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Abstract: Cantor’s proof that the powerset of the set of all natural numbers is
uncountable yields a version of Richard’s paradox when restricted to the full de-
finable universe, that is, to the universe containing all objects that can be defined
not just in one formal language but by means of the full expressive power of
natural language: this universe seems to be countable on one account and un-
countable on another. We argue that the claim that definitional contexts impose
restrictions on the scope of quantifiers reveals a natural way out.
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By the ‘full definable universe’ we mean to say the universe of all individual
mathematical objects that are definable in natural language. It is often be-
lieved that each language has an at most countably infinite set of definitions
because any natural language has a finite alphabet and admits only finitely long
phrases. It seems to follow not only that in the full definable universe all sets
are countable but that the universe has to be countable itself.

Since there seems to be no problem for the infinite set N of all natural
numbers to exist in the full definable universe, it is natural to pose the question:
what are we to do with Cantor’s theorem in that universe?
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The answer seems fallaciously simple: in any definable universe, the pow-
erset of N does not contain all the classically existing subsets of N but only the
definable ones and these could make up only a countably infinite set. As well
known, Richard’s paradox stands in the way of such a solution. This paradox
is most probably the cause that many definitionists prefer to frame their uni-
verses as models of this or that formal language: Richard’s paradox is deemed
to affect only languages for which the concept of definability is ill-defined, as
seems to happen with natural languages. So the way out of the paradox appears
to be the search for a formal language in which sufficiently many of mathematical
objects can be defined.

But that way out has its own difficulty at least if the “sufficiently many”
above is to include sets of sets of arbitrary large membership level: definability
in any formal language L such that ‘definable in L’ is well-defined always falls
short of definability simpliciter. To see this, take any such formal language L and
define the set Ry of all sets definable in L that are not self-membered. On the
one hand, Ry is well-defined for ‘definable in I’ is assumed to be well-defined;
on the other hand, R; is obviously not definable in L. Surely, the full extent
of ‘definable’ is the same as definable in the natural language. So, whenever
we restrict ourselves to some formal language L such that ‘definable in L’ is
well-defined, we are mutilating the mathematical universe.

This is why we wish to address here the problem of Cantor’s proof in the
full definable universe, fully aware that addressing that problem is essentially
the same as addressing Richard’s paradox.

II

The following is a version of the Richard paradox. Take the set F of @/ En-
glish phrases that define sets of naturals; F is countable; impose on F a length-
alphabetical order OF and consider the enumeration EF of F according to OF.
Since EF is definable in English, the phrase ‘the set containing exactly every
natural number that is not a member of the set defined by the definition it is
associated with in EF is an English phrase defining a set of naturals; call it DF.
DF is not in EF, contrary to the assumption that F contains @/ English phrases
defining sets of naturals. So, there is no enumeration EF of all English phrases
defining sets of natural numbers.

It is straightforward to render this argument an argument about definable
sets of naturals instead of about definitions of such sets. Consider the set S of
all sets of natural numbers definable in English. It seems that S has to be count-
able because the set F of the corresponding definitions is countable. Eliminate
from F redundancies, keeping in each case the definition that occurs first in
EF. This gives a definable enumeration ES of the definable sets of naturals and
the enumeration gives a definable diagonal set DS of natural numbers that is
not in ES. Hence there is no enumeration ES of all sets of naturals definable in
English.
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Since the paradox relies essentially on the apparently obvious linguistic fact
that the set of all English definitions of sets of natural numbers is countable, we
shall hereafter focus on definitions of sets of naturals rather than on definable
sets of naturals.

