer to this as Anderson I.7 I will refer to Anderson I as a Gödelian Ar-
gument in that it uses a formal third order modal logic argument to establish
the existence of God and follows closely Gödel’s original argument.

ANDERSON I:

Definition 1.1. G∗(x) = df ∀ϕ[(�ϕ(x))↔ P (ϕ)] (The God-like property is
changed to having necessary properties [i.e., a necessary property ϕ of x is a
property of x such that �ϕ(x)].)

Definition 1.2. ϕEss∗ x = df ∀γ[(�γ(x)) ↔ (�∀x[ϕ(x) → γ(x)])] (An
essence of x is a property ϕ that is such that for every property γ, x has γ
necessarily if and only if γ is entailed by ϕ)

Definition 1.3. NE∗(x) = df ∀ϕ[ϕEss∗x→ �∃xϕ(x)]

Axiom 1.4. P (ϕ)→∼ P (∼ ϕ)

∼ ϕ = df x[¬ϕ(x)]

Axiom 1.5. P (ϕ)→ [(�∀x(ϕ(x)→ γ(x)))→ P (γ)] (Unchanged)

Axiom 1.6. P (G∗) (Analogous to Gödel’s Axiom 3 but with the new defini-
tion of God-like)

Axiom 1.7. P (ϕ)→ �P (ϕ) (Unchanged)

Axiom 1.8. P (NE∗) (Analogous to Gödel’s Axiom 5, but accommodating
new definition of essence)

Theorem 1.9. P (ϕ)→ ♦∃xϕ(x)

Proof. Deny, i.e., suppose P (ϕ) and ∼ ♦∃xϕ(x). Then we have �∀x ∼ ϕ(x),
so �∀x[ϕ(x) → x 6= x], and hence by Axiom 1.5, P (x[x 6= x]). However,
�∀x[ϕ(x) → x = x], and by Axiom 1.5 we have P (x[x = x]). (→←) (to
Axiom 1.4).

Theorem 1.10. G∗(x)→ G∗Ess∗x

hence it is necessarily exemplified, and thereby it is necessary that there is a y with such
an essence. The new version blocks this consequence by allowing neutral properties.

7C. Anthony Anderson (1990:295-296) Anderson’s revision, Anderson II also contains
the same problematic philosophical assumptions.

Australasian Journal of Logic (11:2) 2014, Article no. 3



117

Proof. Part 1: Suppose G∗(x) and �γ(x). Then P (γ) by definition of G∗,
and hence by Axiom 1.7, �P (γ). Also, by definition of G∗,

�[P (γ)→ [∀z(G∗(z)→ �γ(z))]],

and so
�[P (γ)→ [∀z(G∗(z)→ γ(z))]],

but by Modal distribution, we get [�P (γ)] → [�∀z(G∗(z) → γ(z))], and
since �P (γ), we have �∀z(G∗(z) → γ(z)). So we have shown that if some-
thing has the property of being God-like* and if it has a property necessarily,
then that property is entailed by being God-like*.

Part 2: Suppose G∗(x) and �∀z(G∗(z)→ γ(z)), then by Axioms 1.5 and
1.6, P (γ) and so by definition of G∗, �γ(x). (Thus we have shown that if
something is God-like* then it has a property necessarily if and only if that
property is entailed by being G* ( i.e. G* is an essence* of it).

Theorem 1.11. �∃xG∗(x).

Proof.

G∗(x)→ [NE∗(x) ∧G∗ Ess∗x]

[NE∗(x) ∧G∗Ess∗x]→ �∃xG∗(x),

so G∗(x) → �∃xG∗(x). But by theorem 1.9, ♦∃xG∗(x), and so we have
♦�∃xG∗(x), but this just gives in S5, by model redundancy, �∃xG∗(x).

2 Syntax and Semantics of Third Order Modal

Logic with Property Abstraction

The language will have in addition to individual variables and constants
and function variables and constants both predicate variables and constants
and second-order predicate variables and constants.The logical constants are:
¬,∧,∨,→,↔,∀,∀e,�,♦, (, ), λ, I2 “I2” is a special constant, an exception
to the classification of predicates as non-logical constants, and will stand
for equality with regard to terms.∀e is an Actualist quantifier. The logical
constants ∃ and ∃e are defined in the usual way, i.e., ∃µϕ is defined as ¬∀µ¬ϕ.

Given the language L of third order modal logic with property abstraction
operator 8 , the formulas of L are defined recursively as follows:

8For a comprehensive treatment of the language see Randolph Rubens Goldman,
Gödel’s Ontological Argument, Dissertation, University of California at Berkeley (2000:
51-60) Presently I will use λ for property abstraction. Essentially, If ϕ is a formula with its
free variables the individual variables µ1, . . . , µk then λµ1, . . . , µkϕ is a predicate constant.
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I Atomic formulas1

i If ρ is a predicate variable or predicate constant of degree n and η1, . . . , ηn
are terms,9 then ρη1, . . . , ηn is an atomic formula1.

ii If Γ is a second-order predicate variable or predicate constant of degree
n and ρ1, . . . , ρn are predicate variables or predicate constants, then
Γρ1, . . . , ρnis a second-order atomic formula1.

II Formulas1

i All atomic and second-order atomic formulas1 are formulas1.

ii If ϕ and ψ are formulas1 and µ is a variable then the following are also
formulas1:

¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), (ϕ↔ ψ),�ϕ,♦ϕ, ∀µϕ,∀eµϕ,∃µϕ,∃eµϕ

iii Other than the above, nothing else is a formula1.

Predicate constants1 obtained via the abstraction operator:
If ϕ is a formula1 with its free 10

variables the individual variables µ1, . . . , µk then λµ1, . . . , µkϕ is a predi-
cate constant1 of degree k.

I FormulasN+1:

i If ρ is a predicate variable or predicate constant of degree k or a predi-
cate constantN of degree k obtained by the abstraction operator and
η1, . . . , ηk are terms, then ρη1, . . . , ηk is an atomic formulaN+1 of degree
k.

ii If Γ is a second-order predicate variable or predicate constant of degree k
and ρ1, . . . , ρk are predicate variables or predicate constants or predi-
cate constantsN obtained by the abstraction operator, then Γρ1, . . . , ρk
is a second-order atomic formulaN+1.

9Terms are recursively defined as follows:

1. If $ is any individual variable or individual constant then $ is a term

2. If δ is an n-ary function constant or n-ary function variable and η1, . . . , ηn are terms
then δη1, . . . , ηn is a term.

10see Goldman (2000: 56-59)
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II FormulasN+1:

1. All formulasN are formulasN+1.

2. All atomic formulasN+1 and second-order atomic formulasN+1 are formulasN+1.

3. If ϕ and ψ are formulasN+1 and µ is a variable then the following are
also formulasN+1:

¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), (ϕ↔ ψ),�ϕ,♦ϕ, ∀µϕ,∀eµϕ, ∃µϕ,∃eµϕ

4. Other than the above, nothing else is a formulaN+1.

PREDICATE CONSTANTSN+1 OBTAINED VIA THE ABSTRACTION
OPERATOR:

1. 1) If ϕ is a formulaN+1 with its free variables the individual variables
µ1, . . . , µk and which is such that the highest level of predicate con-
stant obtained by the abstraction operator contained in it is N then
λµ1, . . . , µkϕ is a predicate constantN+1 of degree k.

FORMULAS: ϕ is a formula if and only if there is a k such that ϕ is a
formulak. By an atomic formula, I mean an atomic formula1 or second-order
atomic formula1.

Abbreviations:

1. ‘η1 = η2’ abbreviates I2η1η2 where η1, η2 are terms.

2. If ρ and σ are n-ary predicate expressions, ‘ρ = σ’ abbreviates

�∀α1, . . . ,∀αn[ρα1, . . . , αn ↔ σα1, . . . , αn]

where α1, . . . , αn are individual variables.

3. If Λ1 and Λ2 are n-ary second-order predicate expressions, ‘Λ1 = Λ2’ ab-
breviates �∀π1, . . . ,∀πn[Λ1α1, . . . , αn ↔ Λ2α1, . . . , αn] where π1, . . . , πn
are predicate variables.

