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Abstract

The plurivalent logics considered in Graham Priest's recent paper of that
name can be thought of as logics determined by matrices (in the `logical ma-
trix' sense) whose underlying algebras are power algebras (a.k.a. complex
algebras, or `globals'), where the power algebra of a given algebra has as
elements subsets of the universe of the given algebra, and the power matrix
of a given matrix has has the power algebra of the latter's algebra as its
underlying algebra, with its designated elements being selected in a natu-
ral way on the basis of those of the given matrix. The present discussion
stresses the continuity of Priest's work on the question of which matrices
determine consequence relations (for propositional logics) which remain un-
a�ected on passage to the consequence relation determined by the power
matrix of the given matrix with the corresponding (long-settled) question
in equational logic as to which identities holding in an algebra continue to
hold in its power algebra. Both questions are sensitive to a decision as to
whether or not to include the empty set as an element of the power algebra,
and our main focus will be on the contrast, when it is included, between
the power matrix semantics (derived from the two-element Boolean matrix)
and the four-valued Dunn�Belnap semantics for �rst-degree entailment (à la

Anderson and Belnap) in terms of sets of classical values (subsets of {T, F},
that is), in which the empty set �gures in a somewhat di�erent way, as Priest
had remarked his 1984 study, `Hyper-contradictions', in which what we are
calling the power matrix construction �rst appeared.

1 Priest's Plurivalent Semantics

We begin by recalling that a matrix � more explicitly, a `logical matrix' � for
a propositional language consists of an algebra of the same similarity type
(or `signature') as the language, together with a subset of the universe of the
algebra, whose elements are called the designated elements of the matrix, a
formula ψ being counted as a consequence of a set Γ of formulas according
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to the matrix � �Γ |=M ψ�, where M = (A, D) � just in case for every M-
evaluation h for which {h(ϕ) |ϕ ∈ Γ} ⊆ D, we have h(ψ) ∈ D. Here an
M-evaluation is a homomorphism from the language to A. In the opening
sentence of this paragraph and in the sentence just preceding, we take the
language itself to be an algebra, whose universe comprises the formulas of
the language, freely generated by a countable set (of `propositional variables'
or `sentence letters') p1, p2, . . . , pn, . . ., and having the primitive connectives
of the language as its fundamental operations. In particular, if p1, p2, p3 are
the only propositional variables used in the construction of a formula ϕ, h(ϕ)
is �xed once h(p1), h(p2), h(p3), are given. We follow the convention that any
matrix denoted byM (M′ etc.) is of the form (A, D) ((A′, D′) etc.) where A
is the universe of A. M is a submatrix of M′ if and only if A is a subalgebra
of A′ and D′ = D ∩ A′. We write M vM′ to mean that M is a submatrix
of M′, and recall that whenever M vM′, we have |=M⊆ |=M′ .

Priest [42] investigates what happens if we start with a matrix M and go
`plurivalent' in the sense of replacing the single-valued M-evaluations of the
preceding paragraph (`univalent matrix semantics') with binary evaluating
relations between formulas and elements of the algebra of M, �rst with the
background assumption that every formula stands in relation in question to
at least one value (element of the universe of the algebra of M, that is) �
the `positive' version of the semantics � and then without this background
assumption, allowing evaluation relations which formulas bear to none of the
values � the `non-negative' version. Compositionality is e�ected by saying for
any evaluation relation that a compound f(ϕ1, . . . , ϕn) stands in the relation
to b ∈ A just in case there are a1, . . . , an ∈ A with ϕi standing in the relation
to ai (1 ≤ i ≤ n) and fA(a1, . . . , an) = b, where fA is the operation of A
corresponding to the n-ary connective f . We de�ne Γ |=M ψ to hold when
every evaluation relation between the set of formulas and A which relates
each ϕ ∈ Γ to an element of D, not necessarily the same element for di�erent
formulas, also relates ψ to such an element.

As Priest recognises, we can streamline � though he might not be happy
with that choice of verb � the above description by throwing away the eval-
uation relations in favour of traditional evaluation functions (the h of our
opening paragraph), and working instead, univalently, in a matrix whose el-
ements are sets of elements of the original matrix � arbitrary sets for the
general non-negative case and non-empty sets for the positive case, with
h(ϕ) being the set of elements to which on the description of the preceding
paragraph, the formula is related. (Indeed, for the case in which the origi-
nal matrix is the two-element classical one, this had been the approach taken
from the outset in Priest [38].) Let us write Â for the algebra whose elements
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are the subsets of A and whose fundamental operations are given by:

f Â(A1, . . . , An) = {fA(a1, . . . , an) | a1 ∈ A1, . . . , an ∈ An} (1.1)

Thus now for an evaluation h, n-ary connective f , and formulas ϕ1, . . . , ϕn,
we have:

h(f(ϕ1, . . . ϕn)) = f Â(h(ϕ1), . . . , h(ϕn))

= {fA(a1, . . . , an) | a1 ∈ h(ϕ1), . . . , an ∈ h(ϕn)}.

The structure Â here is called in the literature the power algebra of A, though
other names also have considerable currency (`complex algebra', `global') and
those who use any of this terminology are apt to di�er over whether or not
to include ∅ in the universe of Â,1 which corresponds to the di�erence over
whether to model the non-negative (∅ included) or the positive version (∅
excluded) of Priest's construction. When the algebra A is clear from the

context, we will usually just write f for fA, and f̂ for f Â. (This notation
is from [21].) Note that in Priest [42] the positive and non-negative versions
of the power algebra construction are referred to as positive and general,
respectively.

But we want a matrix and not just an algebra: it remains to make a
decision as to which elements of the power algebra are to be designated. The
path followed mostly in Priest [38] and [42], takes an element of the power
algebra, i.e., a subset of the universe of the original algebra, to be designated
just in case at least one of its elements is designated in the matrix one started
with. We can wrap all this up in the following de�nition: The power matrix

M̂ of a matrix M = (A, D) is the matrix (Â, D̂) where Â is, as above, the

power algebra of A, and D̂ = {A0 ⊆ A |A0 ∩ D 6= ∅}.2 The notations

�M̂�, �Â�, remain ambiguous of course as between the non-negative and
the positive versions of the power construction; generally we have the non-
negative version in mind because we are especially interested in the fate of ∅

1A further di�erence is that some authors � beginning with Gautam [21] � include
additional set-theoretic operations (∪ etc.) among the fundamental operations of the
power algebras while others do not. Clearly we are following the latter here, wanting to
keep the signature of an algebra and its power algebra the same. The former path leads
in the direction of the Boolean-algebras-with-operators of Jónsson and Tarski and thereby
connects power algebras with the Kripke-style model theory for various intensional logics:
see Brink [9] and Goldblatt [23].

2Thus a set is designated if it contains at least one designated element. An alternative,
requiring all of the elements to be designated, is explored in the Appendix to Priest [42];
Section 3 of Priest [38] also explores a variation with anti-designated elements and validity
as requiring forward preservation of designated status and backward preservation of anti-
designation. Such variations are not considered here.
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in this setting, in particular by contrast to its behaviour in the Dunn�Belnap
semantics, an issue raised in the remark quoted from Priest in the following
paragraph.3

Inspired by variations on the Liar Paradox, Priest [38] investigates what
happens when we iterate the transition from matrix to power matrix start-
ing from the three-element matrix he associates with the `Logic of Paradox'
(`LP'), in which the values are thought of as representing true(-and-not-false),
both-true-and-false, and false(-and-not-true), the �rst two of these being des-
ignated.4 He also considers as a starting point for such an iteration, the four
element matrix associated with Dunn and Belnap in which a further undesig-
nated element is added to represent the neither-true-nor-false (or `truth-value
gap') case. He �nds that the consequence relation determined is not a�ected
by passage from a matrix to its power matrix in the cases of either progres-
sion � either starting from the three-element matrix or from the four-element
matrix � and makes the following remark, that referred to in our title, about
the consequence relation determined in the latter case:

This logic is not, what it might at �rst be thought to be, �rst degree

entailment.5 Rather the point-wise de�nitions give the extension of

the LP functors according to the rule: gap-in, gap-out.6

If we start with the matrix based on the two-element Boolean algebra7 with
the top element designated, the three-element LP matrix arises by using
the positive version of the power matrix construction and the four-element
Dunn�Belnap matrix arises by application of the non-negative version of the
construction. In what follows we will not be concerned, as [38] is, with further
iterations of either process, but just with what happens in one application.8

3Though he sets things up slightly di�erently, essentially Priest [42] uses �Ṁ� for �M̂�

construed positively and �M̈� for M̂ construed non-negatively.
4We are not concerned here with the philosophical motivation behind [38]; those want-

ing to see some debate on this can �nd it in Everett [20] and Priest [39].
5Here Priest appends a footnote mentioning the source of such an expectation as being

an acquaintance with the four-valued semantics of Dunn [17].
6At this point there is another footnote: �Essentially as in Smiley [48].� This reference

might be supplemented with Dale [15].
7For de�niteness, take any reference to this algebra to have meet, join and complement

as fundamental non-nullary operations. Sometimes, as indicated, we consider expansions
with additional operations � like that corresponding to the biconditional � as primitive
(for the sake of forming a power algebra while sticking to the letter of the de�nition given
with (1.1) above).