Note that F has been defined above as a set of phrases, that is, as a set of
strings of letters, a set of purely syntactic objects. It is obvious that the set F is
enumerable if it exists, as it is obvious that the enumerability of F would lead
to contradiction. Hence F does not exist. There are only two reasons why F
could fail to be a set: either it is ill-defined or it is too large to be a set. Since
F would be enumerable (hence, presumably, not too large for sethood) if exist-
ing, F must be ill-defined. Now there is a syntactical part to the definition of
‘English phrase defining a set of natural numbers’ and there is also a semantical
component. Syntactical facts (such as being composed of a finite sequence of
such and such symbols) are hardly ill-defined. So the ill-definedness must lie in
the semantical side of the question; that is to say, the property of expressing in
English a definition of a set of natural numbers must be ill-defined. Note that
this is the property expected to separate F from undoubtedly well-defined sets,
as the set of all finite strings of letters from the Latin alphabet, for instance.
This property will be called “P” here. So P is the property:

“x expresses an English definition of a set of natural numbers”

The rest of this paper is mostly an attempt at clarifying in what sense P and F
are ill-defined.

III

It should be acknowledged from the beginning that requiring from F to be
decidable or effectively enumerable in order to be well-defined would be an ex-
traordinary demand even for definitionists or constructivists, for there are lots
of definable but not effectively enumerable collections most definitionists and
constructivists usually take to be sets, for instance, the set of all computable
functions. In spite of this, the claim that the set E of all precisely definable
real numbers, though existent, is in some sense ill-defined because it is not
effectively enumerable was early made by Borel {z]—so early in fact that the
concept of effective enumerability had not yet be given any precise mathe-
matical content—and proposed as a way out of the original Richard’s paradox.
Borel writes:

Mais I'ensemble E n’est pas effectivement énumérable, c’est a dire qu’on
ne peut pas indiquer, au moyen d’un nombre fini de mots, un procédé sir
pour attribuer sans ambigiiité un rang déterminé a chacun de ses éléments
[...]. Telle est la réponse qu’on doit faire au paradox de M. Richard et a
tous les paradoxes analogues: il est impossible de discuter effectivement
sur un probléeme ou tous les termes ne sont pas explicitement définis.

{2, p. 44671
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That is to say:

But the set E is not effectively enumerable, that is, it is not possible
to specify, by means of a finite number of words, a secure procedure
for attributing without ambiguity an order number to each of its mem-
bers [...}1. Such is the response that must be given to the paradox of
M. Richard and all analogous ones: it is impossible to deal with a prob-
lem where not all terms are explicitly defined.

Now let us argue that the ill-definedness of F revealed by the paradox is not a
sort of fuzziness due to some kind of vagueness of the corresponding concept.
Certainly, the concept of ‘English definition of a set of natural numbers’ is
vague and has a fuzzy extension, for it is not clear-cut what should count as
such a definition. Nevertheless, this fuzziness does not seem to account for
the paradox because we can put forth a crisped version of it. We can use for the
purpose Baaz’s A-operator {11, as follows.

Let P(x) be the predicate ‘x expresses an English definition of a set of natu-
ral numbers’ and v a truth-value function with range in the interval [0, 1]. That
P(x) is fuzzy usually means that v(P(x)) can be other than 1 and other than 0.
The A-operator works in the following way:

Vx(v(P(x)) =1 —=v(AP(x)) =1)
Vx(v(P(x)) #1 — v(AP(x)) = 0)

If we retain only those x for which v(AP(x)) = 1, we get the crisp core of P(x),
namely AP(x). The predicate AP(x) can be empty but hardly fuzzy, for suppose
there is an x such that v(AP(x)) = v, with 0 < r < 1; then v(P(x)) # 1; hence
V(AP(x)) = 0. This is why systems containing Baaz’s operator usually include a
necessitation rule that permits us to pass from Ap to AAp.

We can read ‘AP’ as ‘definitely-P’. As there seems to be little doubt of
the existence of English phrases that are definitely English definitions of sets
of naturals, we can reject the possibility that AP(x) have an empty extension.
Then we can revisit the paradox for the set AF of English phrases that are def-
initely English definitions of sets of natural numbers, since any clearly defined
length-alphabetical order of them will give us a definite diagonal definition
ADF of a set of naturals and ADF will not be in AF.

