
A note on identity and higher-order quantification.
R U

C  L  P  S, G U,
B

C  L, M  P  S,
G́ U, P

http://entiaetnomina.blogspot.com/

rfl.urbaniak@gmail.com

Received by Greg Restall
Published July 6, 2009

http://www.philosophy.unimelb.edu.au/ajl/2009

© 2009 Rafał Urbaniak

Abstract: It is a commonplace remark that the identity relation, even though not
expressible in a first-order language without identity with classical set-theoretic
semantics, can be defined in a language without identity, as soon as we admit
second-order, set-theoretically interpreted quantifiers binding predicate variables
that range over all subsets of the domain. However, there are fairly simple and in-
tuitive higher-order languages with set-theoretic semantics (where the variables
range over all subsets of the domain) in which the identity relation is not defin-
able. The point is that the definability of identity in higher-order languages not
only depends on what variables range over, but also is sensitive to how predica-
tion is construed. This paper is a follow-up to (Urbaniak 2006), where it has been
proven that no actual axiomatization of Leśniewski’s Ontology determines the
standard semantics for the epsilon connective.

1 
Say we have a first-order language L1 with a countable assembly of predi-
cates, which contains no other extralogical symbols, and whose logical symbols,
besides brackets and a countable set of individual variables, are the classical
Boolean connectives and the classical quantifiers binding individual variables.
Most importantly, the identity symbol is not among the logical symbols of that
language. Consider its standard set-theoretic semantics. For any set Γ of for-
mulas of L1, let M(Γ) be the set of all those models which model all formulas
from Γ . The following is a well-known fact:1

 1 For any two-place predicate R of L1, for any set Γ of formulas from L1,
there is a model M in M(Γ) such that the interpretation of R in M (RM) is not
the identity relation in M (i.e. RM 6= {〈x, x〉 | x ∈M}). �

1For a proof, see for example (Manzano 1996).
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In other words, this means that in L1 we can’t specify conditions that would
define R to play the semantic role of the identity symbol.

What happens when we extend the language to L2 by adding predicate
variables and quantifiers binding them to L1’s logical vocabulary (but still, not
introducing the identity symbol as a logical primitive)? Well, if we interpret
second-order quantifiers as ranging over all subsets of the domain,2 we have
another well-known fact:
 2 The relation of identity is definable by means of a single formula. That
is, if we take:

∀x,y[R(x, y) ≡ ∀P(P(x) ≡ P(y))] (1)

where R is a newly defined two-place predicate of L2 and P is a predicate vari-
able of L2, then (1) is satisfied in a second-order model if and only if the inter-
pretation of R in that model is the identity relation in its domain.3 �

In a while, we’ll move on to a higher-order language which doesn’t contain a
separate category of singular terms. To give the taste of how we can still speak
of identity of individuals in such a language, we’ll introduce a relation between
predicates that can go proxy for such an identity relation. Extend the language
of L2 to L=

2 by adding an identity symbol that connects predicate symbols, thus
forming a formula ‘P = Q’. On the intended interpretation ‘P = Q’ is true if
and only if the referent of both P and Q is one and the same singleton. This
identity relation is expressible already in L2. Given that we define identity
between individuals as in (1) and understand ∃! as ‘there is exactly one’,4 we can
just say:

P = Q ≡ ∃!xP(x) ∧ ∃!xQ(x) ∧ ∀x(P(x) ≡ Q(x))] (2)

 3 The relation of identity between predicates (as explained above) is de-
finable by means of a single formula of L2, namely (2). �

Prima facie, one might draw the moral that in order to ensure that the iden-
tity relations mentioned above are definable, it is enough to introduce second-
order quantification. As it will turn out, there are languages in which quan-
tification ranging over all subsets of the domain is available, but in which the
identity relation is not definable, because predication functions differently.

2    ()

Suppose that instead of accepting the standard division between singular terms
and predicate symbols we rather take the quasi-Aristotelian approach, found
for instance in the language of Leśniewski’s Ontology.5 That is, we construct

2As opposed, for instance, to interpreting them as ranging over all finite or over all definable
subsets of the domain.

3The proof is fairly simple, but the reader can consult (Manzano 1996) for details.
4Note that expressing ‘∃!’ requires identity, so the quantifier is not expressible in L1.
5See (Urbaniak 2008) for more details and an extensive bibliography concerning Leśniewski’s

systems.
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a language L ε which contains only one category of variables, called name vari-
ables: a1, a2, a3, a4 . . . (abbreviated by a, b, c, d, . . .). The set of all name vari-
ables is called V. We keep the Boolean connectives and brackets, but we admit
only one type of quantifiers: those binding name variables. Most importantly,
we also introduce a new constant: ε . This new constant is used to form atomic
formulas, so that the formation rules are as follows:

• If α and β are name variables, then (αεβ) is a well-formed formula.