8Priest �nds that further iterations make no di�erence to the logic determined. Whether
this is so for a similar iteration on the Dunn�Belnap front is a di�erent matter: see Shramko
and Wansing [47], which extends the lattice�bilattice relationship � an aspect of the Dunn�
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The passage just quoted from [38] may suggest that di�erences between the
Dunn�Belnap treatment and the power matrix treatment arise only when the
`gap' value, corresponding to ∅ as a subset of {T, F} (or {1, 0}) is taken into
consideration � though this is claimed only for the �LP functors� in the above
passage (which are de�ned at p. 238 of [38] to be ∧, ∨ and ¬,9 as treated on
the positive version of the power matrix semantics with the underlying matrix
being the Boolean two-element matrix). When we consider arbitrary bivalent
truth-functions, we shall see that the situation is not quite to straightforward,
in particular because, as was emphasized in Dale [16], there is no unique
Dunn�Belnap treatment for a given bivalent truth-function � whereas there
is a unique power operation induced by a given term function on the two-
element Boolean algebra; Dale's observation accordingly sounds an a priori

warning about the feasibility of obtaining an alignment between the two
semantic approaches even if ∅ is set aside.

Digression. Several attempts at obtaining such an alignment can be found
in Brink [8] and [12] (see also [10]), though these make heavy use the `power
relations' alluded to in note 10, rather than validity as designation preserva-
tion in a power matrix, and when describing the four-element Dunn�Belnap
matrix ([8], p. 80), Brink gives {T} as the only designated element, instead of
{T} and {T, F} (t and b in the notation below); this determines a di�erent
consequence relation, on which see Pietz and Rivieccio [36]. The error, which
may be caused by a confusion with the Smiley matrix, which includes a table

Belnap semantics we are not going into here. There is a discussion of Priest [38]'s power
matrix semantics at p. 82 of [47], and Priest includes some remarks on [47] in note 10 of
[42]. In the former discussion Shramko and Wansing cite an unpublished paper by Pragati
Jain as explaining the �gap ( = ∅) in, gap out� feature of Priest's treatment, in terms
of the fact that this semantics (quoting the summary in [47]) �treats truth-functions in
terms of the members of each argument, but ∅ has no members.� With f binary by
way of example, we de�ned f̂(X,Y ) to be {f(x, y) |x ∈ X, y ∈ Y }, and this notation
itself of course abbreviates �{z | ∃x ∈ X,∃y ∈ Y � z = f(x, y)}�, so the real explanation
even a single ∅ argument yields ∅ as value is the existential quanti�ers in the de�ning
condition (after the �|�), which make it a condition that cannot be satis�ed if either X
or Y is empty. (A similar de�nition but with the existential quanti�ers negated would
also be one �in terms of the members of each argument,� but would not have the e�ect in
question.) In any case, as will be clear from the literature cited below, this behaviour of ∅
is a familiar feature of what we are calling the non-negative version of the power algebra
construction, one underlying the failure of linear equations which are not also regular �
this terminology explained below � to be preserved on passage to the power algebra so
conceived. The relevant behaviour is captured by describing ∅ as an absorbing element in
the power algebra (as de�ned in note 13 below).

9We use �¬� throughout even for discussing the principal and favoured negation (`De
Morgan negation') of the Anderson�Belnap tradition, which often reserves �¬� for some-
thing else: see [9] and references.
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for → (see [1], p. 161f., or [15] p. 323, both of which use `matrix' in the older
sense for each individual table) is incidental to Brink's exposition, though,
which mainly works with power algebras and power orderings, and does not
actually isolate the concept of a power matrix as Priest does (though not
using that terminology, in Priest's case). There is some overlap with Priest's
discussion in [38], though, in particular over connecting the misalignment
with the presence of ∅, saying for instance, after an initial stab ([8], p. 82),
�the troublesome di�erences in detail are all due to the empty set�. The
treatment in Brink [12] is di�erent again, applying the power algebra con-
struction to a `partial' version of the Boolean algebra of sets of truth-value
assignments; as with [8], a full exposition and discussion would take us too
far a�eld here. End of Digression.

We return to the matter of Dale's observation after reviewing the basic
outlines of the Dunn�Belnap semantics in Section 2. But we close these
introductory remarks by placing Priest's �gap in, gap out� comment in the
broader perspective of the (non-negative) power-algebraic construction. This
is particularly appropriate because Priest does not actually present his pluri-
valent semantics using the terminology of power algebras and matrices based
thereon, in either [38] or [42].

The �rst systematic study of power algebras was made in Gautam [21],
where they are called complex algebras, and the non-negative version of � a
minor variant (see note 1) of � the construction is employed.10 Essentially
the main result is that the identities of an algebra which are guaranteed to
be identities of its power algebra, other than those of the form t ≈ t (for
some term t) are precisely those in which every variable occurring occurs
exactly once on each side � the so-called regular linear identities, where
`linear' means that in t ≈ u, each of t, u, is a linear term, i.e., a term in
which each variable to occur occurs only once, and calling t ≈ u `regular'
means that the same variables occur in t and u.11 Thus for example, the

10The subsequent literature on the topic has become voluminous. Frequently cited pa-
pers include Bleicher et al. [5], Shafaat [46] and Grätzer and Lakser [25]. There has also
been extensive discussion of power algebras in speci�c varieties; for example, apropos of
semigroups, relatively early instances include Tamura and Shafer [50] and Mogiljanskaja
[33]. (The former paper has a semigroup-speci�c reference to work in French by P. Dubreil
antedating Gautam [21].) Several authors have also considered extending the power con-
struction to general structures in which relations as well as functions (operations) are
present: see Grätzer and Whitney [26], Brink [11]. A useful overview is given in Bo²njak
and Madarász [7].

11The notion of linearity of terms carries over naturally to formulas of propositional
logic (if indeed one wants to distinguish these cases at all � something done here only by
switching from x, y, z, . . . to p, q, r, . . .) a linear formula then being one in which no propo-
sitional variable appears more than once. If classical propositional logic is developed in a
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power algebra of a semigroup will be a semigroup because associativity is
such an identity, while the power algebra � whether conceived positively or
non-negatively � of an idempotent semigroup (alias `band') is not guaranteed
to be another such semigroup because the idempotent law (x · x ≈ x) is not
a linear identity. We may call this non-preservation of such identities in
passing to power algebras the Gautam e�ect in view of the seminal role of
[21], and illustrate it with the idempotent law just mentioned. that where
∗ is an idempotent operation on the set A, and ∗̂ the corresponding power
operation, we always have X ⊆ X ∗̂X (here X ⊆ A), since a ∈ X can be
written as a ∗ a, putting it into X ∗̂X but we need not have the converse
inclusion since with a, b ∈ X we will get a ∗ b in X ∗̂X though a ∗ b need not
have been an element of X.12 We return to one aspect of this issue in the
paragraph after next. Note that while some identities may be lost on passage
to the power algebra, no new identities arise, because the power algebra �
whether in its positive or in its non-negative incarnation � has a subalgebra
isomorphic to the original, namely that whose universe comprises the unit
sets of the original algebra's elements. (This was noted in [21], and it is also
exploited in Priest [38].)

Essentially, the di�erence between the non-negative and the positive power
algebra constructions is that the latter yields algebras preserving all linear
identities, and not just the regular ones. (Some pertinent literature is cited
in note 24.) In the non-negative case, the presence of ∅ as an element of
the power algebra means that we have an absorbing (`absorbent' or `anni-
hilating') element which plays that role for all the operations,13 so that in
any equation t ≈ u with some variable occurring only on one side or other
means that taking ∅ as the value of that variable and non-empty sets to
the remaining variables will fail as an identity of the power algebra since
whichever of t, u has the extraneous variable concerned will denote ∅ while
the other side will not. It is this absorptive behaviour on the part of ∅ that

language in which there are no primitive connectives which are constant in the sense that
they form equivalent compounds regardless of variation in the components (this condition
being vacuously satis�ed by any nullary connectives, though of course the de�nition covers
the general n-ary case), then one has the simple observation that no linear formulas in
this language are classical tautologies � mentioned, for example, as Corollary 9.27.4 in
Humberstone [30].

12Here we use the abbreviative notation of f and f̂ for what appear in (1.1) as fA and

f Â, except that of course we also write binary f as ∗ and use in�x rather than pre�x
notation.

