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Abstract

We propose a new intensional semantics for modal-tense second-order
languages with sortal predicates. The semantics provides a variable-
domain interpretation of the second-order quantifiers. A formal logical
system is characterized and proved to be sound and complete with respect
to the semantics. A contemporary variant of conceptualism as a theory
of universals is the philosophical background of the semantics. Justifica-
tion for the variable-domain interpretation of the second-order quantifiers
presupposes such a conceptualist framework.

1. Introduction

A notion that plays an important role in certain areas of philosophy, cognitive
psychology and logic is that of a sortal predicate or sortal concept. Notwith-
standing its importance, the notion is not sufficiently precise and, as a con-
sequence of this feature, a controversy exists regarding the criteria for setting
apart sortal predicates from other kind of predicates. However, there are uni-
versally accepted prototypes of linguistic expressions that count as clear cases
of sortal and non-sortal predicates. Most of our common count nouns (such as
“ant” and “dog”) are definite cases of sortal predicates.! Adjectives and intran-
sitive verbs are clear examples of non-sortal predicates. On the basis of these
prototypes, any procedure establishing the required distinction will have to in-
clude among the defining features the idea that sortal terms generally provide
counting, identification and classification criteria.? This means that, if S is a
sortal predicate, it will make sense to ask how many S’s there are, whether z is
the same S as z, and finally whether z is an S.

The last two kinds of questions illustrate two important logical aspects of
sortal predicates, namely, regarding these terms we can form 1) relative (sortal)
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identities such as “a is the same spider as b”, and “a is the same horse as b”,
and 2) sortal predications such as “John is a man”. The counting criterium, on
the other hand, serves as the foundation for a third logical feature: by means
of sortal predicates we can construct relative quantifiers, such as “every spider
and “some horse”.

Now, when a formal language allows for the formal representation of sor-
tal quantification and identity, and is such that its logical syntax assumes such
representations as undefinable, we shall speak here of a (formal) language for
sortals.? In previous papers, we have studied extensional and intensional lan-
guages for sortal predicates and developed formal semantic systems for them
together with the corresponding sound and complete formal logical systems.
These systems presuppose a modern form of a conceptualist theory of univer-
sals as philosophical background theory.*

In general, conceptualism as a theory of universals presupposes that general
terms stand for concepts and constitute their semantic basis.® The modern vari-
ant of conceptualism assumed in the above papers extends the general view of
conceptualism to all meaningful linguistic expressions, with the exception of sen-
tences; that is, except for sentences, every meaningful expression of a language
will have a concept as its semantic ground. In addition to such an extension, the
contemporary philosophical theory in question assumes the view that concepts
constitute cognitive capacities or cognitive structures based on such capacities.

As in the previous papers, we shall here also adopt the above contemporary
version of conceptualism. Thus, as to be expected, sortal predicates will here
stand for concepts and, consequently, for certain kind of cognitive capacities or
structures based on such capacities. We shall here refer to such concepts as
sortal concepts.

Given the interpretation of concepts as cognitive capacities or cognitive
structures based on such capacities, a variation through time of the total set of
sortal concepts is to be expected. This is because such capacities or structures
ontologically depend on the concrete individuals that have formed them. Since
existence of such individuals is finite, the subsistence of concepts is also limited.

In addition to actual concepts, we can take into account possible concepts.
Possibility in this case is to be understood in terms of natural possibility, since
this is the sense of possibility more pertinent for the view of concepts assumed in
this paper. Therefore, with natural possibility in view, an additional parameter
for variation in the set of concepts is introduced: the set of concepts formed
at one naturally possible world might be different from the set of concepts
formed at another possible world. This parameter of variation together with the
temporal parameter suggest a variable-domain interpretation of (second-order)
quantification over sortal concepts. In accordance with this interpretation, the
range of a second-order quantifier over sortal concepts, at a possible world and
time interval, would be constituted by the total set of sortal concepts remaining
or being developed at that same world and interval. As far as we know, in the
development of the logic for sortal predicates such an interpretation has not
been considered. That is, logics for sortals which include in their logical syntax
second-order quantifiers over sortal concepts have assigned a constant-domain
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interpretation to such quantifiers. In the constant-domain interpretation, quan-
tification is over the totality of sortal concepts that in principle can be formed or
constructed, that is, over all the concepts that can be formed at some possible
world or other.

Our goal in the present paper is to construct a logic for sortals in which
second-order quantifiers over sortals are given a variable-domain interpretation.
Since time and possible worlds are here involved, in order to capture the inter-
pretation in question more faithfully, our logic will be modal-tense. In other
words, the language of our logic will be a second-order sortal language with
modal and tense operators. Thus, the logical syntax of the language will al-
low for the concatenation of universal quantifiers with sortal predicate variables
and contain, in addition to expressions representing relative identity and rela-
tive quantification, also modal and tense operators together with the classical
propositional connectives.

Technically speaking, we shall here formulate a set-theoretic possible world
semantics for the above two dimensional second-order sortal language. The se-
mantics will provide a variable-domain interpretation of the second-order quan-
tifiers, that is, their range might vary across possible worlds and time-points.
We shall develop a formal logical system, prove its soundness and completeness
with respect to the notion of validity provided by the semantics. The semantics
will assume elements of the abovementioned modern version of conceptualism
as a theory of universals as its philosophical background. It will also capture
the intuitive interpretations of the propositional operators.

We should note that in Freund (2007) we have constructed a tense-modal
logic for sortals but with a constant-domain interpretation of the second-order
quantifiers over sortal concepts. Clearly, by providing a variable-domain inter-
pretation of the second order quantifiers, the semantics of the present article
will differ from that in Freund (2007).

2. Philosophical preliminaries: concepts, time-intervals, and
possible worlds.

As indicated, we shall here assume a modern version of conceptualism as
philosophical background. In the present section, we shall present some features
of this philosophical theory that are relevant for the philosophical justification
of the logic here characterized.®

As a theory of universals, we have stated that conceptualism postulates
concepts as the entities general terms stand for. This sort of terms includes, for
example, common nouns and adjectives. Another universal important feature
of conceptualism concerns predication. Predication is explained in terms of the
notion of an entity falling under a concept. So, the assertion that John is a
person is interpreted as John falls under the concept of being a person. Thus,
for conceptualism, predication essentially depends on concepts.

It is important to note that conceptualism, like nominalism and realism,
also accepts the idea that there is predication in language, that is, that we can
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attribute (monadic or relational) predicates of individuals. Nominalism, in its
original version, assumes that predication in language is the only manner in
which we can justifiably talk of predication. That is, according to nominalism
the only sort of predication is the attribution of a predicate (or rather of a pred-
icate token). Modern versions of nominalism interpret predication in terms of
membership in a class. In the case of realism, predication is based on properties
and relations. As such, predication should be understood as the instantiation
of a property or a relation. It is this sort of predication that constitutes the
basis and accounts for predication in language. Contrariwise to realism and
nominalism, conceptualism looks at predication in language as grounded on the
predication of concepts. This latter sort of predication is tantamount to the
notion of an object falling under a concept.

The contemporary variant of conceptualism here assumed adopts the above
two general features. In addition to these features, it extends the conceptualist
view regarding general terms to all meaningful linguistic expressions, with the
exception of sentences.” So, for example, all sort of referential expressions like
quantifiers phrases, definite descriptions, etc, will have to be taken as standing
for concepts. Another addition to the general conceptualist view is an interpre-
tation of concepts as cognitive capacities or structures based on such capacities.
For instance, the sortal concept of being a house will be a cognitive capacity
whose exercise would allow us to identify, classify and count houses. The com-
plex predicate "to be round and red" will stand for a cognitive structure based
on the concepts of being round and being red. This structure is a construc-
tion from these two concepts by means of the logical operation of conjunction.
When exercised, the structure in question would allow us to classify red and
round objects.

It is clear that, unlike properties (which are the universals postulated by
logical realism) and classes (which are the universals according to a version of
nominalism), concepts as cognitive capacities or structures are entities ontologi-
cally dependent on time-bounded individuals. These are the individuals that are
causally responsible for the concepts. Such individuals contain biological sys-
tems capable of carrying out a processing of stimulae or information from the
external world. This processing and their biological structure allow the individ-
uals in question to develop cognitive capacities or structures and, in particular,
concepts. These cognitive capacites and structures subsist in those individuals
but since the life-span of the individuals is clearly finite, the subsistence of con-
cepts will also be limited. In this way, time-intervals can be assigned to sets of
concepts, namely: the time-intervals during which those concepts subsist in the
biological individuals generating and storing them.

Now, if we take into account possible transformations in actual biological
structures (i.e, so called epigenetic changes), we get another important parame-
ter related to the formation of concepts. Such transformations might be induced
by possible but not actual modifications in the bio-physical or chemical envi-
ronment that might render biological systems alternative to those of the actual
world. This opens up the possibility of individuals with the potential to develop
concepts different from those of the actual world. In other words, transforma-
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tions in the biological structures might causally imply formation of concepts
different from those of the actual world.

