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Abstract:We show the Boxdot Conjecture holds for a limited but familiar range of
Lemmon-Scott axioms. We re-introduce the language of essence and accident,
first introduced by J. Marcos, and show how it aids our strategy.

1   &      
In modal logic, the boxdot translation, t, is the following translation:

tp = p

t? = ?

t(φ! ψ) = (tφ! tψ)

t�φ = (�tφ∧ tφ)

Note that t�φ = (�tφ∨ tφ) and t¬φ = ¬tφ.

The name derives from�φ as an abbreviation for�φ∧φ in Boolos [1]. Where
K is the minimal normal modal logic, let K � φ be the smallest normal modal
logic containing φ. Let L be some normal modal logic and let KT be K��φ!
φ. French and Humberstone [4] conjectured,

if (8ψ)(KT ` ψ if and only if L ` tψ), then L � KT .

This is the Boxdot Conjecture. The conjecture was established for normal
modal logics of the form K � φ with φ of modal degree 1. Here we show
the conjecture holds for extensions of K which include any instance of the
following axiom schema,

�h�ip! �j�kp

An instance is given by a specific choice of h, i, j, k 2 {0, 1, 2, . . .}. We use φhijk

to represent an arbitrary instance. This schema is a limited form of the more
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general Lemmon-Scott axiom schema, see Goldblatt [5]. Clearly, there are
infinitely many φhijk which are theorems of KT , thus we show:

for all φhijk /2 KT, (9ψ)(K� φhijk ` tψ and KT 6` ψ)

This is our main result. We now begin to discuss our strategy using examples
and build up to a discussion of the language of essence and accident which will
aid our strategy. For the remainder of this article, assume q and p are distinct.

Consider K�Dc (i.e., K� �p! �p), and the following,

(¬p∧ �p)! [(q! p)! �(q! p)]

Call this sentence S(Dc). K ` (¬p ∧ �p) ! �p, and it straightforward to
show that K ` �p ! [(q ! p) ! �(q ! p)]. Thus, K � Dc ` S(Dc), but
KT 6` S(Dc), and we leave it to the reader to find a reflexive frame where S(Dc)

fails. Significantly, S(Dc) is K-equivalent to its own translation, i.e.

K ` tS(Dc)$ S(Dc)

Though French and Humberstone already showed this using a different sen-
tence, our example shows that the conjecture holds for K�Dc. For �p! �p /2

KT , and K �Dc ` tS(Dc) and KT 6` S(Dc). Consider K5 (i.e. K � �p ! ��p),
and the following,

(¬p∧ �p)! [(�(q! p) ∨ (q! p))! �(�(q! p) ∨ (q! p))]

Call this sentence S(5). As with the previous example K5 ` S(5), but S(5)
is not a theorem of KT (again, we leave it to the reader to find a reflexive frame
where S(5) fails). One can show,

K ` tS(5)$ S(5)

Thus the conjecture holds for K5. K5 ` tS(5), 5 /2 KT and KT 6` S(5).
As a final example consider K�G1 (i.e. ��p! ��p) and,

[(�¬p∨ ¬p) ∧ �(�p∧ p)]! [(�(q! p) ∨ (q! p))! �(�(q! p) ∨ (q! p))]

Call this S(G1). Again, K�G1 ` S(G1) and KT 6` S(G1). Furthermore,

K ` tS(G1)$ S(G1)

Since G1 /2 KT , K� G1 is not a counterexample to the conjecture. In each
of the three examples, we used a formula K-equivalent to its own translation.
We need,
 1.1 For every φ,

K ` ttφ$ tφ

Proof: This Lemma is Lemma 3.2 of Goris [6]. We omit the proof (which is a
straightforward induction on the complexity of formulas).
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We now discuss the language of essence and accident and its relevance to
our strategy. The initial study is in Marcos [10], and we re-introduce the basic
ideas here. Given the normal modal language, we can define the operators �
and � with,

�φ
def
= (φ∧ �¬φ)

�φ
def
= (φ! �φ)

These operators are the negations of each other (not duals). Thus:

K ` �φ$ ¬ � φ

K ` �φ$ ¬ � φ

Significantly for our purposes, we have:

K ` (�φ∧ φ)$ (�φ∧ φ)

K ` (�¬φ∨ φ)$ (�φ∨ φ)

Read �φ as: φ is accidentally true. Read �φ as: φ is essentially true. Synony-
mously, we may read �φ as symbolizing the contingent truth of φ (true in this
world though false in another). The study of the language of essence and acci-
dent may be seen as a variation on the study of contingency logics (where an
operator symbolizing �φ∧�¬φ is studied (see Brogan [2]—presenting Aristo-
tle’s views—and Cresswell [3], Humberstone [7], Kuhn [8], Lomuscio and Van
der Hoek [9], Montgomery and Routley [11], Mortensen [12], Steinsvold [13],
Zolin [15]).
 1.2 The set of formulas of essence and accident, FEA, is that subset of
the formulas of normal modal logic which can be formed using only proposi-
tional variables, the Boolean connectives, parentheses, �, and �.