13With a bias toward multiplicative terminology: an all-purpose zero-element; i.e., an
element b ∈ A, to put the de�nition in terms of an arbitrary algebra A (with universe A)
such that for each fundamental operation fA of A, we have fA(a1, . . . , an) = b, whenever
b ∈ {a1, . . . , an}, for all a1, . . . , an ∈ A (where fA is n-ary).
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Priest's `gap in, gap out' remark refers to.
Returning to the example of idempotence, we observe that there is a

reprieve from the Gautam e�ect as illustrated above � the failure of X ∗̂X to
be included in X (in the power algebra of an idempotent groupoid) in the
special case in which A (and hence each of its subsets X), has no more than
two elements. To say what is special about working with a set of no more
than two elements � especially signi�cant for present purposes because the
set {T, F} (or, if preferred, {1, 0}) of classical truth-values is such a set � we
recall the concept of a conservative operation as an operation f on a set A,
here taken as having arity n, for which f(a1, . . . , an) ∈ {a1, . . . , an} for all
a1, . . . , an ∈ A. The point is that while any conservative binary operation
on a set is idempotent (take a1 = a2), if ‖A‖ = 2, then any idempotent
operation on A is conservative.14 For we may reason: let f be such an
operation and consider f(a, b) with a view to showing that this is either a or
b. If a = b, then by idempotence f(a, b) = f(a, a) = a. If a 6= b then since
‖A‖ = 2 by the pigeonhole principle, f(a, b) must either equal a or b (or else
f(a, b), a, and b, would be three di�erent elements. To press this observation
into service in connection with the generally unavailable inclusion mentioned
above, X ∗̂X ⊆ X for X ⊆ A when ‖A‖ = 2 (returning to the ∗ notation,
still retaining the assumption of idempotence), the only case of interest is
that of X = A = {a, b}, so X ∗̂X is {a, b, a ∗ b}. But as just observed, ∗ is
conservative and so this set is included in X = {a, b} as claimed.

Now, not only the idempotent law but several other identities of spe-
cial signi�cance for propositional logic are non-linear, including the (lattice
∧/∨) distribution and absorption laws, these last not even being regular, so
the question arises as to their preservation on passing from the two-element
Boolean algebra to its power algebra. We return to his question at the end
of Section 4.

2 Dunn�Belnap Semantics

Let us recall the Dunn�Belnap semantics using assignments, v, not of ele-
ments, but of subsets, of the set {T, F} to all formulas (in the language with
connectives ∧, ∨, ¬), subject to the three constraints:

T ∈ v(ϕ ∧ ψ) if and only if T ∈ v(ϕ) and T ∈ v(ψ); [∧]T

F ∈ v(ϕ ∧ ψ) if and only if F ∈ v(ϕ) or F ∈ v(ψ). [∧]F

T ∈ v(ϕ ∨ ψ) if and only if T ∈ v(ϕ) or T ∈ v(ψ); [∨]T

14This observation is made, and some of its implications pursued, in [31].
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F ∈ v(ϕ ∨ ψ) if and only if F ∈ v(ϕ) and F ∈ v(ψ). [∨]F

T ∈ v(¬ϕ) if and only if F ∈ v(ϕ); [¬]T

F ∈ v(¬ϕ) if and only if T ∈ v(ϕ). [¬]F

This apparatus provides a semantics for the system of �rst-degree entail-
ment Efde in that ϕ → ψ is a correct �rst-degree entailment in the sense
of pp. 150�162 from of Anderson and Belnap [1] just in case for every v as
above, we have T ∈ v(ψ) whenever T ∈ v(ϕ). (See Dunn [17].) More gen-
erally we shall call ψ an FDE -consequence of ϕ1, . . . , ϕn � writing this as
ϕ1, . . . , ϕn `fde ψ when (ϕ1 ∧ . . . ∧ ϕn) → ψ is a correct �rst-degree entail-
ment.

What we may call an n-ary Dunn�Belnap condition is a condition the
form

Φ = Φ
(

T∈X1,...,T∈Xn

F∈X1,...,F∈Xn

)
(2.1)

where the more explicit notation on the right indicates the 2n distinct (met-
alinguistic) atomic components from which Φ is constructed, taking at least
one of from each vertically aligned pair, using conjunction or disjunction (in
the metalanguage). The variables Xi range over subsets of {T, F}. The

Dunn�Belnap condition Φ̃, complementary to Φ, is obtained from Φ by re-
placing each such atomic component, interchanging the upper and lower con-
ditions at each point � i.e., replacing �T ∈ Xi� by �F ∈ Xi� and conversely
� and replacing conjunctions (disjunctions) used in the construction of Φ
with disjunctions (resp. conjunctions). Thus [∧]T and [∧]F above are com-
plementary conditions, as are [∨]T and [∨]F , and [¬]T and [¬]F . Semantics
in the spirit of the Dunn�Belnap treatment, which is to say, following the
precedent set by the conditions [#]T , [#]F , with # = ∧,∨,¬, identi�es
the condition under which F ∈ v(#(ϕ1, . . . , ϕn)) (for an n-ary connective
#) with the condition complementary to that given for T 's belonging to
v(#(ϕ1, . . . , ϕn)). . . In view of this, it is surprising to see Dale write as fol-
lows ([16], p. 441, lettering changed to match ours) on the subject of the
material biconditional (here �≡�):

In conformity with Dunn's semantics and using his notation the follow-

ing should be added to his recursive de�nition of relevance valuation:

T ∈v(ϕ ≡ ψ) i� eitherT ∈v(ϕ) andT ∈v(ψ) or F ∈v(ϕ) and F ∈v(ψ);

F ∈v(ϕ ≡ ψ) i� either F ∈v(ϕ) and T ∈v(ψ) or F ∈v(ϕ) and T ∈v(ψ).

This seems to be the most appropriate de�nition, bearing in mind the

motivation behind the de�nition for the other connectives.
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Since the F condition here is not complementary to the T condition,
this proposal can hardly be described as being in �conformity with Dunn's
semantics�, though Dale is correct to continue to remark that the proposal
does not provide a Dunn�Belmap semantic treatment for either of the two
candidate translations into the language of {∧,∨,¬} he has been considering,
and to we which shall return in Section 3. For the moment, let us pause to
observe that formulas in negation normal form, i.e., constructed using ∧,
∨, and ¬ but which ¬ occurring only before sentence letters, when n such
letters are involved altogether are in a one-to-one correspondence with n-ary
Dunn�Belnap conditions à la (2.1) in an obvious way, illustrated here by the
case (with n = 3) of p ∨ (¬q ∧ (q ∨ ¬r)) of Φ being as follows, with X, Y, Z
for X1, X2, X3:

T ∈ X or (F ∈ Y and (T ∈ Y or F ∈ Z)).

The propositional formula is true on a Dunn�Belnap valuation v (i.e., T is
an element of the image of the formula under v) just in case condition is
satis�ed when X, Y, Z are taken as v(p), v(q), v(r), respectively. Of course
both the formula and the corresponding condition can be manipulated into
more tractable subcases of negation normal form, such as CNF or DNF,
as desired. With this in mind, let us consider what happens when the T
and F conditions for a proposed new connective, as with Dale's suggested
≡ conditions, are not complementary. For a simple example (closest to the
simplest possible), consider a proposed 1-ary connective ◦ with conditions:

T ∈ v(◦ϕ) if and only if T ∈ v(ϕ); [◦]T
F ∈ v(◦ϕ) if and only if T ∈ v(ϕ). [◦]F

While we are at it, we may as well add a dual example of mismatch, this
time with 1-ary ?:

T ∈ v(?ϕ) if and only if F ∈ v(ϕ); [?]T

F ∈ v(?ϕ) if and only if F ∈ v(ϕ). [?]F

Several anomalies are evident immediately in the presence of such addi-
tions to the {∧,∨,¬} vocabulary; one is that we lose contraposition in the
form:

If ϕ `fde ψ then ¬ψ `fde ¬ϕ,

where `◦fde is the extension of `fde to the language with the added connective
◦ interpreted by means of the [◦]T and [◦]F , since for example ◦p `◦fde p while
¬p 0◦fde ¬◦p. (Put v(p) = {F} and we have v(¬p) = {T} while v(¬◦p) = ∅.)
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This anomaly could be rephrased without reference to the behaviour of ¬ by
saying that while for `fde itself the two conditions (1) ϕ `fde ψ, taken as
meaning that for any v with T ∈ v(ϕ) we have T ∈ v(ψ), and (2) for any
v with F ∈ v(ψ), we have F ∈ v(ϕ) � see Dunn [17] esp. top of p. 165, or
[19], p. 10 � the corresponding equivalence would longer hold for the envis-
aged extension `◦fde. Secondly, while on the Dunn�Belnap semantics for the
language with ∧,∨,¬ and any formula ϕ(p1, . . . , pn) in the sentence letters
exhibited, any valuation on which v(pi) ∈ {{T}, {F}} for i = 1, . . . , n, de-
livers v(ϕ(p1, . . . , pn)) ∈ {{T}, {F}}, whereas the deployment of T and F
conditions which are not complementary can destroy this feature. For an ex-
ample of such behaviour, this time using ?, suppose v(p) = {T}. Then since
T /∈ v(p), by [?]T , T /∈ v(?p) and since F /∈ v(p), by [?]F , F /∈ v(?p), and
thus v(?p) = ∅. There may well be good reasons for considering a semantic
treatment with e�ects like these, and indeed the account of Stephen Blamey
in [4] famously does so with his interjunction and transplication connectives,
which similarly give compounds whose components have de�ned values (cor-
responding to the present {T} and {F}) an unde�ned value (corresponding
to the present ∅, there being no analogue to {T, F} in [4]. The present point
is that whatever their merits may be, they are not in the spirit of Dunn and
Belnap's discussions.15

Now, as is well known, we can re-package the semantic description pro-
vided by the conditions [∧]T , [∧]F , [∨]T , etc., as a four-valued matrix on an
algebra whose elements are the subsets of {T, F}, conventionally relabelled
� according to one among several conventions to be found in the literature
� as t (�true only�) for {T}, b (�both�) for {T, F}, f (�false only�) for {F}
and n (�neither�) for ∅, of which the �rst two are designated. (The assign-
ments v are then matrix evaluations in the sense of Section 1.) In fact such
a treatment could extend to non-standard truth and falsity clauses such as
those suggested for ≡ by Dale, or the cases of ◦ and ?. In fact, a principal
aim of Priest [42] consists in looking at the logics determined by a certain
�ve-element matrix and its submatrices, the �fth value, alongside the desig-
nated t and b and undesignated f and n, is a further undesignated element
he writes as e, and which behaves not like the ∅ of the Dunn�Belnap se-
mantics (which is n's job) but like the ∅ of the power matrix semantics
� satisfying Priest's �gap in, gap out� description, where gap means �∅�.
(Some motivational considerations appear in Priest [40]; e is what the title
of Priest [41] refers to, �the above� being the Dunn�Belnap t,f , b and n.)