Our point is that the ill-definedness of AP and AF is not primarily the fuzzi-
ness due to vagueness but the set theoretical kind of ill-definedness called ‘in-
definite extensibility’. The name is due to M. Dummett though the concept
is due to Russell {12} and can be said to have been implicitly suggested in 1906
by Poincaré {12} in the context of his discussion of Richard’s antinomy. Dum-
mett {4}, 195—6] writes:

The reason why the ordinary concept of ‘natural number’ is inherently
vague is that a central feature of it, which would be involved in any char-
acterisation of the concept, is the validity of induction with respect to
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any well-defined property; and the concept of a well-defined property in
turn exhibits a particular variety of inherent vagueness, namely indefi-
nite extensibility. A concept is indefinitely extensible if, for any definite
characterisation of it, there is a natural extension of this characterisa-
tion which yields a more inclusive concept; this extension will be made
according to some general principle for generating such extensions, and,
typically, the extended characterisation will be formulated by reference
to the previous, unextended, characterisation.

A few comments on this passage are in order. First of all, it is not clear at
all that the impossibility of characterizing the concept of natural number in
first order languages can be taken as a proof of the ‘inherent vagueness’ of the
concept.

Furthermore, Dummett should probably not have regarded indefinite ex-
tensibility as a form of vagueness. A concept C is vague whenever its extension
C is fuzzy, that is, C has an imprecise contour surrounded by borderline cases x
such that x € C has no classical truth value. Fuzziness is, so to say, a horizontal
phenomenon. Indefinite extensibility affects not only vague concepts but non
vague concepts as well (such as the concept of ordinal number) and is a ver-
tical phenomenon: the extensions of indefinitely extensible concepts are not
imprecisely distinguished from those of neighboring concepts; they are rather,
so to say, topless, open ended.

In any case, the extensible aspect of an extensible concept is its extension,
its intension remaining the same throughout. Indeed, a concept’s intension
bears the concept’s identity; so, in order to say that a particular concept C is
extensible, the intension of C must stay the same at all stages in the process of
expansion of its extension. Hence, we must understand Dummett’s words:

A concept is indefinitely extensible if, for any definite characterisation
of it, there is a natural extension of this characterisation which yields a
more inclusive concept

as stating that for any (purported) characterization of the extension of an in-
definitely extensible concept, there is a more inclusive characterization of that
extension.

Finally, the existence of a general procedure to produce such extensions,
a procedure that employs reference to the previous characterization, can be
taken as the existence of a diagonalization procedure.

Now;, consider again our crisped version of Richard’s paradox. Assume that
whenever we define the set AF of #// English finite phrases that are definitely
definitions of sets of naturals, we are defining a countable set (this is arguably
s0, see below, Section IV); then this set can never be taken as the ultimate
extension of the corresponding crisped concept AC, for there is always a diag-
onalization procedure that provides an object ADF that is not in AF though it
falls under AC.

Therefore, we must admit that our ‘all’ in the definition is never the ulti-
mate ‘all’ concerning finite English phrases that definitely count as definitions
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of sets of naturals. The scope of the quantifier ‘all’ in the definition of AF es-
corts the expanding extension of the concept AC throughout its extensibility
stages, so meaning differently along such levels. This ambiguity will turn out
to play a fundamental role. Let’s say that the universal quantifier is bounded by
a concept/predicate Q(x) when it heads a sentence of the form

x(Q(x) — &)

In that case, if Q is an extensible concept, the range of the quantifier can always
be extended while it is still bounded by Q: the extensibility of the bounded
quantifier’s range follows the extensibility of the concept that bounds it.

In particular, the diagonal definition ADF is not yet available or given for
quantification or reference when we proceed to define the enumeration out of
which it diagonalizes; hence, it is not in the range of the quantifier by which
we define AF.

It seems clear that in the definable universe, level of extensibility is the same
as level of definability because, in the definable universe, an object becomes avail-
able or given exactly when it becomes definable. Thus at each new stage along
the extensibility of the concept AC we reach a new level of definability regarding
sets of natural numbers: for each version of AF and each definable enumer-
ation AEF of it, the diagonal definition ADF sits within a higher definability
level than all the definitions in AF.

Even setting aside the paradoxes of definability and denotation, there are
good reasons to believe that the concept of English language is extensible. Con-
sider the following.

