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Abstract

In this paper, we explore the idea that sets depend on, or are
grounded in, their members. It is said that a set depends on each
of its members, and not vice versa. Members do not depend on the
sets that they belong to. We show that the intuitive modal truth con-
ditions for dependence, given in terms of possible worlds, do not ac-
curately capture asymmetric dependence relations between sets and
their members. We extend the modal truth conditions to include im-
possible worlds and give a more satisfactory account of the depen-
dence of a set on its members. Focusing on the case of singletons,
we articulate a logical framework in which to evaluate set-theoretic
dependence claims, using a normal first-order modal logic. We show
that on this framework the dependence of a singleton on its single
members follows from logic alone. However, the converse does not
hold.

It is natural to think of dependence in terms of necessity. One thing de-
pends on another because it is necessary that, given the one exists, the
other exists as well. In other words, you can’t have the one without the
other. It is also natural, though perhaps less so, to think that a set depends
on, or is grounded in, its members, and not vice versa. The dependence
between a set and its members is asymmetric. But these thoughts are in-
compatible.

They are incompatible because an account of dependence, articulated in
terms of necessity, will yield a symmetric dependence relation between a
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set and its members, assuming that necessity is given the usual possible
worlds truth conditions. In this paper, we argue for a different account of
the dependence that holds between a set and its members. This account
is given in terms of worlds, but we appeal to both possible and impos-
sible worlds. The nature of these impossible worlds will be discussed in
what follows. But we will show that invoking impossible worlds yields an
asymmetric dependence relation, such that sets depend on their members,
but members do not depend on the sets they belong to.

In section 1, we look at why one might think that sets depend on their
members. Section 2 presents the standard modal truth conditions for de-
pendence, showing why they fail to generate asymmetric dependence re-
lations between sets and their members. Section 3 presents alternative
modal truth conditions for dependence that appeals to impossible worlds.
In this section we also sketch the argument that these truth conditions
accurately capture the asymmetric dependence of a set on its members,
focusing on the case of singletons, i.e., sets with single members. Section
4 fills in the technical details of the argument that singletons depend on
their members and that this dependence is asymmetric. Section 5 con-
cludes with a discussion of the nature of this asymmetry. We also consider
the possibility of extending this argument, beyond the case of singletons,
to show that all sets depend on their members, and that this dependence
is asymmetric.

1 The Iterative Conception of Set

In the literature on grounding and dependence, many assume, or at least
grant the intuition, that sets depend on, or are grounded in, their members.
They usually do so without any argument.! Indeed, if sets depend on
their members, they may do so in several ways. A set may depend on
its members for its existence, or for its identity, or for some of its other

1See Cameron (2008), Correia (2005) Fine (1995), Lowe (2005), Paseau (2010), Potter
(2004), Schaffer (2010), Schnieder (2007), Trogdon (2013), among others. I take “ground-
ing” and “dependence” to be terms that describe the same relation: for some sense of
“depends”, « depends on y iff x is grounded in y. Nothing turns on this choice. One may
want to distinguish these terms, but discussion of the reasons for doing so need not be
taken up here. The rest of the paper will be presented using the language of dependence.
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properties, like its cardinality. It is the first of these that we are primarily
interested in. The claim we explore is that the existence of a set depends
on the existence of its members. In what follows, when we say that a set
depends on its members, it is the existential sense of dependence that we
are referring to.

So why think that the existence of a set depends on the existence of its
members? There are two lines of thought here. The first is motivated by a
general, non-technical conception of what a set is. According to this view,
a set just is a collection of its members. If that’s what a set is, then if the
set exists, its members must exist as well. One can’t collect together things
that do not exist. In this sense, the existence of the set depends on the
existence of its members. It must be that, if a set exists, then its members
exist as well.

The second reason for thinking that sets depend on their members is mo-
tivated by a widely accepted view in the philosophy of mathematics. On
this view, the correct mathematical conception of set is the iterative con-
ception, according to which sets are built in stages.? The iterative concep-
tion of set is a fairly natural conception. It is a conception that one could
come up with in the absence of any extensive formal training in set theory.
If we start from the idea that a set is simply a collection of objects, then the
iterative conception suggests itself quite readily.