Additional factors that may have as a consequence construction of a different
set of concepts are material conditions distinct from those of the actual world.
These conditions might provide stimulae different from those actually given.

Now, we can understand the above scenarios in terms of possible worlds,
if the concept of being a possible world is interpreted as in natural necessity.
This interpretation is congenial with the variant of conceptualism assumed in
the present paper. This is because such a version of conceptualism is a socio-
biologically based theory of the capacity for systematic concept formation com-
mitted to the existence of natural properties and relations. Some of these prop-
erties and relations provide the causal ground for the laws governing concept-
formation. These laws characterize the structure of the intellect as a biologically
based organon.

In sum, the possible laws governing concept-formation are those determined
by the causal matrix of the naturally possible worlds. Since this matrix is
common to all these worlds, any of such worlds is to be viewed as a causal
alternative to the others. In other words, what is causally or naturally necessary
in one of such worlds is causally necessary in any of the others.

Clearly, what would differentiate one naturally possible world from the others
will not be the natural properties and relations themselves inscribed in its causal
matrix (since this is what is common to all of them) but rather the concrete
individuals that exist in any of such worlds. The concrete individuals at a
possible world are the entities that manifest at that world some of the natural
properties and relations. As such, concrete individuals might exist in more
than one naturally possible world but they do not have to exist in all of such
worlds. The same applies to concepts, since their being depends on some of
those individuals.

By above then, two dimensions can be associated to sets of concepts: the
temporal dimension and the modal dimension of natural possibility. Concepts
are entities that are developed by and ontologically dependent on individuals, in
a time-interval or intervals at a naturally possible world or worlds. Accordingly,
the set of concepts associated to a given time-interval and naturally possible
world will be the set of concepts developed by and subsisting in the individu-
als existing at that time-interval and world. Consequently, the set of concepts
subsisting at a given time-interval and possible world might differ from those at
other time-intervals and/or possible worlds. This is clearly due to the possibil-
ity, among others already mentioned, that the set of individuals at one possible
world and time-interval might be different from the set of individuals at another
possible world and time-interval.

3. Philosophical preliminaries: sortal, predicable, and referential
concepts
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Up to now, we have focused on the development of concepts and its onto-
logical dependence on actual and possible individuals. We want now to take
into account the different sorts of concepts that such a development might yield.
The difference among concepts is to be found in the role they are meant to full-
fill. Primarily, we have the distinction between sortal and predicable concepts.
We have already referred to the former kind of concepts. They are those sor-
tal predicates stand for. Hence, sortal concepts are intersubjectively realizable
cognitive capacities whose uses, in thought and communication, are associated
with certain criteria by which we are able to distinguish, count, identify and
classify objects.

Predicable concepts, on the other hand, are intersubjectively realizable cog-
nitive capacities or structures that only enable us to classify and relate objects.
Predicates such as “black”, “big”, “hard”, “smaller” and “older” should be viewed
as representing predicable concepts. In general, non-sortal monadic predicates
and n-place predicate expressions, (for n >1), also known as relational predi-
cates, will stand for predicable concepts.

In addition to sortal and predicable concepts, we have the referential con-
cepts, that is, those whose exercise would allow us to refer. In this paper, we
shall only take into account referential concepts that are represented either by
relative sortal quantifiers or by second-order quantifiers over sortal concepts.
Expressions of a form logically similar to “every S” or “some S” (where S is a
sortal predicate), such as “every horse” and “some houses”, stand for concepts
of the former kind. Thus, this sorth of concepts constitute intersubjectively re-
alizable cognitive structures whose exercise would enable us to refer to objects
distinguished, counted and classified by sortal concepts.

Referential concepts of the other kind are represented by expressions with
logical content similar to “for some sortal concept” and “for every sortal concept”.
They are cognitive structures whose exercise allow us to refer to the sortal
concepts themselves. Two interpretations of this sort of second-order reference
are at hand, viz.: the counterfactual and the variable-domain interpretations.

In the case of the counterfactual interpretation, the range of quantification
comprises the class of all sortal concepts that in principle can be formed or
constructed. This class would contain all of the concepts that can be formed in
one or another naturally possible world at a time interval. In contraposition to
the counterfactual interpretation, there is the wvariable domain interpretation.
Here the range of quantification might vary from one possible world and/or time
interval to another. In this case, second-order quantification would be closely
tied to time and modality, capturing in this way, more closely, the dynamics
involved in the construction and the subsistence of concepts.

As noticed in the introduction, we have already developed a logic for the
counterfactual interpretation in a tense-modal context. We also pointed out
that, contrarily to the case for the counterfactual interpretation, a tense-modal
sortal logic that assumes the variable domain interpretation as primitive has
not been formulated. In what follows, we develop such a logic. In addition
to the fact that this logic has not been up till now developed, the idea that
the variable domain intepretation reflects more closely the above mentioned
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dynamics of concept formation motivates the work in this paper.

4. Language and Semantics

We now characterize the formal language of this paper. The set of its primi-
tive logical symbols will be constituted by the expressions -, —, =V, (, ), G, H
and 0. The first two symbols will stand for classical negation and material
implication, the penultimate and antepenultimate symbols will formally rep-
resent the temporal operators “it will always be the case" and “it has always
been the case".The last symbol will stand for the modal operator "it is natu-
rally necessary that p". The classical propositional operators of conjunction,
disjunction and material equivalence will be represented by the symbols & , V
and <, respectively, and defined in the usual way.

We shall assume denumerably many individual variables, sortal term vari-
ables and, for each positive integer n, n-place predicate variables. We shall use
“x”, “y” and “2” with or without numerical subscripts to refer (in the metalan-
guage) to individual variables and, except for “P”,” F”, “G”and " H” , upper case
letters in italics to refer to sortal term variables. Atomic well formed formulas
are expressions either of the form of a relative identity (a =, b), where a and b
are individual variables and L is a sortal term variable, or of the form 7x...z,,
where 7 is an n-place predicate variable and z1...x, are individual variables.
The set of well formed formulas (wffs, for short) is the smallest set containing
the atomic well formed formulas and such that —p, (¢ — §), VeLo, Go, Hop,
Oy and VL are in the set whenever ¢, § are in the set, and L is a sortal term
variable.

Intuitively speaking, the expressions "o =y, y” (for any sortal term L) will
formally represent sortal identity, that is, their intuitive content is that of the
expression z is the same L as y. In accordance with this interpretation, any
statement of the form "x = y” will clearly entail that x is an L ,and so that =
falls under the sortal concept the sortal term L stands for. Take, for example,
the statement John = person Peter. This clearly implies that John is a person
and, consequently, that John falls under the sortal concept of being a person.
For these reasons, the identity principle, ” for every sortal L, x = x” is not
intuitively valid, since it would entail that any object falls under every sortal
concept. These intuitive features of relative (sortal) identity will be reflected in
the formal semantics, in particular, in clause 1 of the definition of truth for the
formal models of this paper. As the reader will notice, the semantics validates
a different identity principle, namely: © =; y — = =y z. This principle is
assumed in the formal system as an axiom (viz., A7).

Formulas of the form “ VxLy”, for any given sortal term L, will formally
represent relative sortal quantification with respect to the sortal concept L.
As an intuitive example, let L be the sortal term "dog" and 7w the monadic
predicate "is white", then Vo L7z will formally stand for "Every dog is white".
Another intuitive example is the following: let S be the sortal term "man" and
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7 the monadic predicate "is mortal", then "VaS7z” will represent "Every man
is mortal".

Finally, formulas of the form “ VL¢” will have to be read as "Every sortal
concept is such that ¢”, where the expression "every sortal concept" has to be
given a variable-domain interpretation.

Hereafter, we shall make use of lower case greek letters ¢, o, d, b and
to refer to wifs, m to refer to predicate variables and upper case greek letters
such as I', A and X to refer to sets of wifs. We shall generally drop the use
of parentheses in a given context, if ambiguity is not possible in that context.
The concepts of a bound and free occurrence of a variable are understood in the
usual way. If o and 8 are variables of the same type, then by ¢%*/ § is meant
the wif that results by replacing each free occurrence of § by a free occurrence
of a, if such a wif exists; otherwise ¢*/ ( is ¢ itself. We shall say that « is free
for 8 in ¢, if p®/ B is not ¢ unless a is S.

We now construct the semantics for the above language. We first define a
frame for a variable-domain modal-tense sortal logic (VMTS-frame, for short),
as a structure < D, S, W, T, R >, where

1. D is a domain of discourse, empty or otherwise,
2. W and T are non-empty sets,

3. S is a function from W x T into p(p(D)" *7) (where p(D) stands for
the power set of D and (D)"Y X7 for the set of functions from W x T
into the power set of D),

4. R is a serially ordered relation in 7, i.e., R C T x 7 , and R is transi-
tive, irreflexive and connected. In other words, R satisfies the following
conditions: (i) for every a, 3, v € T, if R 8 and SR ~, then R ~; (ii)
for every a, B, € T, either @« = 8 or R 3 or R «; and for every a € T,
it is not the case that aRa.

