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Abstract: An equivalence is a binary relational system A = (A, ρA) where ρA is an
equivalence relation on A. A simple expansion of an equivalence is a system of
the form (Aa1 � � �an) were A is an equivalence and a1, . . . , an are members of
A. It is shown that the Fraenkel–Carnap question when restricted to the class of
equivalences or to the class of simple expansions of equivalences has a positive
answer: that the complete second-order theory of such a system is categorical, if
it is finitely axiomatizable.

1 
In the late 1920’s Fraenkel and Carnap independently raised the question of
whether or not every semantically complete, finitely axiomatizable theory is
categorical. Carnap, but not Fraenkel, restricted attention to theories formu-
lated in the simple theory of types. A positive answer to Carnap’s question
implies that a finitely axiomatizable theory is semantically complete iff it is
categorical. Carnap announced a positive answer. However, his proof was
flawed. It appears that the question was forgotten until the beginning of this
century. A related result was established by the late 1960’s: that for n > 2,

George Weaver and Irena Penev, “Fraenkel–Carnap Questions for Equivalence Relations”, Australasian Journal of Logic (10) 2011, 52–66

mailto:gweaver@brynmawr.edu
mailto:ipenev@math.columbia.edu
http://www.philosophy.unimelb.edu.au/ajl/2011
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2011 53

a semantically complete, finitely axiomatizable and satisfiable theory formu-
lated in an nth-order language has models of a single cardinality and that this
cardinal is characterizable in the language in the sense that there is a sentence in
the language true on all and only interpretations of the language of that cardi-
nality [8, 9]. It follows that if the non-logical vocabulary is empty, then every
finitely axiomatizable, semantically complete theory is categorical. A proof of
this consequence, due to Dana Scott, is outlined in [4].

The Fraenkel–Carnap question was rediscovered by Awodey, Carus and
Reck [2, 3, 4]. Later papers have considered restricting the Fraenkel–Carnap
question to theories formulated in second-order languages [13, 14]. Even in
this case, the Fraenkel–Carnap question remains open. Some partial positive
answers have been obtained. The general approach has been to restrict atten-
tion to subclasses of the class of interpretations of the language and to show
that the complete theory of a member of the class is categorical, if that theory
is finitely axiomatizable [3, 13, 14]. Some of these answers are consequences of
results in first-order model theory. For example, it follows from Theorem 22 [7,
page 712] that the second-order theory of any finite interpretation is categori-
cal, whether or not that theory is finitely axiomatizable. When the non-logical
vocabulary is finite it can be shown, in addition, that the first-order theory of a
finite interpretation is both finitely axiomatizable and categorical [5, page 106].
The purpose of this paper is to add to the list of classes for which the Fraenkel–
Carnap question has a positive answer. Consider the class of binary relational
systems (A, ρ) were ρ is an equivalence relation on A. Members of this class
are called equivalences. There are infinite equivalences whose second-order the-
ories are finitely axiomatizable. For example, let A be countably infinite and ρ
be the identity relation of A. It is shown that the Fraenkel–Carnap question
for the class of infinite equivalences has a positive answer. In broad outline,
reasoning is analogous to that for Dedekind algebras [13]: associate a cardinal
valued function with each member of the class (in the case of equivalences, the
partition function for that equivalence), and show that the functions encode
the structure of their associated members in the sense that two members are
isomorphic iff their associated functions are identical. Reasoning proceeds by
showing that if φ is a second-order sentence all of whose models are equiva-
lences and there are models of φ of cardinality β that are not isomorphic, then
there is a second-order sentence true on some models of φ of cardinality β, but
false on others. Thus, the theory generated by φ is not semantically complete.
The fact that the sentence φ has models of cardinality β whose partition func-
tions are different allows for the selection of a model of φ of cardinality β that
is minimal among the models of φ of that cardinality in a way that can be ex-
pressed by a second-order sentence. The sentence expressing this minimality
distinguishes between models of φ.

Given L, a second-order language with a finite non-logical vocabulary, and
∆, a class of interpretations for L, ∆ satisfies the Fraenkel–Carnap property pro-
vided the complete second-order theory of any member of ∆ is categorical,
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if it is finitely axiomatizable. The Fraenkel–Carnap property can be reformu-
lated in a way that suggests natural generalizations. One of these is the quasi
Fraenkel–Carnap property. Let A be an interpretation for L. A pure sentence in L
is a sentence whose non-logical vocabulary is empty. The pure theory of A in L is
the set of pure sentences in L that are true on A. Th(A) is the theory of A in
L. A set of sentences, T , is a basis for Th(A) provided the logical consequences
of T are exactly the members of Th(A). Th(A) is finitely axiomatizable provided
some finite subset of Th(A) is a basis for Th(A). Th(A) is quasi-finitely axioma-
tizable provided some finite subset of Th(A) together with the pure theory of
A is a basis for Th(A). A is finitely characterizable provided there is T , a finite
subset of Th(A), such that all models of T are isomorphic; and A is quasi-finitely
characterizable provided there is T , a finite subset of Th(A), such that all mod-
els of T of the same cardinality are isomorphic. ∆ satisfies the Fraenkel–Carnap
property provided every member of ∆ whose theory is finitely axiomatizable is
finitely characterizable.

