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Abstract

This paper presents a counterpart theoretic semantics for quanti-
fied modal logic based on a fleshed out account of Lewis’s notion of a
‘possibility’. According to the account a possibility consists of a world
and some haecceitistic information about how each possible individual
gets represented de re. Following Hazen [4], a semantics for quantified
modal logic based on evaluating formulae at possibilities is developed.
It is shown that this framework naturally accommodates an actual-
ity operator, addressing recent objections to counterpart theory (see
[2], [1]), and is equivalent to the more familiar Kripke semantics for
quantified modal logic with an actuality operator.

One of the most important insights of possible world semantics is captured
by the Leibnizian biconditionals which relate the notions of necessity and
possibility to the notion of a possible world:

LB2 p is necessary if and only if p is true at every possible world.

LB3 p is possible if and only if p is true at some possible world.

∗I would like to thank the audience of the Oxford-Paris Workshop on Language and
Ontology in June 2008 for many helpful comments. Special thanks are due to Jeff Russell
and Timothy Williamson for providing me with substantial comments on an earlier version
of this paper and an anonymous reviewer for this journal who suggested some valuable
improvements for this version. Since the acceptance of this paper by this journal (in 2011)
several other solutions to the problem addressed in this paper have appeared in print
which are for this reason regrettably absent from my discussion (see Russell [13], Meyer
[10], Rigoni and Thomason [12].)
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For possible world semantics to be useful to the study of modality it suffices
only that these biconditionals be necessary.1 It is not important in this regard
that the biconditionals serve as an analysis of possibility or necessity.

Indeed, it might initially seem unlikely that they could serve as an analysis
of possibility and necessity since modal notions appear in the right hand side
of the biconditional. The concept of a possible world – roughly, a way things
could have been, as opposed to a way things couldn’t have been – appears
to presuppose the very modal concepts we are trying to analyse.

Nonetheless philosophers have attempted such reductions. Here is a puta-
tive reductive analysis of ‘possible world’, inspired by Lewis [9], that defines
a world in terms of the parthood relation and the property of being an open
region of spacetime.2 Since neither of these concepts require an antecedent
understanding of possibility an analysis appears to be in the offing. With the
notion of a fusion introduced in the ordinary way, a possible world is a region
which is not the fusion of two disjoint open regions and which is furthermore
identical to any open region which it is a part of and which is itself not the
fusion of two disjoint open regions.3

To have a reductive analysis of possibility and necessity via the Leibnizian
biconditionals one also needs an explication of what it means for a proposition
to be true at one of these spacetime regions. Luckily we have a decent
grasp of what kind of things are going on in a region of spacetime, and
it plausibly doesn’t require an antecedent understanding of modality. We
know, for example, how to determine what was going on in the region of
spacetime occupied by Italy throughout 49BC – in that region Julius Caesar
was crossing the Rubicon. On the other hand, Neville Chamberlain was not
declaring war on Germany at that region – Chamberlain is not even present
in that region.

Note, however, that it is exactly this näıve conception of truth at that
forces one to relinquish the Leibnizian biconditionals. Let us suppose that
Humphrey is not a figure skater, but that he could have been. Then LB3
states that:

1Or, without assuming the S4 principle, that they are necessarily necessary, necessarily
necessarily necessarily and so on.

2Given these concepts, an arbitrary region of spacetime may be defined as any part of
the fusion of all open regions.

3Thus, according to my definition, a world need not be path connected or locally
connected. Lewis talks of two objects being spatio-temporally interelated, but does not
distinguish between the possible things this could mean; the above is merely one way
making that precise. (Sometimes he glosses this as there being a ‘distance between them
– be it great or small, spatial or temporal’ (p70 [9]), however this gloss seems to be
inadequate for spacetimes which cannot be consistently assigned a global metric.)
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The proposition that Humphrey is a figure skater is possible iff the
proposition that Humphrey is a figure skater is true at some possible
world.

Yet this instance of LB3 is false: the proposition that Humphrey is a fig-
ure skater is clearly possible, yet there is no world at which it is true. By
hypothesis Humphrey is not a figure skater at the region of spacetime spa-
tiotemporally connected to us. Furthermore, he isn’t even present at regions
disconnected from us so, going by the analogy with truth in Italy 49BC, he
isn’t a figure skater at these regions either.

Lewis, however, rejects the orthodox possible world semantics founded
on the Leibnizian biconditionals, and proposes that we adopt instead his
own counterpart theory. The resulting theory is slightly awkward, and it is
often noted that it delivers some unwanted results (see for example Hazen
[4], Lewis [8] and Kripke [6] p45, fn13). The most recent of these have been
pointed out by Fara and Williamson [2] and arise when one wants to make
sense of claims formulated using an actuality operator.

In this paper I suggest a couple of alternative ways to develop Lewis’s
framework. Unlike Lewis’s theory, however, both accounts retain the Leib-
nizian biconditionals that are characteristic of orthodox possible worlds se-
mantics. According to the first account, instead of Lewisian worlds, one
evaluates propositions relative to slightly more fine grained entities: possi-
bilities – a notion introduced by Lewis himself, and developed by Hazen [4].
The second theory, discussed in §2, works with a slightly more sophisticated
understanding of truth at.

The paper is organised as follows. In §1 I outline some of the techni-
cal difficulties involved in giving quantified modal logic without identity4 a
counterpart theoretic semantics, especially with respect to the problem of
actuality operators. In §3 I expand on the second counterpart semantics and
show that the logic coincides with that validated by the most general class
of Kripke models (in fact, Kripke’s original semantics comes out as a special
case of counterpart semantics in which the counterpart relation is the identity
relation.) In the appendix I address some miscellaneous issues such as how
identity should be treated in the framework, and extensional formulations of
the theory.

1 Counterpart semantics

To correctly evaluate the proposition that Humphrey could have been a figure
skater, according to Lewis, we must put Humphrey to one side and instead

4The treatment of identity is slightly more subtle; I deal with these in the appendix.
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look at the men sufficiently similar to Humphrey, his counterparts, and see
whether there are figure skaters among them. This is, at a first parse, the
central idea behind counterpart theory.

However the devil is in the details. Lewis’s original 1968 formulation
of counterpart theory has seen it’s fair share of problems and has under-
gone various transformations by Lewis and others.5 The most recent round
of problems, affecting all the aforementioned versions, are those raised by
Fara and Williamson [2] associated with translating sentences containing the
actuality operator into counterpart theory.