We should note that D represents the set of concrete individuals existing at
some possible world or other, YW the set of naturally possible worlds, 7 the
set of time-points, and R the earlier-than relation.

For each ¢t and w, S( t,w) stands for the set of sortal concepts that have
been formed at possible world w and time ¢ (and maybe previously to ¢). When
a given function f is a member of S( ¢,w) (that is, when f set-theoretically
represents a sortal concept C), f is to be intuitively understood as assigning to
each possible world j and time-point k the set of objects existing at j and k that
fall under the sortal concept C'. This corresponds to the way sortal concepts are
viewed within the philosophical framework of this paper, that is, as cognitive
capacities providing identity criteria only for things that exist .

Regarding the members of T (viz., the time-points), we should note that
a common sense view is here presupposed according to which they are serially
ordered by the earlier-than relation. Clause 4 above gathers this common sense
view.
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By an assignment (of values to variables) in an VMTS-frame < D, S, W, T,
R >, we shall understand a function A with the set of variables (of all types)
as domain and such that (i) A(xz) € D , for each individual variable z, (ii)
A(L) € U  S(i,5) , for each sortal term variable L, and (iii) for each

(2,7)EWXT
positive integer n and n-place predicate variable 7, A(m) € p(D)"Y *7. Clause
(ii) expresses the idea that there are no sortal concepts other than those that
have been formed by individuals at a possible world or other.

By a wvariable-domain modal-tense sortal model ( VMTS-model, for short)
we shall mean an ordered pair 2 = << D, S, W, T, R >, A >, where A is an
assignment in the VMTS-frame < D, S, W, T, R >. If A is << D, S, W, T,
R >, A >, by 2(d/a) should be understood the ordered pair << D, S, W, T,
R >, A(d,a) >, where A(d,a) is like A except for assigning d to a, and a is
either an individual or sortal term variable.

Let A be a VMTS-model << D, S, W, T, R >, A>. Wherei € W, j € T ,we
shall define the truth-value of ¢ in 2 at ¢ and j (in symbols, Val(p,2A, i,7) ) as
follows:

1. Val(zx = y, U, 4, j) = 1 if A(z) = A(y) and A(y) € A(L)(, j); otherwise
Val(zx =gy, A, i,5) = 0.

(
(
2. Val(rxy..xpn, A, i,7) = 1if < A(z1), ..., A(zyn) > € A(7)(4,7); otherwise
Val(rxy..xpn, A, i,7) = 0.
(

3. Val(—p, A, i,5) = 1if Val(p, A, i,j) # 1; otherwise Val(—p, 2, i,7) = 0.

4. Val(p — 7, A, i,5) = 1 if Val(—p, A, i,5) = 1 or Val(y, 2, i,5) = 1;
otherwise Val(p — v, 2, i,5) =0

5. Val(VLp, A, i,j) = 1 if for every d € S(i,7), Val(e,A(d/L), i,j) = 1;
otherwise Val(VLep, A, i,7) = 0.

6. Val(VzLp, 2, i,j) = 1if for every d € A(L) (%, ), Val(p,A(d/x),i,7) = 1;
otherwise Val(VzLp, A, i,7) = 0.

7. Val(Op, AU, i,j) = 1 if for every k € W, Val(p, A, k,j) = 1; otherwise
Val(Op, A, i,5) = 0.

8. Val(Gy, AU, i,5) = 1 if for every k € T , if jRk, Val(e, 2,1, k) =
L;otherwise Val(Go, 2, i,5) = 0.

9. Val(Hp, A, i,5) = 1 if for every k € T | if kRj, Val(p, A, i,k) =
L;otherwise Val(He, AU, i,7) = 0.

Finally, a wif ¢ is said to be VMTS-valid if and ounly if Val(p, 2, i,5) =1
for any VMTS-model 2l | possible world ¢ and time-point j in 2 ; and a set of
wifs ' is  VMTS-satisfiable if and only if there are a VMTS-model B, possible
world ¢ and time-point j in B such that for every ¢ € I', Val(yp, B, i, j) = 1.
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As already pointed out above, the set D of a VMTS model 2 represents
the set of concrete individuals that exist at a possible world or other. Since by
the definition of an assignment in a VI MS-frame, individual variables take their
values from D, D also represents the set of possible individuals. This conception
of D is in agreement with the interpretation of necessity as natural necessity.
According to this latter sense of necessity, the only possible individuals are
those having concrete existence in a naturally possible world, because they are
the only ones that would instantiate a natural property. Natural properties do
not count as possible individuals, because they are not abstract individuals but
rather causal structures that are realized in some possible world. Not all of
these structures will have to be causally realized in the actual world.

Regarding clause 6, the following remark is in order. We have pointed out
above that sortal concepts are cognitive capacities providing identity criteria
only for things that exist. Thus, when a sortal concept S is exercised at a
possible world w and time ¢, the only objects that would be identified by S at
w and t are those that exist at that word and time-point satisfying the criteria
provided by S . Accordingly, universal reference of a relative sortal quantifier
VxS, at a possible world w and time ¢, will be to the set of objects existing at w
and t that fall under the sortal concept the term “S” stands for. This is what
clause 6 intends to convey.

Clause 5 expresses the variable-domain interpretation of the second-order
quantifiers over sortal concepts. At a possible world w and time-point ¢,their
domain of quantification is the set of concepts subsisting at w and ¢ . This set
of concepts is represented in a VIMS-model by the set S(w,t).

By the definition of an assignment in VMTS model and clauses 5 and 6, note
that the formal system we shall characterize in the next section will constitute
a free-logic regarding individual and sortal terms.

Clause 7 corresponds to our intuitive interpretation of the modal operator.
A VMTS-frame will formally represent a group of worlds sharing the same
causal matrix as the actual world. Thus, the most appropiate modal system of
propositional logic for the operator in question is the modal logical system S5.
For this reason, we have adopted such a system as part of the logic for sortals
constructed in this paper.

As the reader can verify, the present semantic system allows that an object
(in the sense of a value of a free individual variable) may not be identifiable by
any sortal concept at all. That is, 0-35(x =g x) is consistent in the semantic
system. In other words, the semantics does not assume that every entity of the
domain of discourse should fall under a sortal concept, at some possible world.
This is to allow for the possibility of objects for which identity conditions cannot
in principle be provided.

Another important point in the semantic system is the preservation of Leib-
niz’s law under relative (sortal) identity.® But the semantic validation of such
a law does not mean that the semantics does not allow for contingent identities,
since an approach to proper names as sortals is here presupposed. According
to this approach, proper names are sortal terms standing for (sortal) concepts
providing criteria for uniquely identifying or distinguishing (at most) one thing
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It is also important to note that absolute identity (viz., the concept of x
being the same y simpliciter) can be explained in terms of the primitive logi-
cal symbols of the this paper, if we assume that every possible object falls, in
principle, under some sortal concept. That is, if we assume that identity cri-
teria can in principle be provided for every object, absolute identity could be
definitionally introduced as follows: (z = y) =4 ¢(35)(xz =5 y), where the
symbol ¢ represents natural possibility (see definition 0 in the next section, for
a definition of natural possibility in terms of negation and natural necessity).
In other words, = is the same as y if and only if it is naturally possible that
a sortal concept S can be constructed such that x is the same S as y. It there
were objects for which identity criteria cannot in principle be provided, then
the definition in question cannot be philosophically sustained. This latter pos-
sibility is not precluded by conceptualism and, as pointed out above, is being
taken into account in the semantics of this paper. In this case, absolute identity
would have to be assumed as a primitive concept.

5. The Formal System VMTS.

We now proceed to characterize a formal logical system for sortals. We will
show that this system is sound and complete with respect to VMTS-validity.
Before formulating the system, we need to introduce the following convention
and definitions:

Definition 0:

2. Pp=-H—-yp

w

4. [tlp=Gp & Hp & ¢

Clearly, the operators ¢, P and F' here defined, correspond to the proposi-
tional operator of natural possibility, the future and the past tense propositional
operator, respectively.

In the next definition, we assume that two sortal concepts are the same if
and only they are co-extensive at any possible world and time-point.

Definition 1: If L and M are sortal term variables, y and z individual
variables, then

(L=M)y. = [t|ONVyM3zL(z =1 y) &VyLIzM(x =p y))

(Note: for convenience we shall generally drop hereafter the use of the indi-
vidual variables in the expression “(L=M), ,” and write instead (L=M), unless
the context requires explicit reference to such variables).
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Convention 0: Let ¢ be a wif (a)We shall use [p to represent one of the
wils Gy, Hp and Op.(b)By [T we shall mean the wif Gy if [y is Hep, the
witt Hy if My is Gy and the wit Oy if My is .

Convention 1: (a) By ®¢ we shall mean — [ —p. So ®¢ might represent
one of the wifs Fp, Py and Oy, depending clearly on what My is.

