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Abstract

The paper first proves the completeness of the (non-modal) first-order predicate
logic presented in Carnap’s 1946 article ‘Modalities and quantification’. By contrast
the modal logic defined by the semantics Carnap produces is unaxiomatisable. One
can though adapt Carnap’s semantics so that a standard completeness proof for a
Carnapian version of predicate S5 turns out to be available.

The purpose of this note is to prove the completeness of the non-modal predicate logic found
in Carnap 1946', and of a Carnapian version of predicate S5, with respect to a semantics
a little different from Carnap’s. I will say at the outset that the results and proof methods
used are not surprising or significantly innovative; and the reason for the note is simply
that, as far as [ am aware, no one has proved specifically the completeness of Carnap’s
1946 predicate logic. In setting this out I shall avoid Carnap’s use of German letters, which
make his work difficult for current readers. Since Carnap’s labels for axioms and so on are
specific to his paper I have used names which are more indicative of their content. Further,
I shall base my presentation of Carnap’s logic on L and D rather than on Carnap’s ~,
V and ‘.. For quantifiers I use Vz in place of (z), and 3z in place of (3z).2 Carnap’s
language of FL (first order logic) contains a denumerable infinity of individual variables
and constants, which can be referred to simply as ‘variables’ or ‘constants’. Carnap uses
the term ‘matrix’ for a (well-formed) formula (wff), and the term ‘sentence’ for a closed
wif, i.e., a wif with no free variables. When it comes to interpreting FL Carnap (p. 49)
assumes denumerable domains. For this reason he is able to represent a domain by a
denumerable set of individual constants — a distinct constant for each individual. The

!Carnap does not claim to prove completeness, and on p. 53 he says that it is not clear whether his
axiom system is complete, since Godel’s completeness theorem (Godel, 1930) “cannot be directly applied”
to it. Carnap’s article predates the completeness proof for first-order predicate logic found in Henkin 1949.
The present note provides a Henkin proof for an axiomatic system equivalent to Carnap’s FC.

2The other truth functions are all definable in terms of D and L; in particular a V 8 may be defined as
(aD>B)DB, ~aasaD L and aA B as ~(a D~p). Carnap takes ~, V and ‘.” (A) as primitive, but for
the points made here these differences do not matter. dza may be defined as ~Vz ~«a. Carnap does not
introduce an explicit definition, but does use 3 on p. 53.
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presence of constants enables there to be atomic sentences like pab. Truth and falsity in
FL are relative to a state-description (Carnap 1946, p. 50, and 1947, p. 9). Formally,
a state—description s for a language £ of first-order predicate logic is a set of atomic
sentences or their negations, such that for every n—place predicate ¢ of £ , and every n-
tuple of constants ay,..., ay, either paj...an € s or ~paj...ay € s, but not both. In place of
relativising the truth of an open formula to an assignment to the variables Carnap defines
truth only for sentences. If s is any state-description, I write s = « to mean that « is true
in s and s = « to mean that « is false in s. The truth of a sentence « in a state-description
s may be defined formally by the following valuation rules:

Vo | s =@ ar...ay if pay...an € s, and s = paj...ay if ~paj...ay € s
[V= ] s = a=0biff a and b are the same constant

VL ]sH L

VD |sEaDpiff sqHaorskE=p

[VV | s E Vza iff s = ala/z] for every constant a, where [a/z] is a with a replacing
every free z.3

s = a means that « is true in s. Carnap does not speak of truth in a state-description, but
speaks of the range of a sentence — which is a set of state—descriptions. Where I have said
s | a, Carnap will say that s is in the range of a. Carnap’s ‘rules of ranges’ (p. 50) then
become [Vp]—[VV], allowing for the adoption of L and D as the primitive truth-functional
operators. Say that a sentence « is valid, or in Carnap’s words L-true, iff s = « for every
state-description s.