If A is quasi-finitely characterizable, then Th(A) is quasi-finitely axioma-
tizable [14, Lemma 4.1, page 287]. ∆ satisfies the quasi Fraenkel–Carnap property
provided for all A 2 ∆, if Th(A) is quasi-finitely axiomatizable, then A is quasi-
finitely characterizable. Assume that L is homogeneous in the sense that for each
member of the non-logical vocabulary of L there is a variable in the vocabulary
of L of the same grammatical category. Let A be an interpretation of cardinality
β. If Th(A) is finitely axiomatizable, then all models of Th(A) are of cardinality
β and β is characterizable in L in the sense that there is a pure sentence in L true
on all and only interpretations of cardinality β [14, Corollary 2.2, page 286]. If A

is quasi-finitely characterizable and β is characterizable, then A is finitely char-
acterizable. Hence, any class that satisfies the quasi Fraenkel–Carnap property
also satisfies the Fraenkel–Carnap property.

LQ is a second-order language whose non-logical vocabulary consists of a
single binary relational constant, Q. Interpretations for LQ are binary relational
systems, that is, ordered pairs A = (A, ρA) where A is a non-empty set (the
domain of A) and ρA is a binary relation on A. Sentences in LQ are interpreted
in the binary relational systems in the “standard” way. An equivalence is a binary
relational system in which ρA is an equivalence relation onA. It is shown below
that the class of infinite equivalences satisfies the Fraenkel–Carnap property.

2     
E is the class of infinite equivalences. E is a finitary class in LQ in the sense that
there is a finite set of sentences in LQ whose models are exactly the members
of E. For A and B, interpretations for LQ, A and B are equivalent in LQ iff
Th(A) = Th(B). The following is direct from Theorem 5.1 of [14, page 288]
and the fact that LQ is homogeneous.
 1 The following are equivalent:
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1. E satisfies the quasi Fraenkel–Carnap property; and

2. for all infinite cardinals β and all sentences φ in LQ, if all models of φ are in E
and all models of φ of cardinality β are equivalent in LQ, then all models of φ of
cardinality β are isomorphic.

The function f is an isomorphism from A to B iff f is a bijection from A to B and
for all a, d 2 A, (a, d) 2 ρA iff (f(a), f(d)) 2 ρB. A and B are isomorphic iff there
is an isomorphism from A to B. An automorphism on A is an isomorphism from
A to itself. If C is a non-empty subset of A, A[C] is the subsystem of A generated
by C. C is the domain of A[C] and ρA[C] = ρA \ C2.

Assume that A is an equivalence of cardinality β. A/ρA is the partition on
A induced by ρA. Members of this partition are the equivalence classes of the
members of A relative to ρA([a]A). These classes are the cells of the partition.
P(A), the partition function for A, is a cardinal valued function defined on the
cardinals less than or equal to β. The value of this function at the cardinal κ
is the number of cells in A/ρA of cardinality κ. In essence, P(A) encodes the
structure of A.
 2 Assume that A and B are members of E. Then, the following are equivalent:

1. A and B are isomorphic; and

2. P(A) = P(B).

Proof: Suppose that f is an isomorphism from A to B and that a 2 A. [a]A has
the same cardinality as [f(a)]B. Thus for all cardinals κ less than or equal to the
cardinality of A, P(A)(κ) 6 P(B)(κ). Since the inverse of f is an isomorphism
from B to A, P(B)(κ) 6 P(A)(κ), and P(A) = P(B).

Suppose that P(A) = P(B). For each cardinal κ less than or equal to the
cardinality of A, A/ρA[κ] is the set of cells in A/ρA of cardinality κ. B/ρB[κ] is
the set of cells in B/ρB of cardinality κ. By supposition, there is a bijection fκ
from A/ρA[κ] to B/ρB[κ]. Let g be the union of the fκ. g is a bijection from
A/ρA to B/ρB that preserves the cardinality of cells. Let C be a cell in A/ρA.
A[C] is an equivalence. In the same way, B[g(C)] is an equivalence. fC is any
bijection from C to g(C). fC is an isomorphism from A[C] to B[g(C)]. Let f be
the union, over the cells in A/ρA, of the fC. So f is an isomorphism from A to
B.