Fara and Williamson show that various natural ways of translating sen-
tences of quantified modal logic with an actuality operator fail and thus,
insofar as that part of English is correctly intertranslatable with quantified
modal logic, counterpart theory fails to faithfully represent English. To be
precise, these translations fail because they translate inconsistent formulae
of quantified modal logic to consistent formulae of counterpart theory.6

One might quibble that this is too stringent a criteria of failure. For
example, one of the heralded features of counterpart theory is that it has
a non-standard logic of identity. In what follows I will restrict attention to
the identity free fragment of the language of quantified modal logic with an
actuality operator (for short: QML@); the worries we shall be considering will
be completely independent of the counterpart theoretic treatment of identity.

Let us begin by outlining Lewis’s translation of (identity free) quantified
modal logic without the actuality operator (QML for short) into counterpart
theory and see how talk about actuality might be accommodated. I shall
formulate Lewis’s theory with two primitive predicates: Ixw and Cxy to be
read as ‘x is in w’ and ‘y is a counterpart of x’ respectively, a name, w∗, for
the actual world, and two sorts of variables: w, w′, that vary over worlds and
x, y, z which range over individuals.

A way to translate a formula of QML into Lewis’s counterpart theory is
described below. Translation is always with respect to a world variable.

(Px1, . . . , xn)w 7→ Px1, . . . , xn

(¬φ)w 7→ ¬(φw)

(φ ∨ ψ)w 7→ (φw ∨ ψw)

(∃xφ)w 7→ ∃x(Iwx ∧ φw)

(3φ)w 7→ ∃w′∃x1, . . . , xn(Iw′x1 ∧ . . . ∧ Iw′xn ∧ Ct1x1 ∧ . . . ∧ Ctnxn ∧ φw
′
)

In the last clause t1, . . . , tn are the free terms in φ.

5Lewis [8], Ramachandran [11], Forbes [3].
6‘Inconsistent’ here is presumably supposed to mean more than merely ‘unsatisfiable

according to the Kripke semantics’.
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Fara and Williamson note that extending this translation to the richer
language containing an actuality operator is not as simple as it seems. To
demonstrate we’ll consider the two most obvious translations. According to
the first, to be actually F some of your actual counterparts must be F , and
according to the second all of them must be:

(@φ)w 7→ ∃x1, . . . , xn(Iw∗x1 ∧ . . . ∧ Iw∗xn ∧ Ct1x1 ∧ . . . ∧ Ctnxn ∧ φw
∗
)

(@φ)w 7→ ∀x1, . . . , xn((Iw∗x1 ∧ . . . ∧ Iw∗xn ∧ Ct1x1 ∧ . . . ∧ Ctnxn)→ φw
∗
)

where t1, . . . , tn are the free terms in φ. To illustrate: to say that Humphrey
is actually a figure skater is to say that he has an actual figure skating coun-
terpart, or to say that all his actual counterparts are figure skaters, depending
on which translation we choose.

The problem with both of these suggestions is that they both translate
the patently inconsistent (1) into a consistent formula of counterpart theory.

3∃x(@Fx↔ @¬Fx) (1)

If we adopt the first translation we get ∃w∃x(Ixw∧(∃y(Iyw∗∧Cxy∧Fy)↔
∃y(Iyw∗ ∧ Cxy ∧ ¬Fy))) and ∃w∃x(Ixw ∧ (∀y(Iyw∗ ∧ Cxy → Fy) ↔
∀y(Iyw∗ ∧ Cxy → ¬Fy))) if we adopt the second. But both these come
out true if there is some possible object that has an actual F counterpart
and an actual ¬F counterpart or if there is a possible object with no actual
counterparts. If Humphrey has no actual counterparts, he has no actual F ,
nor ¬F counterparts so according to the first suggestion he’s actually F if
and only if he’s actually ¬F . Similarly all his actual counterparts are F and
are ¬F so according to the second schema he’s also actually F if and only if
he’s actually ¬F .

Fara and Williamson generalise these problems in various ways to allow
for alternatives to the two natural clauses, and to apply to other versions of
counterpart theory. To see the source of the problem, however, this simple
example will do for now.

The heart of the problem seems to be that if we think of worlds as re-
gions of spacetime, and we think of a region as representing something a
certain way if it contains a counterpart that is that way, then worlds will
sometimes represent an object in many different ways (if it contains multiple
counterparts of that object), or not represent the object at all (if it con-
tains no counterparts.) Thinking in terms of the Leibnizian biconditionals
again, it seems as if the kinds of entities that play the possible world role in
those biconditionals must be more fine-grained than Lewisian worlds: a sin-
gle Lewisian world containing multiple counterparts of Humphrey can serve
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to represent several possibilities for him. Thus worlds are insufficient if we
want to talk about specific ways things could be (such as the actual way.)

This issue is irrelevant in Lewis’s ‘68 account because he is only con-
cerned about possibility and necessity: there is a way things could have been
for Humphrey in which he is a figure skater precisely if there is a world with a
figure skating counterpart of Humphrey. When we are talking about specific
ways Humphrey could be, say, the actual way, then the issue becomes impor-
tant. When we are talking about the way things actually are for Humphrey
we cannot just be referring to a region of spacetime, which could represent
Humphrey in multiple ways. Moreover, no condition of the form ‘something
(everything) of a certain kind in the actual world is a figure skater’ will do
either, as Fara and Williamson convincingly show.

It seems that to characterise the de re possibilities for Humphrey, worlds
must be supplemented with a choice of representative for him. This idea is
actually due to Lewis. It doesn’t find its way into his formal counterpart
theory, but he makes it very clear that in admitting multiple counterparts in
a single world we are cutting possibilities finer than worlds:

“To illustrate, consider these two possibilities for me. I might
have been one of a pair of twins. I might have been the first-born
one, or the second-born one. These two possibilities involve no
qualitative difference in the way the world is. [...] The haecceitist
says: two possibilities, two worlds. They seem just alike, but they
must differ somehow. They represent, de re, concerning someone.
Hence they must differ with respect to the determinants of the
representation de re; and these must be non-qualitative, since
there are no qualitative differences to be had. I say: two possi-
bilities, sure enough. And they do indeed differ in representation
de re: according to one I am the first-born twin, according to
the other I am the second-born. But they are not two worlds.
They are two possibilities within a single world. The world in
question contains twin counterparts of me, under a counterpart
relation determined by intrinsic and extrinsic qualitative similar-
ities (especially, match of origins.) Each twin is a possible way
for a person to be, and in fact is a possible way for me to be. I
might have been one, or I might have been the other. There are
two distinct possibilities for me. But they involve only one such
possibility for the world: it might have been the world inhabited
by two such twins.” – David Lewis, ‘On the Plurality of Worlds’,
p231

In this passage Lewis wants to reconcile two things. He wants to deny a
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version of haecceitism that states that there can be qualitatively identical
possible worlds which differ only with respect to what de re possibilities they
represent for some individual, while making sense of the intuitive claim that
the first born twin might have switched places with the second born twin
while keeping everything else fixed. To do this he introduces possibilities.