Carnap produces an axiomatic basis for what he calls ‘FC’. In Carnap’s terminology
a ‘logic’ is a semantic specification of a set of formulae, while a ‘calculus’ is an axiomatic
specification. ‘FC’ stands for ‘functional calculus’, and I shall use it to refer to the ver-
sion presented here of Carnap’s axiomatic system. Carnap refers to axioms as ‘primitive
sentences’. In place of Carnap’s () to indicate a universal closure of a wif, I shall write
Va. More specifically, where « is any wff, Va: denotes « preceded by a (finite) sequence of
universal quantifiers, in any order, which includes one for every variable free in . (Where
a is a sentence then « itself is an instance of Ya.) With that notation Carnap’s first axiom
schema, D8—1a (p. 52), can be written as:

3This feature of Carnap’s semantics can be thought of as a version of the ‘substitutional’ interpretation of
the quantifiers — to the extent that Leblanc 1973, p. 2, refers to the substitutional account of quantification
as ‘Carnap’s account’. Leblanc 1969 (following Beth 1959, pp. 263-267) provides a completeness proof for a
Carnap-like system. What makes the present completeness proof different is the feature of identity reflected
in [V=], that @ = b is always false when a and b are distinct constants. This latter feature has some
similarities with the interpretation of Wittgenstein’s Tractatus-Logico-Philosophicus (Wittgenstein 1922,
for instance at 5.53) studied in Rogers and Wehmeier 2012, pp. 540-555, though Wittgenstein appears to
suggest that identity statements, like say a = b, and even presumably z = y, cannot even be stated.
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PC Any wif of the form Va where o is a PC—tautology, i.e., where a can be obtained
from a valid formula of the classical propositional calculus by uniform substitution
of wff of £ for its propositional variables.*

and the remaining schemata can be represented as:
V2 V(Vz(a D B) D (Vza D Vzf3))
VQ VY(a D Vza), where z is not free in a.

V1a V(Vza D aly/z]), where afy/xz] is just like a except in having free y in place of free
x, where y is any variable for which z is free

V1b V(Vza D ala/z]), where afa/z] is just like o except in having a in place of free z,
where @ is any constant

I1 Vo 2 =2

I2 V(z = y D (a D B)), where a and §3 are alike except that « has free z in 0 or more
places where 3 has free y.°

I3 a # b where a and b are different constants.
The only transformation rule is modus ponens:

MP Fa,FaDp —Fp

In MP of course, given that - o and - @ D 3, then o and 8 and o D 8 must all be
sentences. Carnap’s axiomatisation follows that of Quine 1940 in restricting theorems to
closed wif. In what follows proofs will be given in outline only, especially where full proofs
may be found of these or similar theorems on pp. 80-115 of Quine’s book. The principal
non—standard feature is I3, which entails that all state descriptions are infinite, and, as
Carnap points out on p. 53, sentences like dz3y = # y are true in universes containing
more than one individual.

4This is slightly more general than the definition Carnap uses, since it requires that the Vs in instances
of Va, where « is an instance of a PC tautology, include all prefixes consisting of universal quantifiers, in
any order, whose variables are those free in «. In this respect I am following Fitch 1941, commenting on
Quine 1940, whose first edition contained an axiom schema stating that the order of two adjacent universal
quantifiers makes no logical difference. This issue is a complex one discussed in some detail in Fine 1983.
What Carnap says on p. 51 is that “( )([My])’ denotes the closure of My, i.e. the sentence formed out of
M. by prefixing universal quantifiers for all variables occurring freely in My, in their inverse alphabetical
order.” He then (footnote 14, p. 52) cites Berry 1941 as establishing that this is sufficient to enable the
proof that the order of a sequence of universal quantifiers is immaterial.

®Carnap, D8—1g, (1946, p. 52), appears to require that 8 must have free y wherever o has free z, but
that seems too stringent, since VaVy(z = y D (pzz D pzy)) is valid.
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We cannot, in Carnap’s basis, appeal to the rule of universal generalisation in the form,
Fa — F Vo a, because Carnap’s theorems are all sentences. Nor can we appeal to the
rule - o — F Vz(af[z/al]), (where afz/a] is o with free z replacing every occurrence of a
in «), since, when a and b are distinct constants we have - a # b, but we do not have
Vz 2 # 0.5 However we can prove the following:

Theorem 1. If - «, and a is any constant, then, for some n > 0, there are constants
bi,..., by such that =Nz ((x # by A ... N x # by) D afx/a]), provided z does not become
bound in afr/a] as a result of the substitution. (We allow the degenerate case in which
there are no bs, so that here n = 0, and we have simply - Vzafz/a].)