We are now ready to introduce VMTS.

Axioms of VMTS:

AQ. All tautologies

Al. VLIM(L = M)

A2. VxL3yL(y =L, x)

A3. ¢ = VyLy, provided y does not occur free in ¢

A4 ¢ — VL, provided L does not occur free in ¢

Ab5.x =1 x — JyL(y =1 =), where y is a variable other than x

A6.3L(L=M)— (VLo — M /L), provided M is free for L in ¢

AT. z=py—zx=px

A8. VaL(p — v) = (VaLo — VaL~)

A9. VL(¢ = v) = (VLy — VL7)

A10. (O(y =1 2) VFO(y =r 2) VPO(y =4 2)) — [t|0FzM(y =p ) —
(y =m 2)), where y is a variable other than x

All. z =5 y — (¢ — ¢*), where ¢* is obtained from ¢ by replacing one or
more free occurrences of = by free occurrences of y.

Al12. Op — ¢

A13. QO — OOy

Al4. O(p — o) = (Op — Qo) .

Al15. ¢ — GPyp

Al6. ¢y = HFp

A17. Po — H(FpV oV Pyp)

Al18. Fo — G(pV PV Fy)

A19. Gy — GGy

A20. Hp — HHyp

A21 G(p = 0) = (Gp — Go)

A22 H(¢p - 0)— (Hp — Ho)

A23 FOp — OF ¢

A24 POy — OPyp

(Note: Hereafter, we shall also refer to axioms All, Al4, A21, A22, A23
and 24 as axioms (LL), (DISTO),(DISTG), (DISTH)), and bridge axioms, re-
spectively.

Rules of VMTS:
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HGenI : from 0 — Oi(y1 — ... = p(yn — By)...) infer 0 — i(y —
.. = Hplyn — BVY2Se)...), provided = does not occur free in ¢ — (v —
e = (v = BVZSP)..); 71...ynare wils, and for 0 < i <n, [; € {G , H and
)

BGenS : from 0 — Oi(y1 — ... = On(yn — Be)...) infer 0 — Hi(yn —
oo = B (v — BVSp)...), provided S does not occur free in o — By (y1 — ... =
On(yn = BVYS)...); v1...7nare wifs, and for 0 <i <n,[; € {G , H and O}

UG(s) : from ¢ infer VL¢

UG: from ¢ infer Vx Ly

MP: from ¢ and ¢ — o infer o

RG: from ¢ infer Gy

RH: from ¢ infer Ho.

RN: from ¢ infer Oy

Irr: from (O(rax &H-71x) — ¢), infer ¢, provided 7 does not occur in ¢

(Note: In the case of [Gen, when n = 0, it becomes “from o — [y infer
o — [Vup)”

We shall say that a wif ¢ is a theorem of VMTS (in symbols, F ) if and
only if there are wffs 41... 4, such that for every ¢ (1 < i < n), ; is either
an axiom or follows from previous wiffs in the sequence by one of the rules of
VMTS, and 7, is ¢. A wif ¢ is an VMTS-theorem of T' (in symbols, T - ¢) if
and only if there are wifs 11...40, € " such that (11&...& 1) — ¢ is a theorem
of VMTS.

Convention 2: From now on, a proof requiring reasoning in accordance with
classical propositional logic will be denoted by PL.

We now state several theorems and briefly indicate how to prove them.

Theorems

T0. 3zL(z =1 y) — (YxLe — ¢¥Y/x), provided y is a variable other than x
free for = in ¢
(LL, PL , UG, A3, A8)
T1. YyLy < VzLe? [y, provided z is free for y in ¢ and does not occur free
in ¢
(To, UG, A8, A2, A3)
T2. YLy < VMM /L, provided M is free for L in ¢ and does not occur
free in ¢
(A6, UG(s), A9, A4)
T3. x=py—y=rx
(LL, A7, PL)
T4. z = y — JzL(z =1, x)
(A7, A5 and PL)
T5. yS(r=sy) »r=s2x
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(A7, PL, UG, A8, A3, definition)
T6. Op — O(p & ¢)
(PL, RO, Dist—0)
T7.0(p & ¥) = O & @)
(PL, RO, Dist—0)
T8.(O(¢ & ¥)&DO(¢ & §)) — O(p & 0)
(PL, RO, Dist—0)
T9.0(z =5 y) =»0(y =)
(T3, RO, Distd, PL, de finition)
T10.FO(z =5 y) = FO(y =4)
(T9, PL, RG, DistG, PL, de finition)
T11. PO(z =5 y) = PO(y =g7)
(T9, PL, RH, DistH, PL,de finition)
T12.(GOp — GO(p & @)
(T6, PL, RG, DistG)
T13.(HOp — HO(p & )
(T6, PL, RH, DistH)
T14. (Op&ly) = O(pk)
(PL, RO, Dist—0, PL)
T15 (Hp&Pv) — P(p&~)
(PL, RG, DistG, PL)
T16. (Gp&Fv) — F(p&~)
(PL, RH, DistH, PL)
T17.(0(x =m y) & Oy =1 2)) = Oz =L 2)
(A10, T9, T4, T6, T14, PL, RO, LL)
T18.F(Op&(y) — FO(p&)
(T14, RG,DistG, , PL)
T19.P(Op&Oy) — PO(p&y)
(T14, RH,DistH, PL)
T20.0(z =5 y) & FO(y =1 z) = FO(x =L, 2)
(A10, T9, T4, T6, T16, PL, RCJ, RG, LL)
T21.0(x =5 y) & PO(y =1 2) = PO(xz =1, 2)
(A10, T9, T4, T6, T15, PL, RO, RG, LL
T22.FQ(x =5 y) & PO(y =1 z) — PO3S(x =1 2)
(A10, T9, T4, T15, PL, RCJ, RG, LL)
T23.PO(x =g y) & FOIS(y =1 2) = FO(x =5 2)
( A10, T9, T4, T16, PL, ROJ, RG, LL)
T24.PO(x =5 y) & PO(y =1 z) — PO(x =L, 2)
(A10, T9, T4,T6, T17, PL, RO, RH, LL)
T25.FQ(x =5 y) & FO(y =1, z) = FOIS(x =1, 2)
(A10, T9, T4, T16, PL, RCJ, RG, LL )
T26. Oy — Oy
(A12, A13, PL, and definitions)
T27. POz =5 y)& Oy =1 z) = POIS(x =1, 2)
( A0, T9, T4, T6, T14, PL, RO,RH LL )
T28. FO(x =5 y)& Oy =1 2) = FO(x =1, 2)
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(Al0, T9, T4, T6, T14, PL, RO, RG, LL )
T29. ([10(p & )& [0 & 8)) — [0 & 0)
(T8, RG, RH, DistG, DistH,PL)
T30. ([t]0(p & ¥)) — [0 & )
(T7, RG, RH, DistG, DistH,PL)
T31. (Op & Oy) — O(e & )
T32. OGy — GOy
(PL, A15, A24, T16, A16, T14)
T33. GOy — OGy
(PL, A23, A13, RG, A12, RN)
T34. OHp — HOyp
(PL, Al16, A23, T15, Al15, T14)
T35. HOp — UOHyp
(PL, A24, A13, RH, A12, RN)
Derived rule 1 ( Replacement rule) : if F ¢ <> ¢, then F § <> 6%, where §* is
the result of replacing one or more occurrences of ¢ by % in 4.
Proof: by strong induction on the complexity of 6.l

Derived rule 2(a) if - o — Hi(p1 = ...y (pn = g1 (FxS(x =5 y) — 9)...),
then F o — E1(p1 = ... Oy (o = Hnp1VySY)...), provided y is an individual
variable that does not occur free in o — 1 (p; — ... [y, (pn, = Hpr1 VySY)...)
and for every i € w, [; 11 € {G, H,O}.

Proof: by LGen I, derived rule 1 and the fact that (by A2, A8, UG and PL)
FVyS(FzS(z =5 y) = ¢) «— VySy. B

Derived rule 2(b) if o — H1(v1 = .. En (0 = nt1GL(L = M) — 9)...),
then ko — Hi(p1 = ...y (@ = Enp1VMY)...), provided M is a sortal term
variable that does not occur free in 0 — [y (1 — ... [y, (0, = Hpp1l VMY)..)
and for every i € w, ;11 € {G, H,O}.

Proof: similar to the above proof.

Derived rule 3: If F o — Ho(pr — ... Ono1 (g — Op—1))...), then F ¢ —
Ot (on = . OF (1 = B —0)...) for every i € w, 0 < i <n, ; € {G, H and
0O}.

