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Abstract: In this paper, we will develop an algebraic study of substructural propo-
sitional logics over FLew, i.e. the logic which is obtained from the intuitionis-
tic logics by eliminating the contraction rule. Our main technical tool is to use
residuated lattices as the algebraic semantics for them. This enables us to study
different kinds of nonclassical logics, including intermediate logics, BCK-logics,
Łukasiewicz’s many-valued logics and fuzzy logics, within a uniform framework.

 (2009): The draft of the present paper was originally completed
in 1999 and then revised slightly in 2001, which I intended to dedicate to
R. K. Meyer on the occasion of his 65th birthday.

From the middle of 90s, I had been trying to develop an algebraic study of
substructural logics over the logic without the contraction rule FLew, and had
announced results in several conferences, e.g. the 6th Asian Logic Conference
in 1996, Dagstuhl Seminar on Multiple-Valued Logic in 1997 and S. Jaśkowski
Memorial Symposium on Parainconsistent Logic, Logical Philosophy, Math-
ematics & Informatics in 1998. So I planned to make the present paper a
comprehensive survey of the state of affairs of the study.

While the paper has not been published for many years, the draft has been
referred in considerably many papers of substructural logics published in the
last decade.

On the occasion of the publication of the paper, I have been wondering in
which way I should publish the paper and how much I should revise it. For,
there have been a remakable progress in the direction of this research within
these 10 years, and moreover my joint book [25] on substructural logics was
already published. It would be no use to make an entire update of it.
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My decision is to minimize changes, keeping the original form, and to add
only necessary information on recent progress. (I put the mark (†) to footnotes
which are essentially added in the present revision.) I hope that the paper will
be still of interest and also informative, especially in its references, beyond its
historical meaning.

1 I
A lot of works have been done in recent years for substructural logics, logics
lacking some or all of structural rules when they are formalized in sequent
calculi (see e.g. [21]). They include various kinds of nonclassical logics like
Lambek calculus for categorial grammar, linear logic, BCK-logic and relevant
logics, which have been introduced by different motivations with their own
interests and aims and have been studied separately. The study of substructural
logics, if successful, will enable us to develop the study of various nonclassical
logics in a uniform viewpoint, and to discuss common features among them
within this framework.

Though proof-theoretic methods have showed their effectiveness for par-
ticular substructural logics, e.g. logics formalized in cut-free sequent systems
(see e.g. [54]), it will be quite necessary to introduce semantical methods when
we want to develop a general study of substructural logics to the similar extent
to that of modal logics.

In this paper, we will develop an algebraic study of substructural logics over
FLew. The sequent calculus FLew is obtained from the intuitionistic logic by
deleting the contraction rule. Sometimes we call substructural logics over FLew,
or logics without contraction rule, although the contraction rule holds in some of
them. The class of logics without the contraction rule contains intermediate
logics, BCK-logics, Łukasiewicz’s many-valued logics and fuzzy logics (in the
sense of [30]). Our main technical tool here is algebraic one which is based on
closer connections between logics over FLew and classes of residuated lattices.

Our main aims of the present paper are first to view known results on vari-
ous logics without contraction in our framework, to keep the situation in per-
spective and to try to find out proper directions of further study of substruc-
tural logics over FLew. We give here some basic references of various classes
of logics without contraction discussed in the present paper: [13] for interme-
diate logics (or superintuitionistic logics), [16] for many-valued logics, [30] for
fuzzy logics, [25] for residuated lattices, [8, 9] for BCK-algebras and [21, 25] for
substructural logics.

The paper is organized as follows. In Section 2, the logic FLew and its ex-
tesions are introduced. Results on residuated lattices and FLew-algebras are
surveyed in Section 3. Basic results on subdirectly irreducible FLew-algebras
are shown in Section 4. Some of important extensions of FLew are introduced
in Section 5 as axiomatic systems. In Section 6, simple and semisimple FLew-
algebras are discussed. A classification of logics over FLew is also introduced

Hiroakira Ono, “Logics without the contraction rule”, Australasian Journal of Logic (8) 2010, 50–81

http://www.philosophy.unimelb.edu.au/ajl/2010
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2010 52

at the end of the section. Section 7 is devoted to the study of immediate pre-
decessors of the classical logic Cl. It is known that there is a single immediate
predecessor of Cl over the intuitionistic logic, and that there are countably
many of them over Łukasiewicz’s infinitely many-valued logic. It will be shown
there that there are many immediate predecessors of Cl other than them among
logics over FLew.

The author owed much to Bob Meyer and Josep M. Font in completing the
initial draft of the paper. The author would like to express his special thanks to
them for constant encouragement and suggestions. The author is also indebted
much to A. Avron, G. Bezhanishvili, W. Blok, M. Bunder, H. Ida, T. Kowalski,
K. Swirydowicz and F. Wolter for their advices and helps in various forms.

2 L    
We will introduce first a sequent calculus FLew, which is our basic logic with-
out the contraction rule. Roughly speaking, FLew is the system obtained from
Gentzen’s sequent calculus LJ for the intuitionistic logic by deleting the con-
traction rule. The language of FLew consists of a logical constant ⊥, logical
connectives→,∧,∨ and · (called multiplicative conjunction or fusion). The nega-
tion ¬A of a formula A is defined as an abbreviation of A → ⊥. Sometimes,
we will abbreviate the formula (A → B) ∧ (B → A) to A ≡ B. A sequent is
of the form A1, . . . , Am ⇒ B where m > 0. In the following, capital Greek
letters denote finite (possibly empty) sequences of formulas. The system FLew

consists of the following initial sequents

1. A⇒ A

2. ⊥, Γ ⇒ C

and the following rules of inference;
Cut rule:

Γ ⇒ A A,∆⇒ C
Γ,∆⇒ C

Exchange rule and weakening rule:

Γ,A, B,∆⇒ C
Γ, B,A,∆⇒ C

(ex) Γ ⇒ C
A, Γ ⇒ C

(weak)

Rules for logical connectives:

A, Γ ⇒ B
Γ ⇒ A→ B

(⇒→) Γ ⇒ A B,∆⇒ C
A→ B, Γ, ∆⇒ C

(→⇒)

Γ ⇒ A
Γ ⇒ A∨ B

(⇒ ∨1) Γ ⇒ B
Γ ⇒ A∨ B

(⇒ ∨2)
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A, Γ ⇒ C B, Γ ⇒ C
A∨ B, Γ ⇒ C

(∨⇒)

Γ ⇒ A Γ ⇒ B
Γ ⇒ A∧ B

(⇒ ∧)

A, Γ ⇒ C
A∧ B, Γ ⇒ C

(∧1⇒) B, Γ ⇒ C
A∧ B, Γ ⇒ C

(∧2⇒)

Γ ⇒ A ∆⇒ B
Γ,∆⇒ A · B (⇒ ·) A,B, Γ ⇒ C

A · B, Γ ⇒ C
(· ⇒)

.

The provability of a given sequent is defined in the usual way. In particular,
we say that a formula A is provable in FLew when the sequent ⇒ A is provable
in it.

In our joint paper [55] with Y. Komori, both syntactic and semantic prop-
erties of FLew are studied. The cut elimination theorem for FLew is shown,
from which both the decidability and Craig’s interpolation theorem of FLew

are derived. Also, a Hilbert-style formulation of FLew is introduced and the
separation theorem is proved. Then, a Kripke-type semantics for FLew and re-
lated systems is introduced and their completeness with respect to the seman-
tics is proved in it. (For additional information on FLew and related systems
(up to the middle of 90s), see also [22, 23, 52, 53].) It should be also noticed
that monoidal propositional logic in [33] discussed in the context of fuzzy logic is
equivalent to the logic FLew.

Let FLe be the sequent system obtained from FLew by deleting the weak-
ening rule, and FLec be the sequent system obtained from FLe by adding the
following contraction rule:

A,A, Γ ⇒ C
A, Γ ⇒ C

(con)
.

The system FLe gives a sequent calculus for the intuitionistic linear logic. It is
clear that the sequent calculus obtained from FLew by adding the contraction
rule gives a (cut-free) sequent calculus for the intuitionistic logic Int. We can
see that any sequent of the form A ·B⇒ A∧B (and of the form A∧B⇒ A ·B)
is provable in FLew (and FLec, respectively). Thus in Int, the fusion · becomes
equivalent to ∧.

In the present paper, we will concentrate on the study of substructural
propositional logics over FLew. Here, by a substrctural logic over FLew (or a sub-
structural logic without the contraction rule), we mean any set of formulas which
includes all formulas provable in FLew and is closed under substitution and
modus ponens, i.e. if both A and A → B belong to the set then B belongs also
to it. Sometimes, we omit the word "substractual", or even call it simply a
logic.1 Also, we identify a formal system with the set of all formulas which are

1(†) As for the definition of substructural logic in general, see [25].
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provable in it, when no confusions will occur. Thus, FLew denotes not only the
sequent calculus introduced in the above, but also the set of all formulas prov-
able in it. In the following, Cl and Int denote classical logic and intuitionistic
logic, respectively. Intermediate logics (or, superintuitionistic logics), which
are logics over intuitionistic logic, Łukasiewicz’s many-valued logics, and fuzzy
logics are important examples of logics over FLew, which have been already
studied extensively.