We now prove a useful fact about the members of FEA.
 1.3 for all φ 2 FEA,

K ` tφ$ φ

Proof: We show by induction on the complexity of formulas. Clearly, tp = p

and t? = ?. By definition, t(φ ! ψ) = (tφ ! tψ), thus K ` (tφ ! tψ) $

t(φ ! ψ). By the induction hypothesis we know that K ` φ $ tφ and K `
ψ$ tψ. Thus, by replacement we know K ` (φ! ψ)$ t(φ! ψ).

To show K ` t � φ$ �φ,
1) K ` (φ∧ (�¬φ∨ ¬φ))$ (φ∧ �¬φ), theorem of K.
2) K ` φ$ tφ, by the induction hypothesis.
3) K ` ¬φ$ t¬φ, from 2 negate both sides and use t¬φ = ¬tφ.
4) K ` (tφ∧ (�t¬φ∨ t¬φ))$ (φ∧ �¬φ) Using 2 and 3 with line 1.
5) K ` (tφ∧ t�¬φ)$ (φ∧ �¬φ), from 4, using t�¬φ = (�t¬φ∨ t¬φ)).
6) K ` t�φ$ �φ, via 5 with (tφ∧t�¬φ) = t(φ∧�¬φ), �φ = (φ∧�¬φ).
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Lemma 1.3 explains why S(Dc) is equivalent, in K, to its own translation. Note
that we may rewrite S(Dc) as �¬p! �(q! p).

Let φEA be an arbitrary formula from FEA and let φ� be an arbitrary box-
dot formula (a formula of normal modal logic is a boxdot formula if there is a
formula of normal modal logic which it is the translation of ). From Lemma 1.3
we have,
 1.4 For every φEA there is some ψ� such that,

K ` φEA $ ψ�

Proof: tφEA is a boxdot formula and from Lemma 1.3, K ` φEA $ tφEA

 1.5 For all φ�, there is some ψEA such that,

K ` φ� $ ψEA

Proof: This follows from the fact that K ` (�φ ∧ φ) $ (�φ ∧ φ). Given φ�,
mark every � and then replace every marked � with �.

Thus for every ψ� there is an equivalent φEA and for every φEA there is
an equivalent ψ�; which will we use? Both. S(5) can be re-written,

�¬p! �t�(q! p)

Similarly, S(G1) can be re-written,
�t�¬p! �t�(q! p)

We need,
 1.6 If L � KT , then the following rule of inference holds,

If L ` φ! ψ then L ` tφ! tψ

Proof: As French and Humberstone [4] note, we have for all L � KT ,

(8φ)(L ` tφ iff KT ` φ)

Now assume L ` φ ! ψ but L 6` tφ ! tψ. Since L � KT , KT ` φ ! ψ.
Since L 6` tφ ! tψ, L 6` t(φ ! ψ) (by the definition of t). But by the faithful
embedding just mentioned, KT 6` φ! ψ, contradiction.

The following rules of inference will be helpful,
 1.7 1) If K ` φ! ψ then K ` tφ! tψ.

2) If K ` φ$ ψ then K ` tφ$ tψ

Proof: From Theorem 1.6

We now outline our overall strategy. Given some φhijk /2 KT , we will con-
struct a surrogate sentence, S(φhijk), and show K � φhijk ` S(φhijk). Each
S(φhijk) will be constructed entirely out of φ� and φEA formulas, so that
K ` tS(φhijk) $ S(φhijk). Thus K � φhijk ` tS(φhijk). The final step in our
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strategy is to show that S(φhijk) fails in a reflexive model, and hence is not a
theorem of KT .

In fact, for the last step, it will be sufficient to show that S(φhijk) fails in
some model. As observed in Marcos [10], if φEA fails in any model, then it
fails in a reflexive model. We repeat this proof below (Lemma 2.2). We end
this introduction by stressing a basic fact about the language of essence and
accident: the language is insensitive to reflexivity.

Given a normal modal logic L, let LEA = {φEA|L ` φEA}. Using an insight
from Kuhn [8], Marcos [10] introduced and gave a completeness proof for KEA

(the minimal logic of essence and accident). In a follow-up article to Marcos
[10], Steinsvold [14] showed completeness results for various LEA logics. It was
shown that for any normal modal logic L such that K � L � KT , KEA = LEA =

KTEA. Also, since KEA = KTEA, to show that a logic L is not a counterexample
to the Boxdot Conjecture, it is sufficient to show there is some φEA 2 L − K;
this is the strategy we employ.

2   
A frame F = hW,Ri is a non-empty set W where R � W �W. Members of W
are worlds or points. A valuation V is a function from the set of propositional
variables into the power set of W. M = hW,R, Vi is a model. We define truth in
a model at a world as follows:

M,w |= p iff w 2 V(p)

M,w |= ? iff 0 = 1

M,w |= φ! ψ iff if M,w |= φ then M,w |= ψ

M,w |= �φ iff (8x)(if wRx then M,x |= φ)

M,w |= �φ iff M,w |= φ and (9x)(wRx and M,x 6|= φ)

 2.1 Given a model M = hW,R, Vi, the   M
is Mr = hW,Rr, Vi , where Rr = R [ {(x, x)|x 2W}

Simply put, the reflexivization of a model replaces R with its reflexive closure.
The following is due to Marcos [10] and will be used later on.
 2.2 Let M = hW,R, Vi be any model and let φ 2 FEA.