Proof. Assume hypothesis. By A12-13, A15, A16, RN, RG, RH, DistG, DistH
and Dist[, it can be shown by weak induction that + ©,;_1(p; & ®; (vj+1
&...& On-1 ((,On & @»,L’(/))) — ((pj_l — B;’Lz((ﬁj—Q — . Eli’_ ((pl — Ba__\O'))
Thenby j =n+1,F 0 = (on = B (pn_1 — ...07 (p1 = BF—0)...). By
RN, RG or RH ; DistG, DistH or Dist0, - 0 ©,% — Ot (0, — B (on1 —
. B (p1 = BF-0)...) and so by Al12-13,and A15-A16, - ¢ — Of (o, —
B:ﬁl((pn_l — ... D-li_ (ng — DS__'O')).

As the reader might have noticed, the principle YLy — VoM™ /L (where
M is free for L in ¢), which relates second-order quantification with first-order
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relative quantification, is not among the above theorems. As the reader can
verify, such a formula is not valid in the semantics, and a counter-example can
be found in the formula (VFIK3yK(z = y) — Ve M3IK3yK (z = y). By the
soundness result in the following section, it follows that the principle in question
cannot be a theorem of VMTS either.

Another important aspect of the above formal system concerns the interac-
tion of the alethic modality with the two kinds of quantifiers. Both the Barcan
formula and its converse are neither valid in the semantics of the present paper
nor theorems of the formal system, given the soundness proof in the follow-
ing section. That is, formulas of the form VLOy — OVLy , OVLy — VLOp,
VeLOp — OVz Ly and OV Ly — Vo LOp are neither VMTS-valid nor VMTS
theorems. In the case of the second-order quantification over sortal concepts,
the reason is that the value of the function S of a VMTS-model might change
from one possible world and time-point to another possible world and/or time-
point. This possible variation does not guarantee that the set of sortal concepts
at a certain world and time-point would be a subset of the set of concepts of
another world and time-point, and vice-versa. This condition renders both the
Barcan formula and its converse VMTS-invalid for second-order quantifiers.

In the case of (first-order) relative sortal quantification, notice that the ex-
tension of a sortal concept might vary from one possible world to another, and at
a possible world, from one time-interval to another. This variation leaves open
the possibility that the extension of the sortal concept at a possible world and
time point might not be a subset of the extension of that concept at another
possible world and/or time point, and vice-versa. Since (first-order) relative
sortal quantification depends on the extension of the sortal concept on which
such a quantification is based, the VMTS-validity of the corresponding Barcan
formula and its converse is not guaranteed.

Now, the following theorems can be proved in the formal system VMTS :

e O3L(L=M)— (VLOp — OVLy) (by A6, RN,Dist, A12, A13, UG(s),
A9, A4, T26 and PL)

o O3L(L=M)— (OVLy — YLOp)(by A6, RN, Distc,UG(s), A9, A4 and
PL).

These theorems establish sufficient conditions for deriving the Barcan for-
mula and its converse. (Similar theorems for (first-order) relative sortal quanti-
fiers can be derived in VMTS.) Thus, in the case of the second-order quantifiers,
the Barcan formula and its converse can be proved under the assumption that,
by natural necessity, every sortal term stands for a sortal concept. In other
words, if the laws of the formation of concepts as determined by the natural
properties implies that a stage of concept formation can be reached at which
every sortal predicate would stand for a concept, then the Barcan formula and
its converse would hold.

The possibility of the above stage of concept formation has been taken into
account in holistic conceptualism (see, for example, in Cocchiarella (2007)).
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Holistic conceptualism is a modern variant of conceptualism that looks at con-
cept construction as a process of different stages in which conceptual structures
at a later stage are in general not explicitly definable or reducible to those at
the earlier stages they presuppose (as conceptually prior bases for their con-
structions). These earlier stages are retained as still important and useful parts
of the overall conceptual framework. A final stage at which all possible predi-
cates stand for a concept is postulated and justified by holistic conceptualism.
Clearly, the logical system characterized in this paper is neutral with respect to
this stage of concept-formation.
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6. Completeness and soundness of VMTS.

We now show that system VMTS is sound and complete. First, we assume the
following conventions and define certain notions most of which are instrumental
in the completeness proof.

Convention 3: Let ¢ be a wif. By x¢ we shall mean any wff of the form ®1(y
&... Op—1 (Yn-1 & ©p)....), where ~v;...y, are wils, for 0 < i < n, ®; € {P,F
and ¢} and ® € {P, F and ¢}.(Note: when n = 1, then *x¢ is Op).

Convention 4: If xp is ©1(71 &... On (Yn & Ogp)....), then in any given context
in which a wif ¢ occurs, then ¢ in the same context will be ®1(v1 &... Op (10
& )....) unless otherwise indicated.

Definition 2:
Let T’ be a set of wils.

1. T is VMTS-consistent if and only if there are not wffs ¥;...¢0,, € I" such
that (¢1&...& ¥,) = (¢ & =) is a theorem of VMTS.

2. T is w-complete if and only if " satisfies the following three clauses:(a) if
JxS¢ € I, then there is a variable y other than x which is free for x in ¢
such that (JxS(x =5 y) & ¢¥/x) € T';(b) for all wif ¢, if IS¢ € I, then
there is a sortal term T other than S which is free for S in ¢ such that
(3S(S =T) & ¢7/S) €T; (c) for all wif ¢, if ¥32Sp € T, then there is a
variable y other than x which is free for = in ¢ such that *(3zS(x =g y)
& p¥/x) € T; and (d)for all wif @, if ¥3Sp € T', then there is a variable T
other than S which is free for S in ¢ such that *(3S(S = T)&p?/S) € T

3. T is irreflexive if and only if both (a) for all wif ¢, if xp € T, then there
is an one-place predicate variable R which does not occur in *p and an
individual variable x such that *(O(Rx & H-Rx) & ¢) € T ; and (b)
there is an one-place predicate variable R and individual variable x such
that O(Rx & H-Rz) € T

4. T is a VMTS-mazimally consistent set of wifs if and only if I" is VMTS-
consistent and for every wif ¢, either ¢ € I' or—p € T

5. T'is a mazc set of wifs if and only if I' is an irreflexive, maximally consistent
w-complete set of wils.

Definition 3: Let ¢ be a wif , a an individual or sortal term variable. By
recursion, we shall define the expression “[¢(®]” | which intuitively should be
understood as the result of rewriting all bound occurrences of a by variables
new to ¢ of the same type as a.

e If ¢ is an atomic wff, then [p(®)] = ¢
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If ¢ is of the form—), then [p(®)] = =[1)(*)]

If ¢ is of the form 1) — =, then [p(®)] = [)(®)] — [y(¥)]

If ¢ is of the form VzSvy, then
VzS[h(¥)], if 2 is not «
(@] = VES[H ] /a, if zis a
where k is the first individual variable new to both [¢(®)] and ¢.

If ¢ is of the form VS, then
VS[(@], if S is not «
(@] =< VH[p@)H o, if Sis a
where H is the first sortal term variable new to both [1/(*)] and ¢.

If ¢ is of the form (I , then [p(®)] = O[y(*))

Definition 4: For every maxc I',Y, 'R if and only if for every wif ¢, if
O €T, then p € ¥ (where 1 € {G, H,d})

We shall now state several lemmas instrumental for the completeness or
soundness proofs in this section. We omit the proofs for lemmas 0-9 because
they are similar to those for the same or analogous lemmas in Freund ((2007)
pp. 585-87).

Lemma 0: For any maxc I' and ¥, and for any wif ¢
[.The following are equivalents
(a) whenever ¢ € T', we have Pp € &
(b) whenever ¢ € ¥, we have Fp € T
(¢) whenever Gy € ', we have p €
(d) whenever Hp € 3, we have p € T

II.The following are equivalents:
(e)whenever Oy € X, we have ¢ € T
(f) whenever ¢ € T', we have Qp € &

Lemma 1. Rpg is an equivalence relation in the set of maxc sets.

Definition 5: For every maxc set I, [F]RD is the equivalence class of I' deter-
mined by R in the set of maxc sets.

Definition 6:For every maxc I',)¥, I' >~ ¥ if and only if I' = ¥ or I'RgX or
YReT

Lemma 2. (a) Rg is transitive (b) the restriction of R to an arbitrary set of

maxc sets of wils is an irreflexive relation (¢) R¢ is left- and right-serial (d) ~
is an equivalence relation in the set of maxc sets.
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Definition: Let [I‘]:G the equivalence class of I' determined by =~ in the set of
maxc consistent sets.

Lemma 3. The relation Rg is a serial order on every equivalence class [[']~

Lemma 4. If T and ¥ are maxc sets of wifs such that I' ~_ ¥ and there is a
one-place predicate variable P and an individual variable x such that
(Px&H-Px) e ' N %, then T’ =X.

Lemma 5. For any individual variable z, - [y(*)] < ~
Lemma 6. For any sortal term variable S, - [y(9)] < ~.

Note that : (i) If 2 is free for y in v, then [y*/y®)] is [y(*)]*/y and so by
Lemma 5,

F [Y®)*/y « 4%/y; and (ii) If S is free for H in «, then [y5/H®)] is
[v$)]%/H and so by Lemma 6, - [y3]5/H < v5/H

Lemma 7. For any wif ¢, If A=<< D, S, W, T, R >, A >, is a VMTS-model
and y is an individual variable free for x in ¢, then for every j e W, t € T,
Val(p, A(A(y)/x), j,t) = 1 if and only if Val(e¥/x, A, j,t) = 1.