If sets are simply collections of objects, then for any things that exist, we
should be able to take various sets that collect those things up in different
ways. Even if we started with nothing at all, we should at least be able to
take the set that contains nothing at all. And so we now have one set, the
empty set ). We then take all of the various collections of everything that
we have so far, giving us the empty set () and its singleton {#}. And we
keep doing this. Forever.

What results is called the cumulative hierarchy of sets. The cumulative
hierarchy is divided into levels that correspond to each stage in the process
we have described. Each level V, of the hierarchy is defined using ordinal
recursion:

2See Boolos (1971).
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Vo = O
Va+1 = P(Va)
Vi = Ugen Vaif Ais a limit ordinal

The cumulative hierarchy, which exhausts the universe of sets according
to the iterative conception, can adequately serve as an ontological foun-
dation for the rest of mathematics. That is, the rest of mathematics can
be done from within set theory, and the cumulative hierarchy provides all
of the mathematical objects that one needs to do so. But if the iterative
conception is the correct mathematical conception of set, then these are all
the sets there are. There are no sets other than those that show up at some
level in the cumulative hierarchy.

Why think that this is the case? The question is legitimate because there are
mathematically interesting sets that do not appear at any level in the cu-
mulative hierarchy. Most notably, non-well-founded sets, including self-
membered sets, and sets that involve infinitely descending membership
chains, are not in the hierarchy. On the iterative conception, there are no
such sets. But there are theories of non-well-founded sets that are both
elegant and useful ?

To justify the iterative conception as the correct mathematical conception
of set, one occasionally sees reference to a relation of dependence that
holds between a set and its members. Luca Incurvati articulates this posi-
tion when he says, “Sometimes, the iterative conception is described sim-
ply as the conception of set one ends up with if one takes sets as bearing
such a relation of priority or dependence between them” (2012, p. 5). This
view is also described by Michael Potter, who explores the idea that “a
fundamental relation of presupposition, priority, or . . . dependence between
collections” is implicit in the iterative conception (2004, p. 36, emphasis in
original). The cumulative hierarchy just looks like a picture that invokes
some notion of dependence. The cumulative hierarchy, at each level, uses
sets that are available to construct further sets at the next level. Those sets
could not be constructed if the objects at previous levels had not existed.
Each set has as its members, and therefore depends on, sets that were cre-
ated at previous levels.

These considerations about the nature of sets and the cumulative hierar-

3See Aczel (1988) and Barwise & Moss (1996).
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chy do not constitute a well formed argument in favour of the claim that
sets depend on their members. The first line of thought relies on vague in-
tuitions about existence and the process of collecting objects together. The
second line of thought, perhaps based in these vague intuitions, simply
takes the claim that sets depend on their members, and uses it to motivate
a conception of set that rules out certain mathematical objects, like non-
well-founded sets. In what follows, we evaluate several ways to make the
claim that sets depend on their members more philosophically precise.
This involves articulating and evaluating necessary and sufficient truth
conditions for dependence. Once we have settled on appropriate truth
conditions, the main argument that sets depends on their members is then
located in the fact that it follows from these truth conditions.

2 Modal Truth Conditions for Dependence

Dependence, in its various forms, is a relation that plausibly holds be-
tween many entities, not just sets. It is the relation that plausibly holds
between a whole and its parts, or between a hole and its host. It is the re-
lation that, more contentiously, holds between moral facts and non-moral
facts, or between modal facts and non-modal facts. Note that the truth con-
ditions given here are only intended to apply to set-theoretic dependence,
the dependence that holds between a set and its members. We make no
claim that they generalise to capture dependence between other objects or
other kinds of entities.

Dependence is generally thought to be an asymmetric relation: if = de-
pends on y, then y does not depend on z. While some argument is surely
needed for the claim that dependence is asymmetric in every case, it does
seem that sets, in particular singletons, give one of the clearer cases of
asymmetric dependence.

It is most common to try to understand dependence in modal terms. One
thing depends on another when you can’t have the one without the other.
If we make this naive conception philosophically precise, we get intuitive
modal truth conditions for dependence.