M,w |= φ iff Mr, w |= φ.

Proof: By induction. The non-modal cases are straightforward. AssumeM,w |=

�φ then M,w |= φ and for some y, wRy and M,y 6|= φ. By the induction hy-
pothesis, Mr, w |= φ and Mr, y 6|= φ. Since wRry, Mr, w |= �φ. Conversely, if
Mr, w |= �φ then Mr, w |= φ and for some x, wRrx and Mr, x 6|= φ. Clearly,
w 6= x, thus by the induction hypothesis, M,w |= �φ

Thus, for any φEA true at any point in any model, φEA will still be true in
the reflexivization of that model at that point. We also have,
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 2.3 Let M = hW,R, Vi be any model.

M,w |= φ� iff Mr, w |= φ�.

Proof: Assume M,w |= φ�. By Theorem 1.5, K ` φEA $ φ� for some φEA.
Thus M,w |= φEA. By Lemma 2.2, Mr, w |= φEA, so Mr, w |= φ�. The
converse is similar.

3       φhijk
2 KT

There are infinitely many φhijk 2 KT and we need to isolate them. This in-
cludes isolating those φhijk which are also theorems of K (viz. p ! p, �p !
�p, and so on).
 3.1 For any φhijk,

φhijk is a T�  iff h = 0 and i > j

φhijk is a T�  iff j = 0 and k > h

We prove the following Lemma and then the converse of it.
 3.2 If φhijk is a T� or T� sentence, then KT ` φhijk.

Proof: We show for the case of T� sentences, using induction on i.
Base case, i = 0. Since i = 0 and i > j, j = 0. We know h = 0, thus we must

show KT ` p ! �kp, for all k. Clearly, KT ` p ! p. Since KT ` φ ! �φ we
have KT ` �np! �n+1p, for all n > 0. Thus, KT ` p! �kp, for all k.

For the inductive step assume KT ` �ip ! �j�kp. KT ` �i+1p ! �ip,
thus KT ` �i+1p! �j�kp.

The case for T� sentences is a dual variation of this argument.

 3.3 If KT ` φhijk then φhijk is a T� or T� sentence.

Proof: Assume φhijk is neither a T� nor a T� sentence. Thus we know:
1) Either h 6= 0 or i < j, and
2) Either j 6= 0 or k < h.

We have four cases.
 1: h 6= 0 and j 6= 0. Let h = n + 1 and j = m + 1, where n,m > 0. Thus
φhijk is of the form ��n�ip! ��m�kp.

Let M = hW,R, Vi where W = {a, b, c}, R = {(a, b), (a, c)} and V(p) = {b}.
Now consider the reflexivization of M, Mr (see Definition 2.1). Since b only
bears Rr to itself and Mr, b |= p, Mr, b |= �n�ip. Since c only bears Rr to
itself andMr, c |= ¬p,Mr, c |= �m�k¬p. Since aRrb ,Mr, a |= ��n�ip. Since
aRrc, Mr, a |= ��m�k¬p. Since Mr is reflexive, ��n�ip! ��m�kp is not a
theorem of KT .

 2: h 6= 0 and k < h. To get a contradiction, assume,
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1) KT ` �h�ip! �j�kp (assumption for reductio).
2) KT ` �j�kp! �kp, from KT ` �jφ! φ, where φ is �kp.
3) KT ` �h�ip! �kp, from 1 and 2, classical logic.

Let M = hN, R, Vi, where xRy iff x = y or y is the immediate successor of x,
and V(p) = {n 2 N | h 6 n}.

Since k is strictly less than h, M,0 |= ¬�kp. And M,0 |= �h�ip, regardless
of the size of i. Since M is reflexive, �h�ip ! �kp is not a theorem of KT .
Contradiction.

 3: i < j and j 6= 0. Assume KT proves this φhijk. Substitute ¬p for p and
take the contraposition of φhijk. This case is isomorphic to the second case,
and the same argument applies.

 4: i < j and k < h. i and k can’t be lower than zero, thus h 6= 0 and j 6= 0.
But this case is subsumed by the first case.

 3.4 For all φhijk,

KT ` φhijk iff φhijk is a T� or T� sentence

Proof: From Lemmas 3.2 and 3.3

4   
For each φhijk /2 KT , we will construct a surrogate sentence, S(φhijk), where
K � φhijk ` S(φhijk). Each S(φhijk) will be constructed entirely out of φEA

and φ� sentences, so that K ` tS(φhijk)$ S(φhijk).
To help introduce our surrogates, assume φhijk /2 KT . By Theorem 3.4 we

know φhijk is not a T� sentence, i.e. either h 6= 0 or i < j.
If h 6= 0, we show there is a surrogate for φhijk of the following form

(h = n+ 1),

�¬t�n�ip! �jt�k(q! p)

If i < j, we show there exists a surrogate for φhijk of the following form (where
j = n+ 1),

�¬t�n�kp! �ht�i(q! p)

We encourage the reader to view in advance the proof of Theorem 4.15 to gain
a better notion of the direction of this section. We must show a number of
preliminary results first.