15Issues of expressive power and functional completeness as they arise for the Dunn�
Belnap semantics have been discussed in Ruet [45], Pynko [43], Omori and Sano [35], De
and Omori [14].
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Our main interest is on aspects of the divergence between the two styles of
semantics which among other things makes it necessary to distinguish these
two roles played by the empty set in the �rst place � and to ask whether
this divergence manifests itself when attention is con�ned to t, b, and f .
(This question will be answered in Section 4.) But for the record, Figure
1 gives the full matrix. Priest [42] notes that every subset of {t, b,n,f , e}
which contains t and f is the universe of a submatrix of this matrix, and
indicates how to provide proof systems codifying the consequence relations
determined by the resulting 8 submatrices, some of which are independently
familiar and some of which �rst appear in [40] or [42]. The {t, b,f} and
{t,n,f} cases Priest calls the LP matrix and the strong Kleene matrix; they
are referred to in Humberstone [30] as K1 and K1,2 respectively (�K� for
�Kleene� in both cases, with a similar nomenclature in [27]); as Priest also
notes, the {t, e,f} case is that of Bochvar's three-valued logic (sometimes
called `weak Kleene', and conveniently described at p. 29�. of Rescher [44]
� or see the original, [6]). Note that by the de�nition of submatrix given
in Section 1, these elements retain the designated/undesignated status they
have in Priest's �ve-element matrix. Technical comprehensiveness suggests
the exploration of an alternative give element matrix (and suitable subma-
trices) in which e is designated instead of undesignated, though we do not
enquire into that here; evidently ∧-elimination style inferences would in this
case stand in need of some restriction, just as Priest notes (e.g., in [40])
the need to restrict ∨-introduction style inferences in the version with e un-
designated.16 Note also that the reason we can discard arbitrary subsets of
{b,n, e} is that all the elements of this set are irreducible in the algebra of
the matrix of Figure 1, in the sense that none of these elements is the value
of a fundamental operation as applied to a sequence of elements in which it
does not �gure � by contrast with t and f (with, for example, t = b∨n, and
t = ¬f).

A popular presentation of the e-free reduct � i.e., the Dunn�Belnap four-
valued matrix � of this �ve-element matrix uses a Hasse diagram to indicate
the `diamond' lattice (t and f as top and bottom elements, b and n as in-
comparable intermediate elements), so that ∧ and ∨ are calculated by taking
meets and joins, with a record of the e�ect of negation (interchanging top
and bottom elements and leaving the intermediate elements �xed) superim-
posed on the diagram. The presence of e spoils the lattice structure, since
its own universally absorptive behaviour thwarts precisely the usual lattice

16What about having two absorbent elements, e and e*, say, respectively undesignated
and designated? That's not an option because, for example, e ∧ e* would have to equal
both the undesignated e and also the designated e*. (This is just a version of the standard
argument for the uniqueness of zero elements in semigroups.)
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∧ t b n f e ∨ t b n f e ¬
*t t b n f e t t t t t e t f
*b b b f f e b t b t b e b b
n n f n f e n t t n n e n n
f f f f f e f t b n f e f t
e e e e e e e e e e e e e e

Figure 1: Priest's Five-Element Matrix

absorption laws.

While Priest is happy to have both ∅ as it behaves in the Dunn�Belnap
semantics, appearing here as n, and ∅ as it behaves in the (non-negative)
power matrix semantics, appearing here as e, both living under the same
roof, we continue to ponder the relations between these two roles played by
the empty set, as well as of the two semantic approaches, for which purpose
we stick with a notation neutral between them: {T}, {T, F} etc. Priest [42]
continues the theme of Priest [38] but this time with respect to what he calls
logics �in the FDE family�, meaning the consequence relations determined by
the eight submatrices (already alluded to) of the above �ve-element matrix.
More precisely, he details the e�ects of �going plurivalent,� as he puts it: sort-
ing out the cases in which in which on passage from matrix in question to its
power matrix � construed positively or construed non-negatively � gives rise
to a strictly weaker consequence relation from the cases in which the change
in matrix makes no di�erence to the consequence relation. But our inter-
est here is in the mixture of power matrix and Dunn�Belnap considerations
which get us from the 2-element Boolean matrix to this 5-element matrix
in the �rst place, and in particular in the di�erences between e and n, the
incarnations of ∅ coming from these two sets of considerations, respectively.

To conclude this section, let us con�rm explicitly the claim quoted from
Priest [38] in Section 1 that �Rather the point-wise de�nitions give the ex-
tension of the LP functors according to the rule: gap-in, gap-out,� in which,
as is clear from the text of [38] the reference to pointwise de�nitions is to
the power algebra construction.17 Since the only departure from the Dunn�

17The `pointwise' terminology carries the risk of suggesting, at the level of algebras,
the direct product (rather than the power algebra) construction, which, taking the prod-
uct of the two-element Boolean algebra with itself, gives us the algebra we get from the
{t, b,n,f}-subalgebra of that depicted in Figure 1 by retaining the ∧ and ∨ tables but
changing that for negation so as to have not only t and f but now also b and n inter-
changed. (Traditionally the associated product matrix based on this algebra would have
only t designated.) Now t, b,n, and f have become (not particularly suggestive) labels
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Belnap semantics here described arises in the non-negative version of the
power construction, the implicit suggestion is that if we use the positive ver-
sion (excluding ∅, that is) then the power matrix semantics and the Dunn�
Belnap semantics agree. We con�rm this for the favoured primitives (�the
LP functors�), ∧,∨,¬, in Proposition 2.1 so that we can see (in the proof)
exactly where excluding ∅ is crucial. For ease of formulation, the following
notational conventions will be useful: In the following, for a two-valued truth-
function #, its `power matrix' lifting is denoted by #̂, while #DB denotes the
corresponding four-valued Dunn�Belnap function. Illustrating in the case of
∧, this means that for X, Y ⊆ {T, F}, X ∧̂Y = {x ∧ y |x ∈ X, y ∈ Y } and
X ∧DB Y is the set uniquely �xed by the stipulation that T ∈ X ∧DB Y i�
T ∈ X and T ∈ Y , and F ∈ X ∧DB Y i� F ∈ X or F ∈ Y . To repeat, the
following observation is all but explicit in Priest [38]:

Proposition 2.1 For non-empty X, Y ⊆ {T, F}, we have X ∧̂Y = X∧DB

Y ; for non-empty X, Y ⊆ {T, F}, we have X ∨̂Y = X ∨DB Y ; for arbitrary
X ⊆ {T, F}, we have ¬̂X = ¬DBX.

Proof. The reasoning is simple but we go through it explicitly here, dividing
the argument for the case of ∧ into four parts to make it very clear where the
assumption that neither X nor Y is ∅ is required: only for part (4). Parts
(1) and (2) show that T ∈ X ∧̂Y if and only if T ∈ T ∈ X ∧DB Y ; parts (3)
and (4) show that F ∈ X ∧̂Y if and only if F ∈ T ∈ X ∧DB Y .

(1) Suppose that T ∈ X ∧̂Y ; then T = x ∧ y for some x ∈ X, y ∈ Y ; but
then, in virtue of the truth-function ∧, x = y = T , so T ∈ X and T ∈ Y ,
implying that T ∈ X ∧DB Y by the �if� direction of [∧]T .

(2) Suppose that T ∈ X ∧DB Y . Then, by the �only if� direction of [∧]T ,
T ∈ X and T ∈ Y , so there exist x ∈ X, y ∈ Y with T = x ∧ y, since, in
virtue of the truth-function ∧, we may take x = y = T , establishing that
T ∈ X ∧̂Y .
(3) Suppose that F ∈ X ∧̂Y ; then F = x ∧ y for some x ∈ X, y ∈ Y , so
in virtue of the truth-function ∧, x = F or y = F , so F ∈ X or F ∈ Y ,
implying, by the �if� direction of [∧]F , that F ∈ X ∧DB Y .