While we diverge from Lewis in the details, this is the basic motivation
behind our solution. One and the same world can represent an object de
re in multiple ways. Each of these ways is a possibility. If possibilities are
worlds ‘plus some extra information’, it is this extra information that allows
for us to account for the haecceitistic differences between the possibilities,
but it is also what accounts for the differences in representation de re. The
extra information determines how each individual gets represented in the
possibility. A natural way to think of a possibility is an ordered pair of a
world, and a function taking possibilia to objects existing in the world - each
individual is taken to their representative in that world.

To fix ideas, consider Lewis’s twins. There are two possibilities within
one world; one in which Lewis is the first born, and one on which he is the
second born.

1. 〈w, σ〉 where σ is a function taking Lewis to the first born twin. That
is, in this possibility Lewis is represented by the first born twin.

2. 〈w, σ′〉 where σ′ is a function taking Lewis to the second born twin,
but otherwise takes the same values as σ. In this possibility Lewis is
represented by the second born twin.

While the difference in σ and σ′ comprises a haecceitistic difference in the
possibilities, it involves no difference in the world coordinate.

Once we have chosen the actual possibility, it is quite simple to give the
truth clause for @φ with respect to a sequence of individuals and a world. We
simply look at the representatives of each object in the sequence at the actual
possibility, and ask whether this new sequence of representatives satisfies φ
at the world coordinate.

So this leaves the crucial question: which possibility is the actual pos-
sibility? The non-haecceitistic facts must certainly match the way things
actually are, and the actual individuals must certainly be represented by
themselves. Thus the actual possibility consists of a pair 〈w∗, σ∗〉 where w∗

is the actual world and σ∗(x) = x for every actual individual x. This just
leaves it open how the non-actual objects get represented. Perhaps there is a
canonical way of assigning non actual objects representatives: each possible
individual is assigned its best actual representative. I would not hold out
hope for such a miraculous coincidence. But even if it were true, it is surely
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not even epistemically necessary that the the non-actual objects have unique
best counterparts to act as their representatives. If b and c are two actual
counterparts of a which are on a par I say it is indeterminate whether b or
c actually represents a. If it is also the case that b is F and c isn’t, I say
it is indeterminate whether a is actually F . More generally, if a formula
of QML@ is true no matter which possibility we choose as actual, so long
as it matches actuality in the non-haecceitistic facts, and represents actual
objects as themselves, say the formula is determinately true. If it is false
no matter what, call it determinately false. Indeterminacy in the intended
model will be rare and harmless - it will only occur when we are able to refer
to non actual objects which have several actual counterparts with different
properties.

Note that for the standard QML semanticist this distinction does not even
arise. For her non-actual objects don’t get represented at all at the actual
world (after all, you can only represent where you exist, and such individuals
don’t actually exist.) It is only when you have a counterpart in the actual
world distinct from yourself that it makes a difference, and even then, it only
makes a difference when there is more than one such counterpart.

2 Refining the notion of ‘truth at a world’

The theory sketched above, and given more fully in §3, is not the only way
a counterpart theorist might go. There is a quick fix that does not deviate
too much from the original counterpart theory of Lewis. The fix relies on a
slightly more subtle way of understanding the truth at relation that appears
in the Leibniz biconditionals. According to the näıve understanding of truth
at, an object is F at a region of spacetime, for an atomic predicate F , if it is
both present there (i.e. it is located in that region) and it is F simpliciter.
According to the proposed modification we instead say that something is F
at a region if it has an F counterpart there. On this basis we can extend the
notion of truth at a region compositionally to arbitrary formulae.

In particular, given a predicate F and a Lewis style interpretation of
F , X (intuitively the set of possibilia that are F ), we may give a more
traditional interpretation to F that varies its extension from world to world:
The extension of the predicate, F at a world, w, call it JF Kw, is the set
of objects that have a counterpart in X that is also in w. JF K· is exactly
the sort of intension you would assign to a monadic predicate in a Kripke
model. Starting with a Lewisian metaphysical picture we can in this way
construct a perfectly classical Kripke model that delivers intuitively correct
truth values to most English sentences (more details can be found in the
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appendix.) Since we are interpreting QML@ standardly, the logic of @ will
be perfectly classical. Indeed it can be shown that validity with respect to
the class of models defined in this way is sandwiched between validity with
respect to two well studied classes of Kripke models.7

However, although the logic might be acceptable – after all it is sand-
wiched between two acceptable notions of validity – there is no guarantee it
will assign the right truth conditions. Let me outline an argument that the
correct truth conditions will be indeterminate. We will see that the current
proposal does not postulate any indeterminacy in the case described.8 Sup-
pose we have non-actual Ned for whom, in the actual world, there are two
perfect candidates to be his counterpart: Ted and Fred. We may assume for
the sake of argument that the actual world is a perfect mirror world con-
taining only two objects, Ted and Fred, who are perfect duplicates of one
another. Let T and F be the predicates of being Ted and being Fred, and
let a be a name for Ned.9 Given the description of the situation it is natural
to think that the following points hold.

1. The semantics should not commit us to the truth of one of @Ta or
@Fa without committing us to the other.

2. @(Ta ∨ Fa) should come out true on the semantics.

3. ¬@(Ta ∧ Fa) should come out true on the semantics.

Point 1 is true because, by stipulation, both Fred and Ted are equally good
candidates. How could Ned possibly be represented by one and not the
other; they are perfect and symmetrical duplicates. It would be intolerably
arbitrary to assert or deny one of @Ta and @Fa but not the other. Points 2
and 3 are simple. There are only two candidate counterparts for Ned in the
actual world so Ned is one or the other, but he cannot be both.