The class of logics over FLew is ordered by the set inclusion ⊆. (It is in fact
a set, since each logic is a subset of the set of all formulas.) Of course, FLew

is the smallest logic among them, and the set of all formulas is the greatest
one, which is the inconsistent logic. We are concerned only with consistent logics,
among which the classical logic Cl is the greatest.

Suppose that {Li}i∈I is a set of logics, where I is a (possibly infinite)
nonempty set of indices. Then, clearly the set intersection

⋂
i∈I Li of them

is also a logic. Thus, the set of all logics over FLew forms a complete lattice, in
which the join

∨
i∈I Li of Lis is represented as follows.

∨
i∈I
Li = {A : there exist j1, . . . , jk ∈ I and formulas Bjt ∈ Ljt for

1 6 t 6 k such that the formula (Bj1 · . . . · Bjk)→ A

is provable in FLew}.

 2.1 The set of all logics over FLew forms a complete lattice, in which the
following distributive law hold;

L ∩
∨
i

Li =
∨
i

(L ∩ Li).

The distributivity in the above theorem can be easily shown by using the
above representation of joins . We can derive it also from the fact that the
variety of FLew-algebras is congruence-distributive (see Proposition 3.5), by using
the result by Jónsson [39] (see also [5]).

Let L0 and L be logics such that L0 ⊆ L. Then, L is said to be finitely
axiomatized over L0 by the axioms A1, . . . , Am, if L is the smallest logic which
contains both L0 and the set {A1, . . . , Am}. It holds that for any formula C
it is in L if and only if there exist formulas B1, . . . , Bn (for some n > 0),
each of which is a substitution instance of some Ak, such that the formula
(B1·. . .·Bn)→ C belongs to L0. The logic L is denoted by L0[A1, . . . , Am] in this
case. A logic L is said to be finitely axiomatizable over L0 when there exist some
axioms by which L is finitely axiomatized over L0. We will omit the word "over
L0" when L0 is FLew. It is easy to see that L[A1, . . . , Am] = L[(A1 · . . . · Am)],
by the help of the weakening rule of FLew, i.e. by using the fact that formulas of
the form (C ·D)→ C is always provable in FLew. It is easy to see the following.

Hiroakira Ono, “Logics without the contraction rule”, Australasian Journal of Logic (8) 2010, 50–81

http://www.philosophy.unimelb.edu.au/ajl/2010
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2010 55

 2.2 Suppose that logics L and L ′ are finitely axiomatized over L0 by the
axioms A and B, respectively. Then, logics L ∧ L ′ and L ∨ L ′ are finitely axiomatized
over L0 by axioms A ∨ B and A · B, respectively. (Here, A and B are supposed to have
no propositional variables in common, by renaming them if necessary.)

3 R   FLew-
In this section, we will introduce FLew-algebras as the algebraic counterparts of
logics without contraction rules. FLew-algebras are sometimes called commu-
tative integral residuated lattices. Residuated lattices are already introduced and
discussed in 30s and has been studied by many people, e.g. Krull [47], Balbes-
Dwinger [4], Dilworth [20], Ward-Dilworth [63], Ward [62] and Pavelka [58].2

In our original draft of the present paper in 2001, residuated lattices are
defined in a slightly different way. In fact, they should have been called com-
mutative integral residuated lattices, or more precisely FLew-algebras (see [53]).
To avoid confusion, here we start to give a definition of commutative residuated
lattices and then give a definition of FLew-algebras. As for a definition of resid-
uated lattices in general, including noncommutative case, see [25].3

 3.1 An algebra M = 〈M,∧,∨, ·,→, 1〉 is a commutative residuated
lattice if

• 〈M,∧,∨〉 is a lattice,

• 〈M, ·, 1〉 is a commutative monoid with the unit element 1,

• for x, y ∈M, x · y 6 z if and only if x 6 y→ z (the law of residuation).

 3.2 An algebra M = 〈M,∧,∨, ·,→, 0, 1〉 is a FLew-algebra if

• 〈M,∧,∨, ·,→, 1〉 is a commutative residuated lattice,

• 1 is the greatest element and 0 is the least element.

FLew-algebras are called also BCK-lattices [34], full BCK-algebras [55], and inte-
gral, residuated, commutative l-monoids [33]. An extensive study of FLew-algebras
can be seen in [33]. The (dual of the) implicational reduct of an FLew-algebra is
sometimes called a BCK-algebra. A BCK-algebra with the fusion satisfying the
law of residuation is called a BCK-algebra with condition (S), in [35]. See also
[65], [9] and [10].

2 In [67], Zlatoš discussed residuated lattices and claimed that the class of residuated lattices
forms a variety which is arithmetical. Unfortunately, his definition of residuated lattices is in-
sufficient. In fact, from his definition we cannot deduce the law of residuation in Definition 3.2
of residuated lattices. Thus, Proposition 1.2 of [67] is incorrect. The present author owes this
fact to J. M. Font.

3 By the abuse of symbols, we use the same symbols both for logical connectives and for
algebraic operations corresponding to these connectives.

Hiroakira Ono, “Logics without the contraction rule”, Australasian Journal of Logic (8) 2010, 50–81

http://www.philosophy.unimelb.edu.au/ajl/2010
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2010 56

Now we will give a brief survey of basic properties of FLew-algebras and of
relations between logics over FLew and FLew-algebras.4 In the following, we
assume that FLew-algebras are always non-degenerate, i.e. they satisfies 0 6= 1.
We define ∼x by ∼x = x → 0. It is easy to see that the following hold in
any FLew-algebra (in fact, the first three hold in any commutative residuated
lattice;

(i) x 6 y implies x · z 6 y · z,

(ii) (x∨ y) · z = (x · z) ∨ (y · z),

(iii) 1→ x = x,

(iv) x · y 6 x and hence x · y 6 x∧ y (integrality),

(v) x 6 y if and only if x→ y = 1.

Note that the above (ii) expresses the distributivity of · over join, which follows
from (i) with the law of residuation. Conversely, suppose that the distributivity
(ii) holds in a finite algebra M satisfying Conditions 1 and 2 in the definition of
commutative residuated lattices. Then, M becomes a commutative residuated
lattice if we define y → z by max{x : x · y 6 z}. In fact, it exists always for all
y, z, and→ satisfies the law of residuation.

In the previous section, we mentioned briefly a relationship between logics
over FLew and fuzzy logic. We will discuss it here in more detail. In fuzzy set
theory, the set of truth values is the unit interval [0, 1], which is linearly ordered
by the natural order. A binary function T from [0, 1] × [0, 1] to [0, 1] is called a
triangular norm (simply, a t-norm) in the theory of probabilistic metric spaces (see
e.g. [60]), if the following holds for x, y, z;

1. T(x, T(y, z)) = T(T(x, y), z),

2. T(x, y) = T(y, x),

3. T(x, 1) = x,

4. x 6 y implies T(x, z) 6 T(y, z).

Thus, 〈[0, 1], ·, 1〉 forms a commutative monoid in which (i) holds, if we define
· by x · y = T(x, y). Now we suppose moreover that T is a continuous t-norm, i.e.
a t-norm which is a continuous function over the interval [0, 1]. For any y, z,
define a subset Iy,z of [0, 1] by Iy,z = {x : T(x, y) 6 z} and let u = sup Iy,z. By
using the continuity of T , we have that T(u, y) = sup{T(x, y) : x ∈ Iy,z} 6 z.
Hence, u is in fact equal to maxIy,z. Thus, the law of residuation holds also, if
we define y → z by maxIy,z. Therefore, the unit interval with any continuous

4(†) By a rapid development of the study in recent years, most of results in this section may
be standard now.
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t-norm forms an FLew-algebra. This gives us a reason why fuzzy logics (in the
narrow sense) can be regarded as logics over FLew (see also [30]).5

Note that in the above only the left-continuity of T , i.e.
T(

∨
ixi, y) =

∨
iT(xi, y), is used for showing the existence of residuation →.

