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Abstract: This paper shows that a collection of modal relevant logics are conser-
vatively extended by the addition of Boolean negation.

1 D
This paper is dedicated to the memory of Bob Meyer. Bob was our friend and
colleague. We miss him greatly.

2 I
This paper is a sequel to [12]. That paper is concerned with modal relevant
logic, in particular logics close to Meyer’s system NR. NR was first developed
as a tool to analyze the logic of entailment. The notion of entailment had been
formalized by Anderson and Belnap in logic the logic E (for ‘entailment’) that
had a conditional that incorporates both the notion of a relevant connection
between antecedent and consequent and the concept of a necessary connection
∗Our greatest debt, of course, is to Bob Meyer who formulated the central question of the

paper and discussed it with Mares a great deal back in the early 1990s. In addition, we thank
Dov Gabbay, Hans-Jürgen Ohlbach, Rob Goldblatt, Jill LeBlanc, Greg Restall, John Slaney, and
Richard Sylvan for discussions related to this problem.
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between the two. It is, in short, the relevant version of strict implication.
This dual nature of entailment, however, suggests that the two notions can
be separated, using a contingent relevant implication and a necessity operator.
Taking up this suggestion, Meyer created NR, which combined the logic R (the
logic of contingent relevant implication) with the modal logic S4. But it turned
out that the fragment of this logic that is supposed to mimic E—conjunction,
disjunction, negation, and necessary relevant implication—is slightly stronger
than E.

NR turned out, however, to be interesting in its own right. Its approach to
combining relevance and modality has been adopted and generalized by several
authors (see, e.g., [2] and [4]). It is the ancestor of today’s relevant temporal
logics [20], relevant deontic logics [5], and relevant counterfactual logics (see
[2]), and so on. One such related logic is R4. R4 differs from NR in that it
contains all instances of the following scheme:

(!) �(A∨ B)→ (♦A∨�B)

The original interest in adding this scheme is the �, ∧, ∨, ¬ fragment of the
resulting logic is just S4. Thus, from the point of view of R4, we might think of
S4 as a good logic—it is only deficient in that it does not have a real implication
connective.

In the previous paper, we did not discover whether CR4—R4 together with
a boolean negation—is a conservative extension of R4. And this paper will not
provide an answer to this question either. But it will look at several other sys-
tems very close to R4, that include the scheme (!), and prove that the boolean
extension of each of these is conservative.

The original motivation for relevant logic is to avoid the paradoxes of impli-
cation, some of which essentially involve negation, such as ex falso ((p∧¬p)→
q). To avoid these paradoxes, relevant logic replaces boolean negation with a
weaker DeMorgan negation. So, the question arises, whether the addition of a
boolean negation will affect the rest of a relevant logic—will it alter the proper-
ties and relationships between implication, DeMorgan negation, and the other
connectives? In [13] and [14] Meyer and Routley discovered that boolean nega-
tion can be conservatively added to R. This did not turn out to be the case,
however, for NR [12] or E [9]. So, it seems that at least some modal relevant
logics are fragile when it comes to the addition of a boolean negation. The for-
mula that was used to prove that CNR and CE are not conservative extensions
of their non-boolean kin is

¬�(A∨ B) ∨ (♦A∨�B).

This formula is a theorem of CNR and CE but not of NR or E. It is, however,
a theorem of all of the systems that we examine. This is one reason why the
question that we are solving is interesting.
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Another motivation for this paper comes from proof theory. In [3] and [15],
J.M. Dunn and Grigori Mints present sequent calculi for R that have two sorts
of structural connectives—extensional and intensional connectives. Nuel Bel-
nap has adopted and generalized this idea in his display logic. Belnap uses not
only structural connectives that correspond to conjunction and disjunction,
but he also employs structural negations. The advantage of having a boolean
(or extensional) structural negation is that it can be used together with exten-
sional conjunction and disjunction in versions of the antilogism rule, such as

A ◦e B ` C
A ` ∗eB ◦e C

and A ` B ◦e C
A ◦e ∗eB ` C

,

where ◦e is the extensional conjunction or disjunction (depending on whether
it is on the left or right side of the turnstile) and ∗e is the extensional structural
negation. Belnap has used the Routley-Meyer proof of conservative extension
to prove that this use of extensional negation is harmless. To do this, he uses
the fact that proofs in his display logic can be translated straightforwardly into
valid proofs in the Hilbert system for CR (see [1] §62).1

3 T L
The logic that we use as our base logic is called R.K−. The minus sign indicates
that the following thesis of R4 is missing from R.K− (and from all the other
logics that we examine here):

�(A→ B)→ (�A→ �B).

The reason that we do not include it is that its associated semantic postulate2

cannot be proven to hold in the canonical model of section 6 below. Whether
the logics that include this thesis (as well as (!) and the other axioms of our
base system) are conservatively extended by the addition of boolean negation
is still and open question.

Although the loss of �(A → B) → (�A → �B) clearly weakens the logic,
it does not do so very much. All the logics that we examine are closed under
the rule RM, that is, ` A → B =⇒ ` �A → �B and contain the thesis
(�A∧�B)→ �(A∧ B). Together with some standard R-moves we can prove
(�(A→ B) ∧�A)→ �B.

The language L contains a non-empty set of propositional variables, the
unary connective ¬, the binary connectives ∧, ◦ (fusion or intensional con-
junction), and →, and parentheses. Standard formation rules hold. We also
define the following connectives:

A∨ B =df ¬(¬A∧ ¬B)

1In the case of E, whose boolean extension is not conservative, Belnap uses another method.
The use of conservative extension results is not essential, but very convenient.