Lemma 8. For any wif ¢, If A=<< D, S, W, T, R >, A > is a VMTS-model
and M is a sortal term variable free for L in ¢, then for every j € W, t € T,
Val(p, A(A(L)/M), j,t) = 1 if and only if Val(pM /L, 2, j,t) = 1.

Lemma 9: f pisawff , A= << D, S W, T,R > A >and B = << D,
S,W, T, R >,B > are VMTS-models such that A and B agree on all variables
occurring free in ¢,then Val(p, 2, 4,j) = 1 if and only if Val(p, B, i,j) =1,
for every i € W and j € T.

Metatheorem 1 (soundness theorem): if ¢ is a theorem of VMTS, then ¢ is
VMTS-valid.

Proof: By induction on the length of proofs. Directly from the semantic clauses,
it can be shown the validity of axioms A0, A1, A2, A5, A7-A10, A14-A16, A21-
24, and rules RG, RH, RN, UG, UG(s), Genl, LlGenS and MP. The validity
of A19-A20 and A17-18 follows from the transitivity and connectivity of the
later-than relation, respectively, and the semantic clauses; and similarly, that
of A12-13 from the assumption that the accessibility relation is reflexive and
euclidean, respectively. For axioms A3 and A4, lemma 9 is needed, and for A6
and All, lemma 8, in addition to the semantic clauses.

For the case of Irr, assume first that (O(rx &H-mx) — ) is valid and that
 is not valid (where 7 does not occur in this latter formula). Therefore, there
isa VMTS-model = << D, S, W, T, R>A>and w e W, t €T, such
that Val(e, A, w,t) = 0.Now, let A*= << D, S, W, T, R >, A* >, where A* is
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an assignment to all variables such that: A* is like A except for what it assigns
to the monadic predicate variable 7. In the case of 7, A* assigns that function
fr € (D)W *T such that, for every (j,k) € W x T ,

oo A4, k) U{A(=)},if either ¢ = k or tRE
Fr (3 k) = { A(m)((4,k)) — {A(x)}.otherwise

By Lemma 9, Val(p, 2%, w, t) = 0),given the assumption that Val(¢, A, w,t) =
0). By the irreflexivity of the R—relation, Val(O(rx &H-mz), A*,w,t) = 1. So
(O(rax &H-7x) — ¢) is not valid. W

Lemma 10 . If T" is maxc and @y € I, then there is a maxc ¥ such that v € ¥
and {¢ |y € T} C X, (where 0 € {G, H and O0}).

Proof: Assume hypothesis. By Convention 0, "©®~” stands for = [ —. Let
01...0... be an ordering of wffs of the form either JySy, xp or Sy . Recursively
define a sequence of wifs 1g..1,... as follows.
i) Yo =17
i) If ©(Yo&e...&n& 0py1) € T, then ¥y, =Py
iil) If ©(Wo&...&n& d,41) €T, then
ilia) if 0,41 is of the form JySe, ¥n+1 = ByS(y =5 2)&p®/y))}
where z is the first variable other than y which is free for y in ¢ such that ® (v
&..& iy & FyS(y =s ) & ¢*/y)) €T,
iiib) if d,,41 is of the form xp, then
*(O(Rx&H-Rzx) & JyS(y =5 2)& 0%/y)) , if ¢ is JySo, for
some wif o;
Ynr1 =4 *(O(Rz&H-Rz) & 3S(S = T)& o7/8)) , if ¢ is IS0, for
some wif o

*(O(Rz&H-Rx)& ) otherwise

where (1) both R is the first predicate variable and « the first individual variable
which do not occur in ®(po&...&¥n& 0,41), if ¢ is not of the form JySo or
3So, for some wit o; (2) if ¢ is of the form JySo, for some wif o, z is the
first individual variable other than y which is free for y in o such that © (&
& Y& x(FyS(y =s 2)& o*/y)) € T and R is the first predicate variable
which do not occur in O((y0& ... & v,)& *(FyS(y =5 2) & 07%/y)) and =
the first individual variable such that ©((yo& ... & V)& *(O(Rz&H-Rz)&
JyS(y =s 2)&0*/y)) € T; (3) if ¢ is of the form ISo, for some wif o, T is
the first sortal variable other than S which is free for S in o such that (&
v & Y& *(3S(S = T)& o7 /S)) € T and R is the first predicate variable
which does not occur in ®((y& ... & )& *(3S(S = T)&o?/S)) and =
the first individual variable such that ©((yo& ... & V)& *(O(Rz&H-Rz)&
(3S(S =T)& 01/9)) € T.
iiic) if 6,41 is of the form IS¢, then ¢, 11 = (3S(S = L)& ¢’/S) (where L is
the first sortal term variable such that ®(vo& ... & ¥, & (3S(S = L)&pr/9)) €
I
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(Note: For a justification of the existential claims regarding variables in the
above clauses (iiia)-(iiic), see proof of Proposition I, in the Appendiz.)

Now, on the basis of the above recursion, it can be easily shown that for all
n € w, ®(to& ... & 1) € T and then that for all n € w, {to& ... & ¥} is
consistent. Let ¥ = {p| Ly € T} U {w, : n € w}. By reductio ad absurdum, we
will show that X is consistent.

So suppose ¥ is not consistent. Then there are n, m € w such that {¢y, ....,
©ny Yoy ey Ym} € 3 and B (po& ... & on& Yo &...&t,). So, by RU
and definitions, - = ® (p& .... & & Yo&...& 1)y,); then by maximality of
I'=0(pok ... & pn& ho&...& y,) € T. On the other hand, (given that {Hpp&
. & B, } €T, T is maxc, and ©(Yo&e...& 1,) € T'), by T14-16 O(po&k ... &
on& o &...& 1) € T, which is impossible by the consistency of I. Therefore,
3} is consistent.

We assume without loss of generality that there are one-place predicate
variables not occurring in 3. Otherwise for each m € w, replace the m-th one-
place predicate variable in all the wifs in ¥ by the 2m-th one-place predicate
variable. It can be easily shown that the replacement set for X is consistent if ¥
is consistent. In the ordering of the one-place predicate variables, let R be the
first of the predicate variables not occurring in . Let K = SU{O(Rx&H—Rx)}.
By the Irr rule and PL, K is consistent. By Lindenbaum’s method, extend K to
a maximally consistent set K*.Since {1, : n € w} C K*, K* is w-complete. It
is clearly irreflexive as well. Also by construction, v € K* and {p | Ly € T'} C
K*.

Metatheorem 11 (Completeness Theorem for VMTS): If A is VMTS-consistent,
then A is VMTS-satisfiable

Proof : Assume the hypothesis of the theorem. Without loss of generality,
assume there are denumerably many individual variables y;...y,,...,denumerably
many sortal term variables Lg... L,... and denumerably one-place predicate
variables Ry... R,...which do not occur in A.(Otherwise for each k,m,n € w,
replace the k-th individual variable, the m-th-sortal term variable and n-th one-
place predicate variable in all the wffs in A by the 2k-th individual variable, the
2m-th sortal term variable and 2n-th one-place predicate variable, respectively.
It can then be easily shown that A is satisfiable if and only if the replacement
set for A is and that the replacement set for A is consistent if A is consistent).

Let RT be the first predicate variable not occurring in A. By assumption
and the Irr rule, AU {J(RTx&H-R*x)} is consistent. Define a chain of sets
I'y..I',,... as follows.

1) To=AU{O(RTz&H-R*x)}

2) Let dg...0n... be an enumeration of the wifs of the form JyS¢p, xp, or ISp
. Then:

e if §, is of the form JySy, T'pi1 = TU{(FySe — (FyS(y =5 ©)&p®/y))}(where
x is the first individual variable new to T';, U {6, }),
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e if §, is of the form *¢p, then
Iy U{x¢p = *x(O(Rx&H-Rx)& JyS(z =5 y)& o /y)} , if ¢ is
JySo, for some wif o; or
Thi1 =4 TU{xp = «(0(Re&H-Rx)& IK(K = L)& o&/M)} , if ¢ is
dMo, for some wif o;
otherwise T', U {x¢ — *(O(Rz&H-Rz) & )}

(where (a) both R is the first predicate variable and z first individual
variable new to I';, U{d, }if ¢ is not of the form JySc or ISo for some wif
o and,(b) if ¢ is JySo for some wif o, z is the first individual variable new
to ', U {d,}), and both R is the first predicate variable and x the first
individual variable new to I';, U {xp — *(yS(z =5 y)& o%/y)}; (c)if ¢ is
IMo for some wif o, L is the first sortal term variable new to I'y, U {d,}),
and both R is the first predicate variable and x is the first individual
variable new to I',, U {xp — *(3M (L =5y M)& ot /M)}

e If 4, is of the form IM ¢,
Tpir =0, U{3Mp — (3M(L =y M)&p™/M)}

(where L is the first sortal term variable new to I',, U {4, }).