It is easily seen that when · is defined by x · y = T(x, y) for all x, y with a left-
continuous t-norm T , the structure 〈[0, 1], ·, 1〉 is nothing but an integral, unital
commutative quantale with the universe [0, 1]. (See [59] for more information on
quantales.)6

As we will show later (see Proposition 3.3), the class of all FLew-algebras
determines the logic FLew. An FLew-algebra M is said to be involutive if

DN : ∼∼x= x for any x

holds always in it. Grišin discussed properties of involutive FLew-algebras in
[27, 28, 29], where they are called latticed L◦-algebras (see also [51], in which they
are called Grišin algebras). Also, involutive FLew-algebras have been studied by
E. Casari and P. Minari as algebras for a comparative logic, and they are called
Abelian lattice-ordered zeroids. (See a survey of comparative logic in Casari [12].)
We can show the following.
 3.1 In any involutive FLew-algebra, the following holds.

1. ∼(x∨ y) = ∼x ∧ ∼y,

2. x · y = ∼(x→ ∼y).

FLe-algebras are defined similarly to FLew-algebras, but by deleting the sec-
ond condition of Definition 3.2, which says that 1 is the greatest element and
0 is the least element. (Thus, 0 is an arbitrary element.) It is well-known that
the class of involutive FLe-algebras determines the linear logic (without expo-
nentials) MALL introduced by Girard [26]. Complete involutive FLe-algebras
(i.e. complete as lattices) are called unital, commutative quantales (see e.g. [59]).

The algebraic condition which corresponds to the contraction rule is z 6 z·
z (square-increasingness). From this, the inequality x∧y 6 x ·y follows. Thus,
for each FLew-algebra M, the monoid operation · of M is square-increasing, if
and only if the monoid operation · of M is equal to ∧, if and only if M is a
Heyting algebra. Another interesting class of algebras related to FLew-algebras
arose from Łukasiewicz’s many-valued logics. Algebras in the class are called
by various names, e.g. MV-algebras in [14], Wajsberg algebras in [24], CN-algebras
in [41] and (bounded) commutative BCK-algebras in [66, 36] etc.. (As for the exact
relation between MV-algebras and Wajsberg algebras, see e.g. [24].) We will
give here a short sketch of them and their connection with FLew-algebras.

5See [2] and [17] for important results on the logic of continuous t-norms up to 2001.
6(†) See also [25].
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 3.3 An algebra W = 〈W,→, ∼, 1〉 is a Wajsberg algebra if

• 1→ x = x,

• (x→ y)→ ((y→ z)→ (x→ z)) = 1,

• (x→ y)→ y = (y→ x)→ x,

• (∼x→∼y)→ (y→ x) = 1.

In a Wajsberg algebra W, let us define the binary relation 6 onW by x 6 y

if and only if x → y = 1. Then 〈W,6〉 is a partially ordered set with the
greatest element 1, and the least element 0 if we define 0 by ∼1. Moreover, if
we define x ∨ y = (x → y) → y and x ∧ y =∼(∼x ∨ ∼y) then x ∨ y and x ∧ y

are equal to the supremum and the infimum of {x, y}, respectively, with respect to
the order 6. Hence W forms a lattice. Also, it can be shown that x → 0 = ∼x,
∼∼x = x and moreover that (x→ y)∨ (y→ x) = 1 (prelinearity). The following
equation (1), which is the third condition in Definition 3.3, plays an important
role as shown below.

(x→ y)→ y = (y→ x)→ x. (1)

It is easy to see that any FLew-algebra satisfying (1) is involutive. (As for the
details of the above discussions, see e.g. [24]. See also [8] for related topics.)
The following proposition is proved in [24] and [49].
 3.1 Let W = 〈W,→, ∼, 1〉 be a Wajsberg algebra. Define a binary
relation 6 on W as above, and a binary operation · by x · y = ∼(x → ∼y). Then,
W = 〈W,∧,∨, ·,→, 0, 1〉 forms a (involutive) FLew-algebra. Conversely, each FLew-
algebra satisfying (x → y) → y = (y → x) → x naturally determines a Wajsberg
algebra.

The above proposition assures us that Wajsberg algebras can be regarded
as FLew-algebras. Wajsberg algebras are originally introduced as models of
Łukasiewicz’s many-valued logics. Let us define the following operations ei-
ther on the set {0, 1/n, 2/n, . . . , (n − 1)/n, 1} for a positive integer n or on the
unit interval [0, 1].

• x→ y = min{1, 1− x+ y},

• ∼x= x→ 0 = 1− x,

• x · y =∼( x→∼y) = max{0, x+ y− 1}.

Then in either case, it forms a Wajsberg algebra. They are denoted as Łn+1

and Ł, respectively, in the present paper. We have also the following (see also
Lemmas 2.14 and 2.5 of [33]).
 3.2 For any FLew-algebra M, M satisfies the equation (1) if and only if
it is involutive and satisfies x∧ y = x · (x→ y).
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Proof: The only-if part can be obtained by using equations in Lemma 3.1. The
if-part holds, since x∨ y = ∼(∼x ∧ ∼y) = (∼x ·(∼x→ ∼y))→ 0 = ((y→ x)· ∼x
) → 0 = (y → x) → (∼x → 0) = (y → x) → x. Similarly, x ∨ y = y ∨ x = (x →
y)→ y. Thus, equation (1) holds.

Any FLew-algebra satisfying the equation (x → y) ∨ (y → x) = 1 is called
an MLT-algebra. An MLT-algebra satisfying the equation x ∧ y = x · (x →
y) is called a BL-algebra (see [30]). By Proposition 3.2, Wajberg algebras are
(essentially) equal to involutive BL-algebras.

In the usual way, we will define the validity of formulas (of FLew) in a given
FLew-algebra M as follows. Any mapping v from the set of all propositional
variables to the set M is called a valuation on M. A given valuation v can be
extended to a mapping from the set of all formulas toM, inductively as follows.

1. v(⊥) = 0,

2. v(A∧ B) = v(A) ∧ v(B),

3. v(A∨ B) = v(A) ∨ v(B),

4. v(A · B) = v(A) · v(B),

5. v(A→ B) = v(A)→ v(B).

A formula A is valid in M if v(A) = 1 holds for any valuation on M. The set
of formulas which are valid in M is denoted by L(M). Next, a given sequent
A1, . . . , Am ⇒ B is said to be valid in M if the formula (A1 · . . . · Am) → B is
valid in it. Then, the following completeness theorem of FLew can be shown in
a standard way.
 3.3 A sequent S is provable in FLew if and only if it is valid in all
FLew-algebras.

It is easy to see that L(M) is a logic over FLew for any FLew-algebra M, which
is called the logic determined by M. (In general, for any class K of FLew-algebras,
the logic

⋂
M∈K L(M) is a logic over FLew, called the logic determined by K.)

Conversely, for any logic L over FLew there exists an FLew-algebra M such that
L = L(M). In fact, it is enough to take the Lindenbaum algebra of L for M.

Blok and Ferreirim have developed the study of algebras called hoops, in
[6, 7]. Each hoop satisfies the equation x · (x → y) = y · (y → x). When a
hoop satisfies moreover the equation (1), it is called a Wajsberg hoop. Any FLew-
algebra with the equation (1) is an example of a Wajsberg hoop. As for the
details, see [6, 7].

In [64], Wroński proved that the class of all BCK-algbras does not form
a variety.7 (See also Higgs [32].) On the other hand, Idziak [34] proved the
following.

7(†) For basic notoins and results on universal algebra, see [11].
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 3.4 The class of all FLew-algebras forms a variety.
A variety K is congruence-distributive when the lattice of all congruence re-

lations of any algebra in K is distributive, and is congruence permutable when
every two congruences of any algebra in K permute. Moreover, if K is both
congruence-distributive and congruence permutable, it is said to be arithmeti-
cal. Then the following holds (see [34]).
 3.5 The variety of FLew-algebras is arithmetical.

Next, we will give the definition of filters of FLew-algebras.8

 3.4 A nonempty subset F of an FLew-algebra M is an implicative
filter (or, simply a filter) if for x, y ∈M it satisfies

• x 6 y and x ∈ F imply y ∈ F,

• x, y ∈ F implies x · y ∈ F.

Note that any filter F of an FLew-algebra satisfies that x, y ∈ F implies
x ∧ y ∈ F. It is easy to see that a nonempty subset F of a residuated lattice
is a filter if and only if it satisfies that 1) 1 ∈ F and 2) x, x → y ∈ F implies
y ∈ F (see e.g. [24]). Let S be a nonempty subset of an FLew-algebra M. Then
the set {x : a1 · · ·ak 6 x for some a1, . . . , ak ∈ S} is shown to be a filter, called
the filter generated by S. In particular, the filter generated by a singleton set {a}

for an element a ∈ M will be expressed as {x : ak 6 x for some positive integer
k}, where ak denotes a · · ·a with k times a. The following can be shown easily
(see e.g. [33]).
 3.6 Let M be any FLew-algebra. Then, there exists a lattice isomor-
phism between the set of all filters of M and the set of all congruences of M.

In fact, for a given filter F the binary relation ∼F defined by

x ∼F y if and only if x→ y, y→ x ∈ F

is a congruence and the map θ defined by θ(F) = ∼F is the required map. The
converse map is defined by taking the filter {x : x ∼1} for a given congruence ∼.