Proof. The proof is by induction on the proof of o, and depends on the fact that if F «
then « is closed. First suppose that « is an instance of one of the axiom schemata PC-12.
Then Vz(a[zr/a]) remains an instance of that very same schema. This may be seen by
inspection. So for these cases the theorem holds where n = 0. The remaining case is 13:

I3/ EVa(z £ b D a #b)
13" FVz(x # a D a # x)

I3’ is an instance of PC, and 13" follows from I1 and I2 using V1b.”
Further, MP preserves the rule, since suppose we are given - « and - « D 3. Then, by
the induction hypothesis, we may assume that there are b1, ..., b,, and c, ..., ¢; such that

(1) FVz((z #bi A... Nz #by) D alz/a])

and

(i) FVzx((x#ca A... ANz F#ck) D (afz/a] D Blx/al))
From (i) and (ii), by PC and V- we have

(i) EVz((x £y Ao Az £ by ANx# 1 Ao ANx # ¢x) D Blx/a))

and so the theorem holds for 5. O

The next three results are proved in an appendix:

SCompare Carnap’s remarks in T7.2 and T7.3 in Carnap 1946, p. 51f.
"This may be proved as follows:

2vib (1) Vz(a=zD(a=aDz=a))

(HPC (2) Vz(a=aD(z#aDa#x))

21  (3) Ve(z#aDda#x)
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Theorem 2. If o D 8 then, for some by,...,by, F a DVa((x #bi A... ANz # by) D B[z/al),
provided a does not occur in «

Theorem 3. Where Vza is a sentence and by, ..., b, are any constants then, = (afbi/x] A
o ANalby/x) AVz((x b Ao Az # by) D a)) D Voo

Lemma 4. F Jy(afy/z] D Vza) provided y is not free in Yro.

In proving soundness we make use of the following lemma:

Lemma 5. Where s is any state-description and o is any wff, where the variables free in
QU are Ty, ..., Ty, and s = alay/x1, ..., an /x| for all constants aq, ..., an; then s = Va.

Theorem 6. If+ « then « is L-true

Proof. Soundness may be proved in the usual way, by proving that all axioms are valid
and that MP preserves validity. Lemma 5 guarantees that the schematic axioms may be
stated, without affecting validity, by leaving off the initial V, and replacing each distinct
free variable by a distinct constant not otherwise occurring, and we shall consider them in
this form. Obviously, if « is an instance of a tautology then, for every state-description s,
s | a. For V2, suppose s =5 Vz(a D ) D (Vza D VzfB). So s E Vz(a D B), s E Vza,
but s = Va3; and so for some a, s = Bla/z]. But s E afa/x] D Bla/z], and s E afa/x],
and so s = Bla/x]. For VQ, suppose that s 5 a D Vza. So s = a and s = Vza. But z is
not free in «, and so s = «. For Vla suppose that s 5 Vy(Vza D afy/z]). Then for some
a, s = Vxa D afa/z] and so s = Vxa and s = afa/x] which is a contradiction. This also
covers V1b. For I1 a and a are the same constant, and s =a = a. For 12, if s Fa =10
then these are the same constant, and o and [ are the same sentence, and so s = a D .
Finally if @ and b are different constants then s = a # b. MP preserves validity since if
sEaand s = f then s 5 a D fS. O

In proving completeness we have to shew that if s = « for all state-descriptions then
Frc a. In fact we would like to get the stronger form of completeness by shewing that if
a set A of sentences is FC—consistent then there is a state-description s such that s = «
for every a € A. At this point we have to bear in mind that the set of state-descriptions
is relative to a language £ . For take the set Q = {~Vzpz, pai, ..., pan, ...} where pa; €
Q) for every constant a; in £ . This set is not true in any state-description for £ . We can,
however, extend £ to a language £ * by adding a denumerable infinity of new constants
not in £ , so that Q is satisfiable in £ ¥, though there will be a new Q1 unsatisfiable in
L T. This means that where A is a consistent set of sentences of a language £ then A
may not be satisfiable in £ , though there will be an extension £ T of £ such that A is
satisfiable with respect to the state-descriptions, not of £ , but of £ +.8