In fact our proposal violates 3: since Ned has Ted and Fred as a coun-
terpart at the actual world he is contained in the extension of both T and
F relative to the actual world, so @(Ta ∧ Fa) comes out true. But there
is a general problem for any form of counterpart theory that fails to accom-
modate indeterminacy here. For suppose that the semantics commits us to
the determinate truth of @Ta or to the determinate truth of ¬@Ta. Either
way, assuming 1, the semantics must commit us to (@Ta↔ @Fa). The fact
that @ commutes with the truth functional connectives, in conjunction with

7See definition 3.0.8.
8This is a straightforward adaptation of an argument presented by Fara and Williamson.
9The use of predicates is just so we do not need to talk about identity.
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2. and 3. gives us (@Ta ↔ @Fa) ∧ (@Ta ∨ @Fa) ∧ ¬(@Ta ∧ @Fa), which
is an inconsistency in propositional logic.

Someone postulating indeterminacy, on the other hand, may accept 1, 2
and 3. Suppose that there are at least two admissible actualities, one that
represents Ned as Ted, and one that represents Ned as Fred. @Ta is true on
the first actuality, and @Fa is true on the second actuality. Neither, however,
are true on both, so neither is determinately true – they are both borderline.
Nonetheless (@Ta ↔ @Fa) is determinately false – every actuality that
makes @Ta true makes @Fa false, and vice versa. The semantics doesn’t
commit us to @Ta or @Fa, as required by 1, but it doesn’t commit us to
their negations either. Fara and Williamson took this to be a reductio of
counterpart theory. However I think a better conclusion to draw is that if
counterpart theoretic semantics is to succeed in accommodating an actuality
operator it ought to be a semantics which permits indeterminacy about what
gets represented by what. It is to such a semantics which we turn to now.10

3 A counterpart theoretic semantics for quan-

tified modal logic

In what follows we shall provide a counterpart theoretic semantics for an
identity free quantified modal logic with an actuality operator QML@. We
then show that validity on this counterpart theoretic semantics is equivalent
to validity with respect to the ordinary variable domain Kripke semantics
[5].

Our object language, L, consists of the following symbols:

• A denumerable set of variables, x1, x2, . . . ∈ V ar

• Predicate symbols of various arity: P n
1 , P

n
2 , . . . ∈ Predn, n ∈ ω

• Logical connectives ∨,¬
10An anonymous referee has pointed out to me that there are ways to tweak the proposal

in this section to allow for indeterminacy. For example, by allowing the intended model
to consist of several Kripke models based on different counterpart relations as described
above. This would do the job within the constraints I have set, however one might wonder
if such a proposal could really be called a counterpart theoretic semantics. For it to work
the ‘counterpart’ relations must be sensitive to non-qualitative haecceitistic differences –
for example there must be a counterpart relation which relates Ned to Fred but not Ted,
and one which relates Ned to Ted but not Fred. The approach I espouse has a better
claim to being called a ‘counterpart theoretic semantics’ as it is a qualitative counterpart
relation which determines which possibilities there are. However, I don’t mean to suggest
that ensuing proposal is forced on us by these considerations.
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• Quantifier ∃

• Modal operators 3, @

The well formed formulae of L are given as follows:

• If xi1 . . . xin ∈ V ar and P n
i ∈ Predn, then P n

i xi1 . . . xin ∈ Form(L)

• If φ, ψ ∈ Form(L) then (φ ∨ ψ),¬φ, ∃xiφ,3φ,@φ ∈ Form(L)

• If S satisfies the above conditions, then Form(L) ⊆ S.

Definition 3.0.1. A counterpart structure is a quintuple 〈W ,D, Ind(·), C, w∗〉
satisfying the following conditions:

1. W and D are non-empty.

2. C ⊆ D ×D is a reflexive relation.

3. Ind :W → P(D)

4. w∗ ∈ W and Ind(w∗) 6= ∅

Informally we refer to W as the worlds, D the individuals, C the counterpart
relation and w∗ the actual world of the counterpart structure.

A counterpart structure is essentially a variable domain Kripke structure
with the addition of a counterpart relation. Since counterpart structures
are simple generalisations of Kripke structures, they are compatible with the
same metaphysical hypotheses the Kripke structures can be used to model. In
particular, counterpart structures and Kripke structures are both compatible
with transworld identity. Unlike Lewis, we allow the worlds domains to
overlap.

Notice that allowing the domains to overlap, and treating the counterpart
relation as a relation over individuals allows the counterpart relation to be
stronger than a qualitative similarity relation. This raises the following worry.
Suppose you are an anti-essentialist, and do not want, say, John in this world
to be a counterpart of John in a poached egg world, a world where John is
a poached egg. Since the the counterpart relation cannot see which world
the individual it is considering is at, and it is reflexive, John is always a
counterpart of himself. One fix would be to treat the counterpart relation as
a four place relation, relating an individual at a world, to an individual at a
possibly different world. This maybe conceptually more satisfying, but is a
deviation from currently entrenched literature. It is simple to accommodate
the anti-essentialist within the above framework by forcing the domains to be
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disjoint by taking ersatz individuals: individual world pairs. It should not
be assumed that the intended interpretation treats D as a set of ordinary
objects.

Definition 3.0.2. A counterpart model is a sextuple 〈W ,D, Ind(·), C, w∗, J·K·〉
where 〈W ,D, Ind(·), C, w∗〉 is a counterpart structure, and

• J·K· : [Predn → [W → P(Dn)]]

Intuitively, we may think of JP n
i K : W → P(Dn) as the intension of P n

i ,
assigning P n

i an extension at each world. If the extension of every predicate
at a world is constructed from the objects in the domain of that world, say
that the counterpart model is serious. Stating this constraint more precisely:

• For w ∈ W , P n
i ∈ Predn, JP n

i Kw ⊆ Ind(w)n

In what follows we restrict our attention to non-serious counterpart mod-
els and non-serious Kripke models. The seriousness constraint on models
forces predicates to take their extension at a world from the domain at that
world. Intuitively this corresponds to objects only being allowed to instanti-
ate atomic properties at worlds where they exist. Since serious counterpart
models and serious Kripke models are special cases of the general models
defined here, we ignore the seriousness constraints. Similarly we concentrate
on variable domain models, since the fixed domain models are special cases
of these.