4 S  FLew-
Let M and Ni for each i ∈ I be residuated lattices. By a subdirect representation
of M with factors Ni we mean an embedding f from M to the product

∏
i∈INi

such that each fi defined by fi = pi ◦ f is onto Ni for each i ∈ I. Here, pi
denotes the i-th projection. An FLew-algebra M is subdirectly irreducible if it is
non-degenerate and for any subdirect representation f : M →

∏
i∈INi, there

exists a j such that fj is an isomorphism of M onto Nj (see [48] for the details).
8(†) In [25], they are called deductive filters. For the definition of filters in arbitrary residuated

lattices, see [25]. Filter generation and its relation to (generalized form of ) deduction theorem
are also discussed in it.
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From Birkhoff’s subdirect representation theorem it follows that every
FLew-algebra has a subdirect representation with subdirectly irreducible FLew-
algebras. By using Proposition 3.6, we can see that an FLew-algebra M is subdi-
rectly irreducible if and only if it has the second smallest filter, i.e. the smallest
filter among all filters except {1}. Note that when an FLew-algebra M is sub-
directly represented by the set {Nj}j∈J of FLew-algebras, the logic L(M) deter-
mined by M can be expressed as

⋂
j∈J L(Nj).

We can easily show the following lemma which gives a necessary and suffi-
cient condition for an FLew-algebra to be subdirectly irreducible.
 4.1 An FLew-algebra M is subdirectly irreducible if and only if there exists an
element a (< 1) such that for any x < 1 there exists a positive integer m for which
xm 6 a holds.

Using this lemma, we can show the following.
 4.1 In any subdirectly irreducible FLew-algebra, if x ∨ y = 1 then either
x = 1 or y = 1 holds.

Proof: By taking the contraposition, it suffices to show that x, y < 1 implies x∨

y < 1 in a given subdirectly irreducible FLew-algebra M. Since M is subdirectly
irreducible, there exists a < 1 such that for any z < 1 there exists a number
k satisfying zk 6 a. In particular, both xm 6 a and yn 6 a hold for some
positive integers m and n. Define s = max {m,n} and t = 2s− 1. Then, clearly
xs 6 a and ys 6 a hold. Now, by the distributivity of · with ∨,

(x∨ y)t =

t∨
i=1

xi · yt−i.

It is easy to see that either i > s or t− i > s. Hence, in the former case,

xi · yt−i 6 xi 6 xs 6 a

and in the latter case,

xi · yt−i 6 yt−i 6 ys 6 a.

Thus, in either case, (x∨ y)t 6 a. Therefore, x∨ y cannot be equal to 1.
An element a in an FLew-algebra M is a coatom if it is maximal among el-

ements in M − {1}. Then we have the following immediately from the above
theorem.
 4.1 Every subdirectly irreducible FLew-algebra has either the single
coatom or no coatoms.

The following result is essentially due to Kowalski [42], which makes an
interesting contrast with Lemma 4.1.
 4.2 An FLew-algebra M has the unique coatom if and only if there exists an
element a (< 1) and a positive integerm such that xm 6 a holds for any x < 1.
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Proof: To show the only-if part, it is enough to take the coatom for a and 1 for
m. Conversely, suppose that there exists a(< 1) and m > 1 such that xm 6 a

for any x < 1. By Lemma 4.1, it is clear that M is subdirectly irreducible.
Now, take any such a and take also the smallest number k among such ms
for this a. If k = 1 then it is obvious that a is the single coatom of M. So,
suppose that k > 1. By our assumption, there exists an element b such that
bk−1 66 a but bk 6 a. Define d by d = bk−1 → a. Clearly, d < 1. We will
show that d is the single coatom of M. Take any y such that y < 1 and let
z = d ∨ y. Then, d, y 6 z and moreover z < 1 by Theorem 4.1. Since bk 6 a,
b 6 bk−1 → a = d 6 z. As z < 1, we have zk 6 a by our assumption. Thus,
y 6 z 6 zk−1 → a 6 bk−1 → a = d. Therefore, y 6 d. Hence, d is the coatom
of M.

Let us consider the following condition on FLew-algebras for a given posi-
tive integer k:

Ek : xk+1 = xk for any x.

The condition Ek is equivalent to the condition that xk+1 → y = xk → y for
all x, y (see e.g. [7]). It is introduced and discussed by Cornish [18]. Sometimes,
M is said to be k-potent when it satisfies Ek. It is obvious that every finite
FLew-algebra is k-potent for some k.
 4.2 If a subdirectly irreducible FLew-algebra M satisfies Ek for some k,
then it has the unique coatom.

Proof: Suppose that M satisfies Ek. Since M is subdirectly irreducible, there
exists an element a (< 1) such that for each x < 1 there exists a positive integer
m such that xm 6 a holds. Then xk 6 a must hold also for each x < 1. Thus,
by Lemma 4.2 M has the unique coatom.

A related result for BCK-algebras was shown in [57]. From the above
lemma, it follows immediately that every finite subdirectly irreducible FLew-
algebra has a single coatom. It is easy to see that a subdirectly irreducible
FLew-algebras with the unique coatom does not always satisfy Ek for some k.
In the following, we will give an interesting example of a subdirectly irreducible
FLew-algebra with no coatoms. This special FLew-algebra has been discussed
by Pavelka [58], Hájek, Godo and Esteva [31] etc. in connection with fuzzy
logic.

LetM be the interval [0, 1], i.e. the set of all real numbers between 0 and 1.
ThenM forms a bounded lattice with the natural order 6. Moreover, 〈M,×, 1〉
is a commutative monoid satisfying x×y 6 x, where × denotes the usual mul-
tiplication. Since M is linearly ordered, the distributivity of × with ∨ follows
from the above inequality. Now, define a binary operation→ on M by

y→ z =

{
z/y if y > z,
1 otherwise.
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Then, we can show that x × y 6 z if and only if x 6 y → z. Thus, M forms
an FLew-algebra. Clearly, M has no coatoms. Now, let a be an arbitrary real
number such that 0 < a < 1. Then, we can show that for each r < 1 there
exists a positive numberm such that rm 6 a. This means thatM is subdirectly
irreducible.

The logic determined by the above FLew-algebra is called product logic,
whose axiomatization is given in [31]. A class of FLew-algebras related to prod-
uct logic, called product algebras, is discussed in [1, 30, 31] etc..9

The following fact, remarked in [3], should be pointed out here. Suppose
that a is a real number such that 0 < a < 1. define an operation ◦ on the
interval [a, 1] by

x ◦ y = max{a, x× y}.

Then, this with the operation→ satisfying

y→ z = z/y if y > z, and = 1 otherwise.

determines an FLew-algebra, which we call Ia. Obviously, this is also a subdi-
rectly irreducible FLew-algebra without coatoms. The logic determined by this
FLew-algebra is equal to Łukasiewicz’s infinitely many-valued logic. In fact, the
mapping φ from [0, 1] to [a, 1] defined by φ(x) = a1−x is a monotone increas-
ing map satisfying φ(0) = a, φ(1) = 1 and φ(max{0, x+ y− 1}) = φ(x) ◦ φ(y),
and hence it is an isomorphism (see also [30]).

In the dual form, this fact can be restated as follows. Let R be the set of all
real numbers as an additive ordered Abelian group. Then the mapping ψ from
the MV-algebra R[1] (see Chang [15] for the definition) to Ia by ψ(x) = ax is an
isomorphism.

Let Lin be the formula (p → q) ∨ (q → p), which is sometimes called the
axiom of prelinearity. It is called also the (algebraic) strong de Morgan law in [38]
and [59]. Using Theorem 4.1 we can show the following (see also [33] Theorem
4.8).
 4.3 For any subdirectly irreducible FLew-algebra M, the formula Lin is valid
in M if and only if M is linearly ordered.

Proof: The if-part is trivial. Suppose that Lin is valid in M. This implies that
(a → b) ∨ (b → a) = 1 for all a, b ∈M. By Theorem 4.1, either a → b = 1 or
b→ a = 1 holds. Thus, either a 6 b or b 6 a. Hence, M is linearly ordered.

 4.3 If the formula Lin is valid in an FLew-algebra M then M is a dis-
tributive lattice.

Proof: Suppose that M is subdirectly represented by the set of subdirectly ir-
reducible FLew-algebras Nj for j ∈ J. Then, Lin is valid in any Nj. Therefore,

9(†) There are considerable developments in the study of product logic after 2001.
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by Lemma 4.3 each Nj is linearly ordered and hence is distributive. In other
words, the formula Dis : (p ∧ (q ∨ r)) → (p ∧ q) ∨ (p ∧ r) is valid in each of
them. Thus, Dis is valid in M and hence M is distributive.