8This is a known feature of substitutional quantification. See for instance Dunn and Belnap 1968. It
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Call a set A of sentences of L , FC—consistent (or simply consistent) iff there are no
Q1y..., oy € A such that Fpe ~ (a1 A ... A ay). Suppose A is a consistent set of sentences
of a language £ . A set ' of sentences is mazimal in L iff for every sentence « of L |
either & € I' or ~a € T'. Since FC is finitary A will still be consistent in £ *, where £ T
contains infinitely many constants not in £ , and therefore not in A. The presence of 13
requires a change in what is called on p. 257 of Hughes and Cresswell 1996 the V-property.
In a language without constants a set A has V-property iff for every wif in £ of the form
Vza there is some variable y such that aly/z] D Vxa € A, and the standard technique for
giving a consistent set the V-property, as for instance described in theorem 14.1 on p. 258
of Hughes and Cresswell 1996, has as a consequence that y does not occur in «. However,
I3 makes the sentence a # b D Vx z # b inconsistent where ¢ is any constant distinct from
b, and therefore inconsistent where « is not in z # b. For that reason we shall introduce
the Carnapian V-property, or Vo-property:

Definition. Vo-prop. A set A of sentences of a language L of FC has the Yc-property
i L iff for every sentence Vxa in L there are constants a and by, ...,b, in L such that

ala/z] DVx((x #bi A ... Az #bn) Da) € A.

Lemma 7. Suppose I' is a maximal-consistent set of sentences with the ¥Yc-property, and
suppose that Vza is a sentence such that afa/x] is in T for every constant a of L . Then
Vea € T

Proof. If T" has the V¢-property then there is some a, such that for some by, ..., by, afa/x] D
Ve(z # b A..Ax #b,) Da)) €. So, if afe/z] €T for every constant ¢, then in particular,
albi/z] € T for every 1 <i < n. So, since I' is maximal-consistent, a[bi/z] A ... A a[bn/7]
AVz((x # b1 A ... Nz # by) D a) €T, and so, by theorem 3, Vza € T'. O

For a Carnapian language we may define the (ordinary) V-property of a set A of sen-
tences to hold when, for every sentence Vza, there is some constant a such that afa/z] D
Vza € A. From lemma 7 we have the following:

Corollary 8. If I' is a mazimal-consistent set with the ¥ ¢-property then I' has the V-
property.
The case of a # b D Vz © # b shews that in some cases the V-property requires a constant

already occurring in «. In this case we require b # b D Vx z # b.

Theorem 9. Where A is an FC-consistent set of sentences of a language L then there is
a consistent set A with the VYo-property in a language £ T which contains infinitely many
constants not in L , such that A C A

entails a failure of compactness in the sense that, although every finite subset of a set A of sentence of a
language £ may be satisfied by a state description for £ , A itself may not, though it will be satisfiable
in a language with infinitely constants not in £ . The difference between the present completeness proof
and more standard ones is that in the present case, though not in the standard case, the extension of the
language is effectively accompanied by an extension of the domain.
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Proof. Theorem 9 is proved by specifying a sequence Ag, A1, ..., Ay, ... defined as follows.
Assume that there is an enumeration of wif of £ each of which contains just one free variable,
so that o, contains free x ,, and so on. Ag is A, and, for 1 < n, A, is A1 U{an[a/zy] D
V(o # b1 A ... A xy # bx) D )}, where a is the first constant not already occurring
in o or in any member of A ;,_; and by,..., by are constants such that A,_1 U{ay[a/xn] D
Ven(zy # b1 A ... Nxy # b)) D «)} is consistent. For this to succeed it needs to be shewn
that such a A, exists. If not, then

(i) For every by,...,b; , there are fi,...,0m € Ap—1 such that
Frc (B1 Ao A Bm) D~ (ala/zy] D Vo, ((zn # b1 Ao Ay # bg) D @)).

From (i) we have that there are 7 1,..., v € A ,_1 such that
(ii)) Fpc (v 1 A oo Avi) D afa/zy]

and so, by theorem 2, since a does not occur in A ,_1, there are constants ci,..., ¢, such
that

(iii) Fpc (Y 1 A oo Ay i) D V(g # 1 A oo Ay # cp) D a).