Modal Dependence. = depends on y iff in every metaphysically possible world
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w, if y doesn’t exist at w, then x doesn’t exist at w.

Nearly all of the recent literature on dependence rejects these modal truth
conditions for dependence. These conditions are rejected because they
cannot accurately capture the asymmetric dependence of a singleton on
its single member. They fail in this regard because a set exists in every
metaphysically possible world that has all of its members, and so a sin-
gleton exists in every metaphysically possible world in which its single
member exists. For any object x, x and {z} exists in all of the same meta-
physically possible worlds. This symmetry is even more apparent when
we consider pure sets. As purely mathematical objects, pure sets exist in
every metaphysically possible world. So, for example, the empty set @
and its singleton {(} exist in all of the same possible worlds, because they
both exist in every possible world.

As a result we find that the sentence

In every metaphysically possible world w, x exists at w if and only if {x}
exists at w.

is true. It follows from the modal truth conditions that x and {z} symmet-
rically depend on each other. But this is not how we think dependence
works. Dependence is generally thought to be a relation that is asymmet-
ric. And even if there are plausible cases of symmetric dependence, it’s not
clear that the set-theoretic case is one of them. The dependence between a
singleton and its member is generally taken to be such that the singleton
depends on the member, and not vice versa.

There are, however, plausible set-theoretic examples where the modal truth
conditions give the proper, expected, asymmetric dependence relations.
Consider the pair set {z,y}, where = and y are two distinct contingent
entities. As sets are taken to depend on each of their members, this set
depends on z, and it depends on y. The strict conditionals

In every metaphysically possible world w, if v doesn't exist at w, then {z, y}
doesn’t exist at w.

In every metaphysically possible world w, if y doesn’t exist at w, then {x, y}
doesn’t exist at w.

both seem true. If x does not exist, then no set can have x as a member.
Similarly for y. And so in either case, nothing can be the set {z, y}. So that
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set doesn’t exist.
But the strict conditionals

In every metaphysically possible world w, if {x,y} doesn’t exist at w, then
x doesn’t exist at w.

In every metaphysically possible world w, if {x,y} doesn’t exist at w, then
y doesn’t exist at w.

both seem false. Concerning the first conditional, there is a world where
the pair set fails to exist because y doesn’t exist, even though = does. And
analogously for the second conditional. So it is not that modal truth con-
ditions always fail in the context of sets. Problems arise only when the
relata of the dependence relation exist in all of the same possible worlds.
This happens in the case of singletons and their members, and when the
relata are necessarily existing objects. Dependence relations require one to
discriminate between the existence of one relatum and the existence of the
other. In these cases there simply aren’t enough possible worlds to do this.

What we have here is a problem of hyperintensionality. Hyperintensional
contexts occur when possible worlds are not enough to discriminate be-
tween two intuitively different things. In this regard, the dependence re-
lation is hyperintensional. We want to be able to say that, for all z, the
singleton of = depends on z, and not vice versa. But x and its singleton ex-
ist in all of the same possible worlds. There aren’t enough possible worlds
to make this distinction. This is even more obvious in the case of objects
that exist in every possible world.

3 Revised Truth Conditions for Dependence

In the presence of hyperintensionality, a natural move is to extend the pos-
sible worlds framework with more worlds, so-called impossible worlds.
This is the strategy we will pursue here, starting by modifying the truth
conditions for set-theoretic dependence.

Revised Modal Dependence. x depends on y iff in every world w, either meta-
physically possible or metaphysically impossible, if y doesn’t exist at w, then x
doesn’t exist at w.
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These truth conditions differ from the original modal account by allow-
ing consideration of impossible worlds. But we have to be careful about
which impossible worlds we allow under consideration. For our pur-
poses, we allow metaphysically impossible worlds, but not logically im-
possible worlds. So the worlds under consideration will obey the laws of
classical logic. And so we can reason about them and from within them in
a coherent and familiar way. This choice is justified by considering that,
in order to evaluate dependence claims, we shouldn’t have to change any
of the laws of logic, or consider situations (i.e., worlds) where the laws of
logic fail.