As for a direct proof of the above corollary, see Corollary 1 of Proposition
4.3.4 in [59], or Lemma 2.4 (3) in [33].

Suppose that M and N are finite subdirectly irreducible FLew-algebras. It is
interesting to see when they determine the same logics. For this purpose, we
will show a theorem in the following which is obtained by modifying the proof
of Jankov’s theorem for Heyting algebras (see [37]).

Let M be an arbitrary finite, subdirectly irreducible FLew-algebra and ω be
the coatom of M. For each element x ∈ M, take a propositional variable px in
such a way that py and pz are distinct whenever y 6= z. Define a set of formulas
∆M by

∆M = {(px ∧ py) ≡ px∧y, (px ∨ py) ≡ px∨y, (px · py) ≡ px·y,
(px → py) ≡ px→y, (¬px) ≡ p∼x : x, y ∈ M}

Let (∆M)† be the conjunction of all formulas in ∆M. For each positive integer k,
define the formula XM(k), called the Jankov formula of order k for M, by XM(k) =

((∆M)†)k → pω.10 Then, we have the following Jankov’s theorem for FLew-
algebras.
 4.2 Let M be a finite, subdirectly irreducible FLew-algebra, and let N be any
FLew-algebra satisfyingEk. Then,XM(k) is not valid in N if and only if M is embeddable
into a quotient algebra of N.

Proof: Suppose that h is an embedding of M into a quotient algebra N/F of N.
Define a valuation v on N/F by v(px) = h(x) for each x ∈ M. Then, it is clear
that v(XM(k)) = 1 → h(ω) = h(ω) < 1. Thus, XM(k) is not valid in N/F, and
nor is it in N. Conversely, suppose that the formula XM(k) becomes false under
a valuation w on N. Let w((∆M)†) = d and w(pω) = e. By our assumption,
dk 66 e. Since N satisfies Ek, the set G defined by G = {x : dk 6 x} forms
a filter such that e 6∈ G. Now, consider the quotient algebra N/G of N and
its valuation w∗ defined by w∗(q) = ‖w(q)‖ for every propositional variable
q. Here ‖u‖ denotes the equivalence class induced by G, to which u belongs.
Then w∗((∆M)†) = 1 and w∗(pω) = ‖e‖ < 1. From this, it follows that the
mapping g : M → N/G, defined by g(x) = w∗(px) for each x ∈ M, is an
embedding.

By assuming moreover that M satisfies also Ek, we can give another condi-
tion which is equivalent to either of the conditions in the above theorem.

10In [45], these Jankov formulas are used in the study of splittings in the variety of FLew-
algebras.
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 4.4 Suppose that M is a finite, subdirectly irreducible FLew-algebra and
N is an arbitrary FLew-algebra. When both satisfy Ek, M is embeddable into a quotient
algebra of N if and only if L(N) ⊆ L(M).

Proof: The only-if part is trivial. Suppose that L(N) ⊆ L(M). Since M satis-
fies Ek, XM(k) is not valid in M. Hence it is not valid in N, either. Then, by
Theorem 4.2, there is an embedding of M into a quotient algebra of N.

A Heyting algebra is an FLew-algebra satisfying E1, i.e. x2 = x. Theorem 4.2
with Corollary 4.4 gives us the original form of Jankov’s theorem for Heyting
algebras.

Let Ek be the formula pk → pk+1 for any k > 0, where Aj denotes the
formula A · . . . · A with j times A. Obviously, the formula Ek is a syntactic
expression of Ek.
 4.5 Suppose that both M and N are finite subdirectly irreducible FLew-
algebras. If the logic L(M) is equal to L(N) then M is isomorphic to N.

Proof: Suppose that L(M) is equal to L(N). Since M is finite, we can assume
that Ek is in L(M) (and hence in L(N)) for some k. By Corollary 4.4, there is
an embedding h of M into a quotient algebra of N. Hence, |M| 6 |N|, where
|S| denotes the cardinality of a set S, and M and N are universes of algebras M
and N, respectively. Similarly, since there is an embedding of N into a quotient
algebra of M, |N| 6 |M|, and hence |M| = |N|. Thus h must be an isomorphism
of M onto N.

5 S    FLew

To give an overview of the structure of all logics over FLew, we will introduce
some basic logics among them, which are finitely axiomatizable. Let us con-
sider the following axioms:

EM: p∨ ¬p (excluded middle)

DN: ¬¬p→ p (double negation)

Con: (p→ (p→ q))→ (p→ q) (contraction)

WCon: (p→ ¬p)→ ¬p (weak contraction)

P: ((p→ q)→ p)→ p (Peirce’s law)

WP: (¬p→ p)→ p (weak Peirce’s law)

Lin: (p→ q) ∨ (q→ p) (prelinearity)

Dis: (p∧ (q∨ r))→ ((p∧ q) ∨ (p∧ r)) (distributive law)
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Note that WCon and WP are obtained from Con and P, respectively, by replac-
ing q by⊥. The axiom Con will play essentially the same role as the contraction
rule (and also as the formula E1 introduced in the previous section). Therefore
FLew[Con] is equal to the intuitionistic logic Int, which is equal also to FLew

with the axiom p→ p2. On the other hand, WCon is equivalent to ¬p2 → ¬p,
which is the contrapositive of p → p2, and FLew[WCon] is equal to FLew with
the axiom ¬(p∧¬p). It is clear that FLew[DN] is equal to the logic without the
contraction rule studied by Grišin.
 5.1 Each of the logics FLew[WP], FLew[P], FLew[EM] and FLew[WCon,DN]

is equal to classical logic Cl.

Proof: As mentioned above, any instance of WP is provable in FLew[P]. It is
obvious that any instance of P is provable in Cl. To show that each formula A
provable in Cl is also provable in FLew[EM], it is enough to show that Con is
provable in FLew[EM], since FLew[Con] is equal to Int and Int[EM] is equal to
Cl. We note that the formula (¬r∨ s) ≡ (r→ s) is provable in FLew[EM], using
the fact that

(r∨ ¬r)→ ((r→ s)→ (¬r∨ s))

is provable in FLew. Thus,

((p→ (p→ q)))→ (p→ q)) ≡ ((¬p∨ ¬p∨ q)→ (¬p∨ q))

is provable. But, the righthand side of the above equivalence is always prov-
able. Hence, Con is provable in FLew[EM]. To show that EM is provable in
FLew[WP], let Q be p ∨ ¬p. Now, since ¬Q → Q is provable in FLew and
(¬Q → Q) → Q is an instance of WP, we have that Q, i.e. p ∨ ¬p, is provable
in FLew[WP].

Lastly, we will show that FLew[WCon,DN] is equal to Cl. Since FLew[Con] is
equal to Int, it is enough to show that p→ p2 is provable in FLew[WCon,DN].
By WCon, ¬p2 → ¬p is provable. By taking the contraposition and using DN,
p→ p2 follows. This completes our proof.

Note that FLe[P] is in fact equal to Cl as the weakening rule is derivable in it.
(This is due to K. Fujita.) A part of the above lemma is essentially obtained in
Theorem 7.31 of [63], which says that complemented FLew-algebras are exactly
same as Boolean algebras. It can be shown (by using e.g. the cut elimination
theorem) that Grišin’s logic FLew[DN] is strictly weaker than the classical logic,
and hence EM is not provable in FLew[DN]. Also, we can show that EM is
provable in FLe[WCon,DN]. (On the other hand, probably DN will not be
provable in FLec[EM].)

Figure 5.1 shows the inclusion relationship between logics mentioned in the
above. In the following, we will show that all of the inclusions described in the
figure are proper.

Hiroakira Ono, “Logics without the contraction rule”, Australasian Journal of Logic (8) 2010, 50–81

http://www.philosophy.unimelb.edu.au/ajl/2010
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2010 67

Figure 5.1.

(1) The logic FLew[Con,Lin], i.e. Int[Lin], is Gödel logic, which is strictly
weaker than Cl. Thus, FLew[Lin], FLew[Dis], and FLew are strictly weaker than
FLew[DN,Lin], FLew[DN,Dis] and FLew[DN], respectively.

(2) Gödel logic Int[Lin] is strictly stronger than Int. Thus, logics
FLew[WCon,Lin] and FLew[Lin] are strictly stronger than FLew[WCon,Dis] and
FLew[Dis], respectively.

We will show that Lin is not provable in FLew[DN,Dis]. Let U1 be the
FLew-algebra with the universe {0, d, c, b, a, 1} such that 0 < d < b < a < 1,
0 < d < c < a < 1 but b is incomparable with c. Moreover, assume that
a2 = a, b2 = b, c2 = c, a · b = b, a · c = c, a · d = 0 (thus, x · d = 0 if x < a)
and b · c = 0. Then, it can be seen that U1 is in fact a subdirectly irreducible,
distributive FLew-algebra satisfying ∼∼x = x for any x. Clearly, it is not linearly
ordered. Thus, Lin is not valid in it.