Now (i) holds for every by, ..., by and so, in particular for ¢y, ..., ¢, and so there are 6y, ..., §; €
A, _1 such that

(iv) Fre (01 Ao A Gj) D~Va,((zn # 1 Ao Axy # ¢p) D a).
and so
VM Fre (V1A AYiIAGTA o ANDGG) DVan((zn # a1t Ao Azn # cn) D ).
But from (iii) we have
(vi)Fre (Y1 A o AYiAG T Ao ANOG) DVER((2n # 1 A oo Azn # cn) D ).
which with (v) yields
(vii) Fre~ (11 Ao A A ST A LA G)

in which case A ,_1 would be inconsistent. Let A be the union of all the A ;5. Ais
consistent for the usual reasons. Further A has the V¢ —property in £ 7. O

Finally let T' be a maximal—consistent set containing A. By corollary 8, theorem 9
establishes that I'" has the V-property.

Now let sr, be the state-description which consists of ¢aj...an € sr if paj...an € T,
and ~ay...a, € sy if ~pay...a, € T.

Theorem 10. sy Fa iffa €T.
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Proof. The result is defined for paj...a,, and is obvious for L. If sp = a = b, then these
are the same constant, and from I1 we then have a = b € I'. If sp = a # b, then these
are distinct constants, and from I3 we have a # b € I". The induction for L and D is
standard. Suppose sp = Vza. Then there is a constant a such that sp = afa/z]. So, by
the induction hypothesis a[a/z] ¢ T', and therefore, by V1b, Vza & I". Suppose Vza & T
Since I" has the V-property there is some @ such that aja/z] D Vza. But then aja/z] ¢ T,
and so, by the induction hypothesis, st = afa/z] and so sy o Vza. O

Completeness follows in the usual way.

The main interest of Carnap 1946 is not, however, ordinary non-modal predicate logic.
The purpose of Carnap’s article is to study modal logic. If £ is a language of ordinary first-
order logic we may extend L to obtain a language Ly;. Ly is simply the modal predicate
language which extends £ by the addition of the (monadic) necessity operator [J, and the
formation rule that if « is a wif then so is J «. The idea behind Carnap’s account of
modality is that [J (which he writes as N?) is to be interpreted in such a way that O « is
to be true iff « is valid — or, as Carnap puts it on p. 54, iff « is L-true. We shall make
this precise as follows. Where s is a state-description [V]-[VV] shew how to extend = to
all LPC wff. To extend = to all wif of £y in accordance with D9-5a (p. 54) we add the
condition

[VO mrL] s E Oa iff s’ = « for every state description s'.

Say that a wff is C—walid iff it is true in every state—description, when = satisfies
[Vo|—[VV] and [VO ypr]. One result is that if a is S5—valid then « is C—valid. However
(quantified) S5 is not complete for C-validity. This is because, where @a is an atomic wif,
~Upa is C-valid even though it is not a theorem of S5 — and similarly with any atomic
wif. Carnap specifies an axiomatic system of modal predicate logic, which he calls MFC.
His first set of axioms (p. 54) is simply a basis sufficient for S5:

LPCH Where « is one of the LPC axioms PC-I3 then both « and O« are axioms of MFC.10
K OV(O(a 2 B) D (Oa D 0OB))
T V(Do D «)
5 OV(Oa vO ~Oa)

9The symbol O for necessity was devised by F.B. Fitch in 1945, and first appeared in print in Barcan
1946. I only met Carnap once, in 1970, shortly before his death. I asked him whether he or anyone else he
knew of had ever used L for a necessity operator before Feys 1950, but he could not recall any information
about that. (I find it convenient to use O for logical necessity, which satisfies S5, and L for the kind of
necessity formalised by weaker modal systems.)

0Carnap separates this into a schema (D10-1a) which guarantees that PC is part of the basis, and then
in D10-1, e to k, repeats our V ~-I3.
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BF¢ OV(OVza D VzOa)
BF 0OV(VzOa D OVza)lt

(A straightforward induction on proofs establishes the rule of necessitation, that if « is a
theorem, so is [J a.!?) Carnap then includes some non—standard axioms, which shew that
he is attempting to axiomatise C—validity. These are what Carnap calls ‘Assimilation’,
‘Variation and Generalization” and ‘Substitution for Predicates’. (Carnap 1946, p. 54f.)
In our notation these can be expressed as follows:

Ass OVaVyVzi..Vap((z # 21 A ... ANz # zn) D (0 a DO aly/z])), where a contains no
free variables other than z, ¥, z1,..., zn, and no constants and no occurrences of =.