We will, however, need to consider metaphysically impossible worlds. For
example, if we were to evaluate the claim that {)} depends on 0, we
consider what happens at worlds where © fails to exist. These worlds
will be metaphysically impossible worlds. And so it is quite natural to
include these in the logical apparatus used to evaluate the dependence of
a singleton on its member.

An alternative approach would be to take all of the impossible worlds, in-
cluding those that are metaphysically and logically impossible, and any
others there may be, and then reformulate the truth conditions for de-
pendence in terms of a counterfactual conditional. Counterfactuals have
traditionally been understood in terms of possible worlds.* One looks to
possible worlds that are relevantly similar to the actual world, but which
make the antecedent true. If the consequent is also true at all of these
worlds, then the whole counterfactual is true at the actual world. Adding
impossible worlds to this framework, we could take the relevantly sim-
ilar worlds to be those that are metaphysically impossible but not logi-
cally impossible. The truth conditions for dependence given in terms of
counterfactuals would then be equivalent to those given here in terms of
a strict conditional. For simplicity we restrict the impossible worlds un-
der consideration and formulate the truth conditions in terms of a strict
conditional.

Applying the revised truth conditions for dependence, we aim to show
that, for any = and {z} that exist at the actual world, we have that at every
world (either metaphysically possible or metaphysically impossible), if =
does not exist, then {x} does not exist. We begin by giving a sketch of the

4See Lewis (1973) and Stalnaker (1968).
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argument, filling in the technical details in the following section.

The argument proceeds by assuming that there is a world where = does
not exist, but {x} does, and derives a contradiction. Supposing = and {z}
exist at the actual world, we consider a world where = does not exist but
its singleton does. It is definitional of the singleton of x that it is the set
that contains » and nothing else. That is, for every y, y € {z} iff y = z. As
this is definitional of the singleton of z, it should hold at every world in
this framework, including the actual world, and the world currently under
consideration.” At this particular world, = does not exist, and so nothing
that exists at this world is identical to z. It follows that, at this world, the
singleton of x contains no members at all, i.e., it is identical to the empty
set.

Next, we appeal to the necessity of identity, which says that if + = y, then
at every world # = y. As a matter of logic, identity is generally taken to
hold at every world. That is, the principle z = y — O(z = y) is valid in all
normal modal logics. Taking identity to be a logical notion, given that the
worlds under consideration obey the laws of logic, this principle should
still hold at those worlds that are metaphysically impossible. Even if one
took identity to be more of a metaphysical notion than a logical one, for
our purposes, there is no reason to question principles of identity at the
impossible worlds we are interested in. We invoked impossible worlds to
facilitate our desire to consider worlds that discriminate between objects
that exist at all of the same possible worlds. Nothing about this project re-
quires us to give up principles about the identity of those objects. Indeed,
if we give up principles of identity, then it makes it difficult to ensure that
we are talking about the same objects from one world to the next. If we
want to say something substantive about =, we want to make sure that at
each world under consideration, we are still talking about x.

If we do invoke the necessity of identity, it follows from the fact that z = @
at the world under consideration, that x = () at every world, including the
actual world. But at the actual world, or at any world, where z exists, the
singleton of  is non-empty — it has z as its single member. And thus we

>This stipulation is justified, even though we are considering metaphysically impos-
sible worlds, because it ensures that we are talking about the singleton of «. If {z} did
not satisfy this condition, we would not be talking about the singleton of z; we would be
talking about something else.
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have a contradiction.

This argument makes several assumptions about the accessibility relation
in the context of metaphysically possible and impossible worlds. Specif-
ically, it requires that the accessibility relation of the modal logic under
consideration is symmetric. Why should we think the accessibility rela-
tion symmetric? For one, metaphysical modality, where we consider only
metaphysically possible worlds, has been taken by many to be correctly
modelled by logics at least as strong as S5.° Second, we want to consider
what can happen at all worlds under consideration. This is properly done
with a universal accessibility relation, according to which every world ac-
cesses every other world, and which is equivalent to S5. And the system
S5 is characterised by having an accessibility relation that is not only sym-
metric, but also reflexive and transitive.