2Which is ∃x(Rabx ∧ Sxc)⇒ ∃x∃y(Sax ∧ Sby ∧ Rxyc), and is known, for obvious reasons,
as “Hume’s dictum”.
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A↔ B =df ((A→ B) ∧ (B→ A))

♦A =df ¬�¬A

A ◦ B =df ¬(A→ ¬B)

The following is an axiomatization of R.K−:

A S
1. A→ A

2. (A→ (B→ C))→ (B→ (A→ C))

3. (A→ B)→ ((B→ C)→ (A→ C))

4. (A→ (A→ B))→ (A→ B)

5. A→ (A∨ B); B→ (A∨ B)

6. (A∧ B)→ A; (A∧ B)→ B

7. ((A→ C) ∧ (B→ C))→ ((A∨ B)→ C)

8. ((A→ B) ∧ (B→ C))→ (A→ (B∧ C))

9. (A∧ (B∨ C))→ ((A∧ B) ∨ (A∧ C))

10. ¬¬A↔ A

11. (A→ ¬B)→ (B→ ¬A)

12. (�A∧�B)→ �(A∧ B)

13. �(A∨ B)→ (♦A∨�B)

R

` A→ B

` A
∴ ` B

(MP)

` A
` B

∴ ` A∧ B
(Adj)

` A→ B

` �A→ �B
(RM)
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` A
∴ ` �A

(Nec)

We can extend R.K− by the addition of any subset of the following list
of axiom schemes and the conservative extension theorem will hold of the
resulting logic:

 
�A→ ♦A D
�A→ A T
�A→ ��A 4
A→ �♦A B

In what follows we make use of the following lemma.
 1 The following are provable in R.K−:

(i ) ((B→ C) ∨ (D→ E))→ ((B∧D)→ (C∨ E));

(ii ) ((A→ B) ∧A)→ B;

(iii ) (A→ B)→ (A→ (A ◦ B));

(iv ) (A→ (B→ C))→ ((A→ B)→ (A→ C));

(v ) A→ (B→ (A ◦ B));

(vi ) (A→ (B→ C))→ ((A ◦ B)→ C);

(vii ) (A→ ¬A)→ ¬A;

(viii ) A∨ ¬A.

Proof: Straightforward.

4 N T
In this section we prove that R.K− and the other logics are characterized by
the class of their prime consistent theories that contain all their theorems.
The proof is by means of Meyer’s method of metavaluations. A metavaluation
is a process whereby we take a prime theory containing all the theorems of
a logic and shrink it to a consistent such theory. But before we can explain
properly what a metavaluation is, we to give some definitions and to prove a
few lemmas.

Where Γ is a set of formulas, Σ `Γ ∆ iff ∃A1 . . . An ∈ Σ∃B1 . . . Bm ∈
∆ ((A1 ∧ · · · ∧ An) → (B1 ∨ · · · ∨ Bm) ∈ Γ). A set of formulas Σ is said to
be a Γ -theory if, for any formula A, if Σ `Γ A, then A ∈ Σ. Σ is said to be prime
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if for any disjunction A ∨ B ∈ Σ, at least one of A or B is in Σ. And a pair
of sets of formulas (Σ,∆) is called independent if Σ 0Γ ∆. A theory is regular
if it contains all the theorems of R.K− and it is normal if it is prime, regular,
and negation consistent. Where Γ is just the set of R.K− theorems, we call
Γ -theories ‘R.K−-theories’ or merely ‘theories’. If (Σ,∆) is R.K−-independent,
then we merely say ‘(Σ,∆) is independent’. We only use the notion of inde-
pendence, not the more general notion of Γ -independence in this section, but
when it comes to proving completeness we will need the more general notion.

The following lemma is the standard Lindenbaum lemma for relevant log-
ics, due originally to Dov Gabbay and Nuel Belnap.
 2 If Γ is a regular R.K− theory and (Σ,∆) is Γ -independent, then there is a
prime theory Σ′ extending Σ such that (Σ′, ∆) is Γ -independent.

We now prove some preliminary lemmas.
 3 If Γ is a prime theory and there is a �A ∈ Γ but no ♦B is in Γ , then for all
formulas C,�C ∈ Γ .

Proof: Suppose that Γ is a prime theory and there is a �A ∈ Γ but no ♦B is in
Γ . By axiom 5, A → (A ∨ C) and so by RM, �A → �(A ∨ C). Moveover, by
axiom 15, �(A∨C)→ (♦A∨�C) and so �A→ (♦A∨�C). Since Γ is a theory,
♦A∨�C ∈ Γ . But, by hypothesis, ♦A /∈ Γ . Since Γ is prime, �C ∈ Γ .

As usual, we define �−1Γ to be the set of all formulas A such that �A ∈ Γ
and ♦−1Γ to be the set of all formulas B such that ♦B ∈ Γ .
 4 If Γ is a prime theory, then �A ∈ Γ iff for all prime theories Γ ′ such that
�−1Γ ⊆ Γ ′ ⊆ ♦−1Γ ,A ∈ Γ ′.

Proof: ⇒ obvious.
⇐ Case 1. Suppose that there are no formulas B such that ♦B ∈ Γ . Then

there are no theories that are a subset of ♦−1Γ . But by Lemma 3 for every
formula C �C ∈ Γ .