(4) Suppose that F ∈ X ∧DB Y . By the �only if� direction of [∧]F , we have
F ∈ X or F ∈ Y . Suppose �rst that F ∈ X. Then, since Y 6= ∅, we may
take y ∈ Y and note that whether y is T or F , F ∧ y = F , so there are
x ∈ X (take x = F ) and y ∈ Y with x ∧ y = F , meaning that F ∈ X ∧̂Y .

for 〈T, T 〉, 〈T, F 〉, 〈F, T 〉 and 〈F, F 〉 and the four-valued truth-functions are indeed com-
puted pointwise (or `coordinatewise'). For further details and some historical references,
see pp. 96�102 of Rescher [44].
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If we suppose instead that F ∈ Y , then similar reasoning applies, this time
exploiting the assumption that X 6= ∅; so, either way, F ∈ X ∧̂Y .

The case of ∨ is similar, this time the need to have X and Y non-empty
arising for the analogue of the above part (2), showing that if T ∈ X ∨DB Y ,
then T ∈ X ∨̂Y . The case of ¬ is simpler still, since as the formulation of
the result indicates, no non-emptiness assumption is required. �

In the spirit of generalizing Proposition 2.1 one might consider the case
of an arbitrary n-place two-valued truth-function # � and note that, as in
the preamble to Proposition 2.1, this does mean the truth-function and not a
(primitive or derived) connective with which this truth-function is associated

� with with #DB and #̂ understood as there; for non-empty X1, . . . , Xn ⊆
{T, F}, we have:

#̂(X1, . . . , Xn) = #DB(X1, . . . , Xn).

To assess the truth � indeed the intelligibility � of this candidate generaliza-
tion of Proposition 2.1 we need to recall a cautionary note sounded in the
1980s by A. J. Dale.

3 Dale's Point

We may introduce the objection of Dale [16]18 to the work of Anderson and
Belnap [1] (in particular Chapter 3 thereof) and Dunn [17] by means of a
quotation from p. 151 of the latter:

Je�rey's formalism includes sentence letters (...), and connectives for

negation, conjunction and disjunction (...) as well as for the truth-

functional conditional and biconditional. We shall ignore these last

two since they are not primitive in the standard formulations of the

system E (though they can of course be introduced as abbreviatory

devices via their ordinary contextual de�nitions).

Of the two non-primitives mentioned here, ⊃ and ≡, there may seem little
room for choice as to what might be meant by their `ordinary' de�nitions in

18[16] also discusses ideas from Casimir Lewy, Michael Clarke and Timothy Smiley, but
this material is not germane to the present topic. (Most of the remarks on Dale [16] in
the current section were made in a note privately circulated by the author in 1983, under
the title `Memorandum on an Objection by A. J. Dale'; one to whom it was sent � Mike
Dunn � remarked that his own reaction to [16] had been along similar lines.)
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the case of the former, but not so, Dale argues, in the case of the latter:
surely if I want to de�ne ≡ in terms of ∧, ∨ and ¬, it would be equally
natural to o�er the conjunctive de�nition (3.1) or the disjunctive de�nition
(3.2):

ϕ ≡ ψ = (¬ϕ ∨ ψ) ∧ (ϕ ∨ ¬ψ) (3.1)

ϕ ≡ ψ = (ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ) (3.2)

Dale's point, illustrated with the example of �≡�, is that the right-hand
sides of (3.1) and (3.2) are not equivalent in the logic of �rst degree en-
tailment (FDE) under discussion in [1] and [17], so no unique candidate for
the appropriate analogue of classical material equivalence has been provided.
(Concerning the present pair of candidates, we have the r.h.s. of (3.1) as an
`fde-consequence of the r.h.s. of (3.2) but not conversely.) The situation is su-
per�cially somewhat di�erent from the case of ⊃, where the �rst two options
that perhaps come to mind for ϕ ⊃ ψ, namely ¬ϕ∨ψ and ¬(ϕ∧¬ψ), are by
contrast FDE-equivalent, and one might envisage a weak plea for (3.1) com-
ing from the consideration that ϕ ≡ ψ is strongly associated, when ≡ is not
taken as primitive, with (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ).19 But of course the point could
equally well be made � and Dale does make it � with reference to exclusive
disjunction, which similarly comes in two matching �avours, conjunctive and
disjunctive;20 here we use Y for this connective; again the disjunctive version
is strictly stronger than the conjunctive version, from an FDE perspective:

ϕ Y ψ = (ϕ ∨ ψ) ∧ (¬ϕ ∨ ¬ψ) (3.3)

ϕ Y ψ = (ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ) (3.4)

The general point has in any case nothing to do with the naturalness of
conventional frequency of this or that representation of Boolean connectives
other than ∧, ∨ and ¬ in terms of these three, so much as the fact that
there is in general no unique representation to within FDE-equivalence of
any given Boolean compound. Thus Dale [16] correctly chides, for example,

19Indeed this association is built into the notation if the variants → and ↔ of ⊃ and ≡
are employed � something that would lead to confusion in the discussion of relevant logic
where they are reserved for use as corresponding intensional connectives. Note that in
the line of argument in support of (3.1) here envisaged, no fuss is made of the distinction
between ψ ⊃ ϕ, alias ¬ψ ∨ϕ, and the commuted form ϕ∨¬ψ actually appearing in (3.1),
since this is a distinction without an FDE-di�erence.

20Dale [16], p. 437, alludes in this connection to conjunctive and disjunctive normal form,
which is potentially misleading, as ϕ and ψ in (3.1, 2) are not restricted to being sentence
letters.
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Anderson and Belnap, for temporarily overlooking this in calling Chapter
3 of [1] `Entailment Between Truth-Functions'.21 His point is in the �rst
instance an illustration of the widespread though not universal fact that the
weaker the logic one is considering, the more distinctions the logic registers;
see [29] for a discussion of this generalization and its limits.22 But secondly,
in one form or another the point has always been a familiar fact in the
speci�cally relevant-logical community: consider for example, for formulas
ϕ, ψ, the compounds ϕ ∧ ψ and ϕ ∧ (¬ϕ ∨ ψ), both of which are classically
unexceptionable representations of the conjunction truth-function but which
fare very di�erently by relevant lights, the �rst but not the second having ψ as
a relevant consequence � Disjunctive Syllogism and all that. We could throw
in as a third candidate (ϕ∨¬ψ)∧ψ, and still not be �nished, even subject to
the further constraint that no more than the given schematic letters ϕ, ψ, are
to be employed. And, setting aside that constraint � or rather, its analogue
in the 1-ary case � no-one in the Anderson�Belnap relevance tradition would
expect the classically equivalent ϕ and ϕ ∧ (ψ ∨ ¬ψ) to be FDE-equivalent
in general since, instantiating the schematic letters ϕ, ψ, to distinct sentence
letters p, q, this would make q∨¬q an `fde-consequence of a formula (namely
p) with which it shares no non-logical vocabulary.

Returning speci�cally to Dale's examples (3.1)-vs.-(3.2) and (3.3)-vs.-
(3.4), it should be remarked that in referring to the �rst and second of each
pair as respectively the conjunctive and disjunctive forms of material equiva-
lence and exclusive disjunction is just a convenience and should not be taken
too seriously. Every {∧,∨,¬}-formula has, after all, both an FDE-equivalent
in conjunctive normal form and one in disjunctive normal form. Taking the
(3.1) `conjunctive' case (�p ≡∧ q� in the more explicit notation of used below)
with ϕ, ψ, atomic, we have (¬p ∨ q) ∧ (p ∨ ¬q), with an FDE-equivalent in
disjunctive normal form as follows:

(p ∧ ¬p) ∨ (¬p ∧ ¬q) ∨ (p ∧ q) ∨ (q ∧ ¬q).

It's just that this disjunction is not FDE-equivalent to the what we called
the disjunctive form of material equivalence (�p ≡∨ q�) meaning the shorter
disjunction which drops the initial and �nal disjuncts (instantiating the r.h.s.

21The present objection aside, there is no reason to describe ¬ as truth-functional in
the present setting; this connective is not even extensional according to `fde, in the sense
of �3.2 of [30], which is a necessary (though not su�cient) condition for being amenable
to a semantic treatment invoking an associated truth-function.

22Several illustrations of this phenomenon as it arises in connection with intuitionistic
(rather than relevant) logic as a weakening of classical logic are given under Examples
4.38.5 of [30], p. 618; the case of exclusive disjunction is treated for these two logics Exercise
6.12.6 there (p. 785) and in the discussion following that.
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of (3.2)). Similarly, this shorter disjunction itself has an FDE-equivalent
conjunctive normal form representation, which is not (¬p ∨ q) ∧ (p ∨ ¬q)
but an extended form with some classically redundant but relevant-logically
essential `excluded middle' conjuncts.