Definition 3.0.3. Given a counterpart structure, 〈W ,D, Ind(·), C, w∗〉, and
a world, w ∈ W, we say that σ is a counterpart function for w iff σ is a
function from D into D which is a subset of C. We write it as follows:

• CF (σ,w)⇔ σ : D → D, σ ⊆ C

Definition 3.0.4. Given a counterpart structure, A = 〈W ,D, Ind(·), C, w∗〉,
we may define the set of possibilities, S, with respect to the structure:

• S(A) := {〈w, σ〉 | w ∈ W,CF (σ,w)}

Each world is paired with a counterpart function for that world, which pro-
vides the extra information concerning how things get represented de re.

Counterpart functions encode ways possibilia might be represented at a
world: haecceitistic information, or information about how the possible in-
dividuals get represented de re. Possibilities are worlds plus haecceitistic
information. On some metaphysical views, worlds alone do not contain haec-
ceitistic information, but even if they do, it may not be this information that
makes our ordinary modal talk true.
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As it stands the world coordinate, w, serves only to restrict the range
of the quantifiers at a possibility to objects in that world’s domain, and to
determine the extension of the atomic predicates.11 It is consistent with our
constraints that there is a possibility, 〈w, σ〉, such that no member of the
domain w represents any possibilia at all according to σ. Although I think
the current framework has a perfectly legitimate interpretation, one might
want to work with a restricted set of possibilities. In particular one might
want to stipulate that any possibility based on a world w, must be one in
which every member of w’s domain represents something. Let us call this
condition the ‘exhaustion condition’, which a pair 〈w, σ〉 satisfies iff

∀y ∈ Ind(w),∃x ∈ D such that σ(x) = y.

The exhaustion condition ensures that every object in the domain of a pos-
sibility represents something according to that possibility. One might want
to restrict attention to possibilities which satisfy the exhaustion condition.
A stronger condition is the ‘identity condition’, according to which every
individual in the domain of the world coordinate of a possibility represents
itself.

∀x ∈ Ind(w), σ(x) = x.

As it happens the proofs of theorem 3.1 and 3.2 below will go through if
one instead defined S(A) to be the set of counterpart functions for A which
satisfy the exhaustion condition, or the identity condition. For the purposes
of framework building I shall not take sides on which class of possibilities is
philosophically correct.

Presumably among these possibilities there are ones that represent the
way things actually are. Although it seems natural for actual objects to be
represented by themselves in actual possibilities, typically non-actual objects
can be represented in multiple ways. There is nothing particularly special
about any one way of representing the individuals, and indeed we should ex-
pect there to be multiple ways to represent the non-actual objects all equally
compatible with the way we use modal idioms in natural languages. When a
sentence is sensitive to the multiple ways of assigning counterparts compati-
ble with facts about English, we should not expect the truth of that sentence
to be settled by use facts and the state of the modal universe. This motivates
the following definition.

Definition 3.0.5. An admissible actuality, for a counterpart structure 〈W ,D, Ind(·), C, w∗〉,
and a world, w ∈ W is a possibility of the form 〈w∗, τ〉 such that ∀x ∈
Ind(w∗)(τ(x) = x)

11See the definition of satisfaction at a possibility below.
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As usual, we define a valuation to be a function v : N → D. Note that
valuations can take their values from individuals which needn’t exist in the
same world. For valuations v and u, and n ∈ N write v[n]u to mean v(xm) =
u(xm), ∀m 6= n. Given a counterpart model M = 〈W ,D, Ind(·), C, w∗, J·K〉,
and an admissible actuality s = 〈w∗, σ∗〉 for that structure, we define the sat-
isfaction relation with respect to a possibility and a valuation, 〈M, s〉, 〈w, σ, v〉 |=
φ, as follows (we omit the model and actuality when there is no possibility
of confusion)

〈w, σ, v〉 |= P n
i x1, . . . , xn ⇔ 〈σ(v(x1)), . . . , σ(v(xn))〉 ∈ JP n

i Kw

〈w, σ, v〉 |= ¬φ⇔ 〈w, σ, v〉 6|= φ

〈w, σ, v〉 |= (φ ∧ ψ)⇔ 〈w, σ, v〉 |= φ and 〈w, σ, v〉 |= ψ

〈w, σ, v〉 |= @φ⇔ 〈w∗, σ∗, v〉 |= φ

〈w, σ, v〉 |= 3φ⇔ 〈w′, σ′, v〉 |= φ for some 〈w′, σ′〉 ∈ S
〈w, σ, v〉 |= ∃xiφ⇔ 〈w, σ, v′〉 |= φ for some v′[i]v such that v′(x) ∈ Ind(w)

We can then introduce the standard definitions of truth, validity and
consequence as follows:

Definition 3.0.6. Given a counterpart structure A = 〈W ,D, Ind(·), C, w∗〉,
and a model M = 〈A, J·K〉 based on the structure, say that a formula, φ is

• true in the modelM = 〈A, J·K〉 with respect to an admissible actuality
s = 〈w∗, σ∗〉 and a valuation v iff 〈M, s〉, 〈w∗, σ∗, v〉 |= φ.

valid in A iff 〈M′, s〉, 〈w∗, σ∗, u〉 |= φ for every model, M′ = 〈A, J·K′〉,
based on A, every valuation u and every admissible actuality s =
〈w∗, σ∗〉.

• a consequence of Γ in A iff for any model, M′ = 〈A, J·K′〉, based
on A, any admissible actuality s = 〈w∗, σ∗〉 and any valuation v, if
〈M′, s〉, 〈w∗, σ∗, v〉 |= ψ,∀ψ ∈ Γ, then 〈M′, s〉, 〈w∗, σ∗, v〉 |= φ.

We now have a notion of validity for formulae of QML@ based on a coun-
terpart theoretic semantics. How do we know that the semantics we have
introduced does not validate the “wrong” formulae? Luckily, it is straight-
forward to check our semantics gives the correct results with respect to the
problematic formulae Fara and Williamson identify. But we can be a bit
more general: we can show that, if a standard Kripke semantics for QML@
gets the right results, then so does the counterpart theoretic semantics. Let’s
start by outlining the Kripke semantics for QML@. I also consider a varia-
tion, the ‘serious Kripke semantics’, for contrast, however our target is the
broader notion of validity for Kripke models.
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Definition 3.0.7. A Kripke structure is a quadruple 〈W ,D, Ind(·), w∗〉
satisfying the following conditions:

1. W and D are non-empty.

2. Ind :W → P(D)

3. w∗ ∈ W and Ind(w∗) 6= ∅

Definition 3.0.8. A Kripke model is a quintuple 〈W ,D, Ind(·), w∗, J·K·〉
where 〈W ,D, Ind(·), w∗〉 is a Kripke structure, and