We have thus sketched an argument that, in every world under consider-
ation, if = does not exist, then {z} does not exist, for any object . On a
natural reading, this tells us that you can’t have {z} without x. According
to the revised truth conditions for dependence, we have that the single-
ton of an object depends on that object. But we need to do a bit more to
show that this account is satisfactory. Because even on the standard modal
account, which appeals only to possible worlds, we could show that {z}
depends on . What we must also show is that this dependence is asym-
metric, that = does not also depend on {z}.

Using the same framework of worlds, which includes metaphysically pos-
sible and metaphysically impossible worlds, we want to show that there
is some world where z exists but {z} does not. Recall that, in selecting
the impossible worlds to include in our framework, a requirement that we
enforced on these worlds was that they obey the laws of logic, including
basic principles regarding identity. Given this selection of worlds, we have
essentially shown that {z} depends on z in virtue of logical principles
alone. But one cannot show through logic alone that in worlds where {z}
does not exist, x must not exist either. And so one cannot show through
logic alone that = depends on {z}.

To make such a proof go through, one would need additional set-theoretic
principles. For example, in the context of the iterative conception of set,

%See, for example, Lewis (1986) and Williamson (2013).
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and the Zermelo Fraenkel (ZF) axioms that formalise that conception, one
must appeal to something like the pairing axiom, which says that for any
two objects, x and y, the pair set {z, y} exists. Given the existence of some
object, the pairing axiom implies that its singleton exists as well.”

If there are any (impossible) worlds where = exists but {z} does not, then
pairing must fail at these worlds. Indeed, it must be that all of the relevant
set-building principles fail. If these principles held at all of the worlds un-
der consideration, then it would follow that each object depends on its sin-
gleton. And so the dependence between an object and its singleton would
be symmetric, contrary to the view that dependence is an asymmetric re-
lation. Consequently, such a result would be damaging to the extended
truth conditions for dependence argued for here.

The question is then whether we can assume that these set-building princi-
ples hold at all of the relevant worlds. And we maintain that there doesn’t
seem to be any reason to assume that they do. These set-building princi-
ples are precisely the kind of principle that must fail in order to consider
the relevant worlds where certain sets do not exist, i.e., the metaphysically
impossible worlds. Given that we are trying to discover what happens
when, e.g., the empty set or its singleton fail to exist, we cannot justify
assuming principles that directly entail their existence.

In response, and recalling considerations from section 1 above, one might
argue that the dependence of a set on its members only holds in the con-
text of the iterative conception of set. And so we should only be looking at
worlds where sets operate according to that conception. On that concep-
tion, these set-building principles hold. So we should only be considering
worlds where these principles hold.

But by appealing to impossible worlds, where certain pure sets do not ex-
ist, one has already rejected the iterative conception of set. The iterative
conception stipulates that certain sets exist, including the empty set and its
singleton. By hypothesis, we are considering worlds where these sets fail
to exist. And so we are considering worlds where sets do not operate ac-
cording to the iterative conception. We should therefore be open to at least

"There are other ways besides pairing to construct the singleton of an object. This
could be done, for example, with the power set axiom and an instance of the replacement
axiom schema. For simplicity, we focus on pairing. But our remarks apply equally to
these other set-generating axioms.
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some worlds where certain set-building operations fail too. Rejecting the
existence of certain sets is on a par with rejecting set-building principles.

Given the consideration of worlds where set-building principles fail, there
is no reason to think that every world where x exists must be a world
where {z} exists as well. And so we have an asymmetry. The existence of
x follows from the existence of {z} though logic and definitions alone. All
one needs is that, at the worlds under consideration, the laws of classical
logic hold and we maintain the usual definitions or identity conditions for
sets. The existence of {z}, however, does not follow from the existence of
x through logic alone — one needs extra set-theoretic principles to obtain
at the worlds under consideration. Furthermore, it is precisely these kinds
of principles which are in question, and so the burden is on our opponent
to show why they must hold at every world.

The only set-theoretic axiom that seems plausible to maintain is the axiom
of extensionality. Other axioms simply determine the existence of certain
sets. Extensionality does not determine the existence of any sets at all; it
determines the identity conditions for sets. It tells us that, at these worlds,
we are really saying things about sets, and not some other kind of entity. In
the details provided in the next section, we will appeal to the extensional
nature of sets.