We only need one surrogate for eachφhijk /2 KT . S(φhijk) will represent an
arbitrary surrogate for φhijk, and we will give an official definition of surrogate
forφhijk below (Definition 4.16).

The general strategy is as follows. Given φhijk /2 KT , we want K to prove
that the antecedent of S(φhijk) implies the antecedent of φhijk. Furthermore,
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we want K to prove that the consequent of φhijk implies the consequent of
S(φhijk). Granting this, we have K�φhijk ` S(φhijk).

The next results pertain to the the consequents of φhijk and S(φhijk).
 4.1 If K ` φ! ψ then K ` �nφ! �nψ for all n > 0.

Proof: By induction. The base case (n = 0) is: if K ` φ! ψ, K ` φ! ψ.

1) K ` �nφ! �nψ, by the induction hypothesis.
2) K ` ��nφ! � �n ψ, from 1, normality.
3) K ` ��nφ! (�nψ! � �n ψ), from 2, weakening the consequent.
4) K ` �n+1φ! �n+1ψ, from 3 and the definition of �.

 4.2 K ` �np! t�n(q! p) all n > 0.

Proof: By induction. The base case (n = 0) is immediate. K ` p ! (q ! p),
and by the definition of t, t(q! p) = (q! p). For the inductive step,

1) K ` �np! t�n(q! p), by the induction hypothesis.
2) K ` ��np! �t�n(q! p), from 1, normality.
3) K ` ��np! (�t�n(q! p) ∨ t�n(q! p)), weakening consequent of 2.
4) K ` �n+1p! t�n+1(q! p), from 3 and definition of t.

 4.3 K ` �m�np! �mt�n(q! p) all m,n > 0

Proof: From Lemmas 4.1 and 4.2.

Half of our strategy is fulfilled. Lemma 4.3 tells us K proves that the consequent
of φhijk implies the consequent of S(φhijk).

The next results pertain to the antecedents of φhijk and S(φhijk). We
need to show K proves that the antecedent of S(φhijk) implies the antecedent
of φhijk. To do this, we need the antecedent of S(φhijk) in a more manageable
form. Focusing on the case where h is not zero, and letting h = n + 1, the
antecedent of S(φhijk) is �¬t�n�ip. By the definition of �we know �¬t�n�ip

is (¬t�n�ip∧ �t�n�ip). In order to show that K ` �¬t�n�ip! �h�ip, we
show that,

K ` �¬t�n�ip$ (¬t�n�ip∧ �n+1t�ip)

Most of the work in this section is in showing the above. In the next few results
we work to show the sentence on the right hand of the bi-conditional above
implies the antecedent of φhijk. Once we have all of this, we can conclude that
the antecedent of the surrogate implies the antecedent of φhijk.
 4.4 K ` t�np! �np all n > 0.
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Proof: By induction on n. The base case is n = 0. But tp = p, K ` p! p.

1) K ` t�np! �np, by the induction hypothesis.
2) K ` �t�np! ��np, from 1, normality.
3) K ` (�t�np∧ t�np)! ��np, from 2, strengthening the antecedent.
4) K ` t�n+1p! �n+1p, from 3 and the definition of t.

 4.5 K ` (¬t�n�mp∧ �n+1t�mp)! �n+1�mp for all m,n > 0.

Proof: 1) K ` t�mp! �mp, by Lemma 4.4.
But if K ` φ! ψ then K ` �n+1φ! �n+1ψ, by normality. Thus,
2) K ` �n+1t�mp! �n+1�mp. Strengthening the antecedent we get,
3) K ` (¬t�n�mp∧ �n+1t�mp)! �n+1�mp for all m,n > 0.

We now focus on showing K ` (¬t�n�mp∧ �n+1t�mp)$ (�¬t�n�mp).
 4.6 K ` �nt�mp! t�n�mp all m,n > 0.

Proof: By induction on n. Where n = 0 we have K ` t�mp! t�mp

1) K ` �nt�mp! t�n�mp, by the induction hypothesis.
2) K ` ��nt�mp! �t�n�mp, from 1, normality.
3) K ` ��nt�mp! (�t�n�mp∨ t�n�mp), weakening consequent of 2.
4) K ` �n+1t�mp! t�n+1�mp, from 3 and the definition of t.

 4.7 For all all m,n > 0,
K ` (¬t�n�mp∧ �n+1t�mp)! (¬t�n�mp∧ �t�n�mp)

Proof: From Lemma 4.6 we have,
1) K ` �nt�mp! t�n�mp

2) K ` ��nt�mp! �t�n�mp, from 1, normality.
3) K ` (¬t�n�mp∧�n+1t�mp)! (¬t�n�mp∧�t�n�mp), from 2 using,
if K ` φ! ψ then K ` (θ∧ φ)! (θ∧ψ)), where θ is ¬t�n�mp,

We now work to show K proves the converse of Lemma 4.7.
 4.8 K ` t�nφ$ (�ntφ∨ �n−1tφ∨ � � �∨ �tφ∨ tφ)

Proof: By induction on n. Where n = 0 (base case), K ` tφ$ tφ.

1) K ` t�nφ $ (�ntφ ∨ �n−1tφ ∨ � � � ∨ �tφ ∨ tφ), by the induction
hypothesis.