Case 2. There is at least one formula B such that ♦B ∈ Γ .Suppose that�A /∈
Γ . Let ∆Γ = ({A} ∪ {B : ♦B /∈ Γ }). We show that (�−1Γ, ∆Γ ) is independent.
Suppose not. There there are some G1, . . . , Gn ∈ �−1Γ and B1, . . . , Bm ∈ {B :

♦B /∈ Γ } such that (G1 ∧ · · · ∧ Gn) → (A ∨ B1 ∨ · · · ∨ Bm) is a theorem of
R.K−. Then, by the rule RM, axioms 3, 13, 14, 15 (and a few applications of
modus ponens), �(G1 ∧ · · · ∧ Gn) → (�A ∨ ♦B1 ∨ · · · ∨ ♦Bm). Thus, since Γ
is a prime theory, either �A ∈ Γ or at least one of ♦B1, . . . ,♦Bm is in Γ . But,
by hypothesis, none of these formulas are in Γ and so by reductio we conclude
that (�−1Γ, ∆Γ ) is independent as required.

By Lemma 2, we can expand �−1Γ to a prime theory Γ ′ such that (Γ ′, ∆Γ ) is
independent, i.e. �−1Γ ⊆ Γ ′ ⊆ ♦−1Γ and A /∈ Γ ′.
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Now we can give the definition of a metavaluation and proceed to the main
part of the proof.
 5 (Kripke Metavaluation) For a regular prime theory Γ , we define
|=M as follows: (Mp) for all propositional variables p, Γ |=M p iff p ∈ Γ ; (M∧)
Γ |=M A ∧ B iff Γ |=M A and Γ |=M B; (M¬) Γ |=M ¬A iff (i) ¬A ∈ Γ and
(ii) Γ 2M A; (M→) Γ |=M A → B iff (i) A → B ∈ Γ and (ii) either Γ 2M A

or Γ |=M B; (M�) Γ |=M �A iff ∀Θ(TMΓΘ ⇒ Θ |=M A) (where TMΓΘ iff
�−1Γ ⊆ Θ ⊆ ♦−1Γ ).

This notion of a metavaluation is named after Kripke because it in effect
constructs a Kripke model out of the set of prime regular theories and reduces
the whole set simultaneously to normal theories.

We now prove that for each regular prime theory Γ , M(Γ) = {A : Γ |=M A}

is a normal theory. It is clear from (M∧) that M(Γ) is negation consistent,
(M∧) indicates that it is closed under conjunction, and (M→) entails that it is
closed under modus ponens. But we still need to show that it is a prime, regular
theory.

Following standard practice in relevant logic, we define Γ∗ = {A : ¬A /∈ Γ }.
The following lemma can be proven in exactly the same was as it is in [8]:
 6 Let Γ be a prime regular theory, then Γ∗ ⊆M(Γ) ⊆ Γ .

Lemma 6 proves that M(Γ) is negation complete. For suppose that A /∈
M(Γ). Then, by Lemma 6, A /∈ Γ∗, so by definition of ∗, ¬A ∈ Γ . Hence by our
hypothesis and (M¬), ¬A ∈M(Γ).

Lemma 6 also allows us to prove that M(Γ) is prime. For suppose that
A ∨ B ∈ Γ and suppose that A /∈ M(Γ) and B /∈ M(Γ). Then, ¬A ∈ Γ and
¬B ∈ Γ . So, by (M¬), ¬A ∈M(Γ) and ¬B ∈M(Γ). By (M∧) ¬A∧ ¬B ∈ Γ . But,
by hypothesis and the definition of ∨, ¬(¬A∧ ¬B) ∈ Γ , contradicting the fact
that M(Γ) is negation consistent.

Axioms 1-11 can be proved to hold in M(Γ) just as in [8]. We need to show
that axioms 12 and 13 also hold in metavaluations.
 7 If A is an instance of axiom 12 or 13, then Γ |=M A, where Γ is a regular
prime theory.

Proof: (Axiom 12) Let A be (�B ∧ �C) → �(B ∧ C). Since Γ is regular, A ∈ Γ .
Now we suppose that Γ |=M �B∧�C, that is Γ |=M �B and Γ |=M �C. So, by
(M�), for all Γ ′ such that TMΓΓ ′, Γ ′ |=M B and Γ ′ |=M C. Thus, for each such
Γ ′, Γ ′ |=M B∧C. So by (M�) Γ |=M �(B∧C). So Γ |=M (�B∧�C)→ �(B∧C).

(Axiom 13) Let A be �(B ∨ C) → (♦B ∨ �C). Since Γ is regular, A ∈ Γ .
Now we suppose that Γ ′ |=M �(B ∨ C). Thus, by (M�), for all for all Γ ′ such
that TMΓΓ ′, Γ ′ |=M B ∨ C. Since Γ ′ is prime, either Γ ′ |=M B or such that
TMΓΓ

′, Γ ′ |=M C. If for at least one such Γ ′ Γ ′ |=M B, then Γ |=M ♦B and
hence Γ |=M ♦B∨�C. If, on the other hand, there is no Γ ′ such that Γ ′ |=M B,
then all of them are such that Γ ′ |=M C and so, by (M�), Γ |=M �C and hence
Γ |=M ♦B∨�C.
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 8 (i) If for all prime regular theories Γ , A → B ∈ M(Γ), then �A → �B ∈
M(Γ); (ii) if for all prime regular theories Γ ,A ∈M(Γ), then�A ∈ Γ .