This assumption is not necessarily problematic. Extensionality describes
one of the basic properties of the kind of objects set theory deals with. It
tells us something fundamental about the nature of sets. Historically, the
axiom of extensionality has been taken to be crucial to the concept of set,
whereas other axioms can be called into question.

That the concepts of set and being a member of obey the axiom of
extensionality is a far more central feature of our use of them
than is the fact that they obey any other axiom. A theory that
denied, or even failed to affirm, some of the other axioms of
ZF might be called a set theory, albeit a deviant or fragmentary
one. But a theory that did not affirm that the objects with which
it dealt were identical if they had the same members would
only by charity be called a theory of sets alone. (Boolos 1971, p.
28, emphasis in original).

So one can deny the other ZF axioms and still claim to be talking about
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sets. But to deny the extensionality of sets is to suggest that we are not
really talking about sets at all.

4 Filling in the Details

In this section, we provide the details of the argument presented above
that, in the framework that includes both metaphysically possible and
metaphysically impossible worlds, there is no world where {z} exists but
x does not, for any z.® The language we use is the usual language of first-
order modal logic, including predicate symbols, variables, constants, con-
nectives, quantifiers, identity, modal operators, and brackets. Terms and
formulas are built up in the usual way.

The modal semantics we will deploy for this language is a standard con-
stant domain semantics. An interpretation is a quadruple (D, W, R,v),
where D is the non-empty domain of quantification, W is a non-empty
set of worlds (that includes metaphysically possible and metaphysically
impossible worlds), and R is a binary accessibility relation on W. The
function v maps each constant, ¢, to a member, v(c), of D. And to each
pair consisting of a world, w € W, and n-place predicate, P, the function v
assigns a subset of D™ — the extension of P at w, which we write as v, (P).
We also reserve a one-place predicate symbol, £, to serve as an existence
predicate: if £(a) is true at w, then a exists at w.

Truth conditions for the connectives, quantifiers, and modal operators are
as usual. In particular, for atomic formulas we have:

vp(Pay .. .a,) = Tiff (v(ay),...,v(a,)) € v,(P) (otherwise it is F).
And for identity and existence we have the usual assignment:
vp(=)is {(d,d) : d € D} v(E) € D

There is also one non-logical predicate, the two-place membership relation
€. The only condition that this membership predicate must satisfy is the
standard extensional identity condition:

VaVy[Vz(z € x <> z € y) = x =y

8Here we follow the notation of Priest (2008).
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Given this framework, we aim to show that, for any object, if both that
object and its singleton exist, then, in every world, if that object does not
exist, then its singleton does not exist. Choose an arbitrary object and
assign it the constant symbol a. We have at our base world, w, that a
exists, and that it’s singleton, which we label s, exists too.

(1) wlk &(a)
(2) wlk&(s)

The singleton of a is the set of all things at w that are identical to a. So we
have:

@) wlFVe[z € s > (E(x) AN = a)]

And so we have that a € s. Given the extensional nature of sets, we also
have that anything at w that is the singleton of a is identical to s.

(4) wlkVYyVe[z € y <> (E(x) Nx =a)] — y =]

In this sense, we take the condition z € y <> (£(x)Azx = a) to be definitional
of the singleton of a. Any y, in any world, that satisfies this condition is
the singleton of a.

We want to show, at w, that at every world, if a does not exist, then it’s sin-
gleton does not exist. We assume the opposite and derive a contradiction.

5) wlkF O-[-€&(a) » ~FyVe[z € y <> (E(x) Nz = a)]]

So there is a world, w’ € W, such that wRw'. From (5) it follows that:
6) w'lF—=&(a)
(7) W'k IYVz[x € y < (E(x) A x = a)

Line (7) says there exists something at w’ that has = as a member iff = exists
at w’ and x = a. Take this to be a set, and call it s’. It isn’t hard to see that,
atw’, s’ is the empty set. For suppose that there exists an = such that z € 5.
It follows that # = a and that £(z). By substitution we would have that
&(a), but by (6) we have =&£(a). So s is empty.