2) K ` t�nφ! (�ntφ∨ �n−1tφ∨ � � �∨ �tφ∨ tφ), from 1
3) K ` �t�nφ! �(�ntφ∨ �n−1tφ∨ � � �∨ �tφ∨ tφ), from 2, normality.
4) K ` �t�nφ ! (�n+1tφ ∨ �ntφ ∨ � � � ∨ �tφ), from 3, distributing the

diamonds over disjunction.
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5) K ` �t�nφ! (�n+1tφ∨ �ntφ∨ � � �∨ �tφ∨ tφ), weakening line 4.
6) K ` t�nφ! (�n+1tφ∨ �ntφ∨ � � �∨ �tφ∨ tφ), weakening line 2.
7) K ` (t�nφ∨ �t�nφ)! (�n+1tφ∨ �ntφ∨ � � �∨ �tφ∨ tφ), from 5, 6.
8) K ` t�n+1φ! (�n+1tφ∨ �ntφ∨ � � �∨ �tφ∨ tφ), from 7, by def. of t.
9) K ` (�ntφ∨ �n−1tφ∨ � � �∨ �tφ∨ tφ)! t�nφ, from 1.
10) K ` �(�ntφ∨�n−1tφ∨ � � �∨�tφ∨ tφ)! �t�nφ, from 2, normality.
11) K ` (�n+1tφ∨�ntφ∨ � � �∨�tφ)! �t�nφ, distributing diamonds, 10.
12) K ` (�n+1tφ∨ �ntφ∨ � � �∨ �tφ)! (�t�nφ∨ t�nφ), weakening 11.
13) K ` (�n+1tφ∨ �ntφ∨ � � �∨ �tφ)! t�n+1φ, from 12, definition of t.
14) K ` tφ! t�nφ, from 9, classical logic.
15) K ` tφ! (�t�nφ∨ t�nφ), weakening the consequent, from 14.
16) K ` tφ! t�n+1φ, from 15 and the definition of t.
17) K ` (�n+1tφ∨ �ntφ∨ � � �∨ �tφ∨ tφ)! t�n+1φ, 13 and 16.
18) K ` (�n+1tφ∨ �ntφ∨ � � �∨ �tφ∨ tφ)$ t�n+1φ, 17 and 8.

 4.9 K `

t�n�mp$ (�nt�mp∨ �n−1t�mp∨ � � �∨ �t�mp∨ t�mp)

Proof: Instance of Lemma 4.8, �mp for φ.

 4.10 K `

[�t�n−1�m¬p∧ �(�nt�mp∨ t�n−1�mp)]! ��nt�mp

Proof: 1) K ` (�φ∧ �(ψ∨ ¬φ))! �ψ, basic theorem of K.
2) K ` [�t�n−1�m¬p∧ �(�nt�mp∨ ¬t�n−1�m¬p)]! ��nt�mp,

from 1; Let φ be t�n−1�m¬p and ψ be �nt�mp.
3) K ` ¬t�n−1�m¬p$ t�n−1�mp, from Corollary 1.7.
4) K ` [�t�n−1�m¬p∧ �(�nt�mp∨ t�n−1�mp)]! ��nt�mp,

from lines 2 and 3.

 4.11 K `

[�t�n−1�m¬p ∧ �(�nt�mp ∨ �n−1t�mp ∨ � � � ∨ �t�mp ∨ t�mp)] !

��nt�mp

Proof: Using a version of Corollary 4.9 we have,
1) K ` (�n−1t�mp∨ ...∨ �t�mp∨ t�mp)$ t�n−1�mp.

2) K ` [�t�n−1�m¬p∧�(�nt�mp∨�n−1t�mp∨� � �∨�t�mp∨t�mp)]!

��nt�mp, (use the equivalence on line 1 and substitute into Lemma 4.10).

 4.12 K ` (¬t�n�mp∧ �t�n�mp)! (¬t�n�m p∧ �n+1t�mp)
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Proof: 1) K ` (�t�n−1�m¬p∧ �t�n�mp) ! �n+1t�mp, with Corollary 4.9,
substitute t�n�mp for (�nt�mp ∨ �n−1t�mp ∨ � � � ∨ �t�mp ∨ t�mp) in
Lemma 4.11.

2) K ` ((�t�n−1�m¬p∧ t�n−1�m¬p) ∧ �t�n�mp)! �n+1t�mp, from
1, strengthening the antecedent.

3) K ` (t�n�m¬p∧ �t�n�mp)! �n+1t�mp, 2, from the definition of t.
4) K ` (¬t�n�mp∧ �t�n�mp)! �n+1t�mp, from 3, using,

K ` t�n�m¬p$ ¬t�n�mp (this follows from Corollary 1.7)
5) K ` (¬t�n�mp ∧ �t�n�mp) ! (¬t�n�mp ∧ �n+1t�mp), from 4,

adding a conjunct to the consequent from the antecedent.

 4.13 K ` (¬t�n�mp∧ �t�n�mp)$ (¬t�n�mp∧ �n+1t�mp)

Proof: From Lemma 4.12 and Lemma 4.7

 4.14 K ` �¬t�n�mp! �n+1�mp

Proof: From Lemma 4.13, Lemma 4.5 and the definition of �.