If D is a set, then cardD is the cardinal number of the set D. φ(S) is a
formula whose one and only free variable is the set variable S. φ(S, S 0) is a
formula whose only free variables are the set variables S and S 0 where S and
S 0 are different and the first free occurrence of S in φ(S, S 0) occurs before (to
the left of ) the first free occurrence of S 0 in φ(S, S 0). If A is a binary relational
system and D and D 0 are subsets of A, A |= φ(S)[D] indicates that D satisfies
φ(S) in A; and A |= φ(S, S 0)[D,D 0] indicates that (D,D 0) satisfies φ(S, S 0) in A,
when D is the value of S and D 0 is the value of S 0.
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In the following, β is a non-zero cardinal, Γ is a collection of cardinals each
of which is less than or equal to β, Σ is a set of ordered pairs whose coordinates
are cardinals less than or equal to β. The pure formula φ(S) describes Γ in β iff
for all A, a binary relational system of cardinality β, and all D, a subset of A,
A |= φ(S)[D] iff cardD 2 Γ . Γ is describable in β iff some pure formula φ(S)

describes Γ in β. The pure formula φ(S, S 0) describes Σ in β iff for all A, a binary
relational system of cardinality β, all D, D 0 subsets of A, A |= φ(S, S 0)[D,D 0]

iff (cardD, cardD 0) 2 Σ. Σ is describable in β iff there is a pure formula φ(S, S 0)

that describes Σ in β. The pure formula φ(S) describes κ in β iff φ(S) describes
{κ} in β. κ is describable in β iff {κ} is describable in β.
 3 Assume that Γ is a non-empty set of cardinals each6 β and that Γ is describ-
able in β. Then, the least member of Γ is describable in β.

Proof: Let φ(S) be that pure formula that describes Γ in β. .(S, S 0) is a pure
formula such that for all A, a binary relational system, all D and D 0, subsets of
A, A |= .(S, S 0)[D,D 0] iff cardD 6 cardD 0. ψ(S) is the pure formula

(φ(S) & 8S 0(φ(S 0) � .(S, S 0))). (1)

ψ(S) describes the least member of Γ in β.

 4 Assume that all models of φ are equivalences and that Γ is the collection of
those cardinals κ 6 β such that there are models of φ of cardinality β whose partition
functions differ at κ. Then,

1. Γ is empty iff all models ofφ of cardinality β are isomorphic; and

2. if Γ is non-empty, then Γ is describable in β.

Proof: Assume that φ and Γ are as above. The first condition is immediate
from Lemma 2.

Suppose that Γ is non-empty. Reasoning proceeds by constructing a pure
sentence that describes Γ in β. Cell(x, S) is the formula

(S(x) & 8y(S(y) � Q(x, y))). (2)

If C is an equivalence, a 2 C andD is a subset of C, then C |= Cell(x, S)[a,D] iff
D = [a]C. Cell(S) is the formula

9xCell(x, S). (3)

The set D satisfies Cell(S) in the equivalence C iff D is a cell in C/ρC.
If C is an equivalence, D 2 C/ρC and D 0 is a subset of C, then D 0 is a

witness set for D in C iff D 0 includes one and only one member from each cell in
C/ρC[cardD]. The existence of witness sets for each cell is a consequence of the
axiom of choice. Reasoning proceeds by constructing a formula that defines
the witness relation in C. There is a pure formula Eq(S, S 0) such that for all A,
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a binary relational system, and all D,D 0, subsets of A, A |= Eq(S, S 0)[D,D 0] iff
cardD = cardD 0.

Witness(S 0, S) is the conjunction of the following:

9x(S 0(x) & S(x)), (4)

Cell(S), (5)

8S 00((Cell(S 00) & Eq(S 00, S)) � 9x(S 00(x) & S 0(x))), (6)

8y(S 0(y) � 9S 00(Cell(y, S 00) & Eq(S 00, S)), (7)

8xy((x 6= y & S 0(x) & S 0(y)) � ∼Q(x, y)). (8)

If C is an equivalence,D andD 0 are subsets ofC, then C |= Witness(S 0, S)[D 0, D]

iff D 2 C/ρC and D 0 is a witness set for D. While the partition function for
C is not definable in C, it is representable in C in the sense that there is a for-
mula φ(S, S 0) such that C |= φ(S, S 0)[D,D 0] iff P(C)(cardD) = cardD 0. Such a
formula represents P(C) in C. PF(S, S 0) is the disjunction of the following:

9S 000S 0000(Eq(S, S 000) & Eq(S 0, S 0000) & Witness(S 0000, S 000)), (9)

(∼9S 00(Cell(S 00) & Eq(S 00, S)) & 8x∼S 0(x))). (10)

PF(S, S 0) represents the partition function P(C) in C.
If R is a binary relational variable and ψ is a formula in which the binary

relational constant, Q, occurs but R does not occur, then ψ(R) is the result of
replacing every occurrence of Q in ψ by R. Let R and R 0 be binary relational
variables not occurring in φ or in PF(S, S 0). G(S) is the pure formula

9RR 0S 0S 00(φ(R) & φ(R 0) & PF(S, S 0)(R) & PF(S, S 00)(R 0) & ∼Eq(S 0, S 00)). (11)

G(S) describes Γ in β.