Digression. The contrast between (3.1) and (3.2) will be familiar to anyone
who has thought about the simplest kind of de�nition by cases � of, say a
monadic predicate letter � in quanti�ed FDE (though the point could be
made at the purely propositional level). Classically if we want to introduce
a predicate symbol E, say, in terms of primitive (also monadic) predicates
F,G,H, by saying that something is E just in case it is G or H, according as
it is F or not F respectively, one can do so either by setting Ex equivalent
to (3.5), in which ϕ ⊃ ψ means ¬ϕ ∨ ψ, or instead setting Ex equivalent to
(3.6):

(Fx ⊃ Gx) ∧ (¬Fx ⊃ Hx) (3.5)

(Fx ∧Gx) ∨ (¬Fx ∧Hx) (3.6)

and it makes no di�erence which form one chooses, since (3.5) and (3.6)
are equivalent. But when ∧, ∨ and ¬ are governed instead by FDE, the
two formulas are not equivalent and it is necessary to decide between the
conjunctive E∧x (say), de�ned by (3.5) and the disjunctive E∨x de�ned by
(3.6). As with the earlier examples, in the absence of further non-logical
assumptions, the disjunctive form is the stronger of the two by FDE lights,
in the sense that (extending our turnstile notation to apply to predicate logic
and using a as an individual parameter) E∨a `fde E

∧a while E∧a 0fde E
∨a.

One instance of the choice between forms like (3.5) and (3.6) is touched
on in the Appendix below, where we will see Dunn drawing attention to
such contrasts as this as they bear on Goodman's grue example. End of

Digression.

Transposed into the setting of Dunn�Belnap semantics, Dale's observation
becomes the point that there is no such thing as the Dunn�Belnap condition
induced by a given bivalent truth-function; to drive the point home, the
pair ([≡∧]T , [≡∧]F ) below, following the lead of (3.1), and the pair ([≡∨]T ,
[≡∨]F ), following the lead of (3.2), are pairs of internally complementary
Dunn�Belnap conditions each of which describes the bivalent truth-function
concerned when only the values {T} and {F} are involved:

T ∈v(ϕ ≡∧ ψ) i� (F ∈v(ϕ) or T ∈v(ψ)) and (T ∈v(ϕ) and F ∈v(ψ)); [≡∧]T
F ∈v(ϕ ≡∧ ψ) i� (T ∈v(ϕ) and F ∈v(ψ)) or (F ∈v(ϕ) or T ∈v(ψ)). [≡∧]F

T ∈v(ϕ ≡∨ ψ) i� (T ∈v(ϕ) and T ∈v(ψ)) or (F ∈v(ϕ) and F ∈v(ψ)); [≡∨]T
F ∈v(ϕ ≡∨ ψ) i� (F ∈v(ϕ) or F ∈v(ψ)) and (T ∈v(ϕ) or T ∈v(ψ)). [≡∨]F
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The upshot of these conditions is summarised in the �rst two tables of
Figure 2. (We retain the neutral {T}, {T, F},∅, {F} notation � though in
tables write these more compactly as T, TF, ∅, and F respectively � since
this allows us to write simply ∅ rather than choosing between n and e à

la Figure 1, precisely so as to be able to compare the behaviour of ∅ in
the Dunn�Belnap semantics and in the power matrix semantics.) The third
table gives the power-algebraic case for comparison, with X≡̂Y being {x ≡
y |x ∈ X, y ∈ Y }. It of course di�ers from them in several cases where ∅ is an
argument, but the present point � Dale's point � is that these two tables di�er
from each other. The moral for the mooted generalization of Proposition 2.1
from Section 2 about the equality #̂(X1, . . . , Xn) = #DB(X1, . . . , Xn) for a
given n-ary (two-valued) truth-function # is of course that the notation on
the right, �#DB(X1, . . . , Xn)� does not make sense: there is no such thing as
the Dunn�Belnap (four-valued) function corresponding to a given #. If #
were taken as the binary ≡, which � if either � of ≡∧DB, ≡∨DB, would ≡DB be,
for instance?

≡∧DB T TF ∅ F ≡∨DB T TF ∅ F ≡̂ T TF ∅ F

*T T TF ∅ F T T TF ∅ F T T TF ∅ F

*TF TF TF F TF TF TF TF T TF TF TF TF ∅ TF

∅ ∅ F ∅ ∅ ∅ ∅ T ∅ ∅ ∅ ∅ ∅ ∅ ∅
F F TF ∅ T F F TF ∅ T F F TF ∅ T

Figure 2: Three Biconditional Tables

Looking at the tables of Figure 2, and with the condition � taken from
Proposition 2.1 � on the envisaged generalization

#̂(X1, . . . , Xn) = #DB(X1, . . . , Xn)

in mind, to the e�ect that this should hold �For non-empty X1, . . . , Xn ⊆
{T, F}�, the reader may naturally wonder if the failure of uniqueness just
observed for such notations as ≡DB has been pressed too hard. There may,
for all that has been said so far, be no such failure once ∅ is set aside. If we
discard the rows and columns of the three tables in Figure 2 � noting that
∅ arises only in the body of such a table in one of these rows or columns �
then the �rst two tables coincide with each other, so the uniqueness problem
has vanished, and, further, they now match the {T,TF,F}-reduct of the
third table, so not only the conceptual coherence but also the correctness of
the envisaged generalization of Proposition 2.1 remains intact despite Dale's
point, at least insofar as the case of ≡ is concerned. The same goes for the
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case of Y, as the reader wanting to construct the analogue of Figure 2 for this
case, with tables for Y∧DB and Y∨DB, summarising the Dunn�Belnap conditions
corresponding to (3.1) and (3.2) respectively, is invited to verify.

4 Another Example � and the Gautam E�ect

Revisited

What the examples just reviewed do not themselves provide is made available
by minor tinkering, however, as we illustrate with the case of ≡∧, i.e., with ≡
as de�ned in (3.1). Our tinkering consists in discarding the second disjunct,
¬ψ, of the second conjunct; we abbreviate the result with �∧′� � to be thought
of as an unstructured symbol � though in fact we write the two conjuncts in
reverse order for convenience:

ϕ ∧′ ψ = ϕ ∧ (¬ϕ ∨ ψ) (4.1)

This is only one of many examples that could be chosen to make the present
point, selected because its r.h.s. was mentioned already apropos of the Dis-
junctive Syllogism inference in the previous section. In terms of Dunn�Belnap
conditions, we have:

T ∈ v(ϕ ∧′ ψ) i� T ∈ v(ϕ) and (F ∈ v(ϕ) or T ∈ v(ψ)); [∧′]T
F ∈ v(ϕ ∧′ ψ) i� F ∈ v(ϕ) or (T ∈ v(ϕ) and F ∈ v(ψ)). [∧′]F

We compare the tabular representation of these conditions, on the left
of Figure 3, using the notation ∧′DB, with that of the power operation on
the corresponding bivalent truth-function on the right, which we could write
either as ∧̂′ or simply as ∧̂, since the (bivalent) truth-function is just the
conjunction function; for familiarity, we use the latter notation.

∧′DB T TF ∅ F ∧̂ T TF ∅ F

*T T TF ∅ F T T TF ∅ F

*TF TF TF TF TF TF TF TF ∅ F

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
F F F F F F F F ∅ F

Figure 3: Two Conjunction Tables

There are three discrepancies between the tables in Figure 3, one at
〈TF,∅〉, where we have F in the case of ∧′DB but ∅ in the case of ∧̂, a sec-
ond at 〈F,∅〉, giving values F and ∅ respectively, and the third at 〈TF,F〉,
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yielding respectively TF and F. The �rst two are nothing new: like those in
Figure 2, they illustrate the universally absorptive nature of ∅ in the power
matrix semantics � �gap in, gap out,� in Priest's formulation. But the third
discrepancy is what we have been looking for: an indication that the power
matrix treatment and the Dunn�Belnap treatment diverge even in the case
of compounds all of whose (here, both of whose) components are assigned
values in the range {T,TF,F}. Thus if one took Priest's remark (quoted in
Section 1) that logic of ¬̂, ∧̂ and ∨̂ �is not, what it might at �rst be thought
to be, �rst degree entailment� to which the �gap in, gap out� comment is
appended, to suggest that it was only when ∅ was involved that there was
a di�erence according as one calculated by the Dunn�Belnap matrix or the
power matrix, one would be dealing with a misleading suggestion. Note that
the third discrepancy just observed in the case of Figure 3 involves not just a
simple numerical distinction between values � TF vs. F � but a di�erence in
respect of designation status. (Thus it immediately gives rise to a failure of
the �power conjunction� of p and q to be a consequence of p∧′ q in a language
supporting both connectives: assign TF to p and F to q for an invalidating
evaluation. That would leave open the possibility that the only logical di�er-
ence emerges when the two connectives are both present, as in �ukasiewicz's
`twins' analogy,23 but we can contrast them in isolation from each other too:
q is a consequence of what for emphasis we may write as p ∧̂ q but not � this
being the Disjunctive Syllogism point � of p ∧′ q.)