(3) To see that FLew[DN,Lin] is strictly weaker than Cl, consider the FLew-
algebra U2 with the universe {0, a, 1} such that 0 < a < 1 and a2 = 0. Since
∼a= a holds, DN is valid but EM is not.

From this it follows that FLew[Lin] is strictly weaker than
FLew[WCon,Lin]. For, if WCon were provable in FLew[Lin] then it would
be provable in FLew[DN,Lin]. Then, EM should be derived in FLew[DN,Lin],
since by Lemma 5.1 it is provable in FLew[WCon,DN]. This is a contradiction.
Similarly, we can show that FLew[Dis] and FLew are strictly weaker than FLew

[WCon,Dis] and FLew[WCon], respectively.

(4) We will show next that Con is not provable in FLew[WCon,Lin]. Let U3

be the FLew-algebra with the universe {0, b, a, 1} such that 0 < b < a < 1 and

Hiroakira Ono, “Logics without the contraction rule”, Australasian Journal of Logic (8) 2010, 50–81

http://www.philosophy.unimelb.edu.au/ajl/2010
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2010 68

b = a2 = a3. It is easy to see that a → b = a and ∼a =∼b = 0. It is clear
that WCon is valid in a given FLew-algebra if and only if ∼x2 = ∼x for any x
in it. So, WCon is valid in U3. On the other hand, Con is not valid in it, as
a → a2 = a < 1. As a consequence, Con is not provable in FLew[WCon],
either.

(5) In [29], Grišin introduced a cut-free system for FLew[DN]. Using this
system, we can easily show that Dis is not provable in FLew[DN], and a fortiori
is not provable in FLew. Now we show that Dis is not provable in FLew[WCon].
Let U4 be the FLew-algebra with the universe {0, d, c, b, a, 1} such that 0 < b <
a < 1, 0 < d < c < a < 1 and both c and d are incomparable with b. (Thus, U4

can be obtained from the nonmodular (and hence nondistributive) lattice N5,
called the pentagon, by adding the new greatest element 1. See e.g. [19] Chapter
6.) Define also that a2 = a, a · b = b2 = b, a · c = a · d = c2 = c · d =

d2 = d and b · c = b · d = 0. Then, it can be seen that U4 is a subdirectly
irreducible, nondistributive FLew-algebra. On the other hand, we can show
that ∼a= 0, ∼b= c and ∼c=∼d= b. Using this, we can show that WCon is valid
in U4. Thus, Dis is not provable in FLew[WCon].

6 S   FLew-
In this section, we will discuss simple and semisimple FLew-algebras. As usual,
a simple FLew-algebra M is defined to be a non-degenerate FLew-algebra which
has only two filters {1} and M itself. It is easy to see that for any filter F of a
given FLew-algebra M∗ the quotient algebra M∗/F is simple if and only if F is a
maximal filter. Similarly to the case of Wajsberg algebras, the following holds.
(See [14] Theorem 4.7 and [24] Corollary 1 of Theorem 17.)
 6.1 An FLew-algebra M is simple if and only if for any x(< 1) inM there exists
a positive integerm such that xm = 0.

Clearly, any simple FLew-algebra is subdirectly irreducible. It is well-known
that for a Heyting algebra M, if it is simple then it is just the two-valued Boolean
algbra B2 and therefore satisfies that ∼∼x= x for any x. On the other hand, this
equation does not hold always in simple FLew-algebras. Also, we know that any
simple Wajsberg algebra is linearly ordered (see e.g. [14, 41, 24]). But, this does
not hold either for FLew-algebras, in general. In fact, we can give an example
of a simple FLew-algebra N which is not distributive (as a lattice) and hence is
not linearly ordered. Let M3 be a nondistributive lattice, called the diamond
(see e.g. [19]). Let ω and 0 be the greatest element and the least element of
M3. Then N is obtained from M3 by adding a new element 1 and requiring that
ω < 1. Define operations · and→ on N as follows; x · y = 0 for x, y ∈ M3 and
x · 1 = 1 · x = x for any x ∈ N, and x → y = 1 if x 6 y, = y if x = 1 > y and
= ω otherwise. Then, it is easily checked that N is a nondistributive, simple
FLew-algebra.
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Any FLew-algebra Ia for 0 < a < 1 introduced in Section 4 is simple but
does not have any coatom. Each Łukasiewicz’s n + 1-valued model Łn+1 is a
simple FLew-algebra, which is isomorphically represented as the FLew-algebra
with the set {1, a, a2, . . . , an} such that ai > ai+1 for each i = 1, . . . , n− 1 and
an = 0. For the simplicity’s sake, let us denote 1 by a0. Then the operation→
on this FLew-algebra can be defined by ak → am = amax{0,m−k}.

This representation might be convenient when we compare Łukasiewicz’s
models with other MV-algebras. For example, let us take the MV-algebra C dis-
cussed by Chang in [14], which is call S1ω in Komori [41]. Then, C can be iso-
morphically represented as the residuated lattice with the set
{1, a, a2, . . . , an, . . . , . . . , ∼an, . . . , ∼a2, ∼a, 0} such that ai−1 > ai, ai >∼aj and
∼aj>∼aj−1 for each positive integer i, j. The operations · and→ are defined as
follows:

• ak · am = ak+m,

• ak · (∼am) =∼amax{m−k,0},

• (∼ak) · (∼am) = 0,

• ak → am = amax{0,m−k},

• (∼ak)→ am = 1,

• ak → (∼am) =∼ak+m,

• (∼ak)→ (∼am) = amax{k−m,0}.

It is clear that C is not simple and has only two proper filters {1} and {an : n ∈
N}.

For an FLew-algebra M, let ΦM be the set of all maximal filters of M. We
note here that a filter F is maximal if and only if for any u ∈M either u ∈ F or
∼uk∈ F for some k > 1. Define the radical RadM of M by RadM =

⋂
F∈ΦMF. An

FLew-algebra M is semisimple if M can be represented by a subdirect product of
simple FLew-algebras, or equivalently if RadM = {1} (see e.g. [48]). The proof
of the following theorem is essentially due to Grišin [28]. In [29] he used the
result to show that every free involutive FLew-algebra is semisimple. From this,
it follows that the logic FLew[DN] can be characterized by the class of simple
involutive FLew-algebras. Now, for any x, y in a given FLew-algebra, define x+y

by x + y = ∼(∼x · ∼y). We can show easily that the operation + is associative
and moreover that (x+y)+z = ∼(∼x · ∼y · ∼z). For an element x and a positive
integer m, m̃x denotes ∼(∼x)m. Then 1̃x =∼∼x and m̃x = x + · · · + x with m
times x when m > 1.
 6.1 For any x in a given FLew-algebra M, x ∈ RadM if and only if for any
n > 1 there existsm > 1 such that m̃(xn) = 1.
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Proof: Suppose first that for any n > 1 there existsm > 1 such that m̃(xn) = 1.
Suppose that x 6∈ RadM. Then there exists a maximal filter F such that x 6∈ F.
Since F is maximal, there exists a k > 1 such that ∼xk∈ F. there exists m > 1

such that m̃(xk) = 1, i.e., (∼xk)m = 0. Thus, 0 ∈ F, which contradicts the fact
that F is proper.

Conversely, suppose that there exists n(> 1) such that m̃(xn) 6= 1 for any
m. If (∼(xn))m = 0 then m̃(xn) = ∼(∼(xn))m = 1, which is a contradiction.
Thus, (∼(xn))m > 0 for any m. Let z = ∼(xn) and H be the filter generated by
z. Clearly, H is proper as zm > 0 for any m. By Zorn’s lemma, there exists a
maximal filter G such that H ⊆ G. Now, suppose that x ∈ G. Then xn must be
also in G. But this is a contradiction, since z = ∼(xn) ∈ G. Hence, x 6∈ G and
therefore it does not belong to RadM.

This result was also shown in Höhle [33]. As a corollary of Theorem 6.1,
we have the following result on Wajberg algebras, which was shown by Font,
Rodríguez and Torrens in [24]. (See also [33].)
 6.1 For any x in a given Wajsberg algebra M, x ∈ RadM if and only if
for any n > 1, ∼(xn) 6 x.

Proof: By Theorem 6.1, it suffices to show that in any Wajsberg algebra M,
∼(xn) 6 x for any n > 1 if and only if for any n > 1 there exists m > 1 such
that m̃(xn) = 1.