• If φ and ψ are well-formed formulas, so are:

(¬φ), (φ∧ψ), (φ∨ψ), (φ→ ψ), (φ ≡ ψ)

• If φ is a well-formed formula, and α a name variable, ∀α(φ) and ∃α(φ)

are well-formed formulas.

• Nothing else is a well-formed formula.

The intended interpretation is that name variables represent names, which
can be either empty or singular or plural, and ε expresses the ‘is’ or ‘is one
of ’ of predication. Hence, we read ‘a εb’ as ‘a is one of b’s’, or simply as ‘a is
b’. The Boolean operators work in the standard manner and the quantifiers
range over all subsets of the domain. There are quite a few ways one can give
semantics for L ε . We’ll consider only two of them.

An S-model is a structure M = 〈D,V〉, where D is a non-empty domain of
objects and V is a total function that maps the name variables into the powerset
of D, 2D. If we note ‘A is a singleton’ as ‘Sing(A)’, the satisfaction conditions
are as follows:

〈D,V〉 |= αεβ iff Sing(V(α)) ∧ V(α) ⊆ V(β) (3)
〈D,V〉 |= φ∧ψ iff 〈D,V〉 |= φ and 〈D,V〉 |= ψ

〈D,V〉 |= ¬φ iff 〈D,V〉 6|= φ

〈D,V〉 |= ∃αφ iff 〈D,V ′〉 |= φ

for some V ′ that differs from V at most at α.

Satisfaction conditions for other Boolean clauses and for the universal
quantifier can be defined in terms of the satisfaction clauses defined above (as
usual, the quantifiers are interdefinable, and the definitions of other Boolean
quantifiers are standard). To avoid ambiguities, I sometimes use ‘|=s’ to denote
this satisfaction relation.

An N-model is a structure M = 〈D,R〉, where D is a non-empty domain of
objects and R ⊆ V×D is a “naming relation”. If we have two naming relations
R and R ′, we say that they differ at most on a variable α if and only if:

{〈β, y〉 | β 6= α∧ 〈β, y〉 ∈ R} = {〈β, y〉 | β 6= α∧ 〈β, y〉 ∈ R ′} (4)
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The satisfaction conditions differ from the ones given in (3) only for atomic
formulas. All other clauses are, mutatis mutandis, the same.

〈D,R〉 |= αεβ iff ∃!xR(α, x) ∧ ∀y[R(α, y)→ R(β, y)] (5)

I sometimes use ‘|=n’ to denote this satisfaction relation. There is a slight
difference between S-models and N-models. In an S-models all names “refer
to” sets, so that each name refers to exactly one subset of a domain. In an
N-model, R is rather a direct, and possibly multiple reference relation between
variables and objects themselves. A variable α can:

• Not to refer to anything: ∀y∈D¬R(α, y)

• Refer to exactly one object: ∃!x∈DR(α, x)

• Refer to more than one object: ∃x, y ∈ D[x 6= y∧ R(α, x) ∧ R(α, y)]

Despite this difference, there is an obvious correspondence between S-models
and N-models that preserves satisfaction.

Some observations are due. First, even though the language of  is a sub-
language of the language of Leśniewski’s Ontology (which contains variables
and quantifiers for other syntactic categories as well),  is not a subsystem
of Leśniewski’s Ontology, because in set-theoretic semantics for Ontology it
is not required that the domain be non-empty. This could be avoided, if we
allowed for empty  models. Since, however, we are rather interested in
comparing  and second-order logic which does embrace the non-emptiness
assumption, this won’t be done in this paper.

Second, say we have a language of monadic second-order logic whose all
predicate variables are Pa1 , Pa2 , Pa3 , . . .. Map (1-1) each name variable ai to
a predicate Pai . There is a translation from the language of  into this
language that preserves satisfaction (modulo an obvious isomorphism of 
models and monadic second-order models). The translation t goes as follows:

t(a εb) = ∃!xPa(x) ∧ ∀x(Pa(x)→ Pb(x)) (6)
t(φ∧ψ) = t(φ) ∧ t(ψ)

t(¬φ) = ¬t(φ)

t(∃aφ) = ∃Pat(φ)

Third, an analogous translation from the language of second-order monadic
predicate logic which goes the other way round is available. Order the name
variables into two sequences:

a1, a2, a3, . . .

b1, b2, b3, . . .
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Map each predicate Pi to ai, and each individual variable xi to bi. Then the
translation f can be defined:

f(Pi(xj)) = bj ε ai (7)
f(φ∧ψ) = f(φ) ∧ f(ψ)

f(¬φ) = ¬f(φ)

f(∃xiφ) = ∃bi(bi ε bi ∧ f(φ))

This indicates that  isn’t that far from second-order logic – in fact,
given that its semantics involves quantification over all subsets of a domain (or
an analogous device of quantification over naming relations), it can be consid-
ered a higher-order logic.