It will be obvious by context as to what abbreviation is being employed.
The formal semantics of third order modal logic necessary to interpret

such a Gödelian Argument 11 are as follows:
Ω is an L-model if there are A,B and R such that
SEMANTICS: Ω = 〈A,B,R, 〉 where A is a set, possibly the null set,

A ⊂ B, B is non-empty, and R is a function with the constant symbols of L
as domain, and such that for all natural numbers n:

11In Goldman (2000), Cocchiarella’s (1969) system for second order modal logic was
extended to third order modal logic with some modifications.

Australasian Journal of Logic (11:2) 2014, Article no. 3



120

1. for all individual constants υ in L,R(υ) ∈ B.

2. for all n-place predicate constants σ in L,R(σ) ⊆ nth Cartesian product
of B.

3. for all n-place function symbols (i.e., either function constants or vari-
ables) δ in L,R(δ) belongs to the set of all functions from the nth
Cartesian product of B to B.

Where Ω = 〈A,B,R〉, we set Λ(Ω) = A and Π(Ω) = B, and refer to
Π(Ω) as the possibilia of the world Ω. Intuitively, we may view Λ(Ω) as the
set of objects existing in the world Ω, while Π(Ω) is the set of possibilia of
Ω. Remark on Notation: Given an L-model Ω = 〈A,B,R, 〉, υ an individual
constant, δ an n-place function constant, and σ an m-place predicate con-
stant, I will sometimes use υΩ in place of R(υ), δΩ in place of R(δ), and σΩ

in place of R(σ).

Definition 2.1. An I-indexed family 〈Ωi〉i ∈ I of L-models is a world system
for L if for all j and k ∈ I:

1. Π(Ωj) = Π(Ωk) (The possibilia of worlds in a world system are the
same)

2. ∪Λ(Ωk)(k ∈ I) = Π(Ωj)( The union of the domains of existing objects
over the worlds in a world system is equal to the set of the possibilia
of any world in the world system) 12

We speak of the members of I as the reference points of the world system.
Intuitively, all worlds have the same possibilia but may differ with regards
to the objects existing in them.

Definition 2.2. Give a world system 〈Ωj〉 j ∈ I, we say that X is an n-ary
attribute in 〈Ωj〉j ∈ I, if X is a function with domain I such that for all
j ∈ I,Xj ⊆ nth Cartesian product of Π(Ωj).

Definition 2.3. Given a world system 〈Ωj〉j ∈ I, we say Y is an n-ary e-
attribute if Y is an n-ary attribute in 〈Ωj〉j ∈ I such that for all j ∈ I, Yj ⊆
nth Cartesian product of Λ(Ωj).

Definition 2.4. 〈〈Ωj〉j ∈ I, 〈Fn〉n ∈ w, 〈En〉n ∈ w〉 is a Secondary World
System for L if 〈Ωj〉j ∈ Iis a world system for L and if for all m ∈ w, every
member of Fm is an m-ary attribute in 〈Ωj〉j ∈ I, and every member of Em

is an m-ary e-attribute in 〈Ωj〉j ∈ I, and Em ⊆ Fm.

12This represents a change from Cocchiarella’s system where it needed only be that
∪Λ(Ωk)(k ∈ I) ⊆ Π(Ωj). The change is in order to establish the soundness of the new
axiom ♦∃eαα = β.
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Intuitively, a secondary world system is a collection of worlds together
with some properties, (properties being functions that map worlds to sets
which function as the extension of the property in that world).

MODELS FOR THE THIRD-ORDER MODAL LOGIC SYSTEM:
Let us call predicate symbols that range over predicates (of individuals)

second-order symbols. Then a β- model (or third order world system) is
〈〈Ωj〉j ∈ I, 〈Fn〉n ∈ w, 〈En〉n ∈ w, 〈∪Fn, R

∗
j 〉j ∈ I, 〈Qn〉n ∈ w〉where, for all

j, for each n-ary second-order predicate constant Λ, R∗
j (Λ) ⊆ nth Cartesian

product of ∪Fn and Qn is a set of second-order n-ary-attributes, i.e. every
member G of Qn is a function defined on domain I s.t. for all j ∈ I,G(j) ⊆
nth Cartesian product of ∪Fn . We will also require that for all second-order
predicate constants Λ, there is a G in Q s.t. for all j, G(j) = R∗

j (Λ). This
will be denoted by GΛ.

Intuitively, a third order world system extends a secondary world sys-
tem by including properties of properties. This is required for the Gödel
Ontological Argument.

By an assignment of values to variables in a Third-Order World System,
we mean a function s on the Set of Predicate and Individual Variables s.t.

1. for each individual variable α, s[α] ∈ Π(Ωj) for some j; each individual
variable is assigned some possible object.

2. for each n ∈ w, for each n-place predicate variable π, s[π] ∈ Fn.; each
n-place predicate variable is assigned an n-ary attribute.

3. for each n ∈ w, for each n-place second-order predicate variable ∆, s(∆) ∈
Qn ; each n-place second-order predicate variable is assigned a sec-
ondary n-ary attribute.

The extensions of term or predicate expressions are relativized not only to
third-order world systems but also to the indices and assignments (of values
to variables that may occur free in the term or predicate expression). In
addition to the extension at an index of a predicate constant σ or secondary
predicate constant Λ in L, we will also speak of the intension of σ, respectively
Λ, in a third-order world system.

Definition 2.5. Extension of a term or predicate expression (with respect
to an assignment) Let 〈〈Ωj〉j ∈ I, 〈Fn〉n ∈ w, 〈En〉n ∈ w, 〈∪Fn, R

∗
j 〉j ∈

I, 〈Qn〉n ∈ w〉 = β be a third-order world system for L, ϑ an assignment in
β, and let j ∈ I. Then

1. if α is an individual variable, ext[α, β, j, ϑ] = ϑ[α].
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2. if υ is an individual constant, ext[υ, β, j, ϑ] = υΩj.
13

3. if π is a predicate variable, ext[π, β, j, ϑ] = ϑ[π]j.

4. if σ is a predicate constant in L, then ext[σ, β, j, ϑ] = σΩj.

5. if δ is an n-place function constant in L, and η1, . . . , ηn are terms of
L, then ext[δ(η1, . . . , ηn), β, j, ϑ] = δΩj ( ext[η1, β, j, ϑ], , ext[ηn, β, j, ϑ])[
Uniqueness follows from the Recursion Theorem and the fact that terms
are freely generated. For a discussion of this, see Enderton ] 14

6. if ∆ is an n-place secondary predicate variable, ext[∆, β, j, ϑ] = ϑ[∆]j.

7. if Λ is an n-place secondary predicate constant, ext[Λ, β, j, ϑ] = R∗
j (Λ).

Definition 2.6. Intention of predicate constant σ of L, or secondary pred-
icate constant Λ of L : Let 〈〈Ωj〉j ∈ I, 〈Fn〉n ∈ w, 〈En〉n ∈ w, 〈∪Fn, R

∗
j 〉j ∈

I, 〈Qn〉n ∈ w〉 = β be a third-order world system for L, int[σ, β] = the func-
tion f with domain I and such that for some assignment ϑ in β, and for each
j ∈ I, f(j) = ext[σ, β, j, ϑ] = σΩj.

int[Λ, β] = the function f with domain I and such that for some assign-
ment ϑ in β, and for each j ∈ I, f(j) =ext[Λ, β, j, ϑ].

Definition 2.7. Intention of a predicate variable π or a second-order pred-
icate variable ∆ ( with respect to an assignment): Let 〈〈Ωj〉j ∈ I, 〈Fn〉n ∈
w, 〈En〉n ∈ w, 〈∪Fn, R

∗
j 〉j ∈ I, 〈Qn〉n ∈ w〉 = β be a third-order world sys-

tem for L, ϑ an assignment in β, and let j ∈ I. Then int[π, β, ϑ] = ϑ[π] and
int[∆, β, ϑ] = ϑ[∆].