English, as any other natural language, is surely a function f from syntactic
objects to meanings (most probably an improper one-to-many function), that
is to say, from signifiers to signifieds, as Saussure {13} called them. Now there
can be no English syntactic object x such that f(x) = f, because no function
can be defined in terms of itself. This means that we do not have in f (i. e. in
English) a name x for f (i. e. for English), that is to say, a name able to refer to
the whole language in which it belongs. Since English = f and f(“English”) # f,
English(“English”) # English.

So when we speak in English about English, the ‘English’ in the metalan-
guage is not exactly the same as the ‘English’ in the object-language. And the
best candidate to make part of the metalanguage but not of the object-language
is precisely the expression ‘English’ as used in the metalanguage: when we
speak in English about English, we may think we are determining a function f
by means of that same f, as in f(x) = f, but if what we are saying must be fully
meaningful after all, circularity must in fact prevent us from referring to the
whole f, so that in fact we are only referring to a previously determinate part
f* of f. Then we do not have f(x) = f but f(x) = f* where (x, f*) is a member
of f but surely not a member of f*.

Of course, any item in the metalanguage can be turned into a new item of
an extended object-language and it is natural to suspect that this is what brings
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about extensibility.

It is a consequence of this approach that Cantor’s theorem, when applied
to N and interpreted in the full definable universe, has very little to do with
cardinality, at least with cardinality in its strict sense, as in “a rectangle has
more angles than a triangle.” What Cantor’s diagonal procedure reveals in this
context is the extensibility of the concept of definite English definition of a set
of natural numbers.

IV

It can be argued that the extensibility suggested by the Cantor—Richard case
under consideration here is relative; the concept of definite English definition
of a set of natural numbers is indefinitely extensible relative to the concept of
countable set, so that for any characterization of its extension that yields a count-
able set S there is one definition of the sort not in S. Shapiro and Wright 1]}
have formalized to a certain extent the notion of relative extensibility of con-
cepts. We will offer here a weakened, simplified and set theoretic version (the
authors’ original characterization is typed and intensional; it is also stronger in
a sense to be specified below).

First we define relative extensibility. A concept CI is extensible relative to a
concept c2 iff for every set S falling under c2 of objects falling under c1 there
is an object d such that

1. d falls under c1
2. d¢€S

The object d is said to diagonalize out of S. For an example, take c1 as the con-
cept of natural number and c2 as the concept of finite set; then the successor
of the greatest number in S will be a natural number not in S. Or take cr as
the concept of real number and c2 as the concept of enumerable set. If we are
right in this paper, the latter example is valid in the definable universe as well.

The idea is that there is no set falling under c2 that contains all the objects
falling under cr1 and only them because for each set S that is a c2 and contains
only c1’s there is a c1 not in S.

We define now relative indefinite extensibility. A concept c1 is said to be
indefinitely extensible relative to a concept c2 iff c1 is extensible relative to c2
and the following holds:

3. {d}U S falls under c2.

The idea is that there is no maximal set that falls under c2 and contains only
c1s because for each set S that falls under c2 and only contains cis there is a
new cI1 that is not in S and such that, added to S, gives a new set that also falls
under c2. This is the type of extensibility roughly corresponding here to the
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Shapiro-Wright indefinite extensibility. The examples above are also examples of
indefinite extensibility.

When c2 is the concept of set, so that there is no set at all of all the objects
falling under c1, we will say that c1 is absolutely extensible.

We said that this version is not only a simplified but also a weakened one
because Shapiro and Wright require the existence of a function f such that
d = f(S), f being the same through all extensibility stages; this may require
strong formulations of the Choice Axiom.

According to this setting, we could just have that the concept of definite
English definition of a set of natural numbers is indefinitely extensible relative
to the concept of countable set. Now, it seems evident that the definitions up
to some particular level of definability  make up a countable set S: after all,
their signifiers can at most be countably infinite and at each given level 3 each
signifier should define just one set. In fact, each S contains the extensibility
of language only up to a certain level. This implies that the members of S
can be seen as members of one definite language L in a hierarchy of languages,
i. e. there is a possible human language L such that S C L. Certainly, it appears
that any humanly usable language must be countable. So L must be countable
and S C L; then S must be countable.