Coming back to the main issue, the identity relation can be defined in L ε
by:

a = b ≡ a εb∧ b εa (8)

Indeed, (8) defines identity, because:

• a εb∧b εa can be true in an S-model only if both V(a) and V(b) are both
singletons contained in each other, which can be the case only if they are
both one and the same singleton (in a sense, the identity of singletons
“goes proxy” for the real identity of objects).

• a εb ∧ b εa can be true in an N-model only if a and b refer directly to
one and the same object, and there are no other objects to which a and
b refer.

3  
So identity can be defined both in second-order logic and in . In , how-
ever, this fact depends not only on the behavior of quantifiers, but also on the
meaning of the epsilon. Hence, the following question arises: can we charac-
terize the semantic behavior of this copula syntactically, just like we can define
identity in second-order logic? In other words, what happens if we replace ε
in L ε with f, a symbol that plays the same syntactic role as ε , thus obtaining
a language Lf — can we give a set of formulas which makes f play the semantic
role of ε? The answer is negative. Let’s make the question more specific first.

An Fs-model of Lf is a tuple 〈D,V, e〉, whereD is a non-empty set of objects,
V is as it was in S-models, and e is a function that maps f into a relation between
subsets of D: f ⊆ 2D × 2D. The satisfaction clause for the atomic case is:

〈D,V, e〉 |= αfβ iff 〈V(α), V(β)〉 ∈ e(f) (9)

The other clauses are just as in (3). This satisfaction relation will be sometimes
denoted by ‘|=fs’.
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An Fn-model of Lf is a tuple 〈D,R, e〉, where D is a non-empty set of ob-
jects, R is as it was inN-models, and e is as it was in the definition of Fs-models.
The satisfaction clause for atomic formulas is:

〈D,R, e〉 |= αfβ iff 〈{x ∈ D | R(α, x)}, {x ∈ D | R(β, x)}〉 ∈ e(f) (10)

The rest of the conditions remains the same. For this satisfaction relation I
sometimes write ‘|=fn’.

Let’s say that a model which contains a function e is standard if and only if
e(f) is a relation that holds between two subsets A,B of D if and only if A is a
singleton which is a subset of B (that is, if f is interpreted as the epsilon). We
have the following fact:
 4 No set of Lf-formulas Γ is such that for any Fs-model 〈D,V, e〉: 6

〈D,V, e〉 |=fs Γ iff 〈D,V, e〉 is standard. (11)

Argument. For any Fs-model M = 〈D,V, e〉 where e(f) is the standard interpre-
tation of ε, take an object ⊥ 6∈ D and let M ′ = 〈D ∪ {⊥}, V ′, e ′〉 where for any
α:

V ′(α) = V(α) ∪ {⊥}

and e ′(f) is defined by saying that for any two subsets A,B of D ∪ {⊥}, 〈A,B〉 ∈
e ′(f) iff (i) A ⊆ B, and (ii) there are exactly two objects in A. By induction on
the length of a formula, M and M ′ agree on all formulas, and hence for any set
of formulas Γ , M |=fs Γ iff M ′ |=fs Γ .

To see why this is the case, consider the satisfaction condition for atomic
sentences. Since the interpretation of f in M is standard, we know that M
models αfβ iff V(α) is a singleton which is a subset of V(α). But this can be
the case if and only if both (i) V ′(α) contains exactly two elements: ⊥ and
the object that originally was in V(α), and (ii) V ′(α) is a subset of V ′(β). The
induction steps for Boolean connectives are simple.

The claim holds also for quantified statements. For suppose:

〈D,V, e〉 |= ∃αφ(α)

Then, there is a Vi that differs from V at most on α, such that 〈D,Vi, e〉 |=
φ(α). Construct a model 〈D ∪ {⊥}, V ′i , e

′〉, where e ′ is as already defined and
for any α, V ′i(α) = Vi(α) ∪ {⊥}. Clearly, 〈D ∪ {⊥}, V ′i , e

′〉 |= φ(α) and hence our
〈D ∪ {⊥}, V ′, e ′〉 models ∃αφ(α). Implication in the opposite direction holds
for similar reasons.