Definition 2.8. SATISFACTION AND TRUTH: Let β- model 〈〈Ωj〉j ∈
I, 〈Fn〉n ∈ w, 〈En〉n ∈ w, 〈∪Fn, R

∗
j 〉j ∈ I, 〈Qn〉n ∈ w〉 be a third order world

system for L, ϑ an assignment in β, and let j ∈ I. Then

1. for all n ∈ w, for all n-place predicate variables or predicate con-
stants ρ of L, and for all terms η1, . . . , ηn in L, the assignment ϑ
satisfies ρη1, . . . , ηn in β at j iff 〈ext[η1, β, j, ϑ], . . . , ext[ηn, β, j, ϑ]〉 ∈
ext[ρ, β, j, ϑ]; for all n ∈ w, for all n-place second-order predicate vari-
ables or second order predicate constants Λ and for all σ1, . . . , σn where
for each j ≤ n, σj is either a predicate constant or predicate variable, as-
signment ϑ satisfies Λσ1, . . . , σn in β at j iff 〈int[σ1, β, ϑ], . . . , int[σn, β, ϑ] ∈
ext[Λ, β, j, ϑ];ϑ satisfies I2η1η2 in β at j iff ext[η1, β, j, ϑ] = ext[η2, β, j, ϑ].

13if i 6= j, then there is no requirement in Cocchiarella’s system that for an individual
constant υ, υΩj = υΩi

14Enderton (1972: p 27,99)
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2. If ϕ and ψ are formulas of L, then ϑ satisfies ϕ→ ψ in β at j iff either
ϑ does not satisfy ϕ in β at j or ϑ does satisfy ψ in β at j ; ϑ satisfies
¬ϕ in β at j iff ϑ does not satisfy ψ in β at j.

3. Satisfiability of formulas with modal operators: if ϕ is a formula of L,
then ϑ satisfies �ϕ in β at j iff for all k ∈ I ϑ satisfies ϕ in β at k; if
ϕ is a formula of L, then ϑ satisfies ♦ϕ in β at j iff for some k ∈ I ϑ
satisfies ϕ in β at k.

4. if ϕ is an L-formula, and α is an individual variable, then ϑ satisfies
∀αϕ , (where ∀ is the possibilist quantifier), in β at j iff for all x ∈
Π(Ωj), (the possible objects in Ωj), ϑ[α\x] (by convention this means
the assignment which is exactly like ϑ except for assigning x to α)
satisfies ϕ in β at j.

i ϑ satisfies ∀eαϕ, ( where ∀e is the actualist quantifier), in β at j iff
for all y ∈ Λ(Ωj), ( the objects existing in Ωj), ϑ[α\y] satisfies ϕ
in β at j.

5. if ϕ is an L-formula and π is a n-place predicate variable, then ϑ satisfies
∀πϕ in β at j iff for all X ∈ Fn, ϑ[π/X] satisfies ϕ in β at j, and

ii ϑ satisfies ∀eπϕ in β at j iff for all Y ∈ En, ϑ[π/Y ] satisfies ϕ in β
at j.

6. ϑ satisfies ∆(π) at j iff ϑ(π) ∈ ϑ(∆)j.

7. ϑ satisfies ∀∆ϕ at j in β (∆ is an n-ary second-order predicate variable)
iff for all X in Qn, ϑ[∆/X] satisfies ϕ at j in β.

8. ϑ satisfies λα1, . . . , αnϕη1, . . . , ηn at j in β iff ϑ satisfies ϕ[α1/η1, . . . αn/ηn]
at j in β.

9. If Λ is an n-place second-order predicate variable or n-place second-
order predicate variable and σ1, . . . , σn are predicate expressions and
for any m, if for some formula ϕ with free variables α1, . . . , αk, σm is
a predicate constant obtained via the abstraction operator from ϕ, i.e.
σm is λα1, . . . , αkϕ , then ϑ satisfies Λσ1, . . . , σn in β at j iff ϑ satisfies
∃πk[πk = λα1, . . . , αkϕ ∧ Λσ1, . . . , σm−1, π

k, σm+1, . . . , σn] in β at j.

Definition 2.9. A formula ϕ is said to be true in a third-order world system
β for L at index j if ϕ is satisfied in β at j by every assignment in β.

Definition 2.10. A formula ϕ is valid in β if it is true in β at every index.
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Definition 2.11. Normal Third-Order World System Let β- model 〈〈Ωj〉j ∈
I, 〈Fn〉n ∈ w, 〈En〉n ∈ w, 〈∪Fn, R

∗
j 〉j ∈ I, 〈Qn〉n ∈ w〉 be a third-order world

system for L. Then β is normal if we have that:

∃π�∀α1, . . .∀αn[πα1, . . . , αn ↔ ϕ(α1, . . . , αn)]

and

∃eπ�∀α1, . . .∀αn[πα1, . . . , αn ↔ [ϕ(α1, . . . , αn) ∧ ∃eσσα1, . . . , αn]]

are valid in β where ϕ is any formula with free variables α1, . . . , αn , π is a n-
place predicate variable not occurring in ϕ, σ is an n-place predicate variable,
and we require that ∃∆�∀π1, . . . ,∀πn[∆π1, . . . , πn ↔ ϕ(π1, . . . , πn)] is also
valid in β where ϕ is any formula with π1, . . . , πn free and ∆ is an n-place
secondary predicate variable not occurring in ϕ.

Definition 2.12. Let ϕ be any formula whose free variables are individual
variables. Then β is normal for ϕ if we have that:

∃π�∀α1, . . . ,∀αn[πα1, . . . , αn ↔ ϕ(α1, . . . , αn)]

and

∃eπ�∀α1, . . . ,∀αn[πα1, . . . , αn ↔ [ϕ(α1, . . . , αn) ∧ ∃eσσα1, . . . , αn]]

are valid in β where ϕ has as its free variables α1, . . . , αn ; π is a n-place
predicate variable not occurring in ϕ, and σ is an n-place predicate variable.

Lemma 2.13. Semantical Lemma: If ϕ is an L-formula, β a third order
world system for L, j a reference point of β, and s an assignment, and β is
normal for all ψ ∈ C(ϕ)15 then:

1. if ξ is an individual constant of L and s satisfies ∃α�α = ξ in β at j,
then s satisfies ϕ[α/ξ] in β at j iff s[α/ext(ξ, β, j, s)] satisfies ϕ in β
at j.

2. If ρ is a predicate constant of L of the same arity as σ, then s satisfies
ϕ[σ/ρ] in β at j iff s[σ/int(ρ, β)] satisfies ϕ in β at j. If ρ is a predicate
variable of L of the same arity as σ, then s satisfies ϕ[σ/ρ] in β at j
iff s[σ/int(ρ, β, s)] satisfies ϕ in β at j.

15C(ϕ) is a recursively defined set containing instances of predicate constants defined
via property abstraction within ϕ. For details see Goldman (2000: 67-68)
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3. If Λ is a secondary predicate constant of L of the same arity as ∆ ,
then s satisfies ϕ[∆/Λ] in β at j iff s[∆/int(Λ, β)] satisfies ϕ in β at
j. If Λ is a secondary predicate variable of L of the same arity as ∆ ,
then s satisfies ϕ[∆/Λ] in β at j iff s[∆/int(Λ, β, s)] satisfies ϕ in β at
j.

(The proof is a straightforward induction on the complexity of formulas.)
AXIOMS: The axioms that provide the Completeness result consist of all

the generalizations of the following forms.
Sentential Axioms

1. ϕ→ (ψ → ϕ)

2. [ϕ→ (ψ → χ)]→ [(ϕ→ ψ)→ (ϕ→ χ)]

3. (∼ ϕ→∼ ψ)→ (ψ → ϕ)

Modal Axioms

4. �ϕ→ ϕ

5. �(ϕ→ ψ)→ (�ϕ→ �ψ)

6. ♦ϕ→ �♦ϕ

Quantificational Axioms for possibilia and attributes

7. ∀α(ϕ → ψ) → (∀αϕ → ∀αψ) where α is an individual variable and
∀π(ϕ→ ψ)→ (∀πϕ→ ∀πψ) where π is a predicate variable.

8. ϕ → ∀αϕ, ϕ → ∀πϕ, where α and π respectively are individual and
predicate variables not occurring free in ϕ.

9. ∃ππ = λα1, α2, . . . , αnϕ for n-place predicate variable π not occurring
in ϕ, where the free variables in ϕ are α1, α2, . . . , αn

10. ∃αI2αξ where ξ is a term and α does not occur in ξ

11. I2ξη → (ϕ→ ψ), where ϕ is an atomic formula1 and η is a term in it,
and ψ is obtained from ϕ by replacing one or more occurrences of η by
an occurrence of ξ.