Proof: (i) Suppose that or all prime regular theories Γ , A→ B ∈M(Γ). Then for
all such Γ , A→ B ∈ Γ and if Γ |=M A, then Γ |=M B. Now, consider an arbitrary
prime regular theory Θ such that Θ |=M �A. Then for all Ξ such that TMΘΞ,
Ξ |=M A. Hence, Ξ |=M B for all such Ξ. Therefore, by Lemma 4, Θ |=M �B,
and so Θ |=M �A→ �B.

(ii) Follows directly from Lemma 4.

 9 R.K− is characterized by the class of its normal theories, that is, `R.K− A

iffA is in every normal theory of R.K−.

5 S S
The semantics that we will use is a version of the simplified semantics. The
simplified semantics for relevant logics started out as a semantics for the
boolean extensions of relevant logics. Hence, it was originally called a “boolean
semantics”. We will use the name simplified semantics, due to [16], because we
wish to show that the non-boolean logic R.K− is complete over it. We will
then use this fact to prove that the boolean extension is conservative.

But, before we present the simplified semantics, we will present the stan-
dard (or “non-simplified”) model theory. An R.K− frame is a structure F =

〈W,0, R, S, ∗〉 such that W is a non-empty set (of “worlds”), 0 is a non-empty
subset of W, R ⊆ W3, S ⊆ W2, and ∗ is a unary operator on W, such that the
following definitions and semantic postulates hold:

a 6 b =df ∃x(x ∈ 0 ∧ Rxab)

Tab =df Sab ∧ Sa∗b∗

SP1 Raaa

SP2 Rabc⇒ Rbac

SP3 ∃x(Rabx ∧ Rxcd)⇒ ∃x(Racx ∧ Rxbd)

SP4 6 is a partial order

SP5 (a 6 b ∧ Rbcd)⇒ Racd

SP6 (a 6 b ∧ Sbc)⇒ Sac

SP7 Rabc⇒ Rac∗b∗

SP8 a∗∗ = a

SP9 Sab ⇒ ∃x(x 6 b ∧ Tax)
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SP10 (a ∈ 0 ∧ Tab)⇒ b ∈ 0

An R.K− model is a pair 〈F, v〉, where F is an R.K− frame and v is a function
from propositional variables to sets of worlds closed upwards under 6. v is
extended to a satisfaction relation |=v (written merely as ‘|=’ when no confusion
will result) according to the following inductive definition:

• a |= p iff a ∈ v(p)

• a |= A∧ B iff a |= A and a |= B

• a |= ¬A iff a∗ 2 A

• a |= A→ B iff ∀x∀y((Raxy ∧ x |= A)⇒ y |= B)

• a |= �A iff ∀x(Sax⇒ x |= A)

A formula A is valid on a model if for all a ∈ 0, a |= A.
A hereditariness theorem holds of all R.K− models. That is, if a |= A and

a 6 b, then b |= A, for all formulas A and all worlds a and b.
The following lemma is useful when proving soundness results:

 10 (Semantic Entailment) Let M = 〈W,0, R, S, ∗, v〉. Suppose that for all
a ∈W, if a |= A, then a |= B. Then,A→ B is valid on M.

A simplified R.K− frame is an R.K− frame that obeys the condition SP11:

(SP11) a 6 b⇒ a = b

In other words, in simplified frames (and hence in simplified models) the par-
tial order on worlds is an antichain.

In R.K− models, the defined relation T acts like a modal accessibility rela-
tion in Kripke’s sense. Whereas the derived truth condition for ♦ is

a |= ♦A iff ∃x(Sa∗x ∧ x∗ |= A)

we can prove that
a |= ♦A iff ∃x(Tax ∧ x |= A)

as well as
a |= �A iff ∀x(Tax ⇒ x |= A).

We can, with a few modifications, eliminate S in favour of T and make our
semantics much more Kripkean [7]. But in simplified models S collapses into
T , and we get the Kripkean truth conditions automatically.

The following theorem was proven in [12]. We repeat the proof here be-
cause of its importance for our completeness proof.
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 11 (Clustering) If a ∈ 0, Rabb, and Rbcd, then Racc and Radd.

Proof: Suppose that a ∈ 0, Rabb, and Rbcd. Then, by SP5, there is some world
x such that Racx and Rxbd. But, by SP11, c = x, so Racc. By SP7, Rbd∗c∗, so by
SP5 again there is a world x such that Rad∗x and Rxbc∗. But by SP11, d∗ = x,
so Rad∗d∗. Therefore, by SP7 and SP8, Radd.

This theorem tells us that around each base world there are a cluster of
other worlds that are closed under the implications of the base world. Each
cluster is closed under R. Our canonical model incorporates this closure in its
construction. Moreover, the following theorem tells us that worlds can belong
to only one cluster.
 12 If a, a′ ∈ 0, Rabb, and Ra′bb, then a = a′.

Proof: Suppose that a, a′ ∈ 0, Rabb, and Ra′bb. By SP2, Rba′b. So, there is a
world x such that Rabx and Rxa′b. Thus, by SP5, there is a world y, Raa′y and
Rybb. By SP11, y = a′. So, Raa′a′. By SP2, Ra′aa′, and so a 6 a′. By SP11,
a = a′.

In addition to the clusters, we have an elegant embedding of an S4 model in
each simplified R.K− model. Suppose that M = 〈W,0, R, S, ∗, v〉 is a simplified
R.K− model. Let M′ = 〈0, (T � 0), (∗ � 0), v′〉, where v′(p) = v(p) ∩ 0. In
addition, let L− be the implication free fragment of L. Then, we can extend v′
to a satisfaction relation 
 between worlds in 0 and formulas of L− that obeys
the same clauses as those for R.K− models. First, we can show that for any
a ∈ 0, a 
 ¬A iff a 1 A. For, suppose that a ∈ 0. By SP1, Ra∗a∗a∗. Then, by
SP7 and SP8, Ra∗aa. By SP2, Raa∗a and so, by SP11, a = a∗. So, a 
 ¬A iff
a 1 A. That T � 0 is reflexive and transitive is easy to show.