• J·K· : [Predn → [W → P(Dn)]]

Intuitively, we may think of JP n
i K : W → P(Dn) as the intension of P n

i .
Once again we say that a Kripke model is serious if it satisfies the following
condition for every predicate:

• For w ∈ W , P n
i ∈ Predn, JP n

i Kw ⊆ Ind(w)n

Truth in a Kripke model with respect to a valuation and world,M, 〈w, v〉 |=
φ is given as usual (again omit the model when there is no ambiguity):

〈w, v〉 |= P n
i x1, . . . , xn ⇔ 〈v(x1)), . . . , v(xn))〉 ∈ JP n

i Kw

〈w, v〉 |= ¬φ⇔ 〈w, v〉 6|= φ

〈w, v〉 |= (φ ∧ ψ)⇔ 〈w, v〉 |= φ and 〈w, v〉 |= ψ

〈w, v〉 |= @φ⇔ 〈w∗, v〉 |= φ

〈w, v〉 |= 3φ⇔ 〈w′, v〉 |= φ for some w′ ∈ W
〈w, v〉 |= ∃xiφ⇔ 〈w, v′〉 |= φ for some v′[i]v such that v′(x) ∈ Ind(w)

Definition 3.0.9. Given a Kripke structure A = 〈W ,D, Ind(·), w∗〉, and a
model 〈A, J·K〉 based on the structure, say that a formula, φ is

• true in the model M = 〈A, J·K〉 with respect to a valuation v iff
M, 〈w∗, v〉 |= φ.

• valid in A iff M′, 〈w∗, u〉 |= φ for every model, M′ = 〈A, J·K′〉, based
on A and every valuation u.

• a consequence of Γ in A iff for any model,M′ = 〈A, J·K′〉, based on A,
and any valuation v, ifM′, 〈w∗, v〉 |= ψ,∀ψ ∈ Γ, thenM′, 〈w∗, v〉 |= φ.
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It should be noted that in concentrating on Kripke models, and not serious
Kripke models, I have taken sides on a substantial issue. According to a non-
serious Kripke model, an individual may satisfy an atomic predicate even if
it doesn’t exist at that world. If I have the instructions and pieces to make
a toy plane, and I am imagining the plane that would have been built if I
had followed the instructions, one might want to say that there could have
been something I’m actually imagining, namely the toy that would have
been built, but which doesn’t actually exist. This sentence, formalised as
3∃x(@Iax∧@¬∃yx = y), is not satisfiable in any serious Kripke model, but
is satisfiable over the wider class of Kripke models.

Our conception of a possibility reflects this choice. A possibilia’s represen-
tative at a possibility needn’t be in the domain at that possibility. Thus, for
example, the object representing the possible toy plane at a given possibility
may not belong to that possibilities domain.12

We are now in a position to compare the notions of Kripke validity and
counterpart validity.

Theorem 3.1. LetM = 〈W ,D, Ind(·), C, w∗, J·K〉 = 〈A, J·K〉 be a counterpart
model, and s = 〈w∗, σ∗〉 be an admissible actuality for A. Then there is
a Kripke model M′ = 〈W ′,D′, Ind′(·), w∗′, J·K′〉 such that the following are
equivalent for any formula φ:

• 〈M, s〉, 〈w, σ, v〉 |= φ for every 〈w, σ〉 ∈ S(A) and every valuation v

• M′, 〈w, v〉 |= φ for every w ∈ W ′ and valuations v.

Proof. Given a counterpart model M = 〈W ,D, Ind(·), C, w∗, J·K〉 we define
a Kripke model M′ = 〈W ′,D′, Ind′(·), w∗′, J·K′〉 as follows:

• W ′ := S(A) the set of possibilities for A

• D′ := D

• Ind′(〈w, σ〉) := Ind(w)

• w∗′ := 〈w∗, σ∗〉

• JP n
i K′〈w,σ〉 := {〈a1, . . . , an〉 | 〈σ(a1), . . . , σ(an)〉 ∈ JP n

i Kw}
12A corresponding notion of a serious possiblity could be defined as pair 〈w, σ〉 where

σ is a partial function σ : D ⇀ D, which is a subset of the counterpart relation, and is
such that the range of σ, σ(D) is a subset of Ind(w). According to this conception the
representative of a possible individual at a possibility always exists at at the possibility in
question.
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The proof is an easy induction on the complexity of φ. Our inductive
hypothesis is that for every 〈w, σ〉 ∈ S(A) = W ′ and every valuation v:
〈M, s〉, 〈w, σ, v〉 |= φ⇔M′, 〈〈w, σ〉, v〉 |= φ.

Base case: by the truth clause for counterpart models 〈M, s〉, 〈w, σ, v〉 |=
P n
i x1 . . . xn iff 〈σ(v(x1)), . . . , σ(v(xn))〉 ∈ JP n

i Kw. But by definition of our
Kripke model, this holds just in case 〈v(x1), . . . , v(xn)〉 ∈ JP n

i K′〈w,σ〉 which
by the atomic truth clause for Kripke models means that M′, 〈〈w, σ〉, v〉 |=
P n
i x1 . . . xn.

Inductive step: the cases for ¬φ, (φ ∨ ψ), 3φ and @φ are straightfor-
ward. The ∃xiφ case is worth noting: 〈M, s〉, 〈w, σ, v〉 |= ∃xiφ iff 〈M, s〉, 〈w, σ, v′〉 |=
φ for some v′[i]v such that v′(i) ∈ Ind(w). By inductive hypothesis 〈M, s〉, 〈w, σ, v′〉 |=
φ holds iffM′, 〈〈w, σ〉, v′〉 |= φ. Also v′(i) ∈ Ind′(〈w, σ〉) since Ind′(〈w, σ〉) =
Ind(w), so by the truth clause for ∃, M′, 〈〈w, σ〉, v〉 |= ∃xiφ. The converse
is similar.

Note that in particular 〈M, s〉, 〈w∗, σ∗, v〉 |= φ⇔M′, 〈w∗′, v〉 |= φ.

Theorem 3.2. LetM = 〈W ,D, Ind(·), w∗, J·K〉 = 〈A, J·K〉 be a Kripke model.
Then there is a counterpart modelM′ = 〈W ′,D′, Ind′(·), C, w∗′, J·K′〉 = 〈A′, J·K′〉
and an admissible actuality, s for that model such that the following are equiv-
alent for any formula φ:

• 〈M′, s〉, 〈w, σ, v〉 |= φ for every 〈w, σ〉 ∈ S(A′) and every valuation v

• M, 〈w, v〉 |= φ for every w ∈ W and valuations v.