VG OVaVyVz..Von((z # 21 Ao Nz F 2n Ay # 21 Ao Ny # 2q) D (0aDOaly/z]),

where a contains no free variables other than z, y, z1,..., 2n, and no constants.

SP OV(O « D O B), where « is a non-modal wif, and $ is obtained from « by uniform
substitution of a complex expression for a predicate.

None of these axiom schemata is easy to process, but it is not difficult to see what the
simplest instances would look like. A very simple instance, which is of both Ass and VG is

Ass, OVaVyVz(x # z O (Opzyz O Opyyz))

To establish the validity of Ass, it is sufficient to shew that if @ and c are distinct constants
then Opabe D Opbbe is valid. This is trivially so, since there is some s such that s = pabe,
and therefore for every s, s = O wabe, and so, for every s, s = [0 wabec D @bbe. More
telling is the case of SP. Let ¢ be a one—place predicate and consider

SP, OVz(Opx D O(pzA ~px))

In this case « is @z, while 8 is pxA ~ @z, so that, in Carnap’s words,  ‘is formed from
« by replacing every atomic matrix containing ¢ by the current substitution form of 3’.

"This principle is Carnap’s T9-2 on p. 54 of Carnap 1946. The current name, ‘Barcan Formula’, comes
from an equivalent formula first introduced in Barcan 1946, p. 2, Axiom 11. BF appears to have been first
called the ‘Barcan Formula’ in Prior 1956, p. 60, where it is shewn derivable in S5. Even though Carnap
includes BF¢ as an axiom, it is in fact derivable from the rest of the basis using only principles of non-modal
logic together with LPCp and K. By V1b we have O(Vza D «afa/z]) and so, by K, OVza D Oafa/z] for
every constant a. So choose some a not in Vxa. Then, by theorem 2, we have that there are by, ..., b,
such that - OVza D Vz(x # b1 A ... Az # b,) D Oa). But we also have OVza D Oafb;/z] for 1 < i < n,
and so, by theorem 3, we have (Vxa D Vaxla.

2The only non-trivial case is the axiom T, where we require 0¥(da D «), which is Carnap’s theorem
T4-1u on p. 42.
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Thus we have F~(paA ~ @a), and so F~Opa.'3

A completeness result for C-validity is not possible. For, although Carnap appears
to have it in mind to axiomatise C-validity, it is easy to see that it is not recursively
axiomatisable. For, by [VO ypr], where «v is any LPC wff, v is not LPC-valid iff ~Oa is
C-valid, and so, if C-validity were axiomatisable then LPC would be decidable.!* There is
a hint on p. 57 that Carnap may have recognised this. He is certainly aware that the kind
of reduction to normal form, with which he achieves the completeness of propositional S5,
is unavailable in the predicate case, since it would lead to the decidability of LPC.

It is however worth looking at a modification of Carnap’s semantics which brings it into
line with the current indexical semantics for modal logic.

Let ¥ be a class of state-descriptions, where each s € ¥ satisfies [V]-[VV], and [VOypr]
is replaced by

[VOMmrLy) s | Oa iff ' = a for every s’ € X

Say that a sentence « is valid in 3 iff s = « for every s € 3, and say that « is ¥+ —valid iff
a is valid in every . With this change it is easy to see that ~ya is not ¥ T-valid, since
one need only consider, for instance, a class 3 whose only member is a state-description
s, where s contains @a. In fact one can prove that a Carnapian version of the standard
axiomatic basis for predicate S5 is complete for this semantics. To avoid confusion with
Carnap’s MFC, which does contain the non-standard axioms, I shall refer to the system for
which completeness is to be proved as FC+S5. That is to say, completeness can be proved
with respect to the semantics based on an arbitrary set of state-descriptions, for the basis
which consists of LPCo-BF, but not containing Ass, VG or SP.

It is easy to establish that all the axioms of FC + S5 are ¥ T —valid, and that MP
preserves ¥ T —validity. For completeness we need some standard results from modal logic.
Where A is a set of sentences let L~ (A) denote the set consisting precisely of every sentence
B for which O S is in A. Le., L= (A) ={p: OB € A}.