 5 Assume that all models of φ are equivalences and that there are models of
φ of cardinality β that are not isomorphic. Then, there are models of φ of cardinality β
that are not equivalent.

Proof: Let Γ be as in Lemma 4. By Lemma 2, Γ is non-empty. Let κ be the
least member of Γ . By Lemma 4 and Lemma 3, κ is describable in β. Let ψ(S)

describe κ in β. Let Θ = {P(A)(κ)|A is a model of φ of cardinality β}. By
assumption, Θ contains at least two cardinals. Let α be the least member of Θ
and γ be any member of Θ− {α}. There are A and B, models of φ of cardinality
β, such that P(A)(κ) = α and P(B)(κ) = γ. Reasoning proceeds by showing
that these models of φ are not equivalent. Suppose that α = 0. The following
sentence is true on A but false on B:

8S(Cell(S) � ∼ψ(S)). (12)
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Suppose that α is not 0. The following sentence is true on A but false on B:

9SS 0(PF(S, S 0) & ψ(S) & 8RS 00((φ(R) & PF(S, S 00)(R)) � .(S 0, S 00))). (13)

The following is immediate from the above, Lemma 1 and the observation
that LQ is homogeneous.

 1 E satisfies both the quasi Fraenkel–Carnap property and the Fraenkel–
Carnap property.

3    
For each n > 1, Kn = {Q} [ {c1, . . . , cn} where c1, . . . , cn are distinct individ-
ual constants. Ln is the second-order language with non-logical vocabulary Kn.
Interpretations for Ln are of the form (Aa1 � � �an) where A is a binary rela-
tional system, a1, . . . , an are members of A and ci denotes ai in (Aa1 � � �an).
(Aa1 � � �an) is a simple expansion of A. En = {(Aa1 � � �an) |A 2 E}. It is shown
in this section that En satisfies the quasi Fraenkel–Carnap property. Since Ln
is homogeneous, En also satisfies the Fraenkel–Carnap property.

If (Aa1 � � �an) and (Bb1 � � �bn) are interpretations for Ln and f is a func-
tion, f is an isomorphism from (Aa1 � � �an) to (Bb1 � � �bn) provided f is an iso-
morphism from A to B and f(ai) = bi, for all i. (Aa1 � � �an) and (Bb1 � � �bn)

are isomorphic provided that there is some isomorphism from (Aa1 � � �an) to
(Bb1 � � �bn).

Since E is a finitary class in LQ, En is finitary in Ln. Hence by Theorem
5.1 [14], to show that En satisfies the quasi Fraenkel–Carnap property it suffices
to show that for all φ, a sentence in Ln, and all cardinals β, if all models of φ are
in En and all models of φ of cardinality β are equivalent in Ln, then all models
of φ of cardinality β are isomorphic.

 6 Assume thatφ is a sentence in Ln all of whose models are in En and that β is
an infinite cardinal. Then, if all models of φ of cardinality β are equivalent in Ln, then
there isψ, a sentence in LQ, such that

1. A is a model ofψ iff there are a1, . . . , an inA such that (Aa1 � � �an) is a model
ofφ;

2. all models ofψ are in E;

3. all models ofψ of cardinality β are equivalent in LQ; and

4. all models ofψ of cardinality β are isomorphic.
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Proof: Suppose that all models of φ of cardinality β are equivalent in Ln. Let
x1, . . . , xn be distinct individual variables not occurring in φ. ϕ is the result
of replacing every occurrence of ci in φ by an occurrence of xi, for all i. ψ is
9x1 � � � xnϕ. Conditions 1, 2 and 3 are immediate. Condition 4 follows from
condition 3 and Theorem 5.