Proof. Note that the counterpart semantics is just a generalization of the
Kripke semantics. Given M = 〈W ,D, Ind(·), w∗, J·K〉 we take our counter-
part model simply to be M = 〈W ,D, Ind(·),=, w∗, J·K〉 where the coun-
terpart relation is just the identity relation. In these kinds of models the
distinction between worlds and possibilities collapse, and the truth clauses
match those for the Kripke semantics.

Corollary 3.3. A formula, φ, in the language of QML@ is valid in every
counterpart structure if and only if it is valid in every Kripke structure.

Proof. This is a direct consequence of theorems (3.1) and (3.2).

3.1 Concluding remarks

Fara and Williamson’s strategy in [2] is to show that informally inconsistent
formulae of QML@ have a consistent interpretation in variants of Lewis’s
counterpart theory. It is a straightforward consequence of corollary 3.3 that
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there can be no such argument against the counterpart theoretic semantics for
QML@ we have given here. Assuming that no informally inconsistent formula
of QML@ is satisfied in a Kripke model, it follows that no inconsistent formula
is satisfiable in a counterpart theoretic model.

As an example of this general fact, let us reconsider the formula (1)
introduced in section 1:

3∃x(@Fx↔ @¬Fx) (2)

This formula is not satisfied in any counterpart model, relative to any ad-
missible actuality 〈w∗, σ∗〉. For otherwise there would be some possibility,
〈w, σ〉, and some object a ∈ Ind(w) such that w, σ, v |= @Fx ↔ @¬Fx
where v is any valuation with v(x) = a. Following through the satisfaction
clauses this would imply that w∗, σ∗, v |= Fx if and only if w∗, σ∗, v 6|= Fx
which is a contradiction.

Indeed, it seems as if there is no logical difference between the counterpart
theoretic and Kripke semantics for quantified modal logic. The dispute, at it’s
heart, is about the correct analysis of modal predication. What I hope to have
shown is that the basic tenets of Lewis’s analysis of modal predication can
be reconciled with the logic, syntax and, perhaps, the ontological innocence
of traditional uses of quantified modal logic.

4 Appendix

Here we address some miscellaneous issues raised in the paper.

4.1 Extending the language

So far we have considered only languages without identity. In such languages
the Kripke and the counterpart theoretic model theory coincide. We shall
see that this result extends to languages with identity, provided we interpret
the identity relation in a certain way. However it can be seen that one can
also introduce a relation of ‘loose identity’ which captures the notion of two
objects being ‘represented as the same’. The inclusion of this relation allows
the counterpart theorist to say, for example, that the statue and the lump are
only contingently identical. One cannot do this using the ordinary identity
relation.

Let us augment QML@ by two binary relations, = and '. Thus our
language is defined as in section 3, except that we add the extra clauses

• If xi, xj ∈ V ar then xi = xj ∈ Form(L) and xi ' xj ∈ Form(L).
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We adopt the same satisfaction clauses as before with the addition of:

〈w, σ, v〉 |= xi = xj ⇔ v(xi) = v(xj)

〈w, σ, v〉 |= xi ' xj ⇔ σ(v(xi)) = σ(v(xj))

a and b are strictly identical at a world iff they are the same object, whereas a
and b are loosely identical at a world iff they are represented as the same ob-
ject there. If a and b are strictly identical they are loosely identical, however
the converse may fail.

Logically speaking, the logic of counterpart structures in a language with
= and ' conservatively extends the logic of Kripke structures in a language
with only =. Thus = satisfies a completely standard logic of identity. In
particular, the formulae containing only strict identity which are valid in
every counterpart model are the same as those valid in every Kripke model.13

Loose identity, ', does not behave like strict identity. For example, loose
identity between two objects may be contingent. Similarly, loose identity
does not obey Leibniz’s law. The inclusion of loose identity is an important
feature, since this is the first point at which the Kripke semantics and the
counterpart semantics differ in the object language. I leave it to a future
project, however, to determine what the logic of ' is with respect to these
models.

4.2 A non-supervaluationist semantics

According to the variable domain Kripke semantics, the extension of a predi-
cate at a world need not necessarily consist of objects existing at that world.
Some modal logicians, the ‘serious actualists’, prefer to consider a smaller
class of models than Kripke did and stipulate that an individual can only
have an atomic property at a world at which it exists, restricting, for exam-
ple, the extension of a monadic predicate at a world to being a subset of the
domain of that world. The more general semantics outlined by Kripke, how-
ever is compatible with individuals being world bound, while varying their
properties from world to world.

An alternative way to give a counterpart theoretic interpretation QML@
involves simply using the Kripke semantics directly. The basic idea is that
the extension of a predicate, P , at a world, w, is just the set of objects
that have an F counterpart in w (here F is the Lewis style property, a
set of possibilia, that interprets P .) Being F -at-a-world is simply having
an F counterpart there. This gives us a general method for converting a

13This can be seen by a trivial modification of the proofs of theorem 3.1 and 3.2.
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Lewis model for first order counterpart theory, into a Kripke model. Suppose
we have a first order Lewis style model for counterpart theory, 〈D, J·KL〉.
Let D be the domain, let J·KL be the interpretation function for our model,
and let C := JCKL be the relation that interprets the counterpart relation.
The primitive predicates of Lewis’s counterpart theory are: W , I, C and
@ - the predicates for worldhood, world parthood, counterparthood and the
name of the actual world. We assume also that the language contains non
counterpart theoretic vocabulary: P n

i for n, i ∈ ω. To get a Kripke model,
〈D,W , Ind(·), w∗, J·KK〉, we need a domain, a set of worlds, a domain for each
world, an actual world and an interpretation for the non-logical predicates.
We obtain them from the Lewis interpretation as follows:

• D := D

• W := JW KL

• Ind(w) := {x ∈ D | 〈x,w〉 ∈ JIKL}

• w∗ := J@KL

• JP n
i KK(w) := {〈x1 . . . xn〉 ∈ Dn | ∃y1 . . . yn ∈ Ind(w)(∀i ≤ n, Cxiyi ∧

〈y1 . . . yn〉 ∈ JP n
i KL)}

What should we expect the logic to look like? Does every Kripke model
represent a logically possible way of interpreting the language? Does the
counterpart theoretic constraint on the interpretation of the atomic predi-
cates only enter the picture at the intended interpretation? If so, we should
expect the logic to be equivalent to the Kripke semantics. However, this
is not a particularly interesting response. One might want to know if the
logic is still acceptable if we keep the constraint in place across models. The
theorem below demonstrates that it is still acceptable. Call the set formu-
lae valid with respect to Kripke models obtained by first order counterpart
models CT, and call the formulae valid with respect to all Kripke models,
and all serious Kripke models K and SK respectively. We show that K ⊆
CT ⊆ SK. Every valid formula according to the Kripke semantics is in CT,
so CT satisfies the minimum requirement of containing formulae that are
valid in the widest sense. CT does not deem outright inconsistent formulae
consistent. However, CT does not make too many formulae valid either.
For example CT does not say that every object exists necessarily, or that
every property is had necessarily, if had possibly. For any formula in CT is
also valid according to the class of serious Kripke models. SK provides an
upperbound.