Lemma 11. Let A be a set of sentences containing ~Oa. Then L~ (A)U{~a} is FC+S5-
consistent.'

The following theorem should be compared with theorem 14.2 on p. 259 of Hughes and
Cresswell 1996.

131.e., where 3 is @z A ~ @z, it replaces a’s . If o had been more complex and contained ¢y as well as
@z, then the replacement would have given pyA ~ ¢y, and so on, where care needs to be taken to prevent
any free variable being bound as a result of the replacement. Substitution of complex expressions for
predicates is a complex business. For a hint of some of the complexities of substitution rules for predicates
see Church 1956 p. 289f. Carnap spells out the rule for substitution for predicates in D10-1p on p. 55.

1 Although that is so it has not always been regarded as a criticism. Cocchiarella 1975 for one welcomes
the various unusual features of Carnap’s logic. (See for instance pp. 45 and 54f.)

15See lemma 6.4 on p. 117 of Hughes and Cresswell, 1996.
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Theorem 12. If T’ is a mazimal-consistent set of sentences in some language (say L)
of modal predicate logic, and T' has the V-property in £ ©, and « is a sentence such that
Oa €T, then there is a consistent set A of sentences of L + with the V-property such that
L T)uU{~a} CA.

Proof. We define a sequence of sentences vg,71, 72 , --- €tc. Yo is ~a. Given 7, we define
Yn+1 as follows. Let Vzd be the n+1th sentence of that form and let a be the first constant
such that

(i) L7(I") U{y A (d[a/z] D Vzd)} is consistent.

Let vn+1 be 7 A (6[a/x] D Vad). Since 7o is~a, L™ (I') U {0} is consistent from lemma
11. We shew that provided L™ (I") U { »} is consistent there will always be an a which
satisfies (i). Suppose there were not. Then, for every constant a, there will exist some
{B1, ..., Bx} € L™ (T') such that

(i) F (81 A A Bi) D (4 D~ (3la/a] > Vb))
so, by principles of S5'6
(iii) F (861 A ... AOBk) D O(yn D~ (d]a/z] D Vo))
But T is maximal consistent and 08y, ..., 08, € T, and so
(iv) O(yn D~ (8]a/x] D Vxd)) € T.

Now (iv) holds for every constant a, and I" has the V-property. What this means is this. Let
z be some variable not occurring in ¢ or in 7y, and consider YzO(y, D~ (d[z/z] D Vz0)).
Since I' has the V-property there will be a constant a such that

(v) O(m D (~(0[a/z] D Vxd)) D V20(ym D~ (6[z/x] D Vxd)) € T
and so, by (iv)
(vi) V20(vn, D~ (d[z/z] D Vzd)) €T
and so, by BF,
(vil) OVz(y, D~ (0[z/x] D Vxd)) € T
Since z does not occur in v, or § then by V- and VQ we have in T’
(viil) O(vyn, D Vz ~(0[z/z] D Vo))

But by lemma 4

16See p. 117 of Hughes and Cresswell 1996.
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(ix) F 3z(d[z/x] D Vo)

But then 0 ~~, € I"and so ~~,, € L™ (I") which would make L™ (I")U{~,, } inconsistent. [

Now assume that A is an FC+S5-consistent set of sentences, and that I' is a maximal-
consistent set of sentences with the V-property constructed in accordance with the proce-
dure of theorem 9. By corollary 8, I" has the V-property. Let I' T be the set of all maximal
consistent sets w with the V-property, such that L™ (I') € w. The presence of T ensures
that L™ (I') C T, and therefore that I' € I'". Let ¥ be the set of all state descriptions s,,
where, for w € I'", s, is the state-description which consists of paj...a, € if pai...ay € w,
and ~@ay...an € Sy if way...an &€ w. We then have the following analogue of theorem 10:

Theorem 13. Foranyw € ' t, s, Eaiffa € w

Proof. The inductive proof is as for theorem 10, except for the induction for [J. Suppose
that 8 € w. Then OB € I, since if not, by 5, J ~5 € I', and then ~[J8 € w. But if
0B € T then B € w' for every w’ € I'*, and so, by the induction hypothesis, s, = 3 for
every s,y € X, and so s, = OB, If 08 & w then ~0Op € T, since if JF € T then OB € T
and then 0B € w. But if ~0B € I' then, by theorem 12, there is some w’ € I'* such that
B ¢ w'. So, by the induction hypothesis, s,» = 8, and so s,, = Of. O

From theorem 13 it follows that the members of A are true in sp, and therefore, since
' € I'", true in some s € ¥, thus establishing the completeness of FC+S5 with respect to
Y- validity.