By weak induction, it can be shown that I'), is consistent, for every n € w.
Set I'* =, ¢, [',,.Clearly, I'* is consistent. By Lindenbaum’s method, extend I'*
to a maximally consistent set A* . Note that by construction A* is w-complete
and irreflexive. So A* is maxc.

Define now a relation among the set of individual variables as follows:

x = z if and only if either for some sortal term variable M, FO(x = z) € A*
or PO(z =p 2) € A¥or O(x =) 2) € A*; or for every sortal term variable M,
HI0((~3yM(y —u 2)&-3yM(y =y 2)) € A*.

Statement 0: = is an equivalence relation in the set of individual variables
Proof:

1) 2 is reflexive, i.e., x = z, for every individual variable x : by Reductio Ad
Absurdum, PL, T5,T14, T18 and T19 .

2) 2 is symmetric, that is, if # & z, then z = z, for every individual variable
zand x : by T9, T10, T11, T30 and PL.

3) 2 is transitive, i.e., if = z and z 2 w, then 2 & w, for every individual
variable z, z and w : by PL, T17, T20-T25, T27-8, T29, T14-16 and consistency
of A*. A

Let [z] be the equivalence class of « determined by 2 in the set of individual
variables and set D = {[z]| = is an individual variable}.Define now a relation

among the equivalence classes of maxc sets of wits modulo >~ as follows: [F]ﬁa =
[I"]~,, if and only if there are X, ¥'such that ¥ ~¢ I' and ¥'~¢ I"and X RX.

Statement 1: = is an equivalence relation.

Proof: Clearly, = is symmetric and reflexive. By A23-24, lemma 10, the ir-
reflexivity of maxc sets, T31, lemma 4 and the fact that R is an equivalence
relation, it can be shown that = is transitive.A
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Set > ={[ll~, | [I]~, =[A"]~_}. It is clear that every equivalence class

modulo Ry or modulo ~is a subset > or is disjoint with ).

Statement 2: If A is an equivalence class modulo ~_and B an equivalence
class modulo Rp both of which are subsets of >, then there is exactly one
maxc = of wifs such that =€ AN B.

Proof: Assume hypothesis. Then for some ®,¥ € 3°, [®]~ = A and [V]p, =
B, [®]~_, =[A]~, ;also, [¥]~ =[A%]~_ (since ¥ € ). By statement 1, = is
symmetric and transitive, and so [®]~ . = [¥]~ . Also, by the irreflexivity of ¥,
Al2 and lemma 4, [U]ry N[¥]~ = V. By A23-24, lemma 10, the irreflexivity of
maxc sets, T31, lemma 4, there is a unique maxc = € [tl)]:csuch that VROZ, i.e.,
E € [¥]p,.Consequently there is a unique maxc E such that = € [®]~ _ N[V
A

O-

Convention 5: Given Statement 2, if A is an equivalence class modulo ~_and

B an equivalence class modulo R both of which are subsets of >, we shall
denote the unique I' € AN B by the expression E’("A B)"

Set T ={[lag | [Ty €32 } and W = {[[]~, [[I]~, €3 } and

e for every sortal term variable M, let C'y; be the set of ordered pairs < a,b >
such that:
1) a € Wx T and, where a is ([I']~_,[O]ry),

2)b={[z] € D| yM(z =nm y) € E{jr). 1615}

In other words,
Cn = {< (I~ [Olry)), {[z] € D] IyM(z =n y) € E?[F]:GJQ]RD)} >
| ([{'~,:[O]ry) €W x T and y is a variable other than z}
e let S be the set of ordered pairs < a,b > such that:
1) a € Wx T and, where a is ([[']~_,[O]ry),

2)b = {Cp | M is a sortal term variable such that 3L(L = M) €
EZ‘[F]N (6]) ,provided L is a sortal term variable other than M}
~g

In other words,

S = {< (([I~,:[Olry),{Cm | M is a sortal term variable such that

IL(L = M) € X, [6]ns) ,provided L is a sortal term variable other
~g1Olr

than M}| ([[~_,[O]ry) €EW X T }.

e for every n-place predicate variable 7w, D, = {<< ([I]
{< [z1]..[zn] >€ Dr| w2120 € X7y

W x T}

zG’[Q]R[K]) >,
7[@]}2“{])} > | ([F]:G’[Q}R[K]) €

el

e R ={([Olry:[¥]ry) €T x T | there is a [I']~ . € W such that
X101y 01 RO (010

Australasian Journal of Logic (12:1) 2014, Article no. 5



91

e A be the function whose domain is the set of variables such that A(z) =
[z], A(m) = Dy and A(M) = Cyy.

e A =<<D, S, W, T,R> A>.

Clearly, 2* is a VMTS-model.

By Lemmas 5-8 and the soundness theorem, the following statements 3 and
4 can be easily shown:

Statement 3: For any wff ¢, individual variables y and z,and T e W , 0 € T,
Val(p, A*([2]/y), T,0) = 1 if and only if Val([¢™®]*/y, A*, T,0) = 1.

Statement 4: For any wff ¢, sortal term variables L and SandT" e W ,0 € T,
Val(p, A*(Cr/S), T,0) = 1 if and only if Val([pM)])*/S, A*, T,0) = 1.

Statement 5: For any [O|gy,[P]ry € T, and [[~_, [K]l~, € W, if

¥ then X7 )RGE?[F]

(1K=, (0100 (K<, [#10) ()=, [61ag, g [P

Proof: Similar to the proof for Statement 4 in Freund (2007) (p. 593).A

Let I = {v € w| if ¢ is of complexity ¢, then for every T',© €, Val(yp, A*,
Iy, [Olrg) =1iff @ € Zfp_ g, )} By strong induction, it can be shown
=G’ 0O

that w C I (see Proposition II in the Appendix). Therefore, for every wif ¢

and I',© €, Val(p, A", [I‘]:G, [Olpy) =1iff p € Z?[F]:Gv[@]ﬁlg)’ in particular,

for every wit ¢, Val(p, 2", [A%]~_,[A"|ry) = 1iff p € ET[A*]:G’[A*]RD)’ since

[A*]~. € W and [A*]g, € T. By Statement 2 and the fact that both A* €

[A*]~ . and A" € [A%]py, A" = XAt [A%]a)} but by construction A C
~ee

A*, and consequently Val (), A*, [A*]QG, [A"]gy) = 1, for every ¢ € A, which
proves the metatheorem. W
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Notes

! Examples of common nouns that are not considered to be sortal terms by
many authors are words such as "thing" and "object". For a detailed discussion
of these and other related topics see, for example, Geach(1980), Gallois(1988),
Deutsch(2007), McGinn(2000), Noonan(1999) and Wiggins(2001). For a com-
plete presentation of the different criteria proposed in the literature for a term
to be considered a sortal and the issues regarding those criteria, see Grandy
(2007).

2 Criteria of individuation or identity is not here understood in the sense
of a principle of metaphysical individuation, but rather as criteria by means
of which we can identify an entity as an individual. Criteria of the latter sort
would provide principles for identifying the same object in different contexts,
such as time, space, possible worlds, etc. Thus, sortals terms as understood in
this paper will provide criteria by means of which we can distinguish something
as an individual but not necessarily a metaphysical principle responsible for the
individuation of such an individual.

3 Sortal predication has been shown to be definable in terms of both sortal
quantification and sortal identity as follows: x is an A =acr (JyA)(y =4 ). For
this reason were are not including it in our definition of a language for sortals.

4 See Freund (2007),(2004),(2002) and (2001).

5 For different versions of nominalism and their explanations of attribution
see Rodriguez-Pereyra (2011), (2002), Armstrong (1989)(1989b). For realism,
see Armstrong (1989). See Loux and Zimmerman (2003) for philosophical dis-
cussions related to both philosophical theories. In the case of sortal predicates,
for a realist logical theory see Gupta (1980).

6 See Cocchiarella (2007) and (1986) for further details on this modern vari-
ant of conceptualism.

7 In the modern variant of conceptualism assumed in this paper, sentences
are given a different treatment. For example, assertions are viewed as the ex-
pression of the joint exercise of referential concepts and predicable concepts.

8 Several strong arguments in favor of Leibniz’s law for relative identity have
been formulated that justify our assuming the law in question for the seman-
tics (see, for example, Wiggins (2001) and Stevenson (1972)). For the different
discussions regarding relative identity, see Deutsch (2007). For arguments pur-
porting to show that Leibniz law under sortal or relative identity is untenable,
see Geach (1972, pp. 238-47), (1973) and (1980).
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Appendix

The following propositions and their proofs are instrumental in two of the
above proofs. Proposition I is employed in the proof of Lemma 10 and Proposi-
tion IT at the end of the proof of Metatheorem II (the Completeness Theorem).