12. ♦I2αβ → �I2αβ

Existence Axioms

13. ∀eπ(ϕ→ ψ)→ (∀eπϕ→ ∀eπψ)
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14. ∀πϕ→ ∀eπϕ

15. ∀eπ�∃eσ�∀α1, . . . ,∀αn[σα1, . . . , αn ↔ (πβ1, . . . , βk ∧ ϕ(β1, . . . , βk))]
where {α1, . . . , αn} ⊆ {β1, . . . , βk} and π and σ are distinct predicate
variables not occurring in ϕ.

16. ∃eππ = λα1, . . . , αn∃eσσα1, . . . , αn

17. ∀eα1, . . . ,∀eαnϕ↔ ∀α1, . . . ,∀αn[∃eππα1, . . . , αn → ϕ]

Additional Equality Axiom

18. �I2ξξ where ξ is a term

Third Order Axioms

19. ∀∆(ϕ→ ψ)→ (∀∆ϕ→ ∀∆ψ) (needed for Generalization Theorem).

20. ϕ→ ∀∆ϕ , where ∆ is a second-order predicate variable not occurring
free in ϕ (also needed for Generalization theorem).

21. ∃∆�∀π1, . . . ,∀πn[∆π1, . . . , πn ↔ ϕ(π1, . . . , πn)] and the axiom is an
axiom schema (needed for the overall Henkin construction in the desired
completeness result).

We can not use an analogue of (12) and rightly so, for given that in
some worlds two predicates are co-extensional, it does not mean they
are necessarily so. We do, however, need the following axioms.

22. ρ = σ → (ϕ→ ψ), where ϕ is a second-order atomic formula and ψ is
obtained from ϕ by replacing one or more occurrences of ρ with σ.

23. ∀∆ϕ(∆)→ ϕ(Λ), where Λ is an secondary predicate expression (either
a second order predicate variable or second-order predicate constant)
free for ∆ in ϕ.

Axiom for the Abstraction Operator

24. �(ϕ(η1, . . . , ηn)↔ λα1, . . . , αnϕ[α1/η1, . . . , αn/ηn])

Additional S5 Axiom
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25. ♦∃eαI2αβ16

Note: Axioms like 23, which essentially defines the universal quantifier,
cannot be given when quantifying over properties or individuals, but re-
stricted versions of it in these cases can be derived. The problem comes in
with terms, i.e. with function symbols of individuals. Something like σ(α) is
not a rigid designator and can vary from world to world, so we cannot neces-
sarily get ∀αϕ(α)→ ϕ(ξ) when ξ is a complex term and ϕ is not modal free.
For instance, ∀α∀β[α = β → �α = β], but it is not necessarily the case that
[δ(α) = δ(β) → �δ(α) = δ(β)]. This is not a problem at the second-order
predicate level.

The Inference Rules are Modus ponens, Possibility Interchange (an oc-
currence of ♦ϕ can be replaced by ¬�¬ϕ and vice versa), Necessitation,
and that an occurrence of ϕ ∧ ψ can be replaced by ¬(ϕ → ¬ψ);ϕ ∨ ψ by
¬ϕ→ ψ;ϕ↔ ψ by (ϕ→ ψ) ∧ (ψ → ϕ); and vice versa.

Derivations: A derivation of ϕ from Γ is a sequence ψ1, . . . , ψn such that
ψn = ϕ and for each j ≤ n either

i ψj is in Γ ∪ E (where E is the set of axioms)

ii for some k and m less than j, ψj is obtained from ψk and ψm by modus
ponens

iii for some k less than j, ψj is obtained from ψk by necessitation

iv for some k less than j, ψj is obtained from ψk by possibility interchange

v for some k less than j, ψj is obtained from ψk by an above truth
functional rule

We write this by Γ ` ϕ . If Γ is the null set, and ϕ is derivable from the set
of axioms alone, we write ` ϕ .

Soundness17: : Let Γ be a set of L-formulas and Φ be a single L-formula.
Then if Φ is derivable from Γ, Φ is satisfied by every normal β - model with
assignment ϑ that satisfies every member of Γ 18. A fortiori, if Φ is a logical

16This axiom represents a shift from Cocchiarella’s version and is more in keeping with
the philosophical intuition of S5 that every possible object must be in at least one possible
world.

17See Goldman (2000: p 77-79)
18Cocchiarella’s original system does not have equality as a primitive and rather defines

η = ξ as ∀ρ(ρ(η) → ρ(ξ)). Cocchiarella’s version can be made sound without equality
as a primitive by defining identity in terms of indiscernibility (η = ξas ∀ρ(ρ(η) ↔ ρ(ξ))
and by employing identity-standard models. This is important in particular for his Axiom
11, ∀π(πη → πζ) → (ϕ → ψ), where π is a unary predicate variable, and ψ is an atomic
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theorem (i.e., Φ is derivable from the axioms alone) then Φ is valid with
respect to normal β - models. The proof of this is straightforward. One
checks that each axiom holds in any normal β - model, which can be seen
from the Soundness in third-order logic with regard to faithful models, and
in S5 modal logic and that the definitional axiom of the property abstraction
operator hold from the way satisfaction is defined, and then one checks the
inference rules, and modus ponens, possibility interchange, and necessitation
clearly preserve soundness (for a nice discussion of soundness with respect to
faithful models, see Shapiro19 ).

COMPLETENESS THEOREM FOR THIRD-ORDER MODAL LOGIC

If Γ is a consistent set of formulas of the countable language L, then there
exists a normal third order world system Ξ (with countably many possibilia
and countably many attributes and second-order attributes) and assignment
ϑ s.t. for some reference point j of Ξ, every member of Γ is satisfiable by ϑ
in Ξ at j.

This constitutes a weak completeness result for uncountable languages
in itself. A strong result also follows from it and the fact that given , a
consistent set of formulas of an uncountable language, we could take the set
of all finite subsets of Γ (call it J) and for j in J , given Uj, a model for j, we
know there is an ultrafilter D over J such that the ultraproduct is a model
of Γ (for each ϕ in Γ, look at the set of all j, s.t. ϕ belongs to j. Call it ϕ∗.
Let E = {ϕ∗ : ϕ in Γ} then E has the finite intersection property and can
be extended to an ultrafilter D over J in the standard way.

Lemma 2.14. Let E be any subset of S(J) and let D be the filter generated
by E then D is a proper filter iff E has the finite intersection property

Lemma 2.15. D is an ultrafilter over J iff D is a maximal proper filter

Theorem 2.16. If E is any subset of S(J) and E has the finite intersection
property then there exists an ultrafilter D over J which contains E (follows
from Lemma 2.14 and 2.15 and Zorn’s Lemma)

The fact that the ultraproduct will be a model of Γ follows from an easy
application of Los theorem. {j ∈ J : Uj |= ϕ} extends ϕ∗ and hence belongs
to D so ΠDUj |= ϕ for each ϕ in Γ.

formula and η is a term in it, and ϕ is the formula obtained from ψ by replacing an
occurrence of η with ζ , i.e., ψ[η/ζ]) and his Axiom 12 (♦∀π(πα→ πβ)→ �∀π(πα→ πβ)
where π is a unary predicate variable)

19Shapiro (1991: p 71-89)
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The proof of Completeness was originally presented in Gödel’s Ontological
Argument (2000)20 along the basic ideas of the Henkin proof of Complete-
ness in First-Order Logic and an edited version of the Cocchiarella proof for
Completeness in Second Order Modal Logic with adaptations to a Third-
Order Modal Logic system, the revised faithful models, and the inclusion of
a property abstraction operator. A somewhat similar account is later found
in Fitting’s Types, Tableaus, and Gödel’s God.21

3 Philosophical Assumptions

In the previous section I presented a pure semantics for the third order modal
logic employed by Gödel. In this context, the ontological argument is a
mathematical one, and the only commitment is to set theory or a fragment of
set theory. However, the argument is not meant to be merely mathematical,
but rather an actual argument for the existence of God. A positive property
is not merely some mathematical aspect of a β-model 〈〈Uj〉j ∈ I, 〈Fn〉n ∈
w, 〈En〉n ∈ w, 〈∪Fn, R

∗
j 〉j ∈ I, 〈Qn〉n ∈ w〉 (i.e., an element of Qn for some

n), but something with the intended meaning of “moral aesthetic”. The
conception of God also brings with it other intended meanings for properties,
such as “omniscience”, “moral rectitude”, “being the cause of the world”, or
“transcendent to the world”. The pure semantics does not tell us what
the modal operators are supposed to mean. Thus, an applied semantics is
essential. Yet, the applied semantics must do more than explain the modal
operators. It must also relate the formal representations in the argument
to the meanings of properties that Gödel and others ascribe to God such
that the ontological argument becomes an argument that can be construed
as an argument for the existence of God. Additionally, given the use of
the property abstraction operator employed by Gödel, a host of properties
involving de re assertions22 are allowed. Thus, the question arises: What are
the philosophical assumptions implicit in Gödel’s use of third order modal
logic?