While the suggestion thus extracted from Priest's discussion � no diver-
gence except where ∅ is involved � is correct for ∧, ¬ and ∨, and since this
is what in the passage quoted in Section 1 Priest means by the phrase �the
LP functors� in that passage, the text of [38] is not itself misleading and our
recent discussion may be summed up by saying that what holds for ∧, ¬ and
∨ in this regard does not hold generally for connectives de�ned in terms of
them, as the case of ∧′ illustrates. This answers a�rmatively the question
raised in Section 2 as to whether the di�erence between the Belnap�Dunn
and the power-algebraic semantics manifests itself even when attention is
con�ned to t, b, and f .

One possible misinterpretation of the example of ∧′ should be addressed,
concerning the following reaction to (4.1): shouldn't the application of the
power algebraic construction in this case be as dictated by the r.h.s. of (4.1),
with the interpretation of X ∧̂′ Y (X, Y ⊆ {T, F}) being: X ∧̂ (¬̂X ∨̂Y )?
One could have a similar reaction in the case of the earlier examples (≡̂
etc.) but let us address it here in any case. The answer to the question
is that we are understanding a function f to induce a power operation in

23See pp. 471, 484, of [30] for discussion and references
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accordance with (1.1), which is written in a notation making the algebras
concerned explicit, and so strictly for that introduction of the idea to be in
play we should envisage the two-element Boolean algebra as being expanded
to support as fundamental operations whichever bivalent truth-function is
envisaged as subject to the power algebra construction. In particular ∧′
gives rise to the function ∧̂′ de�ned by:

X ∧̂′ Y = {x ∧′ y |x ∈ X, y ∈ Y }
= {x ∧ (¬x ∨ y) |x ∈ X, y ∈ Y }
= {x ∧ y |x ∈ X, y ∈ Y } [= X ∧̂ Y ]

This is a di�erent matter from X ∧̂ (¬̂X ∨̂Y ), which is like ∧′DB from
Figure 3, except for having all entries in the ∅-column be ∅. (Proposition 2.1
already tells us that the only di�erences that could arise would be cases with
∅ among the inputs.) We are concerned to apply the power construction to
the function itself, rather than reading it o�, seriatim, this or that polynomial
(Boolean term) for the function. Indeed the di�erence here is a manifestation
of what we called in Section 1 the Gautam e�ect: the fact that one does
not in general expect identities which are (even if regular) not linear to be
preserved on the passage from algebra to power algebra (whether the latter is
construed positively or non-negatively). The identity at issue in the present
case is x ∧ y ≈ x ∧ (¬x ∨ y), with a conspicuously non-linear term on the
right.

Now, in Section 1 we had occasion to notice that in passing from the
two-element Boolean algebra to its (non-negative) power algebra the non-
linearity in the idempotence identities for ∧ and ∨ did not prevent them
from surviving the passage. Now although the identities holding in the two-
element Boolean algebra are precisely those holding in every Boolean algebra,
we continue to use this formulation with its emphasis on identities inherited
by from the two-element algebra to its power algebra. Some other cases were
also mentioned in Section 1: the absorption identities and the distribution
laws, in particular. The absorption laws (x ≈ (x∧y)∨x and its dual) have no
hope of surviving to the (non-negative) power algebra because they are not
regular. We conclude our discussion by looking at the distribution case and
then, as a stimulus for further work, formulating two conjectures consistent
with our �ndings. Let us consider distribution in the following form rather
than its dual: x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z). We need to check that for all
X, Y, Z ⊆ {T, F}, we have:

X ∧̂ (Y ∨̂Z) = (X ∧̂Y ) ∨̂ (X ∧̂Z).

The ⊆-direction is easy, and does not require the hypothesis that we are in
the power algebra of a 2-element algebra, or any details of how ∧ and ∨
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behave on that algebra (other than that they satisfy the distributive law): if
T ∈ X ∧̂ (Y ∨̂Z), this means that T = x∧ (y ∨ z) for some x ∈ X, y ∈ Y, z ∈
Z. By distributivity in the underlying algebra we have T = (x∧ y)∨ (x∧ z),
so T ∈ (X ∧̂Y ) ∨̂ (X ∧̂Z). Since the same reasoning would go through for
F , we have (Y ∨̂Z) ⊆ (X ∧̂Y ) ∨̂ (X ∧̂Z). For the converse inclusion, begin
by showing that T ∈ (X ∧̂Y ) ∨̂ (X ∧̂Z) implies that T ∈ X ∧̂ (Y ∨̂Z), after
which we will check that the same holds with �F � in place of �T �. Thus
suppose T ∈ (X ∧̂Y ) ∨̂ (X ∧̂Z), i.e., T = (x1∧y)∨ (x2∧z) for some x1, x2 ∈
X, y ∈ Y, z ∈ Z. Accordingly, either x1 = y = T or x2 = z = T . In
the �rst case, X1 = T and y ∨ z = T , so T ∈ X ∧̂ (Y ∨̂Z), and in the
second case x2 = T and y ∨ z = T so again T ∈ X ∧̂ (Y ∨̂Z). Now for F :
suppose that F ∈ (X ∧̂Y ) ∨̂ (X ∧̂Z). Thus F = (x1 ∧ y) ∨ (x2 ∧ z) for some
x1, x2 ∈ X, y ∈ Y, z ∈ Z. So F = x1 ∧ y and F = x2 ∧ z; thus (1) x1 = F or
y = F , and also (2) x2 = F and z = F . If x1 = F then x1 ∧ (y ∨ z) = F so
F ∈ X ∧̂ (Y ∨̂Z). If x2 = F then X2 ∧ (y ∨ z) = so again F ∈ X ∧̂ (Y ∨̂Z).
If we have neither x1 nor x2 = F , then the only way for (1) and (2) both
to obtain is to have y = z = F in which case x ∧ (y ∨ z) = F , where x
is taken indi�erently either as x1 or as x2, and in this case again we get
F ∈ X ∧̂ (Y ∨̂Z).

Thus, like idempotence, distributivity survives into the power algebra of
the two-element Boolean algebra. We already know, however, from the case
of ∧′, that this is not so for arbitrary regular identities. There � or transposing
the example from sentential to equational logic, at least � we denoted by x∧′y
the term x∧ (¬x∨y) and found that the regular identity x∧y ≈ x∧ (¬x∨y)
did not similarly survive. But this, as a Boolean identity, relies on certain
interactions between what we will call negative and positive occurrences of
variables: in particular x occurs both positively and negatively in it, in a
sense we now make precise in order to articulate an appropriately restricted
version of the conjectures we shall �nish with, concerning preservation of
regular identities in a rather special case.24

An occurrence of a variable is positive in a term t if it lies in the scope
of (altogether) an even number (including 0) of occurrences of ¬ in t and is

24The general issue of when such identities are preserved has long been a topic of interest.
Early ventures include Pªonka [37], John [32]; the characterization provided in the second
theorem on p. 4 of Taylor's survey [51] is a variation on the latter; note that in the 2-
element `sup-algebras' described there, the absorbent element is the element labelled �1�
rather than that labelled �0�. (The third theorem on that same page deals with de�nability
by linear equations and gives as necessary and su�cient conditions for this that the class
of algebras is closed not only under direct products, subalgebras and homomorphic images
� the basic conditions for equational de�nability in general � but also under `complex
algebras,' by which Taylor here means passing to the power algebra, positively construed.)
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a negative occurrence otherwise. (For example, if t is ¬¬x ∧ ¬(y ∨ x), the
�rst occurrence of x is positive, and its second occurrence, as well as the sole
occurrence of y, is negative.) A variable v occurs positively in an identity
t ≈ u if v has a positive occurrence in t or v has a positive occurrence in u,
and v occurs negatively in t ≈ u if v has a negative occurrence in t or v has
a negative occurrence in u.

With all this talk of positive and negative occurrences, it would be con-
fusing to include in the same sentence the term non-negative to single out
the power algebra construction which includes the empty set, so we just say
�power algebra� to mean this in the formulation of the conjectures below.
(Its correctness would imply the correctness of the corresponding claim for
power algebras positively construed, of course.)

First Conjecture. If no variable occurring in a regular Boolean identity
occurs both positively and negatively in that identity, then the identity also
holds in the power algebra of the 2-element Boolean algebra.

This conjecture would imply a similar transfer for some identities in which
a variable does occurs both positively and negatively, such as x∨¬x ≈ ¬x∨x,
when one of these arises by substitution from another identity (in the present
case x∨y ≈ y∨x) which does not exhibit such mixed occurrences. Though we
are not intending to return from equational logic to sentential logic here, note
also the resemblance to an aspect of `fde emphasized in �5.4 of Burgess [13]:
negative and positive occurrences of a sentence letter in formulas involved in a
correct `fde-claim can be replaced by corresponding occurrences of unrelated
sentence letters without rendering that claim incorrect.