We constrain frames to accommodate our other logics in accordance with
the following correlations between schemes and semantic postulates:

  
�A→ ♦A D ∃xTax
�A→ A T Saa

�A→ ��A 4 (Sab ∧ Sbc) ⇒ Sac

A→ �♦A B Tab⇒ Tba

For soundness arguments for these schemes see [4] and [6].
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6 C
The completeness proof makes use of the clustering theorem 11 above and a
trick from [17].3 The idea is that our canonical model is made up of a set of
clusters. Each cluster is centred around a normal theory. In terms of the impli-
cational R accessibility relation, the clusters are independent of one another.
Worlds from one cluster are only related to worlds in other clusters by means
of the modal S accessibility relation. Now, once we have isolated a cluster, we
make use of the trick from [17]. The idea is that each base world is duplicated
by a non-base world. That is, each normal theory is a base world, but also, in a
separate guise, acts as a non-base world. We put special restrictions on the way
that base worlds behave with regard to the R accessibility relation in order to
verify that the canonical model is a simplified model. These restrictions would
make the truth lemma (Lemma 24 below) extremely hard to prove. But having
a doppelganger for each base world that behaves without the special restric-
tions allows us to prove it easily. For this reason we take a base world to be
a pair of 〈Γ, 0〉 where Γ is a normal theory. The pairing with 0 marks it out as
a base world. A non-base world is a pair 〈Σ, Γ〉, where Σ is a prime Γ -theory
and Γ is a normal theory. Thus, in the cluster around 〈Γ, 0〉 we also have its
doppelganger 〈Γ, Γ〉. The reason that we take a non-base world to be a pair of a
prime theory and a normal theory is that the normal theory indicates to which
cluster the world belongs. For consider the empty theory ∅. It is a Γ -theory for
every normal theory Γ . Thus, in the canonical model we have 〈∅, Γ〉 for each
such Γ .

In order to set out our canonical model, we need a few more definitions.
We define a fusion operator on pairs of sets of formulas Σ, Θ, such that Σ◦Θ =

{B : ∃A(A→ B ∈ Σ ∧ A ∈ Θ)}. Σ ◦Θ is so-to-speak the modus ponens closure
of Σ andΘ. Where Γ is a normal theory and Σ,Θ, Ξ are sets of formulas, RΓΣΘΞ
if and only if for all formulas A and B, if Σ `Γ A→ B and Θ `Γ A, then Ξ `Γ B.

Our canonical model is a structure ML = 〈WL, 0L, RL, SL, ∗L, vL〉 where
the members of ML have the following definitions. Where π1 is a projection
function such that π1(X, Y) = X,

• 0L is the set of pairs 〈Γ, 0〉 where Γ is a normal R.K− theory;

• WΓ = {〈Σ, Γ〉 : where Σ is a prime Γ -theory and Γ is a normal R.K−

theory} ∪ 0L;

• ∀a, b, c(WL\0L) ∈ RLabc⇔ ∃Γ(a = 〈Σ, Γ〉 ∧ b = 〈Θ, Γ〉 ∧ c = 〈Ξ, Γ〉 ∧

Σ ◦Θ ⊆ Ξ);

• if a ∈ 0L: RLabc iff b, c are a-theories and b = c; RLbac iff b, c are
a-theories and b = c; RLbca iff b, c are a-theories and b = c∗L ;

3This is a weak completeness proof. As is well known, R is not strongly complete over the
simplified semantics [18].
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• if a ∈ 0L, then SLab⇔ (b ∈ 0L ∧ (�−1a ⊆ b ⊆ ♦−1a));

• if a /∈ 0L, SLab⇔ �−1a ⊆ b ⊆ ♦−1a;

• ∀a ∈ (WL\0L) (a = 〈Σ, Γ〉 ⇒ a∗L = 〈{A : ¬A /∈ a}, Γ〉);

• ∀a ∈ 0L a∗L = a;

• vL(p) = {a ∈WL : p ∈ π1(a)}.

Here �−1a = {A : �A ∈ π1(a)} and ♦−1a = {A : ♦A ∈ π1(a)}.
In order to show that this construction is legitimate, we need to show the

following:
 13 If Γ is a regular R.K− theory and Σ is a Γ -theory, then Σ∗ = {A : ¬A /∈ Σ}

is also a Γ -theory.

Proof: Suppose that Γ is a regular R.K− theory and Σ is a Γ -theory. Assume
that B ∈ Σ∗ and B → C ∈ Γ . Then, ¬B /∈ Σ and ¬C → ¬B ∈ Γ . So, ¬C /∈ Σ,
hence C ∈ Σ∗. Therefore, generalizing, Σ∗ is a Γ -theory.

 14 If Γ is a normal theory, then any prime theory Σ such that �−1Γ ⊆ Σ ⊆
♦−1Γ is also normal.

Proof: Suppose that Γ is a normal theory, Σ is a prime theory, and �−1Γ ⊆
Σ ⊆ ♦−1Γ . Because R.K− is closed under the rule of necessitation, for every
theorem A, �A ∈ Γ and so A ∈ Σ. Thus, Σ is regular. In addition, ¬♦(A∧ ¬A)

is a theorem of R.K−, so ¬♦(A∧¬A) ∈ Γ and, because Γ is negation consistent,
♦(A ∧ ¬A) 6∈ Γ . Since Σ ⊆ ♦−1Γ for no formula A, (A ∧ ¬A) ∈ Σ. Thus, Σ is
also negation consistent. Therefore, Σ is normal.