I see six major philosophical assumptions that are highly problematic for
Gödel’s argument.

20Randolph Rubens Goldman, Gödel’s Ontological Argument (2000), Dissertation, Uni-
versity of California at Berkeley

21Melvin Fitting, Types, Tableaus, and Gödel’s God, Kluwer (2002)
22A modal formula ϕ is de re if there is a formula in ϕ that consists of a modal operator

followed by a subformula that contains a free instance of an individual variable or an
individual constant. For example, ∃x�Rx is de re because within Rx x is free and x is
only bound by the existential quantifier within ϕ outside the scope of the modal operator,
�.
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I The existence of possible worlds

II The existence of merely possible objects (Actualism v. Possiblism)

III Bivalence holds with respect to possible objects, i.e. assuming [ϕ(z) ∨
¬ϕ(z)] for all possible entities z for non-modal ϕ

IV De re assertions make sense for possible objects

V Possible objects have necessary properties or not, i.e., �ϕ(x)∨ ∼ �ϕ(x)
for all possible objects.

VI Intrinsic and Extrinsic Properties of possible objects, including those
defined with respect to merely possible objects, have second order prop-
erties or not and have necessary second order properties or not. Inter-
nal, external, and extrinsic relations between possible objects have sec-
ond order properties or not and have necessary second order properties
or not.

V is an instance of IV so I will discuss them together. VI is probably the
most problematic for any attempt to obtain to satisfactory applied semantics
for Gödel’s Ontological Argument.

3.1 Possible Worlds

A proponent of modal realism (the doctrine that there are possible worlds)
contends that the interpretations of the set-theoretic structures as possible
worlds characterize the real truth conditions for modality and that the pos-
sible worlds themselves are genuine features of modal reality. The modal
operators can then be conceived of in terms of quantifications over these
possible worlds. �ϕ is true when ϕ is true in all possible worlds, and ♦ϕ is
true when ϕ is true in some possible world. In order to formulate an applied
semantics for modal logic, various philosophers have put forth theories of
what a possible world is.

Alvin Plantinga has argued that there is an intended applied semantics
that he refers to as the Canonical Conception.23 Under the Canonical con-
ception, the 〈Uj〉j ∈ I in the β-model would represent possible worlds. Given
that Ω = 〈A,B,R, 〉 represents one of those possible worlds, B would repre-
sent the set of possible objects, which is the same set in all possible worlds

It is important to stress the difference between the pure and applied
semantics for modal logic, and the difference between “a possible world” and

23Plantinga (1979:254)
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the set-theoretic structure which is intended to represent a possible world.
In the pure semantics, there are only the set-theoretic structures themselves.
The pure semantics can investigate logical validity in the modal language,
but it does not supply the truth conditions for the modal concepts we employ
in our reasoning about modality. The possible worlds of modal realists that
supply such truth conditions range from the concrete worlds of David Lewis
to the more abstract entities postulated by Alvin Plantinga

In Counterfactuals, David Lewis writes:

I believe that there are possible worlds other than the one we
happen to inhabit. If an argument is wanted, it is this. It is
uncontroversially true that things might have been otherwise than
they are. I believe and so do you, that things might have different
in countless ways. Ordinary language permits the paraphrase:
there are many ways things could have been besides the way they
actually are. On the face of it, this sentence is an existential
quantifier. It says that there exist many entities of a certain
description, to wit ‘ ways things could have been’. I believe that
things could have different in countless ways; I believe permissible
paraphrases of what I believe; taking the paraphrase at its face
value, I therefore believe in the existence of entities that might
be called ‘ways things could have been’: I prefer to call them
‘possible worlds’. 24

David Lewis’ paraphrase does not seem so innocent. While it might be
correct to exchange, ‘Things could have been different in countless ways’,
with ‘There are countless ways in which things could have been different’,
it seems that the paraphrase ‘There are many ways things could have been
besides the way they actually are’ is a subtle distortion. In other words,
‘ways things could have been’ is different from ‘ways in which things could
have been different’. What allows David Lewis to draw the conclusion that
there really are entities called ‘ways things could have been’? If this seems
suspicious, it pales in comparison to the leap taken when he assumes that
‘ways things could have been’ are really spatio-temporally distinct concrete
universes, as he goes on to state in On the Plurality of Worlds:

There are countless other worlds, other very inclusive things. Our
world consists of us and all our surroundings, however remote in
time and space; just as it is one big thing having lesser things
as parts, so likewise do other worlds have lesser other worldly

24Lewis (1973)

Australasian Journal of Logic (11:2) 2014, Article no. 3



132

things as parts. The worlds are something like remote planets,
and they are not remote. Neither are they nearby. They are not
at any spatial distance whatever from here. They are not far in
the past or future, nor for that matter near; they are not at any
temporal distance whatever from now. They are isolated: There
are no spatiotemporal relations at all between things that belong
to different worlds. 25

What justifies this leap? Lewis answers this himself:

Why believe in a plurality of worlds? - Because the hypothesis is
serviceable, and that is a reason to think it is true. 26

How can mere serviceability support the enormous ontological cost of such
worlds? I do not find any of David Lewis’ arguments satisfactory.27 However,
it is interesting that modern String theorists in physics have postulated the
existence of additional dimensions and a multiverse28 of which our universe
is just one of many. Nonetheless even such universes would not explicate
modality because we would still have modal beliefs that the multiverse itself
could have been different.

Examples of abstract possible worlds include Alvin Plantinga’s maximal
states of possible affairs and lingusitic ersatzism. Lingusitic ersatzism is the
view that possible worlds are maximally consistent sets of sentences from
some natural language, such as English. Linguistic ersatzism faces two sig-
nificant challenges. It lacks the power of expressibility necessary to represent
all the possibilities. 29 David Lewis has argued against linguistic ersatzism
by showing that, given a Euclidean space-time with Democritean physics,
the world can be completely characterized by specifying which space-time
points have matter and which do not. The cardinality of space-time points
in Euclidean space is the cardinality of the continuum. The cardinality of
possible arrangements of matter is equal to the cardinality of subsets of the
set of points, which is the size of the power set of the continuum, but sen-
tences are finite strings in a countable language and hence countable. Thus
the cardinality of all sets of sentences is that of the continuum. Hence, the
cardinality of possible worlds is at most the continuum, and so there are not
enough linguistic possible worlds. Another problem confronting linguistic

25Lewis (1986: p2)
26Lewis (1986: p3)
27for an excellent critique of David Lewis’ modal realism, see Chapter 3 in Chihara

(1998: p. 76- 141)
28Randall (2005: 334-351)
29Lewis: (1986: p 143)
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ersatzism is that possible worlds described in terms of maximally consistent
sets of sentences suffer from a kind of circularity. These possible worlds are
defined in terms of consistency, but, because the sentences of the language
employed already have meanings (and are not a pure formal language for
which syntactic consistency can easily be defined), consistency in this case
could only be understood in terms of the possible worlds themselves.