Lemma 6 essentially reduces the problem of showing that En satisfies the
quasi Fraenkel–Carnap property to the study of automorphisms on the mem-
bers ofE. To understand this, consider the following. Suppose that (Aa1 � � �an)

and (Bb1 � � �bn) are models of φ of cardinality β. Then A and B are models
of ψ of cardinality β. There is an isomorphism f from A to B. f is an iso-
morphism from (Aa1 � � �an) to (Bf(a1) � � � f(an)). Hence, (Aa1 � � �an) and
(Bf(a1) � � � f(an)) are equivalent in Ln. Further, if g is any automorphism on B

that takes f(ai) to bi, for all i, then g is an isomorphism from (Bb1 � � �bn) to
(Bf(a1) � � � f(an)). Thus, the composition of f and g is an isomorphism from
(Aa1 � � �an) to (Bb1 � � �bn). The next lemma provides conditions necessary
and sufficient for the existence of an automorphism on a member of E.
 7 Assume that A is an infinite equivalence and that a1, . . . , an, d1, . . . , dn
are inA. Then the following are equivalent:

1. there is f, an automorphism on A, such that f(ai) = di for all i; and

2. for all i, j, if 1 6 i, j 6 n, then

(a) ai 6= aj iff di 6= dj;
(b) (ai, aj) 2 ρA iff (di, dj) 2 ρA; and
(c) card [ai]A = card [di]A.

Proof: Condition 2 is immediate from Condition 1. Suppose that condition
2 holds. There are two cases to consider. Supppose that for all i and j, if
i 6= j, then [ai]A and [aj]A are disjoint. It follows from condition 2(c) that
for all i, there is fi, a bijection from [ai]A to [di]A such that fi(ai) = di. Let
h = f1[� � �[fn. h is bijection from [a1]A[� � �[ [an]A to [d1]A[� � �[ [dn]A and
h(ai) = di, for all i. Further, h is an isomorphism from A[[a1]A [ � � � [ [an]A]

to A[[d1]A [ � � � [ [dn]A]. A = [a1]A [ � � � [ [an]A iff A = [d1]A [ � � � [ [dn]A.
Thus, if A = [a1]A [ � � � [ [an]A, then h is the desired automorphism on A.
Suppose that A 6= [a1]A [ � � � [ [an]A. Then A 6= [d1]A [ � � � [ [dn]A. Let B = A-
([a1]A [ � � � [ [an]A) and C = A-([d1]A [ � � � [ [dn]A). Both A[B] and A[C] are
equivalences of the same cardinality. If g is an isomorphism from A[B] to A[C],
then h[g is an automorphism on A. Reasoning proceeds by applying Lemma 2
to show that A[B] and A[C] are isomorphic. Let δ be the cardinality of B and let
κ be a cardinal6 δ. Finally, for each i, let δi be the cardinality of [ai]A. Suppose
that κ 6= δi, for all i. Thus, P(A[B])(κ) = P(A)(κ) and P(A[C])(κ) = P(A)(κ).
Suppose that there is i, 16 i 6 n, such that κ = δi. Since h is an isomorphism,
P(A[[a1]A [ � � � [ [an]A])(κ)= P(A[[d1]A [ � � � [ [dn]A])(κ). Further, P(A[B])(κ) =
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P(A)(κ) − P(A[[a1]A [ � � � [ [an]A])(κ) and P(A[C])(κ) = P(A)(κ) − P(A[[d1]A [

� � � [ [dn]A])(κ). Hence, P(A[B]) = P(A[C]).
Suppose that there are i and j, between 1 and n, such that i 6= j and [ai]A

and [aj]A are not disjoint. By condition 2(b), [di]A and [dj]A are not disjoint.
Thus, there is t >1, {a 0

1, . . . , a
0

t}� {a1, . . . , an}, and {d 0

1, . . . , d
0

t}�{d1, . . . , dn}

that satisfy the following:

1. if i 6= j, then [a 0

i]A and [a 0

j]A are disjoint, and [d 0

i]A and [d 0

j]A are disjoint;

2. for each ai there is a 0

j such that (ai, a
0

j) 2 ρA and for each di there is d 0

j

such that (di, d 0

j) 2 ρA;

3. a 0

1, . . . , a
0

t and d 0

1, . . . , d
0

t satisfy condition 2 of Lemma 7.

Proceeding as in the first case, for each i, between 1 and t, there is fi such
that fi is a bijection from [a 0

i]A to [d 0

i]A, fi(a 0

i) = d 0

i; and, if aj 2 [a 0

i]A, then
fi(aj) = dj, for all j between 1 and n. h is then the union of the fi and the
automorphism f is constructed as in the first case.

 8 Assume that φ is a sentence in Ln all of whose models are in En and that
all of the models of φ of cardinality β are equivalent in Ln. Then, if (Aa1 � � �an) and
(Ad1 � � �dn) are models ofφ of cardinality β, then (Aa1 � � �an) and (Ad1 � � �dn) are
isomorphic.