We now show that the canonical model is a simplified R.K− model. Some-
times, for the sake of brevity, instead of specifying, for example, that a = 〈Σ, Γ〉
and saying A ∈ Σ or writing A ∈ π1(a) (where π1 is a projection function), we
will merely write ‘A ∈ a’. Similarly, we write a ⊆ b instead of π1(a) ⊆ π1(b).
 15 If Σ and Θ are R.K− theories and Ξ is a prime Γ -theory such that RΓΣΘΞ,
then there are prime Γ -theories Σ′ andΦ′ such that Σ ⊆ Σ′,Θ ⊆ Θ′, and RΓΣ′Θ′Ξ.

Proof: Suppose that Σ and Θ are R.K− theories and Ξ is a prime Γ -theory such
that RΓΣΘΞ. Let ∆Σ = {B → C : B ∈ Θ ∧ C /∈ Ξ}. It can be seen that (Σ,∆Σ)

is Γ -independent. For suppose that there are B → C,B′ → C′ ∈ ∆Σ such that
Σ `Γ (B → C) ∨ (B′ → C′). Then, by Lemma 1.i, Σ `Γ (B ∧ B′) → (C ∨ C′).
Neither C nor C′ is in Ξ and both B and B′ (and hence B ∧ B′) are in Θ by
the definition of ∆Σ. Then, contrary to our assumption, it would not be that
RΓΣΘΞ. Thus, we can extend Σ to a prime Γ -theory Σ′ such that RΓΣ′ΘΞ.
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Now we extend Θ to a prime Γ -theory Θ′ such that RΓΣ′Θ′Ξ. Let ∆Θ = {A :

∃B( A → C ∈ Σ′ ∧ C /∈ Ξ)}. We can see that (Θ,∆Θ) is Γ -independent. For
suppose that Θ `Γ (A ∨ A′) for some A,A′ ∈ ∆Θ. Then there are C,C′ /∈ Ξ
such that A→ C ∈ Σ′ and A′ → C′ ∈ Σ′. Then, by axioms 5 and 7, ((A∨A′)→
(C ∨ C′)) ∈ Σ′. Since Ξ is prime, C ∨ C′ /∈ Ξ. Thus, it cannot be the case that
RΓΣ

′ΘΞ. So, (Θ,∆Θ) is Γ -independent. Now we extend Θ to a prime theory Θ′
such that RΓΣ′Θ′Ξ ending the proof of the lemma.

We begin by showing that SP11 holds, because proving this makes it redun-
dant to show that SP4, SP5, SP6, and SP9 hold, since they follow automatically
from SP11.
 16 (SP13) For all worlds a and b inWL, a 6L b iff a = b.

Proof: ⇐ trivial. ⇒ Suppose that a 6L b, i.e. there is a world x in 0L such that
RLxab. Then, by the construction of the canonical model, a = b.

We also prove SP7 and SP8 out of order because we assume them in later
lemmas.
 17 (SP7) RLabc⇒ RLac

∗Lb∗L .

Proof: Suppose that RLabc.
Case 1. a, b, c /∈ 0L (so b∗L , c∗L /∈ 0). Suppose that A→ B ∈ a and A ∈ c∗L .

Then, ¬A /∈ c. But, by axioms 12 and 13, ¬B → ¬A ∈ a. So ¬B /∈ b, hence
B ∈ b∗L . Generalizing, RLac∗Lb∗L .

Case 2. a ∈ 0L. Then, by the construction of the canonical model, b = c

and RLab∗Lb∗L .
Case 3. b ∈ 0L. Then, a = c, so RLaba. Moreover, b = b∗L and by the

definition of RL, RLaa∗Lb.
Case 4. c ∈ 0L. Then, a = b∗L and c = c∗L . By the definition of RL, RLaca,

i.e. RLac∗Lb∗L .

 18 (SP8) For all worlds a inWL, a∗L∗L = a.

Proof: Case 1. a ∈ 0L. Then a∗L = a, by definition. Case 2. a /∈ 0L. Suppose
that A ∈ a∗L∗L . Then, ¬A /∈ a∗L , so ¬¬A ∈ a. By axiom 12, A ∈ a. Suppose
now that A ∈ a. Then, by axiom 12 ¬¬A ∈ a. So, ¬A /∈ a∗L and ¬¬A ∈ a∗L∗L .
Hence by axiom 12 A ∈ a∗L∗L .

 19 (SP1) For all worlds a inWL, RLaaa.

Proof: By Lemma 1.ii, ` ((A→ B) ∧A)→ B. So, suppose that A→ B ∈ a and
A ∈ a. Then, B ∈ a. Generalizing, a ◦ a ⊆ a, hence RLaaa.

 20 (SP2) For all worlds a, b and c inWL, if RLabc, then RLbac.
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Proof: Suppose that RLabc. By the construction of the canonical model, there
is some normal theory Γ such that a = 〈Σ, Γ〉, b = 〈Θ, Γ〉, and c = 〈Ξ, Γ〉 and
Σ ◦ Θ ⊆ Ξ. Now suppose that A → B ∈ Θ and A ∈ Σ. By axiom 3, (A → B) →
B ∈ Σ. So, since Σ◦Θ ⊆ Ξ, B ∈ Ξ. Generalizing, Θ◦Σ ⊆ Ξ. So, by the definition
of RL, RLbac.