Robert Adams believes possible worlds are maximal consistent sets of
propositions. However, such a view leads to a violation of Cantor’s theorem.
If such a maximal consistent set of propositions existed, then the union of
it and the set of all the negations of members of it would be the set of all
propositions. Given a set of all propositions, its power set exists. However,
for each element x of the power set there is associated in a one to one manner
the proposition that I believe some member of x to be true. Hence, a violation
of Cantor’s theorem occurs.30 Plantinga’s version also leads to a violation of
Cantor’s theorem. Another difficulty is that Plantinga’s maximal states of
affairs are supposed to represent ways in which the world might have been,
and how such a representation would take place is controversial. 31

All versions of possible worlds seem to suffer from various deficiencies.
For an excellent and more complete discussion see Chihara. 32

3.2 Possibilism

Possibilism is the doctrine that there are merely possible objects. There
are several philosophical issues associated with possibilism. Is an ontological
commitment to possibilia justifiable? Can possibilia have properties? An-
other involves the notion of transworld identity. How can a merely possible
object be identified from one world to another? Meinong believed that there
were merely possible objects and even impossible objects, such as a round
square.33Meinong only refers to these merely possibly objects through def-
inite descriptions like, for example, ‘the golden mountain.’34 Belief in the
existence of such objects incurs ontological cost. Furthermore, if there are
such objects, then we should expect there to be non-qualitative properties
possessed by one merely possible object as opposed to another (i.e., essences)
but if such merely possible objects are identified with definite descriptions,
then it seems unclear how non-qualitative properties could be distinguished.
There could have been two golden mountains that were qualitatively indis-

30Jubien (1988: p 306-307)
31for elaboration of the difficulties Plantinga faces see Chihara (1998: p 101 - 141)
32Chihara (1998: 76-141)
33Chisholm (1960: 82-84)
34Chisholm (1960:9)
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cernible, ‘the golden mountain that is qualitatively indistinguishable from
another’, and ‘the other qualitatively indistinguishable golden mountain’.
What would it mean for a possible object to have the property of being iden-
tical with the first and not the second? Moreover, what is there to identify
the same possibilia over different worlds? For example, if we are to believe
that there is a merely possible object associated with ‘the golden mountain’
and that this possible object might have been higher (in another world), then
how can the possible object ‘the golden mountain’ in the world in which it
is higher be identified with the possible object ‘the golden mountain’ in the
world in which it is not?

Anderson accepts Possiblism in the context of the Ontological Argument,
because he endorses the Cocchiarella system for his applied semantics. 35

Plantinga does not. Plantinga, who is both an Actualist (he does not believe
in merely possible objects) and Serious Actualist, (he does not believe that
something can have a property in a world in which it does not exist), has
tried to formulate a definition of essence consistent with his philosophical
views. According to Plantinga,36 an essence is a property F such that there
is a world w and an object x such that:

1. x has F in every world in which it exists

2. there is no w] and no y y 6= x such that y has F in w]

Plantinga believes essences are necessary entities and contends that in
defining essences he has avoided a commitment to merely possible objects.
Jager’s applied semantics 37 was constructed in conformance with Plantiga’s
views on Actualism and Serious Actualism in that the extension of n-ary
predicates would consist only of those subsets of the nth Cartesian products
of elements that existed at the world. If Anderson tried to adopt such a
Serious Actualist semantics it would necessitate that all n-ary attributes in
a world system be e-attributes. In Jager’s system the elements that exist at
a world w are the set of all essences exemplified in w. Thus the system is
purported to also be Actualistic according to Plantinga because he believes
essences actually exist.38 However, there is a problem for Plantinga. Chihara
pointed out the variable x occurs within the scope of a world variable w]
which itself occurs within the scope of w.39 Plantinga must demonstrate
how there can be a possible individual x of world w that has some property

35Anderson (1990: 300)
36Plantinga (1974: 72)
37Jager (1982)
38Chihara (1998: 116)
39Chihara (1998:118)
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F in all worlds in which it exists and which is such that in any other world
w] has another property, namely the property of it being the case that if
there is any object y distinct from it in w], then y lacks property F , and
still avoid a commitment to x being a merely possible individual. Anderson,
on the other hand, makes no such attempt, and the ontological argument he
gives is straightforwardly committed to possibilia.

3.3 Bivalence with respect to possible objects

Even though we can make sense of a statement such as

There could have been a unicorn named Kate which might have been
standing outside or not standing outside,

how can we understand a statement about the merely possible object, Kate,
such as

Kate is standing outside or Kate is not standing outside

to be true in a world where no unicorn exists? What does truth at a world
mean for a sentence referring to an object that does not exist at the world? A
claim of this sort could neither be consistent with Actualism nor with Serious
Actualism. Hillary Putnam declares that there is a conceptual relativity
which must be examined with regard to the abstract notion of an object 40

, let alone a merely possible object. Is there really a logical or metaphysical
notion of ‘object’ independent of the language? Putnam contends that the
answer to a question such as ‘How many objects are there in the room?’ is
not independent of the framework of the language. If the notion of ‘object’
may be subject to skepticism, how much more vulnerable to skepticism is
the notion of ‘merely possible object’?

3.4 De re assertions make sense for possible objects in-
cluding

3.5 Possible objects have necessary properties or not,
i.e., �ϕ(x) ∨ ¬�ϕ(x) for all possible objects.

What can be made of de re assertions predicating a modal property with
respect to a merely possible object? For example

1. Kate is necessarily hungry.

40Putnam (1988):112-113
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2. Kate possibly injures her leg.

3. Kate is necessarily hungry or Kate is not necessarily hungry.

Can possible objects even have necessary properties or not, i.e., �ϕ(x)∨
¬�ϕ(x) for all possible objects? Presupposition V is a feature of the pure
semantics, as it is satisfiable in any third order structure, but it is contro-
versial under a natural language interpretation, especially in the context of
merely possible objects. Presupposition IV for merely possible objects is
an even greater assumption than II, and is certainly inconsistent with both
Actualism and Serious Actualism.

Anderson’s definition of essence: ϕEssx = df∀γ[(�γ(x))↔ (�∀x[ϕ(x)→
γ(x)])]

(An essence of x is a property ϕ that is such that for every property γ, x
has γ necessarily if and only if γ is entailed by ϕ.)The definition becomes
controversial when we see that it is not only essential to be able to make sense
of the quantification over possible objects within �∀x[ϕ(x) → γ(x)], but to
also make sense of quantification over all properties including those properties
defined through property abstraction with respect to merely possible objects
outside the scope of the modal operators in ∀γ[(�γ(x)) ↔ (�∀x[ϕ(x) →
γ(x)])]. Theorem 1.10, G(x)→ G Ess x, inherits the same concerns.

The commitment of the Ontological Argument to possibilism begets the
vexing philosophical issues discussed earlier. Does it make sense with regard
to Axiom 1.5 to talk about entailment when the quantification over merely
possible objects is permitted? Will not the truth values for some possible
objects be genuinely non-existent? If Axiom 1.5 is blocked at this point,
the Ontological Argument collapses. Recall the cornerstone of the Gödel
argument: P (ϕ)→ [(�∀x(ϕ(x)→ γ(x)))→ P (γ)] is responsible for deriving

Theorem1.9 P (ϕ)→ ♦∃xϕ(x), and property abstraction is utilized in the
proof of Theorem 1.9 and is an essential feature of Gödel’s argument.

In Worlds of Possibility, Charles Chihara offers an anti-Realist account
of the semantics of modal logic compatible with Actualism, and he provides
a connecting theorem between the relativized notion of truth in a mathe-
matical model and the absolute notion of truth under a natural language
interpretation.41

Adhering to Chihara’s definition of NL-interpretation as conforming to
a model of modal logic42 , for any NL-interpretation ϑ representing a third-
order world system β- model, 〈〈Uj〉j ∈ I, 〈Fn〉n ∈ w, 〈En〉n ∈ w, 〈∪Fn,Rj∗〉j ∈
I, 〈Qn〉n ∈ w〉, it is likely, at least, to have bijections fj from Λj(Ωj) to the

41Chihara (1998: 190-259)
42Chihara (1998:229-239)
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extension of ϑ(Λ) (the English predicate asigned by ϑ to delimit the domain of
the quantifiers with respect to individuals) and (given second-order property
∆), gj from ∪En to ϑ(E) (the delimitation under ϑ of the domain of the quan-
tifiers with respect to attributes) s.t. for every n-ary predicate σ and for every
n-tuple in Λ(Ωj), 〈λ1, . . . , λn〉 ∈ Rj(σ) iff 〈fj(λ1), . . . , fj(λn)〉 ∈ ext[σ/ϑ], (the
extension of σ under ϑ), and for every n-tuple in ∪En, 〈ρ1, . . . , ρn〉 ∈ R∗

j (∆)
iff 〈gj(ρ1), . . . , gj(ρn)〉 ∈ ext[∆/ϑ], and conformance of the NL-interpretation
ϑ to a β- model

〈〈Uj〉j ∈ I, 〈Fn〉n ∈ w, 〈En〉n ∈ w, 〈∪Fn,Rj∗〉j ∈ I, 〈Qn〉n ∈ w〉

would include that for every Ωj in β, the world could have been such that
there were fj and gj via which there was a representation of the world, and
that the world could not have been such that for no Ωj in β were there
functions fj and gj via which there was a representation of the world.