Finally we shall revisit Ass-SP. As noted, neither they nor any other recursively specified
axiom set is complete for C-validity. However, a rather trivial completeness proof is possible
based on ¥ T —validity. MFC is FC + S5, with the addition of all instances of Ass-SP. Let
a sentence a be MFC—walid iff « is valid in every class 3 of state-descriptions on which
every instance of Ass-SP is valid. It is trivial that MP preserves MFC—validity.!'” So if
Fyvre @ then a is MFC—valid. If 4ype « then, where A consists of all instances of Ass-SP,
AU {~a} is FC+S5-consistent. So, according to theorem 13, there is a class X of state
descriptions such that, for some s € ¥ | every instance of Ass-SP is true at s but « is not;
which is just to say that « is not MFC—valid.

Appendix: Proofs of theorems 2 and 3, and lemma 4:

The proofs of the following three results have no theoretical interest, except to establish
that they do indeed follow from Carnap’s axioms, as presented in this paper. Where the

Further, assuming the consistency of the part of set theory needed to define the class of all state-
descriptions for a denumerable language, all of Ass-SP will be valid on that class, and so MFC will be
consistent.

Australasian Journal of Logic (11) 2014, Article no. 3



58

justification for a line of the proof is given by merely citing earlier lines of the proof the
line is obtained from an instance of PC or V - and applications of MP.

Theorem 2:

Proof. The theorem may be proved as follows. Assume

(Ha>p
Then, by theorem 1, there are by,..., b, such that

(2) Vz((x # b1 A ... Nz # by) D (oD p)[z/al])

But a does not occur in o and so

(B) Ve ((x # by A ... Nz # by) D (oD Plz/al]))
So, by PC and V ~,

(4) Vea D Vz((x # by A ... Az # by) D Blz/al))

But « is a sentence since a D (3 is a theorem, and so, by VQ

(5) a D Vzou

(4)(5) PC (6) a DVr((x # by A ... Nx # by) D Plx/al))
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Theorem 3:
Proof.
11,12 (1) Vaz(z=bDb=2)(1<i<n)
12,Vib (2) Vz(bi=2z D (albi/z] D a))
@) (3) Valz= b > (afbi/s] 5 a))
(3) (4)  Vz(albi/z] D (ac =bi D))
(4) () Valalbi/s]) o V(s = b > a)
(5) (6) Vz((albi/z]A...ANalby/z]) DVe((z =01 V..V =1by) Da))
VQ (7)) (afbi/z] A .. Aa[ n/z]) DV (afbi/z] A ... A alby/z])
6)(7)  (8) (a[bi/z]A...ANalby/z]) DVz((x =b1V..Vz=0by) D a)
PC 9) Ve(((z=b1V..Vz=by) Da)D(((z#bi1N... Nz # by) D a) D))
(9)V2  (10) Vz((z=b1V..Vez=by) Da)DVe(((z #b1 A... Nz # by) Da)Da))
(10)v> (11) Vz((z =b1V..Vz=by) Da)) D (Vz((x £ b1 A ... Nz # by) D a) D Vza)
(8)(11) (12) (afbr/z] A ... Aa[by/z] AVz((x # b1 Ao Az # by) D a)) D Vra
O
Lemma 4:
pPC (1) Vza D (ala/z] D Vza)
V1b PC Defd (2) (afa/z] D Vza) D Jy(aly/z] D Vza)
Quine 1940, p. 112, *170 (3) Yyaly/z] D Vza
(1)(2)(3) PC (4) Yyaly/z) > 3y(oly/a] > Vea)
PC (5) Yy(~aly/z] > ¥za) > aly/z])
(5) Vv~ (6) Yy~ (aly/z] D Vza) D Vyaly/z]
(6) PC Def3 (7) ~Vyaly/z] D Jy(aly/z] D Vza)
(4)(7) PC (8) Fy(aly/s] > Yaa)
0
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