We now show the main results of this section.
 4.15 If φhijk /2 KT , then,

Either K� φhijk ` �¬t�n�ip! �jt�k(q! p), where h = n+ 1

Or K� φhijk ` �¬t�n�kp! �ht�i(q! p), where j = n+ 1

Proof: If φhijk /2 KT , then by Theorem 3.4 we know,

Either h 6= 0 or i < j.

 1: h 6= 0.
Let h = n+ 1, thus φhijk is �n+1�ip! �j�kp. Thus,
1) K� φhijk ` �n+1�ip! �j�kp

2) K� φhijk ` �j�kp! �jt�k(q! p), from Lemma 4.3.
3) K� φhijk ` �n+1�ip! �jt�k(q! p), from 1 and 2.
4) K� φhijk ` �¬t�n�ip! �n+1�ip, from Lemma 4.14.
5) K� φhijk ` �¬t�n�ip! �jt�k(q! p), from 3 and 4.

 2: i < j. j can’t be zero. Let j = n + 1. φhijk is �h�ip ! �n+1�kp.
Thus,

1) K� φhijk ` �h�ip! �n+1�kp

2) K� φhijk ` �h�i¬p! �n+1�k¬p, instance of 1 (¬p for p).
3) K� φhijk ` �n+1�kp! �h�ip, from 2, contraposition.

At this point, we revert back to line 2 of case 1 to derive,
4) K� φhijk ` �¬t�n�kp! �ht�i(q! p)
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We now officially define our surrogates.
 4.16 For each φhijk /2 KT , call any theorem of K � φhijk of the
following form a   φhijk,

�¬t�w�xp! �yt�z(q! p)

Where either h=w+1, i=x, j=y, k=z, or j=w+1, k=x, h=y, i=z.

We will (continue to) use S(φhijk) as an arbitrary surrogate for φhijk.
 4.17 For each φhijk /2 KT there is some S(φhijk),

K� φhijk ` S(φhijk)

Proof: By Theorem 4.15 and Definition 4.16

 4.18 For each surrogate S(φhijk),

K ` tS(φhijk)$ S(φhijk)

Proof: By definition 4.16, each S(φhijk) is of the form,

�¬t�w�xp! �yt�z(q! p)

Clearly, each S(φhijk) is constructed entirely out of φEA and φ� formulas.
Thus, by Lemmas 1.1 and 1.3,

K ` t(�¬t�w�xp! �yt�z(q! p))$ (�¬t�w�xp! �yt�z(q! p))

 4.19 Where S(φhijk) is a surrogate for φhijk

K� φhijk ` tS(φhijk)

Proof: From Theorems 4.17 and 4.18.

We end this section with an implementation of the method of constructing a
surrogate in Theorem 4.15. Consider axiom 4, �p ! ��p. Here, h = 0 but
i < j (case 2) so we consider the dual version of 4, ��p! �p. S(4) is thus,

[(�¬p∧ ¬p) ∧ �(�p∨ p)]! (�(q! p) ∨ (q! p))

K4 ` S(4), and in this case the reason is trivial: the antecedent of S(4) is
contradictory in K4. That is, the antecedent of S(4) can’t be true in a transitive
model. The reader is encouraged to use this sentence to show that K4 is not
a counterexample to the Boxdot Conjecture (note that a simpler sentence was
given in [4]; KT does not prove the 4 axiom, but K4 proves the translation of
the 4 axiom).
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5      
The final step is to show that each S(φhijk) fails in a reflexive model, so that
we know KT 6` S(φhijk). So far we have shown that for each φhijk /2 KT , there
is someψ (namely S(φhijk)), such that K�φhijk ` tψ (by Theorem 4.19). Thus
showing that S(φhijk) fails in a reflexive model is the final step.

We remark on the use of (q ! p) in the consequent of S(φhijk). In many
cases, p could replace (q ! p). However, in other cases, it is necessary (cf.
S(Dc))) thus we use it in all cases for the sake of uniformity.

There will be four cases in total, though two of the four will be subsumed
under previous cases. We will work on each case individually, then put them
together at the end to show the cases are exhaustive.

Before getting to individual cases we prove some preliminary results.
 5.1 K ` t�nφ$ (�ntφ∧�n−1tφ∧ � � �∧�tφ∧ tφ)

Proof: This is the dual version of Lemma 4.8.

 5.2 K `
t�n�i¬p$ (�nt�i¬p∧�n−1t�i¬p∧ � � �∧�t�i¬p∧ t�i¬p)

Proof: This is an instance of Corollary 5.1, �i¬p for φ

 5.3 If M,w |= tφ then M,w |= t�iφ, for all i>0

Proof: Assume M,w |= tφ. By disjunction introduction,

M,w |= �itφ∨ �i−1tφ∨ � � �∨ �tφ∨ tφ.

Thus by Lemma 4.8, M,w |= t�iφ, for all i.

5.1  1

h 6= 0, j = 0, k < h.