The correctness of this �rst conjecture would not subsume all cases in
which identities are inherited by the power algebra mentioned in it. We
have already seen examples showing that even if the conjectured condition
is su�cient for such inheritance, it is not necessary. Consider the case of ≡
(the bivalent truth-function, rather than the connective). Even though there
is no linear {∧,∨ ¬}-term t(x, y) for which t(x, y) ≈ x ≡ y is a Boolean
identity,25 for the two non-linear terms corresponding to Dale's conjunctive
and disjunctive incarnations of ≡ in FDE, we �nd that equating them:

(x ∧ y) ∨ (¬x ∧ ¬y) ≈ (¬x ∨ y) ∧ (x ∨ ¬y),

gives an identity which continues to hold in the power algebra (of the two-
element Boolean algebra). Yes this identity is not obtainable by substitution
from one satisfying the condition in the �rst conjecture above � one in which

25Potentially confusing here is that fact that the truth-function ≡ counts in Emil Post's
classi�cation of Boolean functions (Urquhart [52], p. 448), as a linear function.
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no variable occurs both positively and negatively. This suggests a bolder
conjecture, with which we close:

Second Conjecture. If every variable occurring positively (negatively) on
either side of a regular Boolean identity occurs positively (resp. negatively)
on the other side, then the identity also holds in the power algebra of the
2-element Boolean algebra.

The world �regular� can be omitted without a�ecting the content here, and
is retained only for parity of formulation with the �rst conjecture.

Appendix: Note on FDE and Grue

One philosophically famous � though, on �rst encounter, apparently strained
� instance of this kind of case-based de�nition illustrated by (3.5) and (3.6)
in the Digression in Section 3 repays closer inspection. It is that of Nelson
Goodman's (see [24]) in which the Ex of that discussion is taken as �x is grue�
and Fx, Gx, and Hx are �x is �rst examined before (some �xed time) t�, �x is
green� and �x is blue�. Goodman's motivation was to pose a problem for the
presumed objectivity of the idea of as yet unsampled cases resembling already
cases, which the request for a justi�cation of (empirical) induction took for
granted, since if the sampled cases in question consist of green emeralds
examined before the chosen t, it can be equally well described as consisting
of grue emeralds. And while for later emeralds to resemble the sampled cases
in respect of being green they will have to be green, to resemble those sampled
in respect of being grue they will have to be blue. So there is no objective
sense to be made of the unsampled cases resembling tout court the sampled
cases. In the course of his discussion (for a reason alluded to below) Goodman
also considers the introduction of another predicate by a de�nition along the
lines of (3.5)/(3,6), namely �bleen� (as E), for which F is as before, while
G and H change places, now representing the properties of being blue and
being green, respectively. We will simplify the situation below, discarding
the blue and bleen elements but have had to introduce them here to make
intelligible a remark of Goodman's quoted in the following paragraph, before
that simpli�cation is e�ected. Those wanting more information on the debate
over grue will �nd Stalker [49] to be a useful compendium of contributions;
for an interesting more recent contribution, see Godfrey-Smith [22].

Apropos of what is essentially the contrast between (3.5) and (3.6), Dunn
([18] p. 472) makes the key point about discriminatory strength: �To begin
with, there are several di�erent ways of de�ning `x is grue,' equivalent in
classical logic, but nonequivalent in relevance logic�. He goes on to consider
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these alternatives with a view to seeing whether, given that blue and green

pick out what Dunn calls relevant properties, the same will have to be said
for grue (and Goodman's bleen), noting that this does not follow unless the
same is also said � implausibly, according to Dunn � for the property of being
examined before a certain time. Protesting against any proposed dichotomy
of predicates into qualitative and non-qualitative, or (we may add in antic-
ipation of David Lewis) natural and non-natural, or (this time anticipating
Dunn) relevant and irrelevant, Goodman had written ([24], p. 79) to forestall
the objection that grue is de�ned in terms of green, blue, and this �examined
before t� predicate (which Goodman calls a `temporal term'): �But equally
truly, if we start with `grue' and `bleen', then `blue' and `green' will be ex-
plained in terms of `grue' and `bleen' and a temporal term.� Quoting this
([18], p. 476) Dunn concedes that he �cannot argue with the purely formal
point that Goodman has made� and emphasizes that his theory of relevant
predication only tells us that if certain predicates are deemed to be relevant
(or to express relevant properties) than the theory tells us that certain other
predicates must also be counted as relevant � somewhat as the theory of
probability does not tell us the probability of particular outcomes (extreme
cases of probability 1 and 0 aside), but only what the consequences of a as-
signing such and such probabilities to such and such outcomes are for the
probabilities of other outcomes.26

In fact, however, one can argue a little over the `purely formal point that
Goodman has made', since it is no longer evident that the interde�nabilities
claimed by Goodman still hold when the underlying propositional logic is
weakened to FDE. Because so many predicate letters are involved in the full
example, we discuss a simpler case here, for which we replace the �blue� in the
de�nition of �grue� by �not green� and so can put the de�nability point more
simply (without reference to �bleen�). That is, we take the grue things, for
present purposes, to be, among the examined (before t) things, those which
are green, and among the unexamined things, those which are not green.
Thus we have the following simpli�ed version of the situation recorded by
(3.5) and (3.6), with Hx appearing, instead, as ¬Gx:

(Fx ⊃ Gx) ∧ (¬Fx ⊃ ¬Gx) (3.7)

(Fx ∧Gx) ∨ (¬Fx ∧ ¬Gx) (3.8)

26Dunn actually chooses to discuss a variant of grue as de�ned by Goodman which, as
he says, �often appears in the literature as a seemingly unconscious simpli�cation of Good-
man's original de�nition,� though the details do not matter here.(The opening passages
of Frank Jackson's paper in the collection [49] discuss this and other distortions of the
original example.)
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In other words, we have the contrast between what was notated in Section
3 as Fx ≡∧ Gx, on the one hand, and Fx ≡∨ Gx, on the other; since the
point concerns the propositional logic of the situation, we now drop the
�x� and treat F and G simply as sentence letters (propositional variables).
While classically the superscripts play no discriminatory role and we can
simply write �≡' here. Still speaking classically, we can use the equivalence
between (F ≡ G) ≡ F and G to de�ne green in terms of grue (here F ≡ G)
and the property of being examined before t (here F ), since taking ` as the
consequence relation of classical logic, we have G a` (F ≡ G) ≡ F . If ` is
taken instead as `fde, however, then there is no de�nable binary connective #
for which we have G a` (F ≡ G) #F , whether ≡ is understood as ≡∨ or as
≡∧. 27 To see this, consider the Dunn�Belnap evaluations v, v′, with v(F ) =
v(G) = b and v′(F ) = b, v(G) = f . (Since the power matrix semantics is
not in play here, we write b rather than {T, F} or TF, etc.) Calculating,
we �nd that v(F ≡∨ G) = v′(F ≡∨ G) = b. So while v and v′ agree on F
and on F ≡∨ G, they do not agree on G, and thus no four-valued binary
operation (to interpret a candidate # connective) exists for determining the
value of G from those of F and F ≡∨ G. Since n is not involved in these
calculations, by the observations in Section 3 (concerning Figure 2), these
considerations show that the same holds for F ≡∧ G. In principle the fact
that the value of F ≡ G for either interpretation of ≡, together with that
of F do not �x the value of G shows only that we cannot interpret # in
such a way that our hypothetical compound (F ≡∧ G) #F and G always
have the same value, this leaves open the possibility that we should still have
(F ≡∧ G) #F a`fde G because all we need is that the values of the left and
right formulas should be equi-designated. However, a brief examination of
cases shows whenever there a four-valued evaluations assigns di�erent values
to formulas ϕ and ψ, these formulas cannot be FDE-equivalent (mutual `fde-
consequences, that is); for example, if we have t = v(ϕ) 6= v(ψ) = b � a �both
values designated� case � we have v(¬ϕ) = f and v(¬ψ) = b, showing that
¬ψ `fde ¬ϕ, and thus, by the considerations about contraposition in Section
2, ϕ `fde ψ, giving us the desired failure of FDE-equivalence.

A treatment of these issues subsuming more candidates (than just ≡∧
and ≡∨) would no doubt be welcome, and some may feel little light is
thrown by such considerations on the issues Goodman had in mind with
his grue example � though a sensitivity to unwanted language-dependence
(`grue as an illegitimate primitive predicate' type responses) was certainly a

27Similarly, if ` is taken as the consequence relation of intuitionistic logic and ↔ is the
usual intuitionistic biconditional, there is no binary # de�nable within (or even conser-
vative addable to) intuitionistic logic for which we have ψ a` (ϕ ↔ ψ) #ϕ, for arbitrary
formulas ϕ,ψ. See Exercise 7.31.14(ii) and surrounding discussion in [30].
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Goodman trademark, so it is of interest to note that the intertranslatability
or interde�nability claims made in the course of pressing such language-
dependence objections themselves exhibit a conspicuous logic-dependence.28

In any case, the title of this Appendix was chosen more as an attention-
grabbing headline and with a view to acknowledging the Dunn's comments
in [18]; the point of logical interest is rather the question of when a logic pro-
vides us with some means of recovering (to within equivalence) a component
ϕi from an n-ary compound F(ϕ1, . . . , ϕn) and the remaining components
(i.e., ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕn) with the aid of a further n-ary connective �,
in the sense of making �(ϕ1, . . . , ϕi−1,F(ϕ1, . . . , ϕn), ϕi+1, . . . , ϕn) equiva-
lent to ϕi. In our case n was 2, F was ≡ (with �∧� or �∨� superscripted),
and we denoted by # a candidate `reciprocal' � connective.
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