Proposition I. If ¢, vy ... 7y, are wifs and I is a maxc, then:

(1) If ©(vw& ... & v, & IMy) € T, then there there is a sortal term
variable L other than M which is free for M in ¢ such that ©(y& ... & v,&
IM(M = L) & ¢*/M) €T.

(2) If ©(v& ... & v, & JySy) € T, then there is a individual variable x
other than y which is free for y in ¢ such that O(yo& ... & v, & FyS(y =5 )
& ¢* [y) € T

(3) (a) If ©((vo& ... & vn)& xp) € T | is of the form JySa, then there is an
individual variable w other than y which is free for ¢ in o, an one-place predicate
variable R which do not occur in ©((7& ... & 7,)& *(FyS(y =5 w)&o® /y))
and an individual variable  such that ©((70& ... & vn)& *(O(Rx&H-Rx) &
WSy =sw) &o’/y)) €T

(b) If ©((70& ... & 1m)& xp) € T and ¢ is of the form IS0, then there is
sortal term variable L other than S which is free for S in o, an one-place predi-
cate variable R which do not occur in ®((yo& ... & v,,)& *(3S(S = L)&a’/8S))
and individual variable x such that ©((vo& ... & )& *(O(Rz&H-Rz) &
3S8(S = L)& o*/8)) € T.

(c) If ©((10& ... & vn)& *p) € T and ¢ is neither of the form JySc
nor of the form 3So, there is an one-place predicate variable R which do not
occur in O((7& ... & v,)& *p) and individual variable = such that ©((yo& ...
& v,)& #*(O(Rx&H-Rx)& ¢)) €T

Proof:

(1) Suppose O(v0& ... & v, & IMp) € T and let D be a variable new to
Y05 -5 Yn » AMp. Then by PL, UG(s), A9, A4, T2, R, Dist[] and definitions,
©3ID(vo& ... & yn & 9P /M) € T. Since I is w-complete, there is a sortal term
variable L other than D which is free for D in o /M such that ©(y& ... &
Y& AD(D = L) & P /M* /D) € T. Since D is new to IM ¢, then P /ML /D
is L' /M

(2) Suppose ©(Yo& ... & v, & FySy) € T and let z be a variable new to
Y0y -5 Yn, JYSw. Then by UG, PL, A8, A3, T1, R[], Distld and definitions,
©3zS(vo& ... & v, & ¢*/y) € T. But I' is w-complete and so there is a
individual variable z other than z which is free for z in ¢*/y such that ©(y&
o & v & F2S(z =5 ) & */y*/z) € T . Since z is new to JySy, then
“wz/ym/z” iS “@flf/y”.

(3) (a) If O((yo& ... & vn)& *p) € T' and ¢ is of the form JySo,then by the
w-completeness of I' there is a individual variable w other than y which is free
for y in o such that ©((yo& ... & v,)&*(JyS(y =s w)& 0¥ /y)) € I'. It follows,
by the irreflexivity of I', that there is an one-place predicate variable R which
do not occur in O((y& ... & v,)& *(FyS(y =5 w)&o™/y)) and individual
variable x such that ®((v& ... & )& *(O(Rx&H-Rx) & JyS(y =5 w) &
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a?/y)) € T.(b) If &((vo& ... & 1n)& xp) € T and ¢ is of the form ISo,then
by the w-completeness of I' there is a individual variable L other than S which
is free for S in o such that ®((y& ... & v,)& * (3S(S = L)& 0¥ /9)) € T. It
follows, by the irreflexivity of I', that there is an one-place predicate variable R
which do not occur in ®((70& ... & v,)& *(IS(S = L)&o’/S)) and individual
variable & such that ©((y0& ... & V)& *(O(Rz&H-Rz) & 3S(S = L)&
ol /8)) € I'. Finallly, (c¢) If ©®((70& ... & Yn)& *p) € T' and ¢ is neither
of the form JySo nor of the form dSo,then by the irreflexivity of I' there is
an one-place predicate variable R which do not occur in O((yo& ... & v,)&
xp) and individual variable z such that ®((y0& ... & vn)& *(O(Rx&H-Rx)&
p)elm

Proposition I1. If I = {¢ € w| if ¢ is of complexity ¢, then for every I', © €,
Val(p, A%, [~ [Ory) =1iff p € Eap]:c,[@]m)h then w C I.

Proof: suppose that ¢ is of complexity k, I',© € Y and for every i < k,
i € 1. There are seven cases to consider. The cases where ¢ is of the form—y
or 7 — o can be easily shown by the inductive hypothesis. We omit proofs for
the cases where ¢ is of the form 7zy...x,, VyM~,Gy, Hp or Oy because they
are similar to the proofs of those cases in Freund (2007) (p. 595).

L. ¢ is of the form = =y y : Vaal(p, A", [I'~,,[O]ry) = 1 if and only if (by
definition) A(z) = A(y) and A(y) € A(M)([I']~_,[O]ry) if and only if (by defi-
nition) [z] = [y] and =M (z =p; y) € ZEF[F]:G [61rs) if and only if (by definition)
either for some sortal term variable B, PO(x =p y) € A* or FO(z =p y) € A*
or O(x =p y) € A* ; or for every sortal term variable B, [t]0(-3zB(z =p
2)&—3zB(z =p y)) € A* , and IzM(z =) y) € Zz‘[r]:cy[@]’%m) .

Suppose first that for some sortal term variable B, FO(x =p y) € A* or
PO(x =py) € A*or O(x =p y) € A* ;and TzM(z =p y) € E?U’]zc»[@]ng) . By
A10, PL and the fact that Rg is a serial ordering in [A*]~ , O((3zM(y =m

G
x) = (y =m 2)) € EE‘[A*]ch[@]RD). But E?[A*]ZG’[@]RD) € [O]py and so
OFzM(y =m z) = (y =m 2) € Z’&F]:G’[@]RD), from which it follows by
Al12 that (JzM(y =m z) — (y =m 2)) € ZZ‘[F]:G’[@]RD). But given that

BM(z=py) € E?mﬁc’[@]ﬁm)’ by PL (y =p 2)) € Z?[F]:G’[@]RD).
On the other hand, if for every sortal term variable M, [t|0(-3zM (z = z)
&-FzM(y =p 2)) € A* | then O(—FzM(z =y 2) & FzM(y =p 2)) €

X4~ [6las)’ since Rg is a serial ordering in [A*]~_. Clearly, since

~ae

E?[A*]:G’[@]RD) S [Q]REU D(ﬁElZM(.I‘ =M Z) &_\EIZM(y =M Z)) S Z?[F]1G7[@]RD)

and by A12 (=FzM(x =p 2) &FzM(y =5 2)) € ). 16]ns)? which is im-
~a

possible because by assumption 3zM(y =y 2) € {(r]~ . (6]n) Therefore,
=a’ ]

it is not the case that for every sortal term variable M, [t]0(-3zM (x = 2)
&—TzM(y =p 2)) € A* .
Assume now that x =) y € EE‘[F]N [O]n)" Then by T4 FzM(z =y
~go

Y) € E(ir). (6lay) 20d by Al2 and AL3 DO(@ = y) € Xir__ (elay) -
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But Z?[F]:c’[@]RD) € [O]r, and so O0(x = y) € E?M*]:G»[@}RD)’WhiCh by
A12 means that O(z = y) € E?[A*]:GJ@]RD)' Since R is a serial order-
ing in [A*]~  and by lemma 0, FO(z =um y) € A" or PO(x =m y) € Aor
O(x =m y) € A*. Therefore, for some sortal term M, FO(x =p y) € A* or
PO(x =pr y) € A%or O(z =51 y) € A* and consequently, either for some sortal
term M, FO(x =5 y) € A% or PO(z = y) € A¥or O(x =) y) € A*,or for ev-
ery sortal some sortal term M [t]O((=3zM (x =) 2) &—FzM(y =p 2))) € A%
and 3zM(z =p y) € E?[F]:Gv[Q]RD)

2. pis of the form VSy : Val(p, A", [I']~ _,[0]ry) = 1 if and only if(by defi-
nition) for every Cr € S([I']~_,, [O]ry) , Val(y,A*(Cr/S), [~ ,[O]ry) = 1if
and only if (by Statement 4) for every Cr € S([I']~_,[O]ry), Val ([y1F /S 207,
[~ [0]ry)=1if and only if (by definition) for every sortal term variable F'
and individual variables z, y, if IL(L =g F) € E&F]:G,[@]RD) (where L is a
sortal term variable other than F), then Val ([yF)]¥ /S 20", [~ [O]rg) =1
if and only if (by the inductive hypothesis) for every sortal term variable F, if

3L(L =5 F) € Sir)-,, (€ln,) » then, [YENF/S € ()=, (€n,) 1 and only if
(by w-completeness and maximality of )~ . [6]n,)> Lemma 6 and note (ii)
=G’ 0O

inmediately following Lemmas 5-6, A6 and T2) VS~ € E?[F]:G ’[Q]RD)..
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