 21 (SP3) If there is a world x such that RLabx and RLxcd, then there is a
world y such that RLacy and RLybd.

Proof: Suppose that there is a world x such that RLabx and RLxcd.
Case 0. None of a, b, x, c, d are in 0L. By the construction of the canon-

ical model, there is a normal theory Γ such that a, b, x, c, d are all based on
Γ -theories and a ◦ b ⊆ x and x ◦ c ⊆ d. We show that (a ◦ c) ◦ b ⊆ d. Suppose
that C ∈ (a ◦ c) ◦ b. Then there is a B ∈ b such that B→ C ∈ a ◦ c and so there
is an A ∈ c such that A→ (B→ C) ∈ a. By axiom 4, B→ (A→ C) ∈ a. Then,
since a ◦ b ⊆ x, A → C ∈ x. Moreover, since x ◦ c ⊆ d, C ∈ d. Generalizing
(a ◦ c) ◦ b ⊆ d. Now, by Lemma 15, we can extend a ◦ c to a prime Γ -theory
such y that RLybd and RLacy.

Case 1. a ∈ 0L. Then, x = b. So we have RLabb and RLbcd. But, by the
construction of the canonical model, RLacc. Moreover, by Lemma 20, RLcbd.
Hence there is a world y such that RLacy and RLybd.

Case 2. b ∈ 0L. Then a = x and we have RLaba and RLacd. By the
construction of the canonical model, we have RLbdd and, so by Lemma 20,
RLdbd. But we already have RLacd, so there is a world y, namely d, such that
RLacy and RLybd.

Case 3. x ∈ 0L. Then b = a∗L and d = c∗L . That is, RLaa∗Lx and RLxcc∗L .
Let x = 〈Γ, 0〉 and let x′ = 〈Γ, Γ〉. By the construction of the canonical model,
RLaa

∗Lx′ and RLx′cc∗L . The rest proceeds as in the other cases.
Case 4. c ∈ 0L. Then we have x = d and RLabd. By the construction of

the canonical model, we know that RLaca. Thus, there is a world y, namely a,
such that RLacy and RLybd.

Case 5. d ∈ 0L. Then we know that x = c∗L so we have RLabc∗L and
RLc
∗Lcd. So, by Lemma 20, we know that RLacb∗L and, by the construction

the canonical model, RLb∗Lbd. So, we have a world y, namely b∗L , such that
RLacy and RLybd.

 22 For all a ∈ WL, and all formulas A,B, A → B ∈ a iff for all b, c ∈ WL,
if RLabc andA ∈ b, then B ∈ c.

Proof: ⇒ by definition of RL.
⇐ Suppose that A → B /∈ a. Case 1. a ∈ 0L, that is, a is 〈Γ, 0〉, where Γ

is a normal R.K− theory. Then, ({A}, {B}) is Γ -independent. So, by Lemma 2,
there is a prime Γ -theory b that contains A and does not contain B. Since b is
a prime Γ -theory, RLabb.
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Case 2. a /∈ 0L. Let a = 〈Σ, Γ〉. Then (a ◦ {A}, {B}) is Γ -independent, for
if a ◦ {A} `Γ B, then there would be a formula C such that A → C ∈ a and
C → B ∈ Γ . But since a is a Γ -theory, A → B would be in a, contrary to the
hypothesis. By Lemma 2 we can extend a◦ {A} to Θ, a prime Γ -theory that does
not include B. Let us call 〈Θ, Γ〉, c. So now we have RΓΣ{A}Θ where Σ and Θ
are prime Γ -theories. So, by Lemma 15, there is a prime Γ -theory Ξ extending
{A} such that RΓΣΞΘ. Let us call 〈Ξ, Γ〉, b. So we have RLabc.

 23 For all a ∈ WL, and all formulas A, �A ∈ a iff for all b ∈ WL, if SLab,
A ∈ b.

Proof: ⇒ By definition of SL.
⇐ Suppose that �A /∈ a. Let us set ∆ = {A} ∪ {B : ♦B /∈ a}.

(�−1a,∆) is independent. For suppose that �−1a `R.K− ∆. Then, we would
have C1, . . . , Cn ∈ �−1a and B1, . . . , Bm ∈ ∆ such that ` (C1 ∧ · · · ∧ Cn) →
(A ∨ B1 ∨ · · · ∨ Bm). By necessitation and the distribution of necessity over
implication, we then get ` �(C1 ∧ · · · ∧ Cn) → �(A ∨ B1 ∨ · · · ∨ Bm). But
` �(A ∨ B1 ∨ · · · ∨ Bm) → (�A ∨ ♦B1 ∨ · · · ∨ ♦Bm), so we have ` �(C1 ∧

· · ·∧Cn)→ (�A∨♦B1∨ · · ·∨♦Bm). But �(C1∧ · · ·∧Cn) ∈ a, by hypothesis
and axiom 18, so (�A ∨ ♦B1 ∨ · · · ∨ ♦Bm) ∈ a. Moreover, a is prime, so we
have �A ∈ a or ♦B1 ∈ a, or. . .or ♦Bm ∈ a. But none of these formulas is in a.
So, by reductio, (�−1a,∆) is independent. Then by Lemma 2, we can extend
�−1a to a prime R.K− theory Σ such that Σ ∩ ∆ = ∅.