The claim that the available sets of natural numbers make up a countable
set at any definability level implies that the extensibility here at stake is indef-
inite: we can go beyond any level we can define because we can diagonalize
in the Richardian way out of any countable set of definitely definable sets of
natural numbers. This should mean that the extensibility levels go up along all
(definable) ordinals. This in turn implies that there is no set of all definitely
definable sets of naturals and no set of all definite English definitions of sets of
natural numbers. And this implies that sethood and enumerability disappear
simultaneously in these cases. Indeed, this can be taken as an indication that
in the definable universe all sets are countable. But this issue should be prop-
erly addressed as a part of a more general question concerning the set theoretic
content of the full definable universe, a question well beyond our purpose here.

However a brief word about a possibly useful subset of standard mathe-
matics may be appropriate here. As noted above, sets of natural numbers may
be precisely defined within some language, L, containing all the usual logical
equipment for Peano Arithmetic, augmented with the minimal mechanics for
discussing sets of naturals. Thus the collection of ‘explicitly definable (within
L) sets of naturals’ is itself well defined.

It is mot, of course, itself definable within the language L, (thus avoiding
Richard); indeed it is not even discussable there, being a higher-level collection
than those definable within L. Nonetheless, it seems quite harmless, and pos-
sibly useful (particularly for real-analytic concepts such as lower upper bound),
to be able to diagonalize out of it, as does Cantor.

For this purpose, it seems natural to extend the language L very slightly; to
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L1, which would allow one to speak precisely about formulas within L. Using
this, we would have a much extended (though obviously still countable) col-
lection of definable sets of naturals. Now we may continue in this Richardian
manner to form increasingly extended languages L,, L3, ... each being a simi-
larly defined simple extension of the previous one. Though no technical details
are presented here, the extension method is virtually identical in every case, so
it does not seem to present any difficulty to pass to a supervening language
L, that includes an isomorphic copy of each of the L;. This process can then
be started anew, exactly in the manner of ordinal number notations giving us
L4ty --+s Lwt2y - ++5 Legy - - and so on [11, Section 11.7}.

How far could such a procedure go? How far we can go defining Richardian
diagonals depends on how far we can go defining ordinals. The latter depends
in turn on the strictures we wish to impose on the notion of definability: if, for
instance, we decide that an ordinal is only definable if there is a uniform device
permitting to reach it from below, then, under the Church-Turing thesis, only
the Church-Kleene constructive ordinals would exist in the definable universe
and the first Church-Kleene non-constructive ordinal w{* would set a natural
limit on how far we can go on producing Richardian diagonals.

We will just add a consideration with the purpose of illustrating how in-
definite extensibility should be expected to behave within the full definable
universe. It is a fact that in the ordinal series we can easily define beyond
whatever we can define. So, why can we not reach an uncountable ordinal by
defining the set of all countable ordinals just as we do in classical set theory?
Well, if all ordinals are countable, then surely the concept of ‘countable ordi-
nal’ is as absolutely extensible as the concept of ordinal. So the scope of the
bounded quantifier ‘@// countable ordinals’ varies along the extensibility levels.
For each level  we can define an ordinal -y as the set of all countable ordinals
at 3, and 'y will be a countable ordinal at § + 1.

It is a corollary of Hartogs’ theorem about cardinality that for any set S
there is an ordinal more numerous than S, but the proof of this theorem re-
lies so essentially on the usual axioms of set theory (the powerset axiom, in
particular), that it appears to be inapplicable in a definable universe.

In a sense, the powerset axiom bypasses both the issue of definability and
the issue of extensibility by declaring, so to say, that all definitions and ex-
tensions have already been done. One is reminded of Russell’s comment that
postulation bears the same advantages over construction that theft does over
honest toil.

It is time to address the crucial problem that any attempt to account for
Cantor’s theorem in the full definable universe has to cope with, namely: the
multiplicity of definitely definable sets of naturals in the full definable universe
cannot be countable (because of the Cantor-Richard proof), though it seems
there is an at most countably infinite provision of the corresponding defini-
tions. Let us call this the uncountability problem.