Since h 6= 0, let h = n+ 1 (n > 0). φhijk is,

��n�ip! �kp

By Theorem 4.15, there is a surrogate for φhijk of the form,

S(φhijk) : �¬t�n�ip! t�k(q! p)

By the definition of � we have,

K ` S(φhijk)$ [(¬t�n�ip∧ �t�n�ip)! t�k(q! p)]

From this and Lemma 4.13 we have,

K ` S(φhijk)$ [(¬t�n�ip∧ �n+1t�ip)! t�k(q! p)]

It is this equivalent version of S(φhijk) we falsify in a reflexive model.
Let M = hN, R, Vi, where xRy iff x = y or y is the immediate successor of

x, and V(p) = {m 2 N|m > n} and V(q) = N. S(φhijk) fails at 0.
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 5.4 M, 0 |= (¬t�n�ip∧ �n+1t�ip) ∧ ¬t�k(q! p)

Proof: By construction of M, p fails at zero and all successors of zero up to
and including n. Since t¬p = ¬p, By Lemma 5.3, t�i¬p is true at worlds zero
through n, including n. Thus we have,

M, 0 |= �nt�i¬p∧�n−1t�i¬p∧ � � �∧�t�i¬p∧ t�i¬p

Thus, by Corollary 5.2, M,0 |= t�n�i¬p. That is, M,0 |= ¬t�n�ip.
Since p is true at world n+ 1 and all higher worlds, M,n+ 1 |= t�ip (re-

gardless of the size of i), thus M,0 |= �n+1t�ip.
Since k < h(= n + 1), and p fails at all worlds strictly less than h (and q is

true everywhere), M,0 |= t�k(q∧ ¬p). That is M,0 |= ¬t�k(q! p).

 5.5 �¬t�n�ip! t�k(q! p) is not a theorem of KT

Proof: In Lemma 5.4 M is reflexive, thus KT 6` S(φhijk)

5.2  2

h 6= 0, j 6= 0.

Since h 6= 0, let h = n+ 1. φhijk is,

��n�ip! �j�kp

By Theorem 4.15, there is a surrogate for φhijk,

S(φhijk) : �¬t�n�ip! �jt�k(q! p)

Using Lemma 4.13 as in Case 1 (Subsection 5.1), we have,

K ` S(φhijk)$ [(¬t�n�ip∧ �n+1t�ip)! �jt�k(q! p)]

It is this equivalent version of S(φhijk) we falsify in a reflexive model.
In the previous section, where j = 0, the size of k was important. As long

as j 6= 0, the size of k becomes irrelevant. We now construct our model.

Let W = {wk, wj1
, wj2

, . . . , wjj−1
, wjj

, 1, 2, 3, . . .}. Note that there are as
many wj worlds as there are occurrences of � in our surrogate, and by assump-
tion j 6= 0, thus there is at least onewj world. On the other hand, we only need
one wk world (whether k = 0 or not). Also, 0 is not in our set of worlds, wjj

will take the place of 0, and our surrogate will fail at wjj
.

Define a the relation R on W as follows:

wjj
R1, 1R2, 2R3, . . . and,

wjj
Rwjj−1

, wjj−1
Rwjj−2

...wj2
Rwj1

, wj1
Rwk

Using arrows to represent the relation R we have,

wk  wj1
 � � �  wjj−1

 wjj
! 1! 2! 3! � � �
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wk relates to no world, and is the only world which relates to no world. wjj

relates to exactly two worlds, and is the only world which relates to more than
one world. As mentioned in the introduction and shown in Lemmas 2.2 and
2.3, we don’t need to add that our model is reflexive. We will officially make it
reflexive in our last step.

V(p) = {m 2 {1, 2, 3, . . .} |m > n} and V(q) = {wk}.

 5.6 M,wk |= ¬t�k(q! p) for all k > 0.

Proof: Using Cor. 1.7, ¬t�k(q! p) is equivalent to t�k(q∧ ¬p). By construc-
tion of the model t�0(q∧¬p) (i.e. (q∧¬p)) is true atwk (in fact, it is the only
world where q ! p fails). By Corollary 5.1 and the fact that wk relates to no
world, M,wk |= t�k(q∧ ¬p) for all k, i.e. M,wk |= ¬t�k(q! p).

 5.7 M,wjj
|= ¬t�n�ip∧ �n+1t�ip

Proof: As in the previous case, p is true at n+ 1 and all the successors of n+ 1,
thus M,wjj

|= �n+1t�ip, regardless of the size of i.

p fails at all worlds strictly less than n+ 1, all the wj worlds, and wk. By
Lemma 5.3 (since t¬p =¬p), t�i¬p is true at all worlds strictly less than n+ 1, all
the wj worlds, and wk. Just as in Lemma 5.4, we use Corollary 5.2 to conclude
M,wjj

|= t�n�i¬p, i.e. M,wjj
|= ¬t�n�ip

We now work to show the consequent of our S(φhijk) fails. First we need,
 5.8 For all w 2 {1, 2, 3, . . .},

M,w |= �vt�k(q! p) for all k, v > 0.

Proof: By induction on v. Base case, v = 0. By construction of the model for
all w 2 {1, 2, 3, . . .}, M,w |= (q ! p) (since q fails at all these worlds). Since
t(q ! p) = (q ! p), we use Lemma 5.3 to conclude M,w |= t�k(q ! p), for
all w 2 {1, 2, 3, . . .}, all k > 0.