Australasian Journal of Logic (11:2) 2014, Article no. 2



110

Theorem 4.1. K ⊆ CT ⊆ SK

Proof. Clearly K ⊆ CT since the counterpart models are Kripke models
by construction. To show CT ⊆ SK we find a counterpart model for each
serious Kripke model which makes the same formulae true.

Let M = 〈W ,D, Ind(·), w∗, J·K〉 be a serious Kripke model and v an
assignment of variables to elements of D. We then construct a first order
counterpart model, 〈D, JKL〉 as follows.

• D := {〈x,w〉 ∈ D ×W | x ∈ Ind(w)}

• JW KL :=W

• JIKL := {〈〈x,w〉, w′〉 | w = w′}

• JCKL := {〈〈x,w〉, 〈x′, w′〉〉 | x = x′}

• J@KL := w∗

• JP n
i KL := {〈〈x1, w〉, . . . , 〈xn, w〉〉 | 〈x1, . . . , xn〉 ∈ JP n

i K(w)}
It is easy to check that this model satisfies Lewis’s original axioms of coun-
terpart theory. Now consider the Kripke model induced by this counterpart
model: MK = 〈WK ,DK , IndK(·), w∗K , J·KK〉. Using choice, we may match
each individual in the original D with an individual in DK ; for each x ∈ D
we pick a world such that x exists in w, and match x with 〈x,w〉 ∈ DK .
We convert the variable assignment, v, for M to a variable assignment, vK ,
for DK by letting vK(xi) take the value corresponding to v(xi), for each i.
Now we must check for each formula, world and valuation, φ, w and v, that
M, w, v |= φ if and only if MK , w, vK |= φ. The proof is a straightfor-
ward induction - we begin by checking the atomic formulae. To save time
we consider only monadic predicates. Note that MK , w, vK |= Fxi if and
only if vK(i) := 〈x,w′〉 ∈ JF KK(w) which happens if and only if there is a
〈y, w′′〉 such that I〈y, w′′〉w holds, C〈x,w′〉〈y, w′′〉 holds, and 〈y, w′′〉 ∈ JF KL.
I〈y, w′′〉w holds iff w′′ = w, C〈x,w′〉〈y, w′′〉 holds iff x = y, so the condition
simplifies to 〈x,w〉 ∈ JF KL. By the construction of the counterpart model,
this happens iff x ∈ JF K(w), which is the condition for M, w, v |= Fxi.
The truth functional and modal clauses are standard. For the ∃ clause note
that MK , w, vK |= ∃viφ iff for some uK [i]vK such that uK(i) ∈ IndK(w),
MK , w, uK |= φ. Now, there is a variable assignment for M, u, that is
matched to uK in the way described earlier. Thus by inductive hypothe-
sis we get MK , w, uK |= φ iff M, w, u |= φ. The way u is matched with
uK ensures that u(i) ∈ Ind(w) iff uK(i) ∈ IndK(w) and since u[i]v, we get
M, w, v |= ∃viφ. This completes the proof.
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4.3 Extensional counterpart theory.

Possibilists traditionally treat counterpart theory as an extensional first or-
der theory in which one can quantify over the non-actual counterparts of
actual objects (see, e.g. [7].) Here we describe a first order language and
a translation schema from QML@ to our language which accords with the
counterpart theoretic semantics we gave for QML@.

Standardly counterpart theorists will need the two primitive symbols:
Iwx and Cxy. I is the relation of being a part of a world, C is the counterpart
relation. We shall use the primitive, Rsxy, interpreted as x is represented
by y in the possibility s (in our previous notation: x = σ(y) where s =
〈w, σ〉), and Isx interpreted as x is part of the world w. The predicate
As is interpreted as saying that s is an admissible actuality. Variables x,
y, z . . . range over possibilia, variables s, t, u, v range over possibilities.
We reserve one designated variable, s∗ which ranges only over admissible
actualities. Finally for each non counterpart theoretic n-ary predicate, P ,
we assign an n+ 1-ary predicate P ′. We can give a translation schema of for
QML@ as follows:

(Px1, . . . , xn)s 7→ ∃y1, . . . , yn(Rsy1x1 ∧ . . . ∧Rsynxn ∧ P ′y1 . . . yns)
(¬φ)s 7→ ¬(φs)

(φ ∧ ψ)s 7→ (φs ∧ ψs)
(∃xφ)s 7→ ∃x(Isx ∧ φs)
(3φ)s 7→ ∃s′φs′)
(@φ)s 7→ φs

∗

The translation of a formula, φ, of QML@ is given by φs
∗
. When doing

the standard Tarskian model theory for first order languages, we sometimes
need a notion of truth in a model for formulae containing free variables. It
is traditional to supervaluate: a formula is true if it is true with respect
to every assignment to the variables, and false if it is false with respect
to every assignment to the variables. Understanding free variables in this
way delivers the same results as the supervaluationist semantics presented
in §3. The axioms below provide an extensional framework for formulating
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counterpart theory based on the notion of a possibility:

1. ∀x∃sRsxx

Everything is represented by itself in some possibility.

2. ∀x∃sIxs

Everything exists in some world.

3. ∀s∀x∀y∀z((Rsxy ∧Rsxz)→ y = z)

An object never has more than one representative in a possibility.

4. ∀x∀s(Ixs→ ∃yRsxy)

If an object is part of a possibility, it represents some object.

5. ∀x(Ixs∗ → Rs∗xx)

Actual objects represent themselves in the actual possibility.

6. ∃xIxs∗

There is at least one actual thing.
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