Cantor dealt with this problem in a way that strikes most of us as really
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unexpected of him. Cantor seems to have believed (at one time at least) that all
the real numbers are definable, hence that the set of all definable real numbers
must be uncountable. He wrote to Hilbert on August 8, 1906 {3} p. 446}

Wire Konigs Satz, daf alle “endlich definirbaren” reellen Zahlen einen
Inbegriff von der Michtigkeit Xy ausmachen, richtig, so hief§ dies, das
ganze Zahlencontinuum sei abzihlbar, was doch sicherlich falsch ist. Es
fragt sich nun, welcher Irrthum liegt dem angeblichen Beweise seines
falschen Satzes zu Grunde? Der Irrthum (welcher sich auch in der Note
eines Herrn Richard im letzten Hefte der Acta Mathematica findet, welche
Note Herr Poincaré in dem letzten Hefte der Revue de Métaphysique et de
Morale mit Emphase herausstreicht) ist, wie mir scheint, dieser: Es wird
vorausgesetzt, dass das System {B} der Begriffe B, welche eventuell zur
Definition von reellen Zahlenindividuen herangezogen werden miissen,
ein endliches oder héchstens abzihlbar unendliches sei. Diese Vorausset-
zung muf} ein Irrthum sein, da sich sonst der falsche Satz ergeben wiirde:
“das Zahlencontinuum hat die Michtigkeit NXo”. Irre ich mich, oder habe
ich Recht?

In our translation:

If K6nig’s statement that all “finitely definable” real numbers form a col-
lection of cardinal number X, were correct, this would imply that the
whole continuum is countable, which is obviously wrong. The question
is now on which error the purported proof of his false theorem is based.
The error (which also appears in the note of a Mr. Richard in the last issue
of the Acta Mathematica, which Mr. Poincaré emphasizes in the last issue
of the Revue de Métaphysique et de Morale) is, it seems to me, the follow-
ing: it is assumed that the System {B} of notions B, which have eventually
to be used for the definition of individual numbers, is finite or at most
countably infinite. This assumption must be an error because otherwise
this falsity would follow: “the numerical continuum has cardinality Xy”.
Am I right or wrong?

It is usually believed that Cantor was wrong, that he failed to distinguish the set
of the definable reals (which is usually deemed to be countable) from the set of
the reals, most of which are (usually thought to be) indefinable. It seems very
unlikely that Cantor failed to know that the possible syntactic pieces in any
given language form an at most countably infinite set; still he refused to accept
the set of notions eventually available for defining numbers to be countable.
But there is a way in which Cantor could be right. The multiplicity of
definite English definitions of sets of naturals is not countable (and similarly
the multiplicity of definitions of real numbers). The uncountability problem
can be solved by adequately distinguishing between syntactical and semantical
objects. To see how the supply of definitions can exceed the countable, con-
sider that a definition is not a string of letters, not a mere syntactical object.
An English definition is a pair (signifier, signified) in the function English, where
‘signifier’ and ‘signified’ are taken, as before, in the Saussurian sense: the signi-
fied is the syntactical object, i.e. the string of symbols, whereas the signified is
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the semantical object, i. e. roughly, Frege’s Sinn. There is no doubt that the set
AF of all relevant signifiers is countable. If the function English mapped each
signifier to only one signified, the set of all definite English definitions would
be countable too. So the function English is for logical reasons an improper one-
to-many function, at least for the signifiers at issue.

Since it is imposed on us by the definable version of Cantor’s theorem to-
gether with elementary mathematical considerations, the ambiguity of such
signifiers is not a matter of caprice or choice, not a matter of linguistic arbi-
trariness. It is just a necessity in need of explanation. But all the resources we
need to develop that explanation have already become available in the course
of our reflection. It is a fact that there are definite English definitions of sets of
natural numbers that refer to ‘@// definite English definitions of sets of natural
numbers’; for example, the diagonal definitions in the Cantor-Richard proof.
And we know that this quantifiying phrase quantifies variously along the exten-
sibility levels: it has a different range at each extensibility level. This provides
the required source of ambiguity. Therefore, exactly the same insight that taught us
how to deal with the Richardian diagonal enables us to solve the ensuing uncountability

problem.
v

The ambiguity of quantification over definite English definitions of sets of nat-
urals suggests a consideration about quantification and sethood.