For the inductive step assumeM,w |= �vt�k(q! p) for allw 2 {1, 2, 3, . . .}.
By construction of the model, each number relates to (and only to) its im-
mediate successor. Thus, by the induction hypothesis, at each w, M,w |=

� �v t�k(q! p). Thus,
M,w |= �vt�k(q! p)! � �v t�k(q! p)

That is, by the definition of �, M,w |= �v+1t�k(q! p)

The final step is to show �jt�k(q! p) fails at wjj
.

 5.9 For each wjm ,

M,wjm |= ¬ �m t�k(q! p), and for all z <m, M,wjm |= �zt�k(q! p)
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Proof: By induction on m. Since, by assumption, j is not zero, and there are as
many wj worlds as there are occurrences of �, our base case is m = 1. Thus to
show the base case we need to show,

M,wj1
|= ¬ � t�k(q! p), and M,wj1

|= �0t�k(q! p)

Thus we must show M,wj1
|= �t�k(q! p), and M,wj1

|= t�k(q! p).

By construction M,wj1
|= ¬q, thus M,wj1

|= q ! p. Since t(q ! p) =

(q! p), use Lemma 5.3 to conclude M,wj1
|= t�k(q! p).

By Lemma 5.6, M,wk |= ¬t�k(q! p). Since wj1
Rwk, we have,

M,wj1
|= �¬t�k(q! p)

Since M,wj1
|= t�k(q! p), by the definition of �, M,wj1

|= �t�k(q! p)

For the inductive step assume,

M,wjm |= ¬ �m t�k(q! p),
and for all z < m, M,wjm |= �zt�k(q! p)

We must show,

M,wjm+1
|= ¬ �m+1 t�k(q! p),

and for all z < m+ 1, M,wjm+1
|= �zt�k(q! p)

For a reductio, assume, for some z < m+ 1, M,wjm+1
|= ¬ �z t�k(q! p).

Thus, M,wjm+1
|= � �z−1 t�k(q ! p), and hence, M,wjm+1

|= �¬ �z−1

t�k(q ! p). Now, it is possible that wjm+1
is wjj

, but even if it is, by Lemma
5.8, ¬ �z−1 t�k(q ! p) can’t be true at the number 1. Thus, whether or not
wjm+1

is wjj
, it must be the case that M,wjm |= ¬ �z−1 t�k(q ! p). But this

contradicts the induction hypothesis (Since z < m+ 1, z− 1 < m).
Thus we know,

For all z < m+ 1, M,wjm+1
|= �zt�k(q! p)

And in particular we know: M,wjm+1
|= �mt�k(q! p).

By the induction hypothesisM,wjm |= ¬�m t�k(q! p), sincewjm+1
Rwjm ,

we have,
M,wjm+1

|= �¬ �m t�k(q! p)

So, M,wjm+1
|= � �m t�k(q! p), i.e. M,wjm+1

|= ¬ �m+1 t�k(q! p).

 5.10 M,wjj
|= ¬ �j t�k(q! p)

Proof: From Lemma 5.9, let m = j.

 5.11 M,wjj
|= ¬t�n�ip∧ �n+1t�ip∧ ¬ �j t�k(q! p)

Proof: From Corollary 5.10 and Lemma 5.7

 5.12 KT 6` �¬t�n�ip! �jt�k(q! p)
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Proof: By Lemma 5.11, a sentence equivalent to S(φhijk) fails in a model.
As mentioned it is sufficient to show S(φhijk) fails in some model. For

if S(φhijk) fails, so does tS(φhijk) (by Theorem 4.18). tS(φhijk) is a boxdot
formula, thus by Lemma 2.3, we can reflexivize the model and tS(φhijk) will
still be false (and so S(φhijk) will also fail).

We now present our final results.
 5.13 Where S(φhijk) is a surrogate for φhijk, KT 6` S(φhijk).

Proof: Let S(φhijk) be a surrogate for φhijk. By definition, φhijk /2 KT , thus
by Theorem 3.4 we know that for S(φhijk),

1) Either h 6= 0 or i < j, and
2) Either j 6= 0 or k < h.

Assume h 6= 0. Now either j 6= 0 or j = 0. If j = 0, then k < h, and S(φhijk) is
not a theorem of KT , by Theorem 5.5 in Subsection 5.1 (Case 1). If j 6= 0, then
S(φhijk) is not a theorem of KT , by Theorem 5.12 (Case 2).

Assume i < j. In this case j can’t be zero. Now either h 6= 0 or h=0. If
h = 0 then by Theorem 4.15, S(φhijk) is �¬t�n�kp ! t�i(q ! p), where
j = n+ 1. In this case our argument is the same as Case 1. Assume h 6= 0. This
is subsumed by Case 2.

 5.14 For all φhijk /2 KT, (9ψ)(K� φhijk ` tψ and KT 6` ψ)

Proof: By Theorem 4.19, for all φhijk /2 KT there is some S(φhijk), and K �
φhijk ` tS(φhijk). By Theorem 5.13, KT 6` S(φhijk)

 5.15 The Boxdot Conjecture holds for all K� φhijk.

Proof: It holds trivially when φhijk 2KT . If φhijk /2 KT use Theorem 5.14
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