Proof: Suppose that (Aa1 � � �an) and (Ad1 � � �dn) are models of φ of cardinal-
ity β, but are not isomorphic. Then, there is no automorphism on A taking ai
to di, for all i. By Lemma 7, there is some j such that card [aj]A 6= card [dj]A.
Let card [aj]A < card [dj]A. Let Γ be the set of all cardinals α for which there
are b1, . . . , bn in A such that (Ab1 � � �bn) is a model of φ and α = card [bj]A <

card [dj]A. By supposition, Γ is non-empty. Let κ be the least member of Γ .
Thus, there are b1, . . . , bn in A such that (Ab1 � � �bn) is a model of φ and
card [bj]A = κ. (Ab1 � � �bn) and (Ad1 � � �dn) are equivalent in Ln. Reasoning
proceeds by finding a sentence true on one but false on the other. There is a
pure formula <(S, S 0) such that for all relational systems B and all D and D 0,
subsets of B,B |= <(S, S 0)[D,D 0] iff cardD < cardD 0. Let ϕ be as in the proof
of Lemma 6. Consider the sentence

9SS 0x1 � � � xn(ϕ & Cell(xj, S) & Cell(cj, S 0) & <(S, S 0)). (14)

This sentence is true on (Ad1 � � �dn) but false on (Ab1 � � �bn).

The following is then immediate from Lemma 8 by the reasoning following
the proof of Lemma 6
 9 Assume that φ is a sentence in Ln all of whose models are in En and that
β is an infinite cardinal. Then, if all models of φ of cardinality β are equivalent in Ln,
then all models ofφ of cardinality β are isomorphic.
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Finally, Corollary 2 is immediate from Theorem 9 and the observation that Ln
is homogeneous.
 2 For alln, En satisfies both the quasi Fraenkel–Carnap property and the
Fraenkel–Carnap property.

4  
This section is devoted to an application of Corollary 1. If A is an infinite equiv-
alence, then certain properties of A can be characterized in terms of the action
of the partition function for A: A is quasi-finitely characterizable iff P(A) is
describable in cardA; and, A is finitely characterizable iff P(A) is describable in
cardA and cardA is characterizable in LQ. Thus, by Corollary 1, Th(A) is quasi-
finitely axiomatizable iff P(A) is describable in cardA; and, Th(A) is finitely
axiomatizable iff P(A) is describable in cardA and cardA is characterizable in
LQ. The following Lemma plays an important role in the proofs of these re-
sults.
 10 Assume that φ in a sentence in LQ. Then, there is a pure sentence ψ such
that for all C, a binary relational system, C is a model of ψ iff all models of φ of cardC
are isomorphic.

Proof: It is assumed that the logical vocabulary of LQ includes unary functional
variables. While this assumption is not essential, it makes the construction of
ψ more transparent. Let g be a unary functional variable. bi (g) is a pure
formula such that if C is a binary relational system and ρ is a unary function on
C, then C |= bi (g)[ρ] iff ρ is a bijection on C.

Let R and R 0 be binary relational variables not occurring in φ or bi (g).
Iso (g, R, R 0) is the pure formula

(bi (g) & 8xy(R(x, y) � R 0(g(x), g(y)))). (15)

φ� is the pure sentence

8RR 0((φ(R) & φ(R 0)) � 9gIso (g, R, R 0)). (16)

Let C be a binary relational system of cardinality β. Clearly, φ� is true on C, iff
all models of φ of cardinality β are isomorphic.

Lemma 10 can be extended to any homogeneous second-order language
whose non-logical vocabulary is finite. The spectrum of a sentence is the class of
the cardinals of the models of the sentence. The spectrum of the sentence φ�

above is the collection of all cardinals κ such that all models of φ of cardinality
κ are isomorphic. All models of {φ,φ�} of the same cardinality are isomorphic.
Hence, if A is a model of {φ,φ�}, then A is quasi-finitely characterizable.
 11 Assume that A is an infinite equivalence of cardinality β. Then, A is quasi-
finitely characterizable iff P(A) is describable in β.
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Proof: Assume that A is an infinite equivalence of cardinality β. Suppose that
P(A) is describable in β. Let ψ(S, S 0) be a pure formula that describes P(A) in
β. υ is a sentence in LQ true on all and only equivalences. ϕ is the sentence

8SS 0(Witness(S 0, S) � ψ(S, S 0)). (17)

θ is the sentence

8S 0S((∼9S 00(Cell(S 00) & Eq(S 00, S) & 8x∼S 0(x)) � ψ(S, S 0)). (18)

φ is the conjunction of υ, ϕ, and θ. Finally, φ� is constructed from φ as above.
It suffices to show that A is a model of φ�. Suppose that ρ and η are binary

relations on A such that (A, ρ) and (A, η) are models of φ. Thus, (A, ρ) and
(A, η) are infinite equivalences of cardinality β; and ϕ and θ are true on these
equivalences. Reasoning proceeds by establishing that (A, ρ) and (A, η) are iso-
morphic. Applying Lemma 2, it suffices to show that their partition functions
are identical.