8) w'lF =Jz(x € &)

It is at this point that we invoke the necessity of identity, whereby if z = y,
then O(z = y). As ¢ = O at v, we have that (s = ) at v. One can
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justify this inference by observing that both s and © are names. And so
we have reason to believe they refer rigidly, to the same object in every
world.? As long as the accessibility relation is symmetric, from wRw’, we
have w'Rw, and so s’ = () at w. We gave reason in section 3 to think that
the accessibility relation corresponds to that of the modal logic S5, which
makes it an equivalence relation, and thus symmetric. It follows that:

9) wlk =Jx(z € ¢)

But recall that s’ is defined as the set that has as its members all and only
those objects that are identical to a. As this is definitional of s, it should
hold in every world, including w.

(10) wlFVz[z € §' <> (E(x) Nz = a)]

We have from (4) and (10) that s’ = s. By extensionality, it follows that
a € s/, but by (9) it follows that ¢ ¢ s'. And so we have our contradiction.
It follows on this framework that, for any z, if  and its singleton exist at a
world w, then, in every world «’, if x doesn’t exist at v/, then it’s singleton
doesn’t exist at w’ either. According to the revised modal truth conditions,
that allow consideration of both metaphysically possible and metaphysi-
cally impossible worlds, it follows that for any object z, the singleton of x
depends on z.

It isn’t too hard to show that the converse does not hold, and so depen-
dence on this framework is asymmetric. Consider the interpretation where
W contains two worlds, w and w’, the domain of w has both a and its sin-
gleton, and the domain of v’ has just a. In this interpretation, we have:

(11) w Ik OlE(a) A =FyVzlr € y +» (E(x) Az = a)]]

That is, there is a world such that a exists while its singleton does not. The
only way to falsify this statement would be to invoke certain set-building
principles, such as those captured by the pairing axiom. But as discussed
in section 3, given the kind of worlds under consideration, we cannot as-
sume that these principles hold at all worlds. And so they may fail at some
particular world, thus making (11) true.

?See Kripke (1972). In fact, the rigidity of the names is equivalent to validity of the
inference. See Fitting & Mendelsohn (1998).
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5 Conclusion

We have argued in favour of a framework that can be used to understand
and evaluate statements of dependence between sets and their members.
We have shown that, within this framework, a singleton depends on the
single object that is its member, and that this dependence is asymmetric
— the single member does not depend on its singleton. There is reason
to think that this framework can be used to evaluate more general claims
that sets depend on their members. There is also reason to think that the
argument presented here can be generalised to show that, beyond the case
of singletons, all sets depend on their members, and that this dependence
is asymmetric.

This framework has been presented in the form of a normal first-order
modal logic. In the technical details, very little is required of the worlds
that provide the semantics for the modal language that is used. They obey
the laws of classical logic, they satisfy the extensional identity conditions
that are standard for sets, and they maintain the standard definition for
singletons. As we are interested in the dependence that holds between
sets and their members, these requirements are appropriate. They ensure
that, when we claim to be talking about sets in this framework, we actually
are talking about sets.

Though very few assumptions are made about these worlds from a formal
perspective, one could ask what these worlds represent. A philosophical
treatment of these worlds would take them to include both metaphysi-
cally possible and metaphysically impossible worlds, as some worlds un-
der consideration must make it that certain necessarily existing objects,
like pure mathematical objects, fail to exist. But these worlds will not be
logically impossible, as they will continue to obey the laws of classical
logic.

Given that the formal details require very little of the worlds under consid-
eration, one could argue that what we have shown is that the dependence
of a singleton on its members follows from logical principles alone, once
we have the appropriate logical framework in place to understand this
kind of dependence claim. As long as we hold fixed certain definitions,
such as the definition of singleton, and what it means for two sets to be
identical, logic determines that, in any world, w, if an object does not exist
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at w, then its singleton doesn’t exist at w either.

However, logic alone is not enough to establish the dependence of an ob-
ject on its singleton. One must invoke further set-theoretic principles in or-
der to establish this dependence. But these principles go beyond standard
principles of logic. And so, as desired, we have an asymmetric depen-
dence relation between singletons and their members: singletons depend
on their (single) members, while those members do not depend on their
singletons.
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