Suppose first that ∼(xn) 6 x. We will show that ñ+ 1(xn) = 1. From the
assumption, we have (∼(xn))n 6 xn. Thus, ∼xn 6 ∼(∼(xn))n = ñ(xn) and
hence 1 = ∼xn→ n(xn) = xn + ñ(xn) = ñ+ 1(xn). Conversely, suppose that
∼(xn) 66 x for some n > 1. Take any subdirect representation f : M →

∏
iMi

with subdirectly irreducible factors Mi. Note that each Mi is linearly ordered
by Lemma 4.3. Let pj be the j-th projection function of the direct product∏
iMi, and let zj = (pj ◦ f)(x). By our assumption, ∼( zj)

n 66 zj for some
j. Since Mj is linearly ordered, zj 6 ∼( zj)

n holds. Therefore (zj)
n+1 = 0.

Then, m̃(xn+1) = 1 never hold for any m. This completes the proof of our
lemma.

The next theorem gives us a sufficient condition for a FLew-algebra to be
semisimple. Here, we will introduce the following condition on FLew-algebras:

EMk : x∨ (∼xk) = 1 for any x.

Note that EM1 corresponds to an algebraic form of the excluded middle EM.
 6.2 The following three conditions are mutually equivalent for any subdi-
rectly irreducible FLew-algebra M.

1. M is simple and satisfies Ek,

2. for each x ∈M, if x < 1 then xk = 0,
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3. M satisfies EMk.

Proof: Assume that M is simple and satisfies EMk. If x < 1 then 1 > x > x2 >
· · · > xk = xk+1. The filter F generated by x is expressed as {z ∈ M : xk 6 z}.
If xk > 0 then F is neither equal to {1} nor equal to M. But this contradicts our
assumption that M is simple.

Next, suppose that x < 1 implies xk = 0 for any x ∈ M. Take any y ∈ M.
If y = 1 then clearly y∨ (∼yk) = 1. If y < 1, yk = 0 by our assumption. Then,
∼yk= 1 and hence y∨ (∼yk) = 1 holds also in this case.

Finally, suppose that M satisfies EMk. Suppose that x < 1. Since x∨(∼xk) =

1, ∼xk= 1 by Theorem 4.1. Then, xk = xk · 1 = xk· ∼xk= 0. Thus, M is simple.
Next, it is easy to see that for each y, yk · y 6 yk+1 and yk· ∼yk= 0 6 yk+1.
Therefore, yk · (y∨ ∼yk) = (yk · y) ∨ (yk· ∼yk) 6 yk+1. But, y∨ ∼yk= 1 by
our assumption. Thus, yk 6 yk+1. Since the converse inequality holds always,
we have that yk = yk+1 for any y.

Let us take 1 for k in the above theorem. Then, we have the following well-
known result: For any subdirectly irreducible FLew-algebra M, the following
three conditions are mutually equivalent (cf. Lemma 5.1).

1. M is simple and satisfies x2 = x for any x, i.e., M is a simple Heyting algebra,

2. M is isomorphic to the two-valued Boolean algebra B2,

3. M satisfies x∨ ∼x= 1 for any x.

A characterization of the variety defined by the condition EMk and of the
variety defined by EMk from universal algebra is given in [43]. Following Chang
[14] and Komori [41], for any FLew-algebra M, define the order o(M) of M as
follows: if k is the smallest number j such that M satisfies EMj, let o(M) = k,
and if there exists no such k, let o(M) = ω. For each k, let EMk be the formula
p ∨ ¬pk, which corresponds to the identity EMk. It is obvious that for any
FLew-algebra M, o(M) = k for a finite k if and only if k is the smallest number j
such that FLew[EMj] ⊆ L(M).
 6.2 Any FLew-algebra with a finite order is semisimple.
 6.3 The intersection of FLew[En] for n < ω is equal to FLew.

Proof: Our theorem follows from the finite model property of FLew proved by
Okada and Terui in [50]. Suppose that a formula A is not provable in FLew.
Then by the finite model property of FLew, A is not valid in a finite FLew-
algebra M. Suppose that M satisfies Ek. Then, L(M) is a logic over FLew[Ek]
and thus, A is not provable in FLew[Ek].

In Kowalski and Ono [44], it is proved that the logic FLew is determined by
the class of finite, simple residuated lattices. This improves the result by Okada
and Terui on the finite model property, and moreover implies immediately the
following, using Theorem 6.2.
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 6.4 The intersection of FLew[EMn] for n < ω is equal to FLew.
Using the sequence {Ek}k, we introduce a classification {Wk}k of logics over

FLew in the following way.

• W1 = {L : FLew[E1] ⊆ L ⊆ Cl},

• Wn+1 = {L : FLew[En+1] ⊆ L ⊆ Cl} −Wn,

• Wω = {L : FLew ⊆ L ⊆ Cl} −
⋃
n<ωWn.

Clearly, the class W1 is exactly the class of all intermediate logics. This
classification is orthogonal to the class of Łukasiewicz’s many-valued logics in
the sense that for each n > 0 only the logic L(Łn+1) belongs to Wn and that
L(Ł) belongs to Wω. By the definition of the classification, each Wn has the
smallest element FLew[En] for each 0 < n 6 ω, where FLew[Eω] means FLew.
On the other hand, Wn has no greatest element in general, as shown in the
next section.

7 N   
A logic L over FLew is an immediate predecessor of classical logic Cl if (1) L ⊂ Cl
and (2) L ⊆ L ′ ⊂ Cl implies L ′ = L for any logic L ′. In this section, we will study
immediate predecessors of Cl. This, we hope, will be the first step in studying
the whole structure of the lattice consisting of logics over FLew.11 The set of
all immediate predecessors of Cl is denoted by IP(Cl) in the following.

Suppose that L ∈ IP(Cl) and that L is characterized by an FLew-algebra M.
Let us assume moreover that M is subdirectly represented by {Nj}j∈J. Then,
L(M) ⊆ L(Nj) ⊆ Cl for each j ∈ J. Since L(M) is an immediate predecessor of Cl,
some L(Nj) must be equal to L(M). Thus, we can assume that L is characterized
by a sudirectly irreducible FLew-algebra M from the beginning.

We have already seen some of immediate predecessors of Cl. If we restrict
our attention to logics over the intuitionistic logic Int, i.e. intermediate logics,
then there exists the single immediate predecessor of Cl, which is determined
by the three valued Heyting algebra H3. In other words, the class W1 has
the single immediate predecessor H3 of Cl. On the other hand, Komori [41]
discussed the lattice structure of logics over L(Ł) and proved that in this class
L is an immediate predecessor of Cl if and only if either L = L(Łn+1) with a
prime number n or L = L(C), where C is the MV-algebra of Chang (see the
previous section). For each n such that 0 < n 6 ω, let Wn∗ be the class of
maximal elements in Wn, and WnIP be the set Wn ∩ IP(Cl), i.e. the set of all
immediate predecessors of Cl in Wn. Clearly, WnIP is a subset of Wn∗ when
n > 1.

11(†) For recent developments of the study in this direction, see Chapter 9 of [25].
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 7.1 For each n < ω, L(Łn+1) belongs toWn∗. Also, L(C) belongs toWω∗.

Proof: Suppose that L(Łn+1) ⊆ L and L ∈ Wn. Clearly, L is a logic over L(Ł).
Using results in Komori [41], there exists a finite set I of natural numbers such
that L =

⋂
i∈I L(Łi+1). Then, by Lindenbaum’s result, each i ∈ I must be a

divisor of n. If i < n for all i ∈ I, then L must be in Wj where j = max{i : i ∈
I} < n. This is a contradiction. Thus, i = n for some i ∈ I. Then, L ⊆ L(Łn+1)

and hence L = L(Łn+1). Therefore, L(Łn+1) is maximal in Wn. Since L(C)

belongs to WωIP, the second part is obvious.

We will show in the rest of this section that there are many other immedi-
ate predecessors of Cl. Note that each Łn+1 is simple, but neither H3 nor C is
so. It is clear that every FLew-algebra M contains M itself and {0, 1} as its sub-
algebras. The latter is obviously isomorphic to the two-valued Boolean algebra
B2. A subalgebra K of an FLew-algebra M is trivial if K is either M or {0, 1}.
The following theorem gives us a condition for a finite subdirectly irreducible
FLew-algebra to determine an immediate predecessor of Cl.
 7.2 Suppose that M is a finite, subdirectly irreducible (non-degenerate)
FLew-algebra. Then, L(M) is either equal to classical logic Cl or an immediate prede-
cessor of Cl if and only if

1. every subalgebra of M is trivial,

2. for any proper filter F of M, either F = {1} or the quotient algebra M/F is isomor-
phic to B2.

To show Theorem 7.2, we use Jónsson’s lemma [39] on congruence-
distributive variety (see also [5]). Recall that the class of FLew-algebras forms
a congruence-distributive variety by Propositions 3.4 and 3.5. In the following,
V(K) and V(K)SI mean the variety generated by a class K of algebras and the
class of subdirectly irreducible algebras in V(K), respectively. Also, H(K), S(K)

and PU(K) denote the class of homomorphic images of members of K, the class
of subalgebras of members of K, and the class of ultraproducts of nonempty
families of members of K, respectively.12 We can state Jónsson’s lemma applied
to the present case as follows.
 7.1 Let K be a class of FLew-algebras. Then, V(K)SI ⊆ HSPU(K).
In particular, if M1, . . . ,Mn are finite FLew-algebras, then V({M1, . . . ,Mn})SI ⊆
HS({M1, . . . ,Mn}).