Now suppose Γ satisfies (11) for any Fs-model. Clearly, there are standard
Fs-models. Take one of those, call itM. GenerateM ′ according to the instruc-
tions give above. Γ will also be satisfied in M ′, but M ′ isn’t standard, which
means that Γ doesn’t define f to be the epsilon.

6Modeling a set of formulas is just modeling all its members.
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This also means that the identity between singletons is not definable in Lf
within Fs semantics.
 5 No Lf formulaφ containing two free variables α and β is such that for
any Fs-model 〈D,V, e〉:

〈D,V, e〉 |= φ iff Sing(V(α)) ∧ Sing(V(β)) ∧ V(α) = V(β)

Argument. Use the same construction as in the proof of fact 4 to show that
there is a non-standard model 〈D ′, V ′, e ′〉 where φ(α,β) is satisfied, even
though it is not the case that V ′(α) and V ′(β) are one and the same single-
ton.

The following corollaries have analogous proofs:
 6 No set of Lf-formulas Γ is such that for any Fn-model 〈D,R, e〉:

〈D,R, e〉 |=fn Γ iff 〈D,R, e〉 is standard. (12)

 7 No Lf formulaφ containing two free variables α and β is such that for
any Fn-model 〈D,R, e〉:

〈D,R, e〉 |= φ(α,β) iff ∃!xR(α, x) ∧ ∃!xR(β, x) ∧ ∀x[R(α, x) ≡ R(β, x)]

This last corollary also means that the identity between objects is not de-
finable in Lf with respect to Fn-models.

Interestingly, Fs-models can be viewed as higher-order standard model (we
can quantify over all subsets of the domain) and Fn-models, as far as expressive
power is concerned, can also be treated as such, given that there’s an obvious
1-1 correspondence between Fn- and Fs- models.

These considerations may suggest that a key role in providing standard
second-order languages with extra expressive power is played not only by quan-
tification over all subsets of the domain, but also by the distinction between
singular terms and predicate symbols. A classical second-order language allows
us to ensure that an expression refers to exactly one object: one just needs to
use a singular variable. Lf is devoid of this feature and this might make quite a
difference. This diagnosis, however, is not quite adequate. Introducing singular
terms doesn’t solve the problem.

Suppose we extend Lf to Lif by adding quasi-individual variables, i1, i2,
i3, . . . (unofficially: i, j, k, . . .). An Fis-model is an Fs-model with the valuation
function V extended to map individual variables into the set of all singletons of
objects from the domain (hence ‘quasi-singular’). An Fin-model is an Fn-model
where R is extended to relate individual variables to elements of D, so that for
any individual variable ι, ∃!x∈DR(ι, x).
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Notice that the identity between individual variables cannot be defined in
the way that prima facie might seem plausible, i.e. by:

i = j ≡ ∀a[ifa ≡ jfa]

because if e(f) is the empty relation, then for any interpretation of i and j it
will be the case ∀a[ifa ≡ jfa].

The construction method from the proof of fact 4 no longer works for Lif,
because it does’t generally preserve satisfaction of formulas in which individual
variables occur. There is, however, a brute-force way of modifying the method
so that it yields non-standard Fis-models (mutatis mutandis, Fin-models) that
agree with (respective) standard models on all formulas. Say we have a stan-
dard Fis-model M = 〈D,V, e〉 and an object ⊥ 6∈ D. Let M ′ be 〈D ∪ {⊥}, V ′, e ′〉
such that:

• If α is a name variable, then V ′(α) = V(α) ∪ {⊥}.

• If ι is an individual variable, then V ′(ι) = V(ι).

• For any A,B ∈ 2D, 〈A,B〉 ∈ e ′(f) iff (i) A \ {⊥} is a singleton, and (ii)
A \ {⊥} ⊆ B \ {⊥}. That is, 〈A,B〉 ∈ e ′(f) iff 〈A \ {⊥}, B \ {⊥}〉 ∈ e(f).

M ′ is a non-standard model that agrees withM on all formulas. This means
that:
 8 Neither identity nor the epsilon is definable in Lif.

This indicates that a more plausible diagnosis would be that the key differ-
ence between Lf and standard second-order languages, a difference that under-
lies the undefinability of identity in Lf, is that instead of taking the predication
relation between a singular term and a predicate to be primitive, we take as our
primitive the relation that holds between a copula and its two arguments.
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