The usual model theoretical thesis that any quantification domain is a non
empty set and that any non empty set is a possible domain of quantification,
must be adjusted in the definable universe in order to take account of the exis-
tence of definability levels. The best rationale for the model theoretical thesis
mentioned above is the intuitive equivalence of the following propositions:

1. A multiplicity M can be regarded as a completed totality

2. A multiplicity M can be regarded as a single object

3. A multiplicity M is a set

4. All the objects in a multiplicity M are simultaneously available/given

5. Itis possible to simultaneously quantify (make reference) over (to) all the
objects in a multiplicity M

Consider that in a definable universe givenness or availability can be under-
stood as definability. Since we are considering the existence of levels of de-
finability, we must say that a multiplicity M is a set if and only if there is a
definability level B such that all the objects in M are definable at {3.

The disadvantage of this general position is that it bans quantification over
the extension of absolutely extensible concepts like the concept of set or the
concept of ordinal. So it seems it would prohibit us from stating:
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[wr]} No set is self-membered
or
[Tr] All ordinals are transitive

A way out has been proposed by Luna {8} drawing on earlier suggestions by
Godel and Carnap. Propositions like {[wr} and [TRr} could be interpreted as
expressing relations of entailment between concepts and properties:

[wr’} The concept of set entails the property of being non self-membered
[TR’} The concept of ordinal entails the property of transitivity

The quantifiers in {wr} and [TR]} could be just gpparent quantifiers if these
propositions are taken to express relations of intensional entailment. As Godel
put it {7, p. 135, 136}, ‘all’ need not mean in all cases the same as an infinite log-
ical conjunction, it could mean “analyticity or necessity or demonstrability.”

APPENDIX

Semantics for languages with absolutely extensible concepts: a sketch

Recall that an absolutely extensible concept is essentially one whose exten-
sion is neither empty nor a set. Standard semantics for formal languages, that
is, standard model theory, deals only with domains of discourse that are sets.
How would the semantics of a language including absolutely extensible con-
cepts look?

A first issue is whether the semantics of natural language is itself adapted
to extensible concepts. It may well be. When students first face the Russell-
Zermelo paradox of the set R of all non self-membered sets, they feel there’s
some trick about it. Some of them even get to object something like ‘I thought
that the definition of R meant all other sets, those previously given, not R
itself’. Those objections are usually suffocated by appeal to the rigid rules of
instantiation of predicate logic.

Some years ago one of us asked his then 12-years-old daughter whether it
is possible to put all boxes in the world into one box. She answered: ‘yes, you
just make a box large enough’. When her father objected that the large enough
box could not contain itself, she replied: ‘I meant all ozher boxes, of course’.
Similarly, one can easily imagine Epimenides claiming he was referring to all
other Cretans (of course!). So, one can argue that paradoxes are provoked
by some unnatural semantics logicians and mathematicians impose on their
artificial languages. It can be argued that natural languages are always used
from a particular language level, which acts as a logical context determining the
extension of the extensible concepts and the range of the quantifiers bounded
by them. Then also meaning and truth conditions are determined by the logical
context. Something on this line was rather timidly suggested by Parsons {9],
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then more resolutely recaptured by Glanzberg {3} [6]. If the role of context is
so essential, there is little hope that a formalized theory of meaning and truth
for languages with absolutely extensible concepts may be ever attained.

In any event, we can ask what general shape formal semantics should adopt
in order to successfully deal with absolutely extensible concepts and avoid para-
doxes. The core of semantics for formal languages is model theory. Indeed
meaning and truth in formal languages is defined with respect to models. An
interpretation relates a formal language to a particular model. What an in-
terpretation provides is first of all a domain of discourse. In standard model
theory the domain of discourse is fixed once for all. This trait is exactly what
seems impossible to keep in any semantics suitable for a language with ab-
solutely extensible concepts. A new kind of semantics allowing for extensible
domains is required. We cannot develop here a full-fledged semantics with ex-
tensible domains; we shall just try to sketch where it deviates from standard
semantics and how instantiation and generalization rules might be affected.