Now then, one might be able to extrapolate Gödel’s Ontological argument
as an argument for God if the use of NL-interpretations included a bijection
from objects in the actual world to the domain of some Ωj in the β- model
which succeeded in making “omniscient” and “good” well-defined over this
domain and “positive” well-defined over the domain of properties. The prob-
lem is that in a β- model, it will be the case that either 〈λ1, . . . , λn〉 ∈ Rj(σ) or
〈λ1, . . . , λn〉 /∈ Rj(σ), and that either 〈ρ1, . . . , ρn〉 ∈ R∗

j (∆) or 〈ρ1, . . . , ρn〉 /∈
R∗

j (∆). For such properties as “goodness” and “omniscience”, however, there
will inevitably be statements that are not simply either true or false, but
meaningless.

The goal of the anti-realist endeavor is to provide a connecting theo-
rem between the satisfaction of a formula in a mathematical structure and
the truth of a formula under an NL-interpretation which conforms to the
structure. A connecting theorem would provide a link between two kinds of
interpretations, and would, in effect, provide an answer to Davidson’s prob-
lem, as it is related to third-order modal logic. In general, a connecting
theorem states that a formula is satisfied by a β-model if and only if the
NL-interpreted formula was in fact true under the NL-interpretation that
conforms to the structure. Conformance itself would have to be defined in
terms of a modal primitive, since such an account is not meant to be a reduc-
tive account of what modality is. Conformance would also need to defined in
order to make clear how the β-model would represent the objects and qual-
ities alluded to by the NL-interpretation. Furthermore, conformance would
have to be defined within the constraints of the anti-realist endeavor. Appar-
ently, an anti-realist faces many encumbrances against the development of an
adequate notion of conformance with respect to the structures of third-order
modal logic and against the construction of a connecting theorem.
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Through the use of the property abstraction operator in Gödel’s system,
many new properties can be created. These properties must be given natural
language interpretations. In Gödel’s system, for every formula with free
individual variables, there must be a property associated with that formula.
For instance,

1. [¬∃ezz = x ∧ ∃y[¬∃ezz = y ∧�R2yx]]

2. [¬∃ezz = x ∧ ♦R1x]

3. [∃y[¬∃ezz = y ∧ (♦R1y ∧ y 6= x)] ∧�R1x]

are formulas with the free individual variable x. Hence, by Gödel’s liberal
employment of the property abstraction operator, we have the properties

1. λx[¬∃ezz = x ∧ ∃y[¬∃ezz = y ∧�R2yx]]

2. λx[¬∃ezz = x ∧ ♦R1x].

3. λx[∃y[¬∃ezz = y ∧ (♦R1y ∧ y 6= x)] ∧�R1x].

In any given normal β-model, the sentences

1. Pλx[¬∃ezz = x ∧ ∃y[¬∃ezz = y ∧ �R2yx]] ∨ ¬Pλx[¬∃ezz = x ∧
∃y[¬∃ezz = y ∧�R2yx]]

2. Pλx[¬∃ezz = x ∧ ♦R1x] ∨ ¬Pλx[¬∃ezz = x ∧ ♦R1x]

3. Pλx[∃y[¬∃ezz = y ∧ (♦R1y ∧ y 6= x)] ∧ �R1x] ∨ ¬Pλx[∃y[¬∃ezz =
y ∧ (♦R1y ∧ y 6= x)] ∧�R1x]

are valid. For example, let R2yx be given the NL-interpretation ‘y is tran-
scendent to x’, and let R1x be given the NL interpretation ‘x has moral
rectitude’.

What are the actual properties that are represented by

1. λx[¬∃ezz = x ∧ ∃y[¬∃ez(z = y) ∧�R2yx]]

2. λx[¬∃ezz = x ∧ ♦R1x]

3. λx[∃y[¬∃zz = y ∧ (♦R1y ∧ y 6= x)] ∧�R1x]?

In what way can an anti-realist and an Actualist coherently say that there
is a property of being a merely possible object and having another merely
possible object necessarily transcendent to it, or that there is a property of
being a merely possible object which possibly has moral rectitude, or that
there is a property of both necessarily having moral rectitude and being
distinct from a merely possible object that possibly has moral rectitude?

Australasian Journal of Logic (11:2) 2014, Article no. 3



139

3.6 Second Order Properties of Properties and Rela-
tions of Possible Objects

What does it mean for the properties in the paragraph above to be positive or
not positive? Presupposition VI is the most challenging obstacle that would
need to be addressed satisfactorily in order for anyone to show that Gödel’s
Ontological Argument is indeed an argument for the existence of God, and
it is a problem that arises directly from the use of the property abstraction
operator.

There could have been two other students of Socrates, one named Kate
and the other, her twin, named Karen. These non-actual possible objects
would have had properties if they had existed, and other objects would have
possessed properties in relation to these objects. What are these properties
and what distinguishes them? What would it mean for a property of Kate
to have a certain second order property and another property of Karen to
not have that second order property? What would it mean for an object to
possess a property in relation to Kate and not to Karen? For instance, let
ϕ(α) be

1. ¬(∃eββ = ξ) ∧ (∃β�β = ξ) ∧ ¬(∃eββ = η) ∧ (∃β�β = η) ∧ ¬(ξ =
η) ∧ (�R2αξ) ∧ ¬(�R2αη), where ξ and η are individual constants.

and let ψ(α) be

2. ¬(∃eββ = ξ) ∧ (∃β�β = ξ) ∧ ¬(∃eββ = η) ∧ (∃β�β = η) ∧ ¬(ξ =
η) ∧ ¬(�R2αξ) ∧ (�R2αη).

By property abstraction, we would obtain λαψ(α) and λαϕ(α), and any
β-model would satisfy [�Λλαψ(α)∨¬�Λλαψ(α)]∧[�Λλϕ(α)∨¬�Λλαϕ(α)]
for any second order predicate constant Λ. This is saying that the property
of being necessarily R2- related to the merely possible object η and not
necessarily R2- related to the other merely possible object ξ is necessarily a
Λ-property or not necessarily a Λ-property and that the property of being
necessarily R2- related to the merely possible object ξ and not necessarily
R2- related to the other merely possible object η is necessarily a Λ-property
or not necessarily a Λ-property. But in what way is this meaningful in an
applied semantics?

It seems that to even attempt a meaningful applied semantics, Gödel
must be committed to merely possible objects, essential properties of possi-
ble objects and some form of modal realism, and thereby contracts the host
of problems connected to such commitments. A distinguishing feature of the
conformance worked out by Chihara (in the first order case) is that only a
certain bijection from the domain of the structure to actual objects in the
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world need be constructed. However, the universes of β-models contain both
attributes (functions from possible worlds to the extension of the property
or relation in the world) and second order attributes (also functions from
possible worlds to the extension of the second order property or second or-
der relation in the world), and through the Gödelian property abstraction
operator, a host of properties and relations can be formed which must be
represented in any normal β-model. It is difficult to ascertain what these
could correlate to in the actual world.