Now we construct a normal theory Γ such that Σ is a Γ -theory. Let Γ ′ be
the set of R.K− Theorems. Then, we know that RΓ ′Γ ′ΣΣ. By Lemma 15, there
is a prime extension Γ ′′ of Γ such that RΓ ′Γ ′′ΣΣ. In [8], moreover, it is shown
that each prime regular R.K− theory has a normal theory as a subset. Let us
call a normal theory contained in Γ ′′, Γ . Then RΓ ′ΓΣΣ. Now we set b = 〈Σ, Γ〉.
Thus, there is a b in WL such that SLab and A /∈ b.

Now we can prove the usual truth lemma.
 24 (Truth) For all worlds a ∈WL and all formulaA, a |=L A iffA ∈ a.

Proof: By induction on the complexity of A.
Case 1. A = p. By definition of |=L.
Case 2. A = B∧ C. Easy.
Case 3. A = B ∨ C. By the inductive hypothesis and the primeness of

worlds.
Case 4. A = B→ C. By the inductive hypothesis and Lemma 22.
Case 5. A = �B. By the inductive hypothesis and Lemma 23.

 25 For all formulaA, `R.K− A iff for all R.K− models M, M |= A.

Proof: ⇒ by soundness. ⇐ Suppose that for all R.K− models M, M |= A. The
canonical model is an R.K− model. Thus, ML |= A. Then, by Lemma 24,
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A ∈ Γ for all normal theories Γ . By Lemma 9, if A is in every normal theory,
then `R.K− A.

7 B N
The point of the completeness proof is to aid in proving that the addition
of boolean negation to R.K− yields a conservative extension. First we add
boolean negation, ∼, to our language, creating L∼. We construct a boolean
extension, CR.K−, of R.K− by adding the following axiom schemes4:

C.1 A→ (B→ (C ∨∼C))

C.2 A→ (∼( B→ C) ∨ (∼B ∨C))

C.3 (A ∧ ∼A)→ B

C.4 ♦(A ∧ ∼A)→ B

C.5 A→ �(B ∨ ∼B)

A CR.K− model is just a simplified R.K− model. The difference between
the semantics for the two logics (and two languages) is that the satisfaction
relation is slightly different. To mark out the difference with R.K−, we use 

for a CR.K− satisfaction relation. The definition of 
 agrees with its corre-
sponding |= on all clauses except, of course, that the definition for 
 has an
extra clause for boolean negation, that is,

a 
∼A iff a 1 A.

The notion of validity remains as it is for R.K−.
We first prove soundness.

 26 (Soundness) Every instance of axioms C.1-C.5 are valid on all simpli-
fied models for CR.K−.

Proof: We note first that A ∨ ∼A is true at every world and that A ∧ ∼A fails
at every world.

C.1. Suppose that a 
 A and that Rabc and b 
 B. As we have noted,
c 
 C ∨ ∼C. Hence, by the truth condition for implication, a 
 B →
(C ∨ ∼C) and, by Lemma 10, A→ (B→ (C ∨ ∼C)) is valid.

C.2. Suppose that a 
 A. Also assume that a 1∼( B → C), i.e., a 
 (B → C).
By SP1, Raaa, so either a 1 B or a 
 C, that is a 
∼B ∨C. Hence a 
∼(

B → C) ∨ (∼B ∨ C). Thus, by Lemma 10, A → (∼( B → C) ∨ (∼B ∨ C))

is valid.
4The first three of these are taken from [11].
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C.3. (A ∧ ∼A) is never true at any world. So, vacuously, by Lemma 10
(A ∧ ∼A)→ B is valid.

C.4. Since (A ∧ ∼A) is never true, nor is ♦(A ∧ ∼A), so ♦(A ∧ ∼A) → B is
valid.

C.5. �(B ∨ ∼B) is true at every world, hence A→ �(B∨ ∼B) is valid.

Now we prove conservative extension.
 27 Let F be a simplified R.K− frame and |= an R.K− valuation and 
 a
CR.K− valuation on F such that for all propositional variables p and all worlds a in
F, a 
 p iff a |= p. Then for all formulasA not containing boolean negation, a 
 A iff
a |= A, for all worlds a.

Proof: By a simple induction on the complexity of A.

 28 Let A be a formula not containing boolean negation. Then, `CR.K− A

iff `R.K− A.

Proof: ⇐ by the fact that all the axioms of R.K− are axioms of CR.K− and the
rules of R.K− are all rules of CR.K−.
⇒ Suppose that 0R.K− A. Consider the frame FL of the canonical model.

Let us construct a canonical CR.K− valuation, 
L. We set a 
L p iff a |=L p,
for all worlds a and all propositional variables p. Then, by Lemma 27, we have
a 
L B iff a |=L B for all formulas B not containing boolean negation. Consider
one such formula A that is not a theorem of R.K−. By Lemma 9, there is a
normal theory Γ that does not contain A. By the construction of the canonical
model, 〈Γ, Γ〉 ∈ 0L. By Lemma 24, 〈Γ, Γ〉 2L A. So, 〈Γ, Γ〉 1L A. Thus, A is not
CR.K−-valid. So, by theorem 26, 0CR.K− A.

 29 The boolean extension of any of the extensions of R.K− by any collection
of the schemes D, T, 4, and B is conservative over the corresponding non-boolean logic.

Proof: Follows directly from the completeness theorem for the logic in ques-
tion and Lemma 27.

Thus we have proven that CR.K− is a conservative extension of R.K−.
Extending this proof to the other logics is straightforward.
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