Let C be an absolutely extensible concept and let P(x) be the predicate
‘x falls under C’. We call P an absolutely extensible predicate. In dealing with
absolutely extensible concepts the thing we must take care of is the range of the
quantifiers (explicitly or implicitly) bounded by the corresponding absolutely
extensible predicates. The quantifiers in subformulae like ‘Vx(P(x) — ---)’
and ‘Ix(P(x) & ---)’ can be said to be explicitly bounded by the absolutely
extensible predicate P. But if we have chosen a set of Ps as our domain of
discourse, then all quantifiers in our language are implicitly bounded by one of
the variable extensions of P.

The point is then that the extension of P, hence the range of the bounded
quantifiers, can vary along the levels of language. This becomes especially rel-
evant when we reach a new level precisely by using quantifiers bounded by
absolutely extensible predicates; such are the diagonal objects d mentioned on
page 6: we quantify over a set of Ps in order to construct an object that diag-
onalizes out of that set while staying, nonetheless, within the extension of P.
In such cases new objects, to which P applies, become available. The domain of
discourse opened by P has been extended.

Let us briefly consider an example taken from Luna {8}. Assume that the
range of the quantifier and the variable in the following formula is some set of
sets S:

(@ Vx(x €ER < x ¢ x)

In (1) we have a quantifier implicitly bounded by the predicate x is in S’ (and
explicitly bounded by the predicate ‘x ¢ x’). The formula defines a set R which
diagonalizes out of the whole range of the quantifier in (1); that is, R diagonal-
izes out of the set of sets S the formula quantifies over. As a consequence, R is
not in the range of the universal quantifier in (1): it lies on a higher extensibility
level. Thus R extends the domain of discourse. Of course, this precludes the
classical inference to:
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() RER—R¢R

since R is not in the range of x. From (1) we obtain by Existential Generaliza-
tion:

(3 Fyvx(x €y« x ¢ x)

But, in so doing, we must provide the quantifier we introduce with an extended
domain: generalization without domain extension should be forbidden in diag-
onalizing contexts. Consequently, we cannot get (2) from (3) because the range
of the existential quantifier exceeds that of the universal quantifier: there is
no guarantee that the y is one of the x. Instantiation from a previous more
restricted domain into a new and extended one is obviously invalid.

A model M for a first order language L is a pair (D, f) where D is a domain
of discourse (i. e. a non empty set) and f is an interpretation function assigning
members of D to individual constants of L and subsets of D™ to n-ary pred-
icates of L. In standard semantics we say that a sentence P(d) in L, with P a
monadic predicate, is true in M iff

f(d) e f(P) C D

Now assume that the d in P(d) diagonalizes out of f(P), as is the case in (1),
while there is no other such diagonalization in the formula. What we need in
order to provide truth conditions able to turn a formula like (1), which is unsat-
isfiable in standard semantics, into a satisfiable sentence is just shifting from a
lower level language L with a model M = (D, f) to a higher level language L*
with an extended model M = (D", f*) such that D ¢ D, Dt — D C f(P)
and f*(d) € D" — D. We can reformulate this by considering an extensible
language LUL™ with an extensible model MM = (D, D*, f,f*). Then we can
say that a formula P(d) of LUL™ is true in MM iff at least one of the following
conditions holds:

@) f(d) e f(P) D

(i) f*(d) diagonalizes out of f(P) and f*(d) € f"(P) C D" and, for any
other expression ¢ in P(d), () = f(d).

Now; in order to turn this rather vague characterization into a precise one,
we would have to specify the conditions under which diagonalization (so un-
derstood and not, of course, in the Godelian sense) occurs. There are many
different ways in which one can diagonalize out of a set of Ps by means of a
higher level P. Hence the precise formulation of extensible domain seman-
tics will only be possible when a definite theory of diagonalization is available.
Now the context dependence we have mentioned above and the fact that the
hierarchy of extensibility levels goes beyond sethood cast serious doubts on
the possibility of a complete formalization of truth conditions in this theory:.
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