To that end, observe the following. Suppose that D and D 0 are subsets of
A. Since ψ(S, S 0) describes P(A) in β, if D 0 is a witness set forD in (A, ρ), then
P(A)(cardD) = cardD 0. Further, since θ is true on A, if no cell in A/ρ has the
same cardinality as D and D 0 is empty, then P(A)(cardD) = cardD 0. Similar
observations hold for (A, η).

Let κ be a cardinal 6 β. There are two cases to consider. Suppose that
P((A, ρ))(κ) = 0. Let D be a subset of A of cardinality κ and D 0 be the empty
set. By the above observations, P(A)(κ) = 0. Notice that P((A, η))(κ) = 0.
Otherwise, there is C, a cell in A/η, of cardinality κ and there is C 0, a witness
set for C in (A, η). Therefore, by the observation above, P(A)(κ) 6= 0. Sup-
pose that P((A, ρ))(κ) 6= 0. By reasoning as above, P((A, η))(κ) 6= 0. Hence,
P((A, ρ))(κ) = 0 iff P((A, η))(κ) = 0.

Now suppose that P((A, ρ))(κ) 6= 0. Let D be a cell in A/ρ of cardinality
κ and let D 0 be a witness set for D in (A, ρ). Hence, P(A)(κ) = cardD 0. By
the reasoning of the last paragraph, P((A, η))(κ) 6= 0. There is C, a cell in
A/η, such that cardC = κ. Let C 0 be a witness set for C in (A, η). Therefore,
P(A)(κ) = cardC 0. Hence, cardD 0 = cardC 0 and P((A, ρ))(κ) = P((A, η))(κ).

Suppose that A is quasi-finitely characterizable. Choose φ, a sentence in
LQ, such that φ is true on A and all models of φ of the same cardinality are
isomorphic. Reasoning proceeds by constructing a pure formula, ψ(S, S 0), that
describes P(A) in β. Θ(S 00, S, S 000, S 0, R) is the conjunction of the pure formulas

Eq(S 00, S), (19)

Eq(S 000, S 0), (20)

Witness(S 000, S 00)(R). (21)
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Γ(S, S 0, R) is the pure formula

9S 00S 000Θ(S 00, S, S 000, S 0, R). (22)

ϕ(S, S 0, R) is the pure formula

(∼9S 00(Cell(S 00)(R) & Eq(S, S 00)) & 8x∼S 0(x)). (23)

ψ(S, S 0) is the pure formula

9R(φ(R) & (Γ(S, S 0, R) ∨ϕ(S, S 0, R))). (24)

It remains to show that ψ(S, S 0) describes P(A) in β. Suppose that B is a bi-
nary relational system of cardinality β and thatD andD 0 are subsets of B. Rea-
soning proceeds by establishing that B |= ψ(S, S 0)[D,D 0] iff P(A)(cardD) =

cardD 0. Suppose that B |= ψ(S, S 0)[D,D 0]. Thus, there is ρ, a binary re-
lation on B, such that (B, ρ) is a model of φ. By the choice of φ, A and
(B, ρ) are isomorphic. Thus, (B, ρ) is an equivalence and, by Lemma 2, their
partition functions are identical. Further, either (B, ρ) |= Γ(S, S 0, R)[D,D 0, ρ]

or (B, ρ) |= ϕ(S, S 0, R)[D,D 0, ρ]. In either case, P((B, ρ))(cardD) = cardD 0.
Hence, P(A)(cardD) = cardD 0.

Suppose that P(A)(cardD) = cardD 0. There is ρ, a binary relation on B,
such that (B, ρ) and A are isomorphic. Thus, by Lemma 2, P((B, ρ))(cardD) =

cardD 0. It follows that either (B, ρ) |= Γ(S, S 0, R)[D,D 0, ρ] or we have (B, ρ) |=

ϕ(S, S 0, R)[D,D 0, ρ]. In either case, B |= ψ(S, S 0)[D,D 0].
Suppose that P(A) is describable in β and that β is characterizable. By

Lemma 10, there is φ, a sentence in LQ true on A, such that all models of φ
of the same cardinality are isomorphic. There is also a pure sentence, ψ, true
on all and only binary relational systems of cardinality β. Hence, all models of
{φ,ψ} are isomorphic to A, and A is finitely characterizable. Conversely, if A is
finitely characterizable, it is quasi-finitely characterizable. Thus, by Lemma 10,
P(A) is describable in β.