   7.2. Only-if part is trivial. We assume that a finite subdi-
rectly irreducible M satisfies both conditions 1 and 2. Moreover, suppose that
L(M) ⊆ L ⊂ Cl for a logic L. The logic L can be represented as

⋂
i∈I L(Ni)

for some non-degenerate, subdirectly irreducible FLew-algebras Ni for i ∈ I.
Since L(M) ⊆ L(Ni), Ni ∈ V({M})SI ⊆ HS({M}), by using Proposition 7.1. By

12(†) For more information on universal algebra, see [11].
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condition 1, S({M}) = {M,B2}. Thus, each Ni must be the homomorphic image
of some K ∈ {M,B2} by a homomorphism h. Hence, the kernel Ker(h) of h
is a proper filter of K, and Ni ∼= K/Ker(h), by the homomorphism theorem.
By condition 2, either Ker(h) = {1} or the quotient algebra Ni is isomorphic
to B2. In other words, Ni is isomorphic either to K ∈ {M,B2} or to B2. Since
L =

⋂
i∈I L(Ni) ⊂ Cl, Nj must be isomorphic to M for some j ∈ I. Therefore,

L = L(M) as L(M) ⊆ L(B2). Thus, L(M) is an immediate predecessor of Cl.

 7.1 If M is a finite, simple (non-degenerate) FLew-algebra without non-
trivial subalgebras, then L(M) is equal either to classical logic Cl or to an immediate
predecessor of Cl.

Proof: If M is simple, it has only {1} as its proper filter. Thus, condition 2 in
Theorem 7.2 is satisfied.

This corollary gives us a proof of a well-known result which says that
L(Łn+1) is an immediate predecessor of Cl when n is prime. Note that in
[61] K. Swirydowicz showed the existence of infinitely many immediate prede-
cessors of Cl over the classical linear logic, i.e. FLe[DN], by using the similar
criterion as Corollary 7.1.

By Theorem 6.2 and Corollary 6.2, we have the following.
 7.2 Suppose that an immediate predecessor L of Cl is determined by an
FLew-algebra M. Then, M is simple and k-potent if and only if L is a logic over
FLew[EMk].

By using Corollary 7.1, we will give here an example of simple, linearly or-
dered FLew-algebra K which determines an immediate predecessor of Cl, but
which is not isomorphic to any of Łukasiewicz’s models. The universe of K
consists of 6 elements, which are ordered as 1 > a > b > a2 > a3 > a4 = 0.
We assume that a ·b = b2 = a3. Then, from this it follows that a2 ·b = b3 = 0.
Moreover, (nontrivial) implications are determined as follows. a → b = b →
a2 = b → a3 = a, ∼b= a2, and for 1 6 m < n 6 4, am → an = an−m if
n −m 6= 2, and = b otherwise. It is easy to see that K has no nontrivial subal-
gebras. Thus, it determines an immediate predecessor of Cl which belongs to
W4.

It will be interesting to see whether there is an immediate predecessor of Cl
or not, which is determined by a simple nonlinear FLew-algebra, or by a simple
infinite FLew-algebra.

In the rest of this section, we will discuss such subdirectly irreducible, non-
simple FLew-algebras that determine immediate predecessors of Cl. First, as
an application of Theorem 7.2, we will give a series {Jn}n of nonsimple and
nonlinear FLew-algebras such that any of them determines an immediate prede-
cessor of Cl. (The same result is obtained independently by T. Kowalski.) For
each n > 1, the universe of Jn consists of n + 3 elements {1, a, a2, . . . , an(=

an+1), b, 0}. The element b satisfies an−1 > b > 0 and is incomparable with
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an. We assume moreover that a · b = 0, and thus x · b = 0 for any element
x 6 a. Then, the following holds:

1. ak → am = am−k if k < m,

2. ak → b =∼ak= b for 1 6 k 6 n,

3. b→ an =∼b= a.

Clearly, the element a generates Jn since ∼a= b. Also, b generates it as
∼b= a. Finally, each ak for 1 < k 6 n generates it, since ∼ak= b. Thus,
Jn has no nontrivial subalgebras. The algebra Jn has the single proper filter
F = {1, a, a2, . . . , an} except {1}. It is obvious that the quotient algebra Jn/F
is isomorphic to B2. Thus, by Theorem 7.2, each Jn determines an immediate
predecessor of Cl in Wn. Hence, we have the following.13

 7.3 For each n > 1, Wn contains an immediate predecessor of Cl, which is
determined by the nonsimple and nonlinear FLew-algebra Jn.

In the following, we will assume that M is a subdirectly irreducible, non-
simple FLew-algebra satisfying En for some n > 1, which moreover determines
an immediate predecessor of Cl. From Corollary 4.2 it follows that M has the
unique coatom a. When a = 0, M becomes the 2-valued Boolean algebra, and
therefore it is simple, which is a contradiction. Hence, we have that a > 0

and an = an+1 > 0. Let b = an. Then, the filter F generated by a can be
represented as {x : b 6 x}, which is a proper filter, not equal to {1}. Therefore,
by Theorem 7.2, the quotient algebra M/F must be isomorphic to B2. In par-
ticular, ‖b‖ = ‖1‖ and ∼‖b‖ = ‖0‖ hold, where ‖x‖ denotes the equivalence
class to which an element x belongs. Thus, b 66 ∼b. Hence, either ∼b < b

or b is incomparable with ∼b. We assume that the former holds, and consider
moroever two special cases; (1) ∼b = 0, and (2) ∼b > 0 and ∼∼b = b.

1. Case where ∼b= 0 holds: Since b2 = b, the set {0, b, 1} forms a subalgebra
of M, which is isomorphic to the three valued Heyting algebra H3. (Note
that when M is a Heyting algebra, both b = a and 0 =∼b< b hold always.)
Thus, M itself must be isomorphic to H3, as it does not contain nontrivial
subalgebras.

13After the original draft of the present paper is completed, in his master thesis M. Ueda
obtained a far stronger result than our Theorem 7.3, which say that for each n > 1,Wn contains
countably many immediate predecessors of Cl, each of which is determined by a nonsimple and
nonlinear FLew-algebra, and that for each n > 2, Wn contains also countably many immediate
predecessors of Cl, each of which is determined by a nonsimple and linear FLew-algebra. Then,
T. Kowalski improved them and showed that “countably many” can be replaced by “uncountably
many” in them. As Ueda and Kowalski have obtained other stronger results, we have now a
much clearer picture of immediate predecessors of Cl and the rest of the present paper should
be revised. But, as we mentioned at the beginning, we decided not to make much revisions. For
more information on Ueda and Kowalski’s results, see [56] and [40].
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2. Case where both b > ∼b > 0 and ∼∼b = b hold: It is easily seen that
(∼b)2 = 0 and b → ∼b = ∼b hold. Thus, the set {0, ∼b, b, 1} forms a
subalgebra of M, which we call I1. Hence, M must be isomorphic to I1.

From these observations, the following result follows.
 7.4 Suppose that M is a subdirectly irreducible, nonsimple FLew-algebra sat-
isfying En for some n > 1 and moreover that L(M) is an immediate predecessor of Cl.

1. If M satisfies the axiom ¬p∨ ¬¬p then M is isomorphic to H3.

2. If M satisfies both DN and the axiom (p→ ¬p)∨(¬p→ p) then M is isomorphic
to I1.

Proof: Take elements a and b just in the same way as in the above.

1). Since ∼b ∨ ∼∼b = 1, either ∼b = 1 or ∼∼b = 1 holds. If the former is the
case, then an = b = 0. This contradicts our assumption that M is not
simple. Thus, ∼∼b = 1 holds and hence ∼b = 0 holds. Then, by the above
(1) M is isomorphic to H3.

2). In this case, either b 6 ∼b or ∼b < b holds. But the former does not hold
as shown in the above. Since ∼∼b = b < 1 must hold, ∼b 6= 0. Thus, M is
isomorphic to I1 by (2).

Note that the formula (¬p ∨ ¬¬p) → ((p → ¬p) ∨ (¬p → p)) is provable
in FLew. At present, we do not have any clear view of immediate predecessors
of Cl yet, even if we restrict attention only toW2IP. It is easy to see that L(Ł3)
is the single member of W2IP which is determined by a simple FLew-algebra.
The class W2IP contains L(I1), L(J2) and more. In fact, in 2000 T. Kowalski
and M. Ueda proved thatWnIP contains uncountably many logics (see [40] for
the details).
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