Another problem is that in order to construct a notion of conformance,
the domains in which it makes sense to speak of the various natural language
predicates anticipated in the Ontological argument must be restricted. It
does not make sense to say of a particle in quantum mechanics that it is not
morally good, although, perhaps, it might make sense to say of an electron
that it is not transcendent to some particle. Furthermore, in order to ob-
tain a connecting theorem, one must delimit the domain of the quantifiers
to just those things that satisfy an English predicate assigned by the NL-
interpretation. As the Fundamental Connecting Theorem by Charles Chihara
43 shows, satisfaction of a sentence in a model to which an NL-interpretation
conforms is linked to the truth of the NL-interpreted sentence when the do-
main of the quantifiers has been so delimited. For instance, Chihara gives
an example of what he refers to as an “NL proto-interpretation”, where the
domain of quantifiers is delimited by the predicate “is one of the pair, Bill
Clinton or Hillary Clinton.” ¬♦∃x∃y∃z[x 6= y ∧ x 6= z ∧ y 6= z] would be
satisfied by any S5 model that conforms to the NL- proto-interpretation (pro-
vided equality is included in the language), and so the connecting theorem
would provide that it truly is the case that there could not be three distinct
objects, if it is stipulated that the world is such that there are only Bill and
Hillary Clinton, but it does not provide that it truly is the case that there
could not be more than three objects. In the NL-interpretation for the Gödel
Ontological Argument, the domain would certainly have to be, at the very
least, restricted to sentient beings in order to make sense of such predicates
as “is omniscient” and “is moral”. Hence, the universe of properties would
have to be restricted, and consequently the domains of second-order prop-
erties would have to be restricted. In the Gödel Ontological Argument, the
claim is being made that God necessarily exists. However, when we examine
the definitions

Def 1: G∗(x) = df∀ϕ[(�ϕ(x))↔ P (ϕ)]

Def 2: ϕEss∗x = df∀γ[(�γ(x))↔ (�∀x[ϕ(x)→ γ(x)])]

43Chihara (1998: 252)
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Def 3: NE∗(x) = df∀ϕ(∀Ess∗x→ �∃xϕ(x)) (Necessary Existence),

we discover that all three are defined in terms of universal quantifications over
all properties. To satisfy the restrictions that would have to be placed on
the universe of properties by the NL-interpretation, a lot of properties would
have to be left out. Accordingly, even if it were possible to define an adequate
notion of conformance in the case of third order modal logic, and even if it
were possible that a β- model conforming to the NL interpretation for the
Gödel Ontological Argument satisfied �∃xG∗x by way of G∗(x)→ (G∗Essx)
and the use of the definition of NE∗ to get [ NE∗(x)∧G∗Ess∗x]→ �∃xG∗(x),
we could not know that it truly was the case that God necessarily existed.
How could we know that we could truly capture the notion of essence in its
intended sense, in which it is defined in terms of all properties and not just
some properties?

Another problem is that the connecting theorem would only apply for
certain suitable natural language predicates, because there might be certain
NL-interpretations which conform to no models. Chihara cites the claim by
Descartes in the Meditations that the soul is essentially indivisible as one such
troublesome example of non-conformance with respect to first-order logic.

In particular, think of how many souls there might have been? Is
there any cardinal limit to what the totality of souls (in Descartes’s
sense of that term) might have been? At this point, one might be-
gin to wonder whether any set theoretical structure could capture
what we are trying to express. 44

Chihara also points out that there may be no set theoretic structure that
could conform to NL-interpretations which contains a degree of vagueness,
unclarity, excessive size, or complexity. 45 The NL-interpretation required
for the Gödel Ontological Argument may be one such candidate. Certainly
such second order predicates as “being independent of the accidental struc-
ture of the world” or “being a pure attribution” or “positive in the moral
aesthetic sense” contain a significant degree of vagueness. Furthermore, is
there any limit to the size of what possible objects there might have been?
We could argue that conformance would be something extremely difficult to
obtain, given the complexity of the NL-interpretation required for the Gödel
Ontological argument and the diverse and ambiguous predicates under con-
sideration. Certainly the burden is on the proponent of the argument that to

44Chihara (1998: 271)
45Chihara (1998: 272)
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show that conformance can achieved. Furthermore, the burden is on the pro-
ponent to establish that the formal third-order modal logic argument adapts
itself to an ontological argument.

It is rather striking that Gödel worked on this argument in third order
modal logic sporadically over a period of thirty years, and never once at-
tempted to construct an applied semantics or even intimate how one can be
achieved. Perhaps his ontological Platonism with regard to set theory influ-
enced him to avoid this issue. Gödel believed that the objects of set theory
exist independently of our constructions and that we have a perception of
individual sets that can enable us to recognize the truth of the axioms of set
theory with regard to these objects.46 For Gödel the Continuum Hypothesis
in set theory for example would have a definite truth value in the intended
model of sets even though the statement has been proven to be indepen-
dent of the axioms. However there is still is rather large chasm between a
perception of sets and a perception of possible worlds and merely possible
objects.

4 Conclusion

Thus, for all the reasons discussed, it appears improbable that Gödel could
find a way to show that the abstract argument of pure third order modal
logic that he presents actually translates into an argument for the existence
of God, no matter which type of applied semantics (modal realism/anti-
realism, possibilism/actualism) he wishes to adopt.

I will now address two main arguments that a proponent of the onto-
logical argument might make. She could insist that the argument could be
reformulated using ordinary English, in order to avoid all the problems con-
nected to conformance in conjunction with a NL-interpretation of the formal
argument or the pitfalls connected to both modal realism and possibilism.
It would then be legitimate to ask what reformulation could capture the
meaning of the Gödel Ontological argument if there is no ontologically in-
nocent way to express it. Furthermore, how could such a reformulation lead
to a proof of the conclusion in the third-order modal logic? Recall that the
proof made use of both the problematic property abstraction and the pre-
liminary result that G∗(x) → (G∗Essx), and that Anderson’s definition of
essence carries with it the same problems the reformulation would be trying
to avoid, namely a commitment to possible objects, their essential proper-
ties, and possible worlds. The reformulation into ordinary language would
have to stray far enough away from the problematic assumptions involving

46Godel (1964: 262)
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the third order modal logic that it would most likely lose the very appeal of
Gödel’s Ontological argument, which is its formal nature. An argument cast
into such a reformulation approaches being more of a declaration that God
exists based on that very assumption than what one might consider to be a
genuine ontological argument.

A proponent of Gödel’s Ontological Argument might also claim that
she could both bypass any potentially troublesome commitments to possi-
ble worlds and possible objects and avoid the troubles in the construction of
a connecting theorem by adopting the position that the use of third order
modal logic and its formal semantics function merely as a heuristic device
to illustrate a proof of God’s existence from axioms that are, she claims, ob-
viously true under the desired NL -interpretation. Such a proponent would
have to explain why, if the system of third-order modal logic can be used
so clearly and effectively to prove results that will be true under the desired
NL-interpretation, it is not possible to provide a satisfactory notion of confor-
mance and a connecting result. She would have to explain how she avoids the
problem central to the property abstraction operator (as discussed above),
which seems inevitable. By Axiom 1.5, the property associated with any
valid formula with one individual free variable is positive, as it is entailed by
any positive property (of which, by Axiom 1.8, necessary existence is one).
For example, the property

λx[�[∀∆[(∆R1 ∧ (¬∃ezz = x ∧ ♦R1x))↔ (∆R1 ∧ (¬∃ezz = x ∧ ♦R1x))]]]

is positive. But what does it mean when R1 is given the natural language
interpretation of ‘is good’, for instance? Finally, the proponent would need
to explain how she can construe Gödel’s Ontological Argument as a proof of
God’s existence, given the vagueness of the notion of positive property itself.
It seems, at least, that the burden should be on the proponent to provide
some justification.

The ineffectiveness of Gödel’s argument can in part be traced to Axiom
1.5. There is a logical aspect to positiveness distinct from the Leibnizian
notion. Leibniz took the position that a positive property cannot be analyzed
in terms of the negation of anything, and this strictly speaks to the internal
nature of the property. Gödel says that if there is a logical implication
involving a positive property and another property (the sort specified by
Axiom 1.5) then that other property is also positive. Furthermore, while
Leibniz restricted positive properties more or less to qualities which could
be described in natural language without the use of a property abstraction
operator, Gödel allows for a much broader range of properties, including
those associated with propositional functions of a single variable. Since it
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is a much more formal argument, it must be evaluated through the formal
semantics, and, for this to be done, it would be imperative that a bridge
could be drawn from the formal semantics to the intended natural language
meaning of the argument. To posit an assumption that God exists seems to
impose less ontological cost than to assume the existence of merely possible
objects, possible worlds, intrinsic properties of possible objects, and second
order properties of intrinsic properties of possible objects.
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University Press, New York, Oxford.

[9] Fitting, Melvin (2002) Types, Tableaus, and Gödel’s God, Kluwer, Dor-
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