By Corollary 2.2 of [14], since Th(A) is finitely axiomatizable, β is charac-
terizable. This reasoning suffices to establish the following.
 12 Assume that A is an infinite equivalence of cardinality β. Then, the
following are equivalent:

1. A is finitely characterizable; and

2. P(A) is describable in β and β is characterizable in LQ.

Corollary 3 is immediate from Lemma 11, Theorem 12 and Corollary 1.
 3 Assume that A is an infinite equivalence of cardinality β. Then,

1. Th(A) is quasi-finitely axiomatizable iff P(A) is describable in β; and,
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2. Th(A) is finitely axiomatizable iff P(A) is describable in β and β is characteriz-
able in LQ.

Suppose that A is an infinite equivalence of cardinality β and that β is char-
acterizable in LQ. By Corollary 3, one can establish that the second-order the-
ory of an infinite equivalence of cardinality β is finitely axiomatizable by study-
ing the action of its partition function, as opposed to finding a finite subset of
its theory and showing that all of the models of this set are isomorphic. To the
authors’ knowledge there is no equivalence whose second-order theory can be
shown to be finitely axiomatizable using Corollary 3 that could not be shown to
be so merely by finding the appropriate finite set of sentences. However, there
are some properties of the class of infinite equivalences whose second-order
theories are finitely axiomatizable that follow easily from Corollary 3.

There are countably many infinite cardinals which are characterizable in
LQ [6]. Corollary 3 can be used to construct infinite equivalences whose second-
order theories are finitely axiomatizable. For each n 2 ω there is an equiva-
lence of cardinality β whose partition function is of constant value n. Each of
these partition functions is describable in β. Hence, there are a countable in-
finity of equivalences of cardinality β whose second-order theories are finitely
axiomatizable. Further, there are uncountably many equivalences whose second-
order theories are not finitely axiomatizable.

Corollary 3 can also be used to construct an infinite equivalence whose
second-order theory is finitely axiomatizable and has simple expansions whose
second-order theories are not finitely axiomatizable. Let β be the cardinal
ℵℵ1 . It follows from Proposition 4.3 of [6, page 437] and the fact that all finite
cardinals are characterizable in LQ, that β is characterizable in LQ. Let A be
an equivalence of cardinality β having no finite cells and exactly one cell of
cardinality ℵα for each ordinal α 6 ℵ1. It is easy to construct a pure formula
φ(S, S 0) such that if B is a binary relational system of cardinality β and D and
D 0 are subsets of B, then A |= φ(S, S 0)[D,D 0] iff either D is finite and D 0 is
empty or D is infinite and D 0 is a unit set. This formula describes P(A) in β.
By Corollary 3, Th(A) is finitely axiomatizable. For for each ordinal α 6 ℵ1
there is a(α) in A such that [a(α)]A is of cardinality ℵα. By Lemma 7, if α and
α 0 are different, then (A a(α)) and (A a(α 0)) are not isomorphic. It follows that
there is α 6 ℵ1 such that (A a(α)) is not finitely axiomatizable. Otherwise, by
Corollary 2, each (Aa(α)) is finitely characterizable. As L1 is countable, this is
impossible.

5  
Partition functions for equivalences have played a major role in the above.
There are some other questions about the second-order model theory of equiv-
alences that can be answered using partition functions. For example, consider
the question of whether or not all equivalences of cardinality ℵ0 are isomor-
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phic if they are equivalent in LQ. It is relatively easy to show that if A and B

are equivalences of cardinality ℵ0 that are equivalent in LQ, then their parti-
tion functions are identical (hence, the equivalences are isomorphic). Let A be
a countably infinite equivalence. ℵ0 is describable in LQ. Recall that not all
of the partition functions of countably infinite equivalences are describable in
ℵ0. However, each of these partition functions is point-wise describable in ℵ0 in
the sense that for all n, {(n,P(A)(n))} is describable in ℵ0 and {(ℵ0,P(A)(ℵ0))}

is describable in ℵ0. It follows that if B is equivalent to A in LQ, then their
partition functions are identical. Ajtai [1] attributes the general question of
whether or not countably infinite interpretations with the same second-order
theories are isomorphic to Pelikán and Kechris. Ajtai, among others, showed
that the answer to the general question is independent of ZFC.

Partition functions appear to play much the same role played by configura-
tion signatures for Dedekind algebras. It has been shown that many properties
of and relations on Dedekind algebras can be characterized in terms of config-
uration signatures [10, 11]. Among these are properties familiar from universal
algebra (e.g. homogeneous and universal algebras) and properties and relations
from the model theory of first-order languages (e.g. elementary equivalence,
saturated algebras, and both model complete and submodel complete algebras).
To the authors’ knowledge, it is open whether or not analogous results can